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Abstract—For the class of mixed channels decomposed into
stationary memoryless channels, single-letter characterizations of
the ε-capacity have not been known except for restricted classesof
channels such as the regular decomposable channel introduced by
Winkelbauer. This paper gives single-letter characterizations of
ε-capacity for mixed channels decomposed into at most countably
many memoryless channels with a finite input alphabet and a
general output alphabet with/without cost constraints. It is shown
that a given characterization reduces to the one for the channel
capacity given by Ahlswede whenε is zero. In the proof of
the coding theorem, the meta converse bound, originally given
by Polyanskiy, Poor and Verdú, is particularized for the mixed
channel decomposed into general component channels.

I. I NTRODUCTION

The maximum rate of sequence of codes that can attain
a decoding error probability less thanε ∈ [0, 1) is called
the ε-capacity. It is well-known that stationary memoryless
channels have the so-calledstrong converse property, and
theε-capacity coincides with the channel capacity (ε-capacity
with ε = 0) [16]. On the other hand, allowing a decoding
error probability up toε, the maximum achievable rate may
be improved for non-stationary and/or non-ergodic channels.
The simplest example ismixed channels[5] (also referred to
as decomposable channels [15] or averaged channels [1], [7])
whose probability distribution is characterized by a mixture
of multiple stationary memoryless channels. This channel is
stationary but non-ergodic, and is theoretically important as
basic example to be investigated when extensions of coding
theorems for ergodic channels are addressed. This channel
is known to give the simplest mathematical model of (non-
ergodic) block fading channels (c.f. [10], [17]).

For general channels including mixed channels, a general
formula of ε-capacity has been given by Verdú and Han [14].
This formula, however, involves limit operations with respect
to the code lengthn, and thus is infeasible to calculate in
general. On the other hand, for mixed channels decomposed
into stationary memoryless channels with a finite input al-
phabet, a single-letter characterization of the channel capacity
has been given by Ahlswede [1]. This characterization is of
importance because the channel capacity can be computed
with the complexity independent ofn. However, to the best
of authors’ knowledge, no single-letter characterizations of the
ε-capacity have been known, or at least no rigorous proofs

of an expression have appeared in the literature. The regular
decomposable channel which is decomposed into memoryless
channels, introduced by Winkelbauer [15], is an example of
channel classes for which a single-letter characterization of
ε-capacity has been given.

This paper gives a single-letter characterization of theε-
capacity for mixed channels decomposed into stationary mem-
oryless channels with a finite input alphabet and a general
output alphabet. First, a single-letter characterizationof the
ε-capacity is given for mixed channels decomposed into at
most countably many stationary memoryless channels1. An
alternative expression is also provided, and it is shown that
the characterization reduces to the one for the channel capacity
given by Ahlswede [1] whenε is zero. Then the theorem is
extended to the case when input symbols are subject to a cost
constraint. The coding theorems are proved by theinformation
spectrum method(c.f. [5], [14]) combined with recently devel-
oped analytical methods for the finite blocklength regime (e.g.,
[6], [9], [11], [13]). In the proof of the coding theorems, the
so-calledmeta conversebound [9], which is known as the best
converse bound to date is particularized for mixed channels2.
With this bound, kinds of previously known converse bounds
developed for general channels may also be particularized for
the mixed channel setting.

II. PRELIMINARIES

A. General Channel andε-Capacity

Consider a channelWn : Xn → Yn which stochastically
maps an input sequenceXn ∈ Xn of lengthn into an output
sequenceY n ∈ Yn. Here, X and Y denote a finite input
alphabet and an arbitrary output alphabet3, respectively. We

1A single-letter expression of the capacity has also been given by Ahlswede
[1] for the mixed channel averaged by an arbitrary probability measure, and
the expression has been simplified by Han [5]. Other related studies which
analyze the maximum rate for which the outage probability isadmitted up to
ε for a non-ergodic block fading channel has been given by [10]and [17].

2Although the meta converse bound also applies to mixed channels, it
should be modified to finely analyze fundamental limits of codes.

3In the case whereY is abstract in general, we understand thatWn(y|x)
andPY n (y) denote the corresponding probability measuresWn(dy|x) and
PY n (dy), respectively, and thatlog W

n(y|x)
PY n (y)

denotes the Radon-Nikodym

derivativelog W
n(dy|x)

PY n (dy)
. As in [5], we keep the notation simple and use the

summation
∑

to denote the integral
∫

, too.
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denote byP(X ) the set of all probability mass functions on
X . A sequenceW := {Wn}∞n=1 of channelsWn is referred
to as ageneral channel[5].

Let Cn be a code of lengthn and the number of codewords
|Cn| =Mn with an encoding functionφ : {1, . . . ,Mn} → Xn

and a decoding functionψ : Yn → {1, . . . ,Mn}.
Definition 1:Theaverageprobability of decoding error over

Wn is defined as

Pe(Cn) :=
1

Mn

Mn
∑

i=1

Pr[ψ(Y n) 6= i| i sent]. (1)

The codeCn is referred to as an(n,Mn, Pe(Cn)) code. �

Remark 1:The maximumerror probability defined as

e(Cn) := max
i∈{1,··· ,Mn}

Pr[ψ(Y n) 6= i|i sent] (2)

has also been considered in the literature. All the capacity
results in this paper are also valid under the maximum error
probability criterion. �

Definition 2: A coding rateR ≥ 0 is said to beachievable
if there exists a sequence of(n,Mn, Pe(Cn)) codes satisfying

lim sup
n→∞

Pe(Cn) ≤ ε and lim inf
n→∞

1

n
logMn ≥ R. (3)

The supremum ofε-achievable rates is called theε-capacity
and is denoted byC(ε|W ). �

Remark 2:The ε-capacityC(ε|W ) is a right-continuous
function in ε [14]. �

Remark 3:An ε-achievable rate is often defined by replacing
(3) with

Pe(Cn) ≤ ε and
1

n
logMn ≥ R− λ (4)

(e.g., [7], [14], [15], etc.). Theε-capacity in this case is
not right-continuous inε, and the provided characterizations
of the ε-capacity are valid except at most countably many
discontinuous points ofε-capacity (c.f. [14, Theorem 6]).�

B. Mixed Memoryless Channel

Consider a set of at most countably manyW ℓ :=
{Wn

ℓ }
∞
n=1 (ℓ = 1, 2, · · · ), and the set of indices ofW ℓ is

denoted byΩ. Themixed channeldecomposed into{W ℓ}ℓ∈Ω

is defined by

Wn(y|x) =
∑

ℓ∈Ω

wℓW
n
ℓ (y|x), (∀x ∈ Xn, ∀y ∈ Yn), (5)

a mixture of {Wn
ℓ } with the mixing ratio {wℓ ≥ 0}∞ℓ=1

satisfying
∑∞

ℓ=1 wℓ =
∑

ℓ∈Ωwℓ = 1. Hereafter, we assume
thatwℓ > 0 for all ℓ ∈ Ω, for simplicity. EachW ℓ is called
a component channelor simply components. Given an input
probability distributionPXn , the output fromWn

ℓ induced by
the inputXn is denoted byY n

ℓ . That is,

PXnY n

ℓ
(x,y) = PXn(x)Wn

ℓ (y|x) (∀x ∈ Xn, ∀y ∈ Yn).

The mixed channelW given by at most countably many sta-
tionary memoryless channels{Wℓ}ℓ∈Ω satisfyingWn

ℓ (y|x) =
∏n

i=1Wℓ(yi|xi) is called themixed memoryless channel.
Hereafter, we assume that the input alphabetX is finite
and the output alphabetY may be infinite as long as the
mutual informationIPX

(X ;Yℓ) calculated byPX and Wℓ

is continuous inPX for all ℓ ∈ Ω. For example, ifY is a
complete separable metric space, thenIPX

(X ;Yℓ) is concave
and continuous inPX [3, Lemma 3].

III. M AIN THEOREMS

A. General Mixed Memoryless Channels

The following theorem gives a single-letter characterization
of the ε-capacity.

Theorem 1:Let W be a mixed memoryless channel with
|X | <∞. For any fixedε ∈ [0, 1), the ε-capacity is given by

C(ε|W ) = sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε

}

, (6)

where

Fw(R|PX) :=
∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≤ R} . (7)

Here, IPX
(X ;Yℓ) denotes the mutual information calculated

byPX andWℓ, and1{A} denotes the indicator function which
takes one if a propositionA is true and takes zero otherwise.
(Proof) A proof is given in Sect. V. �

We define the functionA : P(X )× [0, 1] → R as

A(PX , δ) := sup {R | Fw(R|PX) ≤ δ} , (8)

whereR denotes the set of real numbers. Theε-capacity given
by Theorem 1 is expressed as

C(ε|W ) = sup
PX∈P(X )

A(PX , ε). (9)

Let D be a compact set inP(X ). Some properties of the
function A(PX , δ) and R̃(δ|D) := supPX∈D A(PX , δ) are
shown by the following lemma.

Lemma 1:For the functionsA(PX , δ) and R̃(δ|D), the
following hold:

(a) A(PX , δ) is continuous inPX for fixed δ.
(b) A(PX , δ) is non-decreasing inδ for fixed PX .
(c) A(PX , δ) is right-continuous in δ. That is,

limδ↓δ0 A(PX , δ) = A(PX , δ0).
(d) R̃(δ|D) is right-continuous inδ.

(Proof) Properties (b) and (c) are easily verified by the
definition of A(PX , δ). Proofs of Properties (a) and (d) are
given in Appendix A-A and Appendix A-B, respectively.�

The functionFw(R|PX) which appears in the definition of
A(PX , δ) is not continuous inPX obviously. It is of interest to
see that the functionA(PX , δ) has Property (a) nevertheless.
By Property (a), there exists at least onePX ∈ P(X ) that
gives R̃(δ|D). That is, R̃(δ|D) = maxPX∈D A(PX , δ). The
first supremum on the right-hand side (r.h.s.) of (6) is actually
maximum.

By Properties (b) and (d), theε-capacity given in Theorem
1 can also be expressed as

C(ε|W ) = inf
δ>0

sup
PX∈P(X )

sup {R | Fw(R|PX) ≤ ε+ δ}

(10)

To prove Theorem 1, it is sufficient to show that (10) holds,
and this fact is used in Sect. V.



B. Special Case: Well-Ordered Mixed Memoryless Channels

It is shown that the single-letter characterization in Theorem
1 reduces a previously known expression for a restricted class
of mixed channels. As an example, the following class of
mixed memoryless channels is introduced.

Let Cℓ denote the channel capacity of theℓ-th component
channelWℓ andΠℓ be the set of input probability distributions
that achieveCℓ. Without loss of generality, we assume that
the component channels are indexed to satisfyCℓ ≤ Cℓ+1,
where componentsWi andWj (i 6= j) such thatCi = Cj are
arbitrarily indexed if|Ω| <∞.

Definition 3 (Well-Ordered Mixed Memoryless Channel):
For eachℓ ∈ Ω, if there exists somePX ∈ Πℓ such that

Cℓ ≤ IPX
(X ;Yj) for all j : Cℓ ≤ Cj , (11)

then the mixed channelW is said to bewell-ordered. �

For example, let us consider a well-ordered mixed memo-
ryless channel of two componentsW 1 = {Wn

1 }
∞
n=1,W 2 =

{Wn
2 }

∞
n=1. By the condition (11), it should holdC1 ≤ C2 and

C1 ≤ I(X ;Y2) (∃PX ∈ Π1). (12)

WhenC1 = C2, (11) requiresΠ1 ∩Π2 6= ∅. If the component
channels{Wℓ|ℓ ∈ Ω} are all output-symmetric (e.g., the mixed
BSCs [7]), then the condition (11) trivially holds.

It it readily shown that every well-ordered mixed memory-
less channel is an instance ofregular decomposablechannels
introduced by Winkelbauer [15]. Theε-capacity of a regular
decomposable channel has been given by [15]. For well-
ordered mixed memoryless channels, the following corollary
follows from Theorem 1.

Corollary 1 (Winkelbauer [15]):Let W be a well-ordered
mixed memoryless channels such that|X | <∞, and define

F̃w(R) :=
∑

ℓ∈Ω

wℓ1 {Cℓ ≤ R} . (13)

For anyε ∈ [0, 1), the ε-capacity is given by

C(ε|W ) = sup
{

R
∣

∣

∣
F̃w(R) ≤ ε

}

, (14)

�

Corollary 1 slightly extends the coding theorem by Winkel-
bauer [15] for the well-ordered mixed memoryless channel to
the case of non-discreteY.

Consider the case|Ω| < ∞. By (14), theε-capacity of the
mixed channel satisfying (11) is given byC(ε|W ) = Ck∗ ,
wherek∗ is the component index satisfying

∑

ℓ∈Ω

wℓ1{Cℓ < Ck∗} ≤ ε < F̃w(Ck∗). (15)

For example, theε-capacity for the well-ordered mixed chan-
nel W with |Ω| = 3 is given by

C(ε|W ) =







C1, if ε ∈ [0, w1)
C2, if ε ∈ [w1, w1 + w2)
C3, otherwise

. (16)

It is of interest to see that the expression of theε-capacity
in Corollary 1 is similar to the one for the channel with states
[12]. Specifically, Example 1 in [12] deals with the mixed
channel decomposable into finitely many (not necessarily

well-ordered) stationary memoryless components, and both
the encoder and the decoder can access the channel state
information, which corresponding to the index of component
channels in this paper. In this case, the expression of theε-
capacity coincides with the one given in (14). This fact implies
that the optimum rate without the channel state informationis
the same as the one with the channel state information if the
mixed channel is well-ordered.

C. Alternative Expression ofε-Capacity

We give an alternative expression of theε-capacity of the
mixed memoryless channel given by Theorem 1. We first show
the following lemma.

Lemma 2:Let W be a mixed memoryless channel with
|X | <∞. Then, we have

sup {R|Fw(R|PX) ≤ ε} = sup
{S⊆Ω|w(S)≥1−ε}

inf
ℓ∈S

IPX
(X ;Yℓ)

(17)

for all PX ∈ P(X ), wherew(S) denotes
∑

ℓ∈S wℓ.
(Proof) See Appendix B. �

Combining (6) with Lemma 2 provides an alternative ex-
pression of theε-capacity as

C(ε|W ) = sup
PX

sup
{S⊆Ω|w(S)≥1−ε}

inf
ℓ∈S

IPX
(X ;Yℓ) (18)

in the case of at most countably many component
channels. Whenε = 0, the r.h.s. of (18) becomes
supPX

infℓ∈Ω IPX
(X ;Yℓ), which coincides with the capacity

expression given by Ahlswede [1].
On the r.h.s. of (18),infℓ∈S IPX

(X ;Yℓ) with w(S) ≥ 1− ε
is the infimum of concave functions ofPX . When ε = 0,
infℓ∈S IPX

(X ;Yℓ) = infℓ∈Ω IPX
(X ;Yℓ) is concave inPX .

Whenε > 0, however, this function is not necessarily concave
since the domainS with w(S) ≥ 1− ε depends onPX .

Similar to (18), theε-capacity of a well-ordered mixed
memoryless channel can also be expressed as

C(ε|W ) = sup
{S⊆Ω|w(S)≥1−ε}

inf
ℓ∈S

Cℓ. (19)

D. ε-Capacity under Cost Constraint

We now turn to considering the coding for which an input
symbolX is constrained by a cost functionc : X → R. This
problem includes the power constraint over the channel witha
continuous alphabet such as the additive white Gaussian noise
(AWGN) channel as an instance.

If every codewordφ(i) (∀i ∈ {1, . . . ,Mn}) of a codeCn
is restricted to be in the set

Xc,Γ :=

{

x ∈ Xn|
n
∑

i=1

c(xi) ≤ nΓ

}

, (20)

this condition is referred to as thecost constraintΓ. A codeCn
attains an error probabilityε ∈ [0, 1) under the cost constraint
Γ is called an(n,Mn, ε,Γ) code.

Definition 4: If (3) holds under the cost constraintΓ, then
the rateR is said to be(ε,Γ)-achievable. The supremum of
(ε,Γ)-achievable rates forW is referred to as the(ε,Γ)-
capacityand is denoted byC(ε,Γ|W ). �



The following theorem characterizes the optimum coding
rate under a cost constraint for the mixed memoryless channel.

Theorem 2:Let W be a mixed memoryless channel with
|X | <∞. The(ε,Γ)-capacity for a givenΓ ∈ R andε ∈ [0, 1)
is given by

C(ε,Γ|W ) = sup
PX :EPX

c(X)≤Γ

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε

}

. (21)

(Proof) Converse Part is exactly the same line as the one
for Theorem 1. To prove Direct Part, we use an ensemble
of constant composition codes whose typeP0 satisfies the
constraintΓ and Mn codeword are chosen by the uniform
distribution on the set of sequences with typeP0. We can
apply an information spectrum approach by Hayashi [6, Sect.
X-B] to the proof of Direct Part of Theorem 1, showing that
any rateR less than the r.h.s. of (21) is(ε,Γ)-achievable.�

The set ofPX ∈ P(X ) such thatEPX
c(X) ≤ Γ is closed

convex, and hence is compact. Then from Property (a) in
Lemma 1, the first supremum in (21) is maximum, and from
Property (d), the r.h.s in (21) is right-continuous inε. When
ε = 0, (21) reduces to the capacity under a cost constraintΓ:

C(0,Γ|W ) = sup
PX :EPX

c(X)≤Γ

inf
ℓ∈Ω

IPX
(X ;Yℓ), (22)

which has been shown by Han [5].
The functionC(ε,Γ|W ) is referred to as thecapacity-cost

function, which is analogous to the rate-distortion function for
lossy source coding (c.f. [5]). The capacity-cost functionis
also referred to as thecapacity-expense function, and some of
its properties for discrete memoryless channels (DMCs) have
been shown in [2]. By definition, the capacity-cost functionis
monotonic nondecreasing inΓ. We show some properties of
the capacity-cost function.

Theorem 3:The capacity-cost function has the following
properties:

(i) concave inΓ for Γ > 0;
(ii) strictly increasing inΓ for 0 ≤ Γ < Γ∗, whereΓ∗ is

the minimum cost for which the capacity cost-function
coincides with theε-capacity;

(iii) if Γ < Γ∗, thenC(ε,Γ|W ) is achieved by somePX ∈
P(X ) such thatEPX

c(X) = Γ. �

These properties, which can be shown in an analogous way
to the proofs in [2, Appendix], are handed down from the
capacity-cost function for DMCs. However, unlike the DMC
case, the set of optimum input distributions that achieve the
ε-capacity under a cost constraint is not necessarily convex.

IV. ONE-SHOT ERROR BOUNDS FORM IXED CHANNEL

The proof of Theorem 1 provided in Sect. V uses so-called
“one-shot” error bounds which hold for the mixed channel de-
composed into (not necessarily stationary or ergodic) general
component channels.

First we show converse (lower) error bounds. Following [9,
Sect. III-D], we introduce simple hypothesis testing: Given
an observationZ ∈ Z according to either of two probability

measuresP,Q on Z, consider a hypothesis test

H0 : Z ∼ P vs. H1 : Z ∼ Q (23)

to judge the true probability measure. When observingZ, a
testξ : Z → {0, 1} judgesP to be true with probabilityξ(Z)
andQ to be true with probability1 − ξ(Z). The error event
when the true measure isP is called the error of the first
kind and the one when the true measure isQ is called the
error of the second kind. For a fixedα ∈ [0, 1], the optimum
test that minimizes the error probability of the second kind
among those whose error probability of the first kind satisfies
∑

z∈Z P (z)(1 − ξ(z)) ≤ α is denoted byξ∗, and its error
probability of the second kind is denoted by

βα(P,Q) := min
ξ:Z→{0,1}:∑

z
P (z)(1−ξ(z))≤α

∑

z∈Z

Q(z)ξ(z). (24)

Likewise, letαβ(P,Q) denote the minimum error probability
of the second kind among tests whose error probability of the
first kind is less than or equal toβ.

The following lemma particularizes a meta converse bound
by Polyanskiy, Poor, and Verdú [9] for the mixed channels.

Lemma 3 (Meta Converse for Mixed Channel):Let
{QY n

ℓ
}ℓ∈Ω be a set of arbitrary probability measures. Then

every (n,Mn, εn) code Cn with a (possibly probabilistic)
decoding functionξ : Yn → {1, 2, . . . ,Mn} satisfies

εn ≥
∑

ℓ∈Ω

wℓ α 1
Mn

(PXnWn
ℓ , PXnQY n

ℓ
) (25)

and
1

Mn

≥
∑

ℓ∈Ω

wℓβε(ℓ)n

(PXnWn
ℓ , PXnQY n

ℓ
). (26)

Here,PXn is the uniform distribution onCn, andε(ℓ)n denotes
the average probability of decoding error overWn

ℓ given by

ε(ℓ)n := 1−
1

Mn

Mn
∑

i=1

∑

y∈Yn

Wn
ℓ (y|φ(i))ξ(i|y) (∀ℓ ∈ Ω), (27)

whereφ(i) denotes the codeword assigned to messagei, and
ξ(i|y) denotes the probability ofi being estimated giveny.
(Proof) The first inequality is due to [13], and the second one
is due to [9]. A proof is given in Appendix C. �

The following lemma is established by modifying a lemma
shown by Tomamichel and Tan [11] for mixed channels.

Lemma 4:Given a family of pairs of probability measures
{(Pℓ, Qℓ)}ℓ∈Ω on Z, consider a hypothesis test

H0 : Zℓ ∼ Pℓ vs. H1 : Zℓ ∼ Qℓ (28)

for each ℓ ∈ Ω. For any givenε ∈ [0, 1), letting {εℓ ∈
[0, 1)}ℓ∈Ω be a sequence such that

∑

ℓ∈Ωwℓεℓ = ε, we have

− log
∑

ℓ∈Ω

wℓβεℓ(Pℓ, Qℓ) ≤ Dε+δ
s ({Pℓ}||{Qℓ})− log δ (29)

with an arbitrary constantδ ∈ (0, 1], whereDε
s ({Pℓ}||{Qℓ})

denotes the value

sup

{

R
∣

∣

∣

∑

ℓ∈Ω

wℓPℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R

}

≤ ε

}

. (30)

(Proof) A proof is given in Appendix D. �



We setPℓ := PXn ×Wn
ℓ , Qℓ := PXn × QY n

ℓ
, ε := εn,

and εℓ := ε
(ℓ)
n in Lemma 4. Sinceε(ℓ)n given in (27) satis-

fies
∑

ℓ∈Ωwℓε
(ℓ)
n = εn, (29) holds. Then from (26), every

(n,Mn, εn) codeCn satisfies

logMn ≤ Dεn+δ
s ({PXnWn

ℓ }||{PXnQY n

ℓ
})− log δ (31)

with an arbitrary constantδ ∈ (0, 1].
Remark 4:It is easily verified that Lemmas 3 and 4 can be

extended to the mixed channel with a general mixture (c.f. [5,
Sect. 3.3]). In this case, the summand should be replaced with
integral. �

We next consider upper (achievability) error bounds. The
following lemma particularizes the Feinstein upper bound [4]
for the mixed channels.

Lemma 5:For any givenPXn ∈ P(Xn), there exists an
(n,Mn, εn) code satisfying

εn ≤
∑

ℓ∈Ω

wℓ Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

PY n

ℓ
(Y n

ℓ )
≤

1

n
logMn

+ γ +
1

n
log

1

wℓ

}

+ e−nγ , (32)

whereγ > 0 is an arbitrary constant andPY n denotes the
marginal measurePY n(y) =

∑

x∈Xn PXn(x)Wn
ℓ (y|x). �

Equation (32) can be derived by the result shown by Han
[5, Lemma 1.4.1]. Although the original bound by Han uses a
sequence{γn ≥ 0| limn→∞ γn = 0} instead of a constantγ,
an examination verifies that (32) holds for any constantγ > 0.

V. PROOF OFTHEOREM 1

A. Converse Part

For a givenx ∈ Xn, we denoteWn
ℓ|x := Wn

ℓ (·|x) for
simplicity. For a givenPX ∈ P(X ), we define

(PXWℓ)
×n(y) :=

n
∏

i=1

∑

x∈X

PX(x)Wℓ(yi|x). (33)

Converse Part of Theorem 1 is stated as follows:
Theorem 4 (Converse Theorem):For a mixed channelW ,

any ε-achievable rateR for ε ∈ [0, 1) satisfies

R ≤ inf
δ>0

sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε+δ

}

. (34)

�

Before stating the proof of Converse Part, we give some
preliminaries. By the Chebyshev inequality, the following
lemma holds:

Lemma 6: For any fixedx ∈ Xn, we denote its type
(empirical distribution) byPn. Let γ > 0 be an arbitrary
constant and define

B
(n)
ℓ|x(γ) :=

{

y

∣

∣

∣

∣

∣

∣

∣

1

n
log

Wn
ℓ (y|x)

(PnWℓ)×n(y)
− IPn

(X ;Yℓ)

∣

∣

∣

∣

≤ γ

}

(35)

for all ℓ ∈ Ω. Then we have

Wn
ℓ|x

{

Y n
ℓ ∈ B

(n)
ℓ|x(γ)

}

≥ 1−
A(γ)

n
(36)

with a constantA(γ) ≥ 0 independent ofn, Pn andℓ. �

The conditional variance of information density
log Wℓ(Yℓ|X)

(PXWℓ)(Yℓ)
givenPX ,

V (PX ,Wℓ) := EPX

[

VWℓ

[

log
Wℓ(Yℓ|X)

(PXWℓ)(Yℓ)

∣

∣

∣
X

]]

, (37)

is upper bounded byVPXWℓ

[

log Wℓ(Yℓ|X)
(PXWℓ)(Yℓ)

]

, which can be
verified as follows (see also [9, Lemma 62]): defining

U1 := E

[

E

[

log
Wℓ(Yℓ|X)

(PXWℓ)(Yℓ)

∣

∣

∣
X

]2
]

,

U2 := E

[

log
Wℓ(Yℓ|X)

(PXWℓ)(Yℓ)

]2

, (38)

then E

[

log Wℓ(Yℓ|X)
(PXWℓ)(Yℓ)

∣

∣

∣
X
]2

is a convex function ofPX

since f(z) := z2 is convex and nondecreasing forz ≥ 0,

and g(x) := E

[

log Wℓ(Yℓ|x)
(PXWℓ)(Yℓ)

]

is convex. Therefore, we
obtain U1 ≥ U2, which leads to the claim. The variance
VPXWℓ

[

log Wℓ(Yℓ|X)
(PXWℓ)(Yℓ)

]

is further bounded uniformly by8|X |
e2

[5, Remark 3.1.1], the constantA(γ) in (36) can be chosen
independently ofℓ ∈ Ω andPn ∈ Tn.

We are now in a position to prove Theorem 4. LetR
be ε-achievable. Then, from (3), there exists a sequence of
(n,Mn, εn) codesCn with some{δn ≥ 0|δ1 ≥ δ2 ≥ · · · ≥
0, limn→∞ δn = 0} satisfying
1

n
logMn ≥ R− γ and εn ≤ ε+ δn (∃n1 > 0; ∀n ≥ n1)

(39)

for an arbitrarily fixed constantγ > 0. Borrowing an idea
given by Hayashi [6, Sect. X-A], we setδ = 1

n
and

QY n

ℓ
(y) =

1

|Tn|

∑

Pn∈Tn

(PnWℓ)
×n(y) (∀y ∈ Yn) (40)

in (31), whereTn denotes the set of types onXn. We define

R∗
n :=

1

n
D

εn+
1
n

s ({PXnWn
ℓ }||{PXnQY n

ℓ
}) +

1

n
logn. (41)

Since the first term on the r.h.s. is expressed as

sup

{

R
∣

∣

∣

∑

ℓ∈Ω

wℓ Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

QY n

ℓ
(Y n

ℓ )
≤R

}

≤ εn+
1

n

}

,

it can be verified that there exists anx0 ∈ Cn such that
∑

ℓ∈Ω

wℓW
n
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

QY n

ℓ
(Y n

ℓ )
≤ R∗

n −
1

n
logn− γ

}

≤ εn +
1

n
(42)



as follows: By definition in (41), we can re-express

R∗
n −

1

n
logn

= sup

{

R
∣

∣

∣

∑

ℓ∈Ω

wℓ Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

QY n

ℓ
(Y n

ℓ )
≤R

}

≤ εn+
1

n

}

= sup

{

R
∣

∣

∣

∑

x∈Cn

1

Mn

∑

ℓ∈Ω

wℓW
n
ℓ|x

{

1

n
log

Wn
ℓ (Y

n
ℓ |x)

QY n

ℓ
(Y n

ℓ )
≤ R

}

≤ εn +
1

n

}

. (43)

Suppose that (42) does not hold for anyx ∈ Cn. Then we
have

1

Mn

∑

x∈Cn

∑

ℓ∈Ω

wℓW
n
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

QY n

ℓ
(Y n

ℓ )

≤ R∗
n −

1

n
logn− γ

}

> εn +
1

n
, (44)

and this implies thatR∗
n − 1

n
logn− γ is strictly greater than

the r.h.s. of (43). Since this contradicts (43), it is concluded
that there exists at least onex0 ∈ Cn satisfying (42).

Denoting by Pn
0 the type of x0, we have a chain of

inequalities

Wn
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

QY n

ℓ
(Y n

ℓ )
≤ R∗

n −
1

n
logn− γ

}

≥Wn
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

(Pn
0 Wℓ)×n(Y n

ℓ )
≤ R∗

n −
1

n
logn|Tn| − γ

}

≥Wn
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

(Pn
0 Wℓ)×n(Y n

ℓ )
≤ R∗

n −
1

n
logn|Tn| − γ,

Y n
ℓ ∈ B

(n)
ℓ|x0

(γ)
}

≥ 1

{

IPn

0
(X ;Yℓ) ≤ R∗

n−
1

n
logn|Tn| − 2γ

}

−
A(γ)

n
, (45)

whereB(n)
ℓ|x0

(γ) is defined in (35) andA(γ) ≥ 0 is a constant
independent ofn, Pn

0 , andℓ. We use the relation in (40) for
the first inequality. The inequality in (45) can be verified since
(i) for ℓ ∈ Ω such thatIPn

0
(X ;Yℓ) ≤ R∗

n − 1
n
logn|Tn| − 2γ,

we have

Wn
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

(Pn
0 Wℓ)×n(Y n

ℓ )
≤ R∗

n −
1

n
logn|Tn| − γ,

Y n
ℓ ∈ B

(n)
ℓ|x0

(γ)
}

=Wn
ℓ|x0

{

Y n
ℓ ∈ B

(n)
ℓ|x0

(γ)
}

≥ 1−
A(γ)

n
(46)

by Lemma 6 and (ii) forℓ ∈ Ω such thatIPn

0
(X ;Yℓ) > R∗

n −
1
n
logn|Tn| − 2γ, a trivial lower bound

Wn
ℓ|x0

{

1

n
log

Wn
ℓ (Y

n
ℓ |x0)

(Pn
0 Wℓ)×n(Y n

ℓ )
≤ R∗

n −
1

n
logn|Tn| − γ,

Y n
ℓ ∈ B

(n)
ℓ|x0

(γ)
}

≥ −
A(γ)

n
(47)

holds. Note that the r.h.s. of (45) depends onPn
0 ∈ Tn but

not on individual codewords. SinceA(γ) ≥ 0 is a constant

independent ofℓ andPn
0 , we obtain

∑

ℓ

wℓ1

{

IPn

0
(X ;Yℓ) ≤ R∗

n −
1

n
logn|Tn| − 2γ

}

≤ εn +
1

n
+
A(γ)

n
(48)

from (42) and (45).
Combining (31), (39), and (41) gives

R− γ ≤ R∗
n (∀n ≥ n1). (49)

Then (48) implies that there exists a sequence of types{Pn ∈
Tn}∞n=n1

such that
∑

ℓ∈Ω

wℓ1

{

IPn
(X ;Yℓ) ≤ R− 3γ −

1

n
logn|Tn|

}

≤ ε+ δn +
1

n
+
A(γ)

n
(50)

holds for alln ≥ n1, where the relationεn ≤ ε+δn (∀n ≥ n1)

in (39) is used. Settingρn := δn + 1
n
+ A(γ)

n
, we obtain

∑

ℓ∈Ω

wℓ1

{

IPn
(X ;Yℓ) ≤ R−3γ−

1

n
logn|Tn|

}

≤ ε+ρn (51)

for n ≥ n1.
It can be verified from (51) and the definition of̃R(·) :=

R̃(·|P(X )) that

R− 3γ −
1

n
log n|Tn| ≤ R̃(ε+ ρn) (52)

holds for n ≥ n1. It is well-known that|Tn| ≤ (n + 1)|X |

holds by the method of types, and taking the limes superior
with respect ton on both sides of (52) yields

R − 3γ ≤ lim
n→∞

R̃(ε+ ρn)= inf
δ>0

R̃(ε+ δ). (53)

The equality in (53) is due to Property (d) in Lemma 1.
Since γ > 0 is an arbitrary constant, (53) impliesR ≤
infδ>0 R̃(ε+ δ), i.e., (34).

B. Direct Part

Direct Part of Theorem 1 is stated as follows:
Theorem 5 (Direct Theorem):Let W be a mixed memory-

less channel such that|X | < ∞. For a fixedε ∈ [0, 1), any
rateR satisfying

R < inf
δ>0

sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε+δ

}

(54)

is ε-achievable. �

The following lemma is used to prove Direct Part.
Lemma 7:Let PXn be a product distribution of a given

PX ∈ P(X ). Then we have

lim sup
n→∞

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n

}

≤ 1 {IPX
(X ;Yℓ) ≤ R+ γ} (∀ℓ ∈ Ω), (55)

where {ρℓ,n ≥ 0} denotes an arbitrary sequence such that
limn→∞ ρℓ,n = 0, andγ > 0 denotes an arbitrary constant.
(Proof) See Appendix E. �



We now prove Direct Part. Setting

R0 := inf
δ>0

sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε+δ

}

, (56)

we shall show thatR := R0 − 4γ is ε-achievable for any
γ > 0.

Fix γ > 0 arbitrarily. By (56), we have

R0 ≤ sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε+ δ

}

(57)

for all δ > 0. For an arbitrarily fixedδ > 0, there exists a
P

(δ)
X ∈ P(X ) such that

sup
PX∈P(X )

sup
{

R
∣

∣

∣
Fw(R|PX) ≤ ε+ δ

}

≤ sup
{

R
∣

∣

∣
Fw

(

R|P
(δ)
X

)

≤ ε+ δ
}

+ γ. (58)

It follows from (57) and (58) that

sup
{

R
∣

∣

∣
Fw

(

R|P
(δ)
X

)

≤ ε+ δ
}

≥ R0 − γ > R+ 2γ. (59)

Since Fw(R|P
(δ)
X ) is a non-decreasing function ofR, (59)

implies

Fw

(

R+ 2γ|P
(δ)
X

)

≤ ε+ δ. (60)

On the other hand, by settingMn = enR, (3) holds trivially.
We now consider the ensemble of random codes for whichn

symbols of each codeword are randomly chosen according to
P

(δ)
X i.i.d. That is, PXn(x) =

∏n
i=1 P

(δ)
X (xi) (∀x ∈ Xn).

Then Lemma 5 guarantees that there exists an(n,Mn, εn)
code satisfying

εn ≤
∑

ℓ∈Ω

wℓ Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(P
(δ)
X Wℓ)×n(Y n

ℓ )
≤ R

+ γ +
1

n
log

1

wℓ

}

+ e−nγ . (61)

Taking the limes superior with respectn on both sides in (61),

lim sup
n→∞

εn ≤
∑

ℓ∈Ω

wℓ lim sup
n→∞

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(P
(δ)
X Wℓ)×n(Y n

ℓ )

≤ R + γ +
1

n
log

1

wℓ

}

≤
∑

ℓ∈Ω

wℓ1

{

I
P

(δ)
X

(X ;Yℓ) ≤ R+ 2γ
}

(62)

= Fw

(

R+ 2γ|P
(δ)
X

)

≤ ε+ δ (63)

holds by the sub-additivity of the limes superior. The inequal-
ity in (62) is due to Lemma 7, and the last inequality follows
from (60). Since (63) holds for an arbitrary fixedδ > 0,

lim sup
n→∞

εn ≤ ε (64)

holds, and thusR is ε-achievable.

APPENDIX A
PROOF OFLEMMA 1

A. Property (a): Continuity ofA(PX , δ) in PX

Mutual informationIPX
(X ;Yℓ) is uniformly continuous in

PX since the input alphabetX is finite. Then we have the

following lemma.
Lemma 8:For at most countably many stationary memory-

less channels{Wℓ}ℓ∈Ω, we have

∀η>0, ∃λ(η)>0, ∀ℓ∈Ω, ∀PX , P
′
X∈P(X ) s.t.

||PX − P ′
X || ≤ λ(η) ⇒ |IPX

(X ;Yℓ)− IP ′

X
(X ;Yℓ)| ≤ η,

(65)

where we define

||PX − P ′
X || :=

∑

x∈X

|PX(x) − P ′
X(x)|, (66)

the variational distance betweenPX andP ′
X . �

Remark 5:This lemma holds for an arbitrary family of
uniform continuous functions{fℓ(PX)| fℓ : D → R}, where
D is a compact set inP(X ). A constantλ(η) in (65) can be
chosen independent of channel indexℓ because of the uniform
continuity of fℓ(PX). �

Fix η > 0 arbitrarily, and choose anyPX , P
′
X ∈ P(X )

satisfying||PX − P ′
X || ≤ λ(η). By Lemma 8, we have

|IPX
(X ;Yℓ)− IP ′

X
(X ;Yℓ)| ≤ η (∀ℓ ∈ Ω). (67)

Since (67) implies
∑

ℓ∈Ω

wℓ1

{

IP ′

X
(X ;Yℓ) ≤ R

}

≥
∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≤ R−η} ,

we have a chain of expansions

A(P ′
X , δ) ≤ sup

{

R
∣

∣

∣

∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≤ R−η} ≤ δ

}

= sup

{

R+ η
∣

∣

∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≤ R} ≤ δ

}

= A(PX , δ) + η. (68)

By the same argument, we also have

A(PX , δ) ≤ A(P ′
X , δ) + η. (69)

SincePX , P
′
X are arbitrarily chosen, (68) and (69) imply

|A(PX , δ)−A(P ′
X , δ)| ≤ η, (70)

and thus the functionA(PX , δ) is continuous inPX .

B. Property (d): Right Continuity of̃R(δ|D) in δ

The function R̃(·|D) is non-decreasing inδ because of
Property (b) ofA(PX , ·). Then it is sufficient to show

lim
k→∞

R̃(δ + λk|D) = R̃(δ|D) (71)

by fixing δ ∈ [0, 1) and a decreasing sequence{λk > 0|λ1 >
λ2 > · · · → 0} arbitrarily. We denote byN the set of all
natural numbers. We assign an indexk ∈ N to A(PX , δ+λk)
and relabel as̃Ak(PX |δ) := A(PX , δ + λk).

By the properties ofA(PX , δ) (Property (a)–(c)), we have
the following:

(i)
{

Ãk(PX |δ)
}

k∈N
is a monotonically decreasing sequence

of functions ink.
(ii) limk→∞ Ãk(PX |δ) = A(PX , δ) (pointwise convergence

in PX ).
(iii) A(PX , δ) is a continuous function ofPX .



Thus, since a monotonically decreasing sequence of functions
converges pointwise to a continuous function over a compact
set D, Dini’s theorem holds, and

{

Ãk(PX |δ)
}

k∈N
converge

to A(PX , δ) uniformly. By the uniform convergence, we have

lim
k→∞

max
PX∈D

Ãk(PX |δ) = max
PX∈D

lim
k→∞

Ãk(PX |δ)

= max
PX∈D

A(PX , δ) (72)

(c.f. [1, Lemma 2]). By the relation

R̃(δ + λk|D) = max
PX∈D

Ãk(PX |δ) (73)

and the definition ofR̃(δ|D), (72) means (71).

APPENDIX B
PROOF OFLEMMA 2

Fix an input probability distributionPX ∈ P(X ) arbitrarily.
It is easily verified that the l.h.s. of (17) can be expressed as

sup {R|Fw(R|PX) ≤ ε}

= sup

{

R
∣

∣

∣

∑

ℓ

wℓ1{IPX
(X ;Yℓ) < R} ≤ ε

}

= sup

{

R
∣

∣

∣

∑

ℓ

wℓ1{IPX
(X ;Yℓ) ≥ R} ≥ 1− ε

}

. (74)

Therefore, defining

A(ε|PX) := sup

{

R
∣

∣

∣

∑

ℓ

wℓ1{IPX
(X ;Yℓ) ≥ R} ≥ 1− ε

}

,

(75)

B(ε|PX) := sup
{S⊆Ω|w(S)≥1−ε}

inf
ℓ∈S

IPX
(X ;Yℓ), (76)

we shall showA(ε|PX) = B(ε|PX).
(i) Proof of A(ε|PX) ≥ B(ε|PX):

SetR0 := B(ε|PX). By the definition ofB(ε|PX), for any
fixed γ > 0, there existsS0 ⊆ Ω satisfyingw(S0) ≥ 1 − ε

and

R0 ≤ inf
k∈S0

IPX
(X ;Yk) + γ. (77)

Also, by the definition of infimum, we have a chain of
inequalities

inf
k∈S0

IPX
(X ;Yk)

= sup
{

R
∣

∣

∣
IPX

(X ;Yℓ) ≥ R (∀ℓ ∈ S0)
}

= sup
{

R
∣

∣

∣
IPX

(X ;Yℓ) ≥ R (∀ℓ ∈ S0),

∑

ℓ∈S0

wℓ1{IPX
(X ;Yℓ) ≥ R} ≥ 1− ε

}

≤ sup

{

R
∣

∣

∣

∑

ℓ∈S0

wℓ1{IPX
(X ;Yℓ) ≥ R} ≥ 1− ε

}

= A(ε|PX). (78)

By (77) and (78), we have

R0 − γ ≤ A(ε|PX), (79)

concludingR0 ≤ A(ε|PX) sinceγ > 0 is fixed arbitrarily,
(ii) Proof of A(ε|PX) ≤ B(ε|PX):

We define the set

S(ρ) :=
{

ℓ ∈ Ω
∣

∣IPX
(X ;Yℓ) ≥ ρ

}

(80)

for ρ > 0. It should be noticed that

w (S(ρ1)) ≥ w (S(ρ2)) (81)

for any 0 < ρ1 ≤ ρ2.
Consider the valueρ∗ > 0 satisfying the following condi-

tions:

w (S(ρ∗ − γ)) ≥ 1− ε (∀γ > 0), (82)

w (S(ρ)) < 1− ε (∀ρ > ρ∗). (83)

For an arbitrarily fixedη > 0, we haveS(ρ∗+η) ⊂ S(ρ∗−η)
and
∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≥ ρ∗ + η} = w(S(ρ∗ + η)) < 1− ε

(84)

from (83). Since everyR > 0 such that
∑

ℓ∈Ω

wℓ1 {IPX
(X ;Yℓ) ≥ R} < 1− ε (85)

satisfiesR ≥ A(ε|PX) by the definition ofA(ε|PX), (84)
implies

A(ε|PX) ≤ ρ∗ + η. (86)

Meanwhile, we have

ρ∗ − η ≤ inf
k∈S(ρ∗−η)

IPX
(X ;Yk) ≤ B(ε|PX), (87)

where the first inequality follows from the definition ofS(ρ),
and the second one follows from the factw(S(ρ∗−η)) ≥ 1−ε
and the definition ofB(ε|PX). It follows from (86) and (87)
that

A(ε|PX) ≤ B(ε|PX) + 2η (88)

holds. Sinceη > 0 is arbitrarily fixed, it concludesA(ε|PX) ≤
B(ε|PX).

APPENDIX C
PROOF OFLEMMA 3

Suppose that the decoderξ : Yn → {1, . . . ,Mn} attains the
error probabilityεn without loss of generality. Settingξℓ =
ξ (∀ℓ ∈ Ω), and denoting byξML

ℓ the maximum likelihood
decoder overWn

ℓ , we have

εn = 1−
1

Mn

Mn
∑

i=1

∑

y∈Yn

Wn(y|φ(i))ξ(i|y)

=
∑

ℓ∈Ω

wℓ







1−
1

Mn

Mn
∑

i=1

∑

y∈Yn

Wn
ℓ (y|φ(i))ξℓ(i|y)







(89)

≥
∑

ℓ∈Ω

wℓ







1−
1

Mn

Mn
∑

i=1

∑

y∈Yn

Wn
ℓ (y|φ(i))ξ

ML
ℓ (i|y)







.

(90)

Here, the terms inside the brace{·} in (89) corresponds to



the average error probabilityε(ℓ)n of the decoderξℓ = ξ

overWn
ℓ , and the terms inside the brace{·} in (90) denotes

the average error probabilityεML
ℓ of the maximum likelihood

decoderξML
ℓ . The inequality in (90) follows from the fact that

the maximum likelihood decoder attains the minimum error
probability among all decoders overWn

ℓ . The probabilityεML
ℓ

can be evaluated by usingαβ(·, ·) according to the following
lemma shown by Vazquez-Vilar et al. [13].

Lemma 9 (Vazquez-Vilar et al. [13]):For a given codeCn
of length n and the number of codewordsMn, the average
error probability of the maximum likelihood decoder over the
channelWn

ℓ is given by

εML
ℓ = sup

QY n
ℓ

α 1
Mn

(PXnWn
ℓ , PXnQY n

ℓ
). (91)

Here, PXn denotes the uniform distribution onCn, and the
max on the r.h.s. is taken over all probability measures on
Yn. �

Applying Lemma 9 for (90) yields

εn ≥
∑

ℓ∈Ω

wℓ sup
QY n

ℓ

α 1
Mn

(PXnWn
ℓ , PXnQY n

ℓ
). (92)

Thus, (25) holds.

By using a duality of(α, βα) and(αβ , β) in simple hypoth-
esis testing, (91) implies

1

Mn

≥ βεML
ℓ

(PXnWn
ℓ , PXnQY n

ℓ
) (93)

for every fixedQY n

ℓ
, which can be easily verified by consider-

ing the region of possible pairs of(α, β) (c.f. [8, Figure 3.1]).
SinceεML

ℓ ≤ ε
(ℓ)
n , we have

βεML
ℓ

(PXnWn
ℓ , PXnQY n

ℓ
) ≥ β

ε
(ℓ)
n

(PXnWn
ℓ , PXnQY n

ℓ
) (94)

for any givenQY n

ℓ
, yielding the inequality

1

Mn

≥ sup
QY n

ℓ

β
ε
(ℓ)
n

(PXnWn
ℓ , PXnQY n

ℓ
), (95)

from (93). Lower bounding the r.h.s. of (95) by fixing some
{QY n

ℓ
}ℓ∈Ω and taking the mixture with the mixing ratio

{wℓ}ℓ∈Ω conclude that (26) holds.

APPENDIX D
PROOF OFLEMMA 4

We first setR0 := − log
∑

ℓ∈Ωwℓβεℓ(Pℓ, Qℓ) + log δ and
denote byξ∗ℓ a probabilistic test that attainsβεℓ(Pℓ, Qℓ) in
the hypothesis testing (28). We denote byT ∗ ∈ {H0, H1} the
random variable corresponding to the hypothesis estimatedby
this test. That is,Pℓ{T ∗ = H1} = εℓ andQℓ {T ∗ = H0} =
βεℓ(Pℓ, Qℓ) hold by the well-known Neyman-Pearson lemma.

Then a standard bounding technique gives

1− εℓ = Pℓ{T
∗ = H0}

= Pℓ

{

T ∗ = H0, log
Pℓ(Zℓ)

Qℓ(Zℓ)
> R0

}

+ Pℓ

{

T ∗ = H0, log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R0

}

≤ Pℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
> R0

}

+ eR0Qℓ {T
∗ = H0} ,

(96)

and this implies

εℓ ≥ Pℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R0

}

− eR0βεℓ(Pℓ, Qℓ) (∀ℓ ∈ Ω)

(97)

by the definition ofξ∗ℓ . Since{εℓ}ℓ∈Ω satisfies
∑

ℓ∈Ωwℓεℓ =
ε, taking the mixture of both sides with{wℓ}ℓ∈Ω yields

ε ≥
∑

ℓ∈Ω

wℓPℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R0

}

− eR0

∑

ℓ∈Ω

wℓβεℓ(Pℓ, Qℓ)

=
∑

ℓ∈Ω

wℓPℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R0

}

− δ. (98)

Here, the equality simply follows from the definition ofR0.
(98) indicates

R0 ≤ sup

{

R
∣

∣

∣

∑

ℓ∈Ω

wℓPℓ

{

log
Pℓ(Zℓ)

Qℓ(Zℓ)
≤ R

}

≤ ε+ δ

}

= Dε+δ
s ({Pℓ}||{Qℓ}), (99)

and thus (29) holds.

APPENDIX E
PROOF OFLEMMA 7

Fix γ > 0 and{ρℓ,n ≥ 0} arbitrarily. We define

B
(n)
ℓ (γ) :=

{

(x,y) ∈ Xn × Yn
∣

∣

∣

∣

∣

∣

∣

1

n
log

Wn
ℓ (y|x)

(PXWℓ)×n(y)
− IPX

(X ;Yℓ)

∣

∣

∣

∣

≤ γ

}

(100)

and use a standard bounding technique for eachℓ ∈ Ω to
expand

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n

}

≤ Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n,

(Xn, Y n
ℓ )∈B

(n)
ℓ (γ)

}

+Pr
{

(Xn, Y n
ℓ ) 6∈B

(n)
ℓ (γ)

}

.

(101)

The random variablelog Wn

ℓ
(Y n

ℓ
|Xn)

(PXWℓ)×n(Y n

ℓ
) is a sum of inde-

pendent random variables. Then, similar to Lemma 6, we can
apply the Chebyshev inequality to the second term of (101)
and obtain

Pr
{

(Xn, Y n
ℓ ) 6∈ B

(n)
ℓ (γ)

}

≤
A(γ)

n
(102)

with some constantA(γ) ≥ 0. It should be noticed that
the variance of the random variable1

n
log

Wn

ℓ
(Y n

ℓ
|Xn)

(PXWℓ)×n(Y n

ℓ
) is



uniformly bounded inℓ becauseX is finite (c.f. [5, Remark
3.1.1]), and thus a constantA(γ) can be chosen independently
of ℓ. On the other hand, the first term of (101) can be bounded
as

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n, (X
n, Y n

ℓ )∈B
(n)
ℓ (γ)

}

≤ 1 {IPX
(X ;Yℓ)− γ ≤ R + ρℓ,n} , (103)

which can be verified as follows: (i) IfIPX
(X ;Yℓ) − γ ≤

R + ρℓ,n, (103) holds trivially because1{IPX
(X ;Yℓ) − γ ≤

R + ρℓ,n} = 1, and (ii) If IPX
(X ;Yℓ) − γ > R + ρℓ,n, we

have

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n,

(Xn, Y n
ℓ ) ∈ B

(n)
ℓ (γ)

}

= 0 (104)

because

I(X ;Yℓ)− γ ≤
1

n
log

Wn
ℓ (y|x)

(PXWℓ)×n(y)

for all (x,y) ∈ B
(n)
ℓ (γ). This implies that (103) also holds.

By (101)–(103), we obtain

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n

}

≤ 1 {IPX
(X ;Yℓ) ≤ R + ρℓ,n + γ}+

A(γ)

n
. (105)

Taking the limes superior with respectn on both sides yields

lim sup
n→∞

Pr

{

1

n
log

Wn
ℓ (Y

n
ℓ |Xn)

(PXWℓ)×n(Y n
ℓ )

≤ R+ ρℓ,n

}

≤ 1 {IPX
(X ;Yℓ) ≤ R+ 2γ} , (106)

concluding (55) sinceγ > 0 is arbitrary.
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