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Abstract—For the class of mixed channels decomposed into of an expression have appeared in the literature. The negula
stationary memoryless channels, single-letter characterations of  decomposable channel which is decomposed into memoryless
the e-capacity have not been known except for restricted classes channels, introduced by Winkelbau€r [15], is an example of

channels such as the regular decomposable channel introded by h | ¢l f hich inale-l h 320D
Winkelbauer. This paper gives single-letter characterizéions of Channel classes for which a single-letter characteriaat

e-capacity for mixed channels decomposed into at most courtbéy e-capacity has been given.

many memoryless channels with a finite input alphabet and a  This paper gives a single-letter characterization of the
general output alphabet with/without cost constraints. Itis shown capacity for mixed channels decomposed into stationary-mem
that a given characterization reduces to the one for the chamel oryless channels with a finite input alphabet and a general

capacity given by Ahlswede whene is zero. In the proof of . . o
the coding theorem, the meta converse bound, originally gén output alphabet. First, a single-letter characterizatibrthe

by Polyanskiy, Poor and Verdu, is particularized for the mixed e-capacity is given for mixed channels decomposed into at
channel decomposed into general component channels. most countably many stationary memoryless chafinets
alternative expression is also provided, and it is shown tha
) the characterization reduces to the one for the channetitgpa
The maximum rate of sequence of codes that can attﬂf\]/en by Ahlswedel[[1] when is zero. Then the theorem is

ahdecodlng_ er:or prObI?E'“ty Ies;, th&n_e [0,1) is calleld extended to the case when input symbols are subject to a cost
the e-capacity It is well-known that stationary memoryless, ,,qiraint. The coding theorems are proved byitfiermation
channels have the so-callexfrong converse propertyand

h . . ith the ch | , -~ spectrum metho(t.f. [5], [14]) combined with recently devel-

the =-capacity coincides with the channe cap_acxi&c(apacny oped analytical methods for the finite blocklength regimg.(e
with e = 0) _[_16]' On the other _hand, alloyvmg a decodin 6], [9], [11], [13]). In the proof of the coding theorems,eth
error probability up tox, t_he maximum achlevable_ rate mayg,_calledmeta conversbound [9], which is known as the best
be |mproved for non—st.atl_onary and/or non-ergodic Ch"’mneionverse bound to date is particularized for mixed chaBnels
The simplest example imixed channeld] (also referred 10y, 1hig bound, kinds of previously known converse bounds

as decomposa_b_le chan_nel_s [15] or averag(_ed charigels .[l]’ H&veloped for general channels may also be particularized f
whose probability distribution is characterized by a migtu the mixed channel setting

of multiple stationary memoryless channels. This changel i

stationary but non-ergodic, and is theoretically impartas Il. PRELIMINARIES

basic example to be investigated when extensions of coding General Channel and-Capacity

theorems for ergodic channels are addressed. This chann@l, cider a channai™ : X" —s Y™ which stochastically

is known to give the simplest mathematical model of (nori‘ﬁaps an input sequencé” € X" of lengthn into an output

ergodic) block fading channels (c.f. [10].[17]). sequenceY” € Y". Here, X and ) denote a finite input
For general cha_nnels mcludmg mixed chapnels, a geneé%habet and an arbitrary output aIphEbeEspectiver. We

formula of e-capacity has been given by Verdu and Han [14].

This formula, however, involves limit operations with resp A single-letter expression of the capacity has also beeengby Ahlswede

h len nd th is inf ibl lcul infd] for the mixed channel averaged by an arbitrary probgbitieasure, and
to the code le gtm’ and thus is easible to calculate the expression has been simplified by Hah [5]. Other relatadies which

_generaI._On the other hand, for mixed C_hanne_ls_ de_CompO%ﬁgyze the maximum rate for which the outage probabilitgdmitted up to
into stationary memoryless channels with a finite input af-for a non-ergodic block fading channel has been giver[ by fit@] [17].

phabet, a single-letter characterization of the chanm&h«:i&y 2Although the meta converse bound also applies to mixed afsnit

. . o . should be modified to finely analyze fundamental limits ofend
has been given by Ahlswedg![1]. This characterization is 0I?3In the case wher@’ is abstract in general, we understand tHat (y|x)

importance because the channel capacity can be compui&flr, . (y) denote the corresponding probability measuiés (dy|z) and
with the complexity independent of. However, to the best Py~ (dy), respectively, and thabg V}nyf’;‘?ﬁ) denotes the Radon-Nikodym
of authors’ knowledge, no single-letter characterizatiofithe derivativelog % As in [5], we keep the notation simple and use the

g-capacity have been known, or at least no rigorous progignmationy_ to denote the integra/, too.

I. INTRODUCTION
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denote byP(X) the set of all probability mass functions onis continuous inPx for all ¢ € Q. For example, if) is a
X. A sequencd¥ := {W"}> , of channels™ is referred complete separable metric space, then (X;Yy) is concave

to as ageneral channel5]. and continuous iPyx [3, Lemma 3].
Let C,, be a code of length and the number of codewords
|C.| = M,, with an encoding functiog : {1,..., M, } — X" [1l. M AIN THEOREMS

and a decoding functiogh : Y — {1,..., M, }. )
Definition 1: The averageprobability of decoding error over A- General Mixed Memoryless Channels

W™ is definedas The following theorem gives a single-letter charactetizat
1 < o 1 of the e-capacity.
Pe(Cn) = M, EPrW)(Y ) # il @ sent]. () Theorem 1l:Let W be a mixed memoryless channel with

) X| < co. For any fixeds € [0, 1), the e-capacity is given b
The codeC,, is referred to as afn, M, P.(C,)) code. O ] < o0 y e €(0,1) ecapaclyls g y

Remark 1:The maximumerror probability defined as Ce|W)= sup sup {R ’Fw(R|PX) < 5}, (6)
n . PxEP(X)
e(Cn) == ie{lr??ﬁfn} Pr[p(Y™) # i|i sent 2 where
has also been considered in the literature. All the capacity Fu(R|Px) =Y wl {Ip, (X;Y;) < R}. @)
results in this paper are also valid under the maximum error reQ
probability criterion. U Here, Ip, (X;Y;) denotes the mutual information calculated

_ Definition 2: A coding rateR > 0 is said to beachievable py py andi,, and1{A} denotes the indicator function which
if there exists a sequence 0f, M,,, F(C,,)) codes satisfying takes one if a propositiod is true and takes zero otherwise.

limsup P.(C,) <e and liminf 1 log M, > R.  (3) (Proof) A proof is givgn in Secf_v. O
n—soo n—oo 1 We define the functiom : P(X) x [0,1] — R as
The supremum of-achievable rates is called thecapacity A(Px,8) :=sup {R | Fu(R|Px) <3}, 8)

and is denoted by'(¢|W). o
Remark 2:The e-capacity C(<|W) is a right-continuous whereR denotes the set of real numbers. Ereapacity given

function in ¢ [14]. ] by Theorenill is expressed as
Remark 3:/An e-achievable rate is often defined by replacing C(e|W)= sup A(Px,e). 9)
(3) with PxeP(X)
1 Let D be a compact set iP(X). Some properties of the
Pe(Cn) <e and —logMn 2 R—A ) function A(Py, ) and R(8|D) := supp, cp A(Px,0) are

(e.g., [7], [14], [15], etc.). Thes-capacity in this case is shown by the following lemma. )
not right-continuous ire, and the provided characterizations Lemma 1:For the functionsA(Px,d) and R(4|D), the
of the e-capacity are valid except at most countably manipllowing hold:

discontinuous points of-capacity (c.f.[[14, Theorem 6]).] () A(Px,9) is continuous inPx for fixed 4.

B. Mixed Memoryless Channel (b) A(Px,4) is non-decreasing id for fixed Px.

Consider a set of at most countably many, (©) AlPx,0) 'is right-continuous in o. That is,

(Wpyee, (¢ = 1,2,---), and the set of indices oW, is @ %?55'%0)‘?S(Iz)g(hf)co_nﬁrgfgdgolzﬁ
denoted by2. Themixed channetlecomposed int§W,}cq '
is defined by (Proof)  Properties (b) and (c) are easily verified by the
n n n " definition of A(Px,d). Proofs of Properties (a) and (d) are
W (yle) = Zw"W‘v’ (ylz), (Ve X" vye)r), (5 given in Appeédi)ﬁ and Appendix’AJB, respectively]
. éeQn . . . - The functionF,, (R|Px) which appears in the definition of
a mixture OIO{WZ} with the mixing ratio {w, > 0}, A(Px,d) is not continuous irPx obviously. It is of interest to
Salisying> ,—y we = 3 o we = 1. Hereatter, We assUMEgeq that the function(Px, d) has Property (a) nevertheless.
thatw, > 0 for all ¢ € Q, for simplicity. EachW, is called By Property (), there exists at least oflg € P(X) that
a component channear simply components. Given an inputgives R(5|D)- That is,R(6|D) — maxpyep A(Px,d). The

probability distributionPx~, the output fromi¥;* induced by first supremum on the right-hand side (r.h.s.)9f (6) is dbtua
the inputX™ is denoted byy;*. That is, P J (r-h.s.)Iof (6) is bt

maximum.
Pxnyp(®,y) = Pxn ()W (ylz) (Vo€ X", vy e Y). By Properties (b) and (d), thecapacity given in Theorem
The mixed channd’ given by at most countably many stalll can also be expressed as
tionary memoryless channe]$l, }ocq, satisfyingiV;* (y|x) = Ce|W)=1inf sup sup{R| Fu(R|Px)<e+d}
[T, We(ys|z;) is called themixed memoryless channel 0>0 py eP(X)
Hereafter, we assume that the input alphabgtis finite (10)

and the output alphabel may be infinite as long as theTo prove Theorerill, it is sufficient to show that](10) holds,
mutual informationip, (X;Y;) calculated byPx and W, and this fact is used in Se€t] V.



B. Special Case: Well-Ordered Mixed Memoryless Channelsell-ordered) stationary memoryless components, and both
It is shown that the single-letter characterization in Tiego the encoder and the decoder can access the channel state

[ reduces a previously known expression for a restrictesscldnformation, which corresponding to the index of component
of mixed channels. As an example, the following class &hannels in this paper. In this case, the expression ot+he
mixed memoryless channels is introduced. capacity coincides with the one given in{14). This fact iiegl

Let C, denote the channel capacity of theéh component that the optimum rate without the channel state informaion
channell, andIl, be the set of input probability distributionsthe same as the one with the channel state information if the
that achieveC,. Without loss of generality, we assume thafhixed channel is well-ordered.
the component channels are indexed to satGfy< Cy41,

where componentd’; andW; (i # j) such thatC; = C; are C. Alternative Expression af Capacity

arbitrarily indexed if|Q] < occ. We give an alternative expression of theapacity of the
Definition 3 (Well-Ordered Mixed Memoryless Channelyixed memoryless channel given by Theotém 1. We first show
For each? € , if there exists soméy < II, such that the following lemma.
) . Lemma 2:Let W be a mixed memoryless channel with
Ce < Ipx (X3Y5) forall j: Co < Cj, (11) |X| < oo. Then, we have

then the mixed channdW is said to bewell-ordered. [ .
. ) <el= :
For example, let us consider a well-ordered mixed memo-v {B| Fu(R|Px) < e} {ngj‘(lg)zl,g}égg Ipy (X5Y2)
ryless channel of two componen®; = {IWW[*}>° | Wy = (17)

{W3'}5L,. By the condition[(Ill), it should hold@y < Cz and ¢ . Py € P(X), wherew(S) denotesy”,.  w.

C) <I(X;Ys) (3Px €1Ly). (12) (Proof) See AppendiXIB. O
WhenC, = Cs, () requiredT; NI, # 0. If the component ~ Combining [6) with Lemm&l2 provides an alternative ex-
channelg W,|¢ € Q} are all output-symmetric (e.g., the mixedPression of the-capacity as

BSCs [7]), then the conditiof_(1L1) trivially holds. C(e|W) = sup sup inf Ip, (X;Y;) (18)

It it readily shown that every well-ordered mixed memory- Px {SCO|w(8)>1-¢} €5
less channel is an instance efyular decomposablehannels in the case of at most countably many component
introduced by Winkelbauef [15]. The-capacity of a regular channels. Whens = 0, the rh.s. of [(I8) becomes

decomposable channel has been given by [15]. For wellipp, inf,cq Ip, (X;Y;), which coincides with the capacity
ordered mixed memoryless channels, the following corpllaexpression given by Ahlswedgl[1].
follows from TheoreniL. On the r.h.s. of l(A8)infrcs Ip, (X;Yy) with w(S) > 1—¢
Corollary 1 (Winkelbauer([15]):.Let W be a well-ordered is the infimum of concave functions dPx. Whene = 0,
mixed memoryless channels such th&t < oo, and define  inf,cg Ip, (X;Ys) = infeeq Ip, (X;Y;) is concave inPx.
Fo(R) == Zwél {C, < R}. (13) Whens >0, hovyever_, this function is not necessarily concave
since the domairb with w(S) > 1 — ¢ depends orPx.

e L. X .
For anye € [0, 1), the e-capacity is given by Similar to [18), thee-capacity of a well-ordered mixed
~ memoryless channel can also be expressed as
Celw) =sw{R|Fu(R) <}, (4 CEw)=  sp mic. a9
O {SCO|w(S)>1-¢} £€S

Corollary(1 slightly extends the coding theorem by Winkelp .-Capacity under Cost Constraint
bauer [15] for the well-ordered mixed memoryless channel to
the case of non-discrefg.

Consider the casf)| < co. By (14), thes-capacity of the
mixed channel satisfyind (11) is given y(e|W) = Cy-,
wherek* is the component index satisfying

We now turn to considering the coding for which an input
symbol X is constrained by a cost functian: X — R. This
problem includes the power constraint over the channel avith
continuous alphabet such as the additive white Gaussia® noi
(AWGN) channel as an instance.

> wil{Cy < Cye} < & < Fyp(Ci-). (15)  If every codewordp(i) (Vi € {1,...,M,}) of a codeC,
£eQ is restricted to be in the set
For example, the-capacity for the well-ordered mixed chan- n
nel W with || = 3 is given by Xer = {a: €X" D e(w) < nf} ; (20)
=1

Cy, ifEE[O,’wl) . . . .
Cle|W) = Co, if & € [wr, w1 +ws) . (16) this condition is referred to as tlw®st constraint". A codeC,,

attains an error probability € [0, 1) under the cost constraint
T is called an(n, M,,,e,T") code

It is of interest to see that the expression of theapacity Definition 4: If (B) holds under the cost constraifit then
in Corollary[] is similar to the one for the channel with sgatethe rateR is said to be(e, I')-achievable. The supremum of
[12]. Specifically, Example 1 in[[12] deals with the mixede,I")-achievable rates foW is referred to as thde, I')-
channel decomposable into finitely many (not necessarigpacityand is denoted by’ (e, I'|W). O

C3, otherwise



The following theorem characterizes the optimum codingeasures?, Q on Z, consider a hypothesis test
rate under a cost constraint for the mixed memoryless channe Hy:Z~P vs. H :7~Q (23)

Theorem 2:Let W be a mixed memoryless channel witH{ Judge the true probability measure. When obsfgr\[mm
|X| < oo. The(e, I)-capacity for a gived € R ande € [0, 1) testé : Z — {0,1} JL_JdgesP to _k_)e true with probability, (Z)
is given by and @ to be true with pro_ba_bllltyl —&(Z). The error event
when the true measure B is calledthe error of the first
Ce W)= sup Sup{R’Fw(R|PX) < 6}- (21) kind and the one when the true measure(isis called the
Px:Brye(X)<T error of the second kindFor a fixeda € [0, 1], the optimum
(Proof) Converse Part is exactly the same line as the oR&t that minimizes the error probability of the second kind
for Theorem[]L. To prove Direct Part, we use an ensemhihong those whose error probability of the first kind sasisfie
of constant composition codes whose type satisfies the ez P(2)(1 - £(2)) < a is denoted by¢*, and its error
constraintl" and M,, codeword are chosen by the unifornprobability of the second kind is denoted by
distribution on the set of sequences with typg. We can )
apply an information spectrum approach by Hayaishi [6, Sect. Ba(P,Q) = £Z5101): > Q). (24)
X-B] to the proof of Direct Part of Theore 1, showing that . P(2)(1-£(2))<a #€%
any rateR less than the r.h.s. of (21) {g,I')-achievable.C]  Likewise, letas(P, Q) denote the minimum error probability
The set of Py € P(X) such thatEp, ¢(X) < T is closed of the second kind among tests whose error probability of the
convex, and hence is compact. Then from Property (a) finst kind is less than or equal t6.
Lemmall, the first supremum iA(21) is maximum, and from The following lemma particularizes a meta converse bound
Property (d), the r.h.s if(21) is right-continuousdénWhen by Polyanskiy, Poor, and Verd(l[9] for the mixed channels.
e = 0, (23) reduces to the capacity under a cost constiaint Lemma 3 (Meta Converse for Mixed Channel)et

C(0,T|W) = sup inf Ip, (X;Y) (22) {Qv; }eea be a set of arbitrary probability measures. Then
’ Px:Epyc(x)<rte T every (n,M,,e,) code C, with a (possibly probabilistic)

which has been shown by Hai [5]. decoding functior¢ : Y™ — {1,2,..., M, } satisfies

The functionC(e,I'|W) is referred to as theapacity-cost En > Z we a1 (Px» W', PxnQyp) (25)
function which is analogous to the rate-distortion function for eQ "
lossy source coding (c.fL][5]). The capacity-cost functien and
also referred to as theapacity-expense functipand some of 1 "
its properties for discrete memoryless channels (DMCsghav M, = ZZQW@;“ (Pxn W', PxnQyy)- (26)

S

been shown in[2]. By definition, the capacity-cost functien ,
monotonic nondecreasing if. We show some properties ofHere, Px is the uniform distribution or€,,, andz!,’ denotes

the capacity-cost function. the average probability of decoding error oW&}* given by
Theorem 3:The capacity-cost function has the following 1 M.
ies: 0._1_ — n NE(G
properties: e =1 i Z > Wi yle(i)élily) (Ve e Q), (27)
(i) concave inl for T > 0; i=Lyeyn

(ii) strictly increasing inI' for 0 < I' < I'*, whereI'* is Where¢(i) denotes the codeword assigned to messaged
the minimum cost for which the capacity cost-functiod(i|y) denotes the probability of being estimated givep.

coincides with thes-capacity; (Proof) The first inequality is due t6 [13], and the second one
(i) if T <T*, thenC(e,T|W) is achieved by som@x < is due to[9]. A proof is given in AppendixIC. O
P(X) such thatEp, c(X) =T. O The following lemma is established by modifying a lemma

wn by Tomamichel and Tah [11] for mixed channels.
emma 4:Given a family of pairs of probability measures
(Pe, Qe) }ecq On Z, consider a hypothesis test

These properties, which can be shown in an analogous
to the proofs in[[2, Appendix], are handed down from th
capacity-cost function for DMCs. However, unlike the DM
case, the set of optimum input distributions that achiewe th Hy:Zy~ Py vS. Hy:Zyp~Qy (28)
e-capacity under a cost constraint is not necessarily convefgr each?¢ < Q. For any givene € [0,1), letting {e, €
[0,1)}¢en be a sequence such that, ., weee = €, we have

o —log Y " wefe,(Pr, Qr) < DI ({P}I{Qe}) —logd (29)
The proof of Theorerhl1 provided in Selll V uses so-called e

“one-shot” error bounds which hold for the mixed channel dgyith an arbitrary constant € (0, 1], where DS ({P,}||{Q¢})
composed into (not necessarily stationary or ergodic) @¢negenotes the value

component channels. Pu(Zy)
First we show converse (lower) error bounds. Following [9, sup {R’ ZWP@ {10g Sk P R} < g} . (30)
Sect. IlI-D], we introduce simple hypothesis testing: Give LeQ Qe(Ze)

an observatiorZ € Z according to either of two probability (Proof) A proof is given in AppendikD. O

IV. ONE-SHOT ERRORBOUNDS FORMIXED CHANNEL



We setP; := Px» x W}, Q¢ := PXn X Qyp, € == en, The conditional variance of information density
We(Ye| X .
ands, := ¥ in Lemmal@. Sinces!?) given in [2T) satis- log 7(13;‘(/[/5)‘(1%) given Px,

fies D ,cq weel!) = e,, @9) holds. Then from[(26), every

(n, M,,,) codeC, satisfies V(Px, W) :=Epy |:VW2 [log
en+0 n 2 1)
log My, < D7 ({Paor WS I[P Qi }) —logd (31 upper bounded by p, w, POg (g%)fy)l wch san be
1): defining

with an arbitrary constant € (0, 1]. verified as follows (see als6l[9, Lemma 6
Remark 4:lt is easily verified that Lemmadd 3 afdl 4 can be

2
extended to the mixed channel with a general mixture (C,f. [5 U, :=E [E {10 M‘X} ] ,

Wi (Ye|X)

(PxWe)( ‘XH - @7

g
Sect. 3.3]). In this case, the summand should be replacéd wit PxWy)(Y,
integral. O 2
We(Ye| X
We next consider upper (achievability) error bounds. The Us:=E {1og %]
following lemma particularizes the Feinstein upper boudid [ XTERte
for the mixed channels. then E {10g (Wz(Yz\X)

2
: . P70 X} is a convex function of Px
Lemma 5:For any g'\./enPX” € P(X™), there exists an gy cq f(z) := 2% is convex and nondecreasing for> 0,
(n, M,,e,) code satisfying el -
Jlog

and g(z) := % is convex. Therefore, we
1. WwrYyrx™) 1 ; PxWe)(Ye) ) .
en < sz Pr —1 ]‘; éYn < = log M, obtain U; > U,, which leads to the claim. The variance
e v (Y7 n Ve, w, {10g %} is further bounded uniformly b§.y!
[5, Remark 3.1.1], the constant(~) in (38) can be chosen
independently of € Q and P, € 7,.

(38)

1
+v+ = 1og—} +e "™, (32)
where~ > 0 is an arbitrary constant anéh-~» denotes the
marginal measuréy (y) = > c yn Pxn ()W (ylx). O
Equation [[3R) can be derived by the result shown by Han
[5l Lemma 1.4.1]. Although the original bound by Han uses a

sequencqy, > 0| lim,,_,~, 7, = 0} instead of a constant,
an examination verifies thdi (32) holds for any constant 0.

V. PROOF OFTHEOREM[]
A. Converse Part

For a givenz € A", we denoteWj  := W;(-|x) for We are now in a position to prove Theordmh 4. LBt

simplicity. For a givenPx € 73( ), we define be e-achievable. Then, fronl}3), there exists a sequence of
(n, M,,,e,) codesC,, with some{d, > 06y > s > --- >
(Px W)™ (y) H > Px(@)We(yilz).  (33) 0,lim,o0 6, = 0} satisfying
1=1lxeX 1
Converse Part of Theorel 1 is stated as follows: log My > R—vand e, <e+0n (I >0;Vn 2 m)
Theorem 4 (Converse Theorenfor a mixed channeW, (39)
any e-achievable rater for ¢ € [0, 1) satisfies for an arbitrarily fixed constany > 0. Borrowing an idea

(34) given by Hayashi[[6, Sect. X-A], we sét= % and
1
Qv ) = 7y > (B M(y) (VyeY")  (40)

U
PpeT,

Before stating the proof of Converse Part, we give so -
preliminaries. By the Chebyshev inequality, the foIIowwEﬁ ED), v;hereT denotes the set of types cm We define

lemma holds: R .= —D" 5({PXnWZ”}||{PXnQYEn}) + - logn. (41)
Lemma 6:For any fixede € X™, we denote its type v n
(empirical distribution) byP,. Let v+ > 0 be an arbitrary

constant and define sup {R’ZW Pr{— log £ (Y| )SR} < En-i-—} 7
n n

R<inf sup su R’FwRP <45
nf sup sup {R|Fu(RIPy) < e+d)

Since the first term on the r.h.s. is expressed as

Béﬁc)( ) = {y” log PW{;}/(ylf) ~ —Ip, (X;Y0) SV} 0eQ Qv (Y7")
0)*"(y) (35) it can be verified that there exists ag € C,, such that
1 WYy, 1
for all £ € Q. Then we have ngwgfmo {ﬁ log % <R — - logn — 7}
A eQ Yoty
wi (v eBpm) =122 @y ,
. n <éen+— (42)

with a constantA(+) > 0 independent of., P,, and/. O - n



as follows: By definition in[(4l1), we can re-express

1
R — —logn
n
1 1
{—log SR} < sn—i——}
n n

R‘ngPr

e

n

zsup{

Wy (Y Xm)
Qv (Y7

| L WRe)
= sup R’Z—ZWW/}( {—logéingR
{ xzeCyp M, eQ “ln QY/Z” (YZ )
<ent l} | (43)
n

Suppose that(42) does not hold for amye C,. Then we

have
1
i 2 2 Wiia,

" xeC, LeQ

1 n n
{ og Wy (Ye |fO)
no 7 Qup(Y))

1 1
§R;§—logn7}>€n+—, (44)
n n

and this implies thaik} — %logn — vy is strictly greater than
the r.h.s. of [(4B). Since this contradicis](43), it is codeld
that there exists at least ong € C,, satisfying [42).

Denoting by Py the type of z;, we have a chain of
inequalities

" 1
Wé|w0 {

n

Qvy(Y])
Wi (Y o)

> n 1 4 L

= Wi {5 o8 gy

1 W (Y |2o) 1
> W Zlog—Lt LMY <pE_
= Meleo {n W) T

1
<R — —logn—v}
n
. 1
< By gl - 7

logn|Ta| — 7,

Y/ e By (v)}
1 A
> 1 {1 (6 Y3) < R L tognlTo| -2 f - 200, as)

WhereBéﬁju (v) is defined in[(3b) andi(y) > 0 is a constant
independent of:, P, and/. We use the relation i . (#0) for
the first inequality. The inequality ii_(#5) can be verifiedcs
(i) for £ € Q such thatlp» (X;Y;) < Rjy — Llogn|T,| — 27,
we have
1 W (Y |ao) 1
n 1 4 4 < R* — 21 -
Wie, {1198 Tpapgentymy < i = oenlTl =2
v e B ()
= Wi, {Yi € B (1)} > 1- (46)
by Lemma$ and (ii) for € Q such thatlp (X;Y;) > R, —
Llogn|T,| — 2v, a trivial lower bound
1 W (Y |ao) 1
n Zlog — £ Y~ px T, o=
Wélwo {n 0g (POnWZ)Xn(YZn) = Rn n Ogn|T| e
A()

A(v)

Y/ e B (1)} > - (47)

holds. Note that the r.h.s. of (45) depends B € 7, but
not on individual codewords. Sincé(y) > 0 is a constant

independent of and Pj', we obtain

1
> wel {fpon (X: ) < Ry, — — logn| | 27}
£

<en+ % + # (48)
from (42) and[(4b).
Combining [(31), [(3B), and(41) gives
R—~y <R (Vn=>ny). (49)

Then [48) implies that there exists a sequence of tyfgsc
Tn}oe,, such that

Zle

1
{fpn(x;m <R-3y- —1ognm|}
Leq) n

A()

(50)
n

holds for alln > n,, where the relation,, < e+4,, (¥n > ny)
in (39) is used. Setting,, := d,, + % + @, we obtain

ngl

£eQ
for n > ny.

It can be verified from[{31) and the definition &f(-) :=
R(:|P(X)) that

1
n

1
{nxi0) < B3y TogniTol} < 4o, (6D

1 N
R —3y— Elognl’fnl < R(e + pn) (52)

holds forn > ny. It is well-known that|7,| < (n + 1)I%]
holds by the method of types, and taking the limes superior
with respect ton on both sides of{32) yields
o < . il — "
R =3y < lim R(e+pn)= inf R(e+4).  (53)
The equality in [BB) is due to Property (d) in Lemrnh 1.

Since v > 0 is an arbitrary constant[ (b3) implieR <
infs-0 R(e +9), i.e., [33).

B. Direct Part

Direct Part of Theorer]1 is stated as follows:

Theorem 5 (Direct Theorem)et W be a mixed memory-
less channel such thak'| < co. For a fixede € [0,1), any
rate R satisfying

R < inf sup sup {R ‘Fw (R|Px) < €+5} (54)
0>0 py eP(X)
is e-achievable. O

The following lemma is used to prove Direct Part.

Lemma 7:Let Px~» be a product distribution of a given
Px € P(X). Then we have

1 WrY | X™)

“log——Lt = L _<R+4p,
{n S Py (v =

<1{Ip,(X3Yy) SR+7} (WeQ), (55)

where {p¢,, > 0} denotes an arbitrary sequence such that
lim;,, 0 pe,n = 0, and > 0 denotes an arbitrary constant.
(Proof) See AppendiXIE. O

lim sup Pr
n—r00



We now prove Direct Part. Setting

Ry :=inf sup sup{R‘Fw(R|PX) < 5—1—5},
5>0P EP(X)
we shall show thatR := Ry — 4y is e-achievable for any
v > 0.
Fix v > 0 arbitrarily. By (56), we have
sup

Ro < sup{R Fo(R|Px) < 5+6}
PxeP(X)
for all § > 0. For an arbitrarily fixeds > 0, there exists a
P € P(X) such that
Sup{R‘Fw(RUDX) <e+d)
)

(56)

(57)

sup
PxeP(x

< sup {R‘Fw (RIP)(f)) <e +6} + 7.
It follows from (54) and[(5B) that
sup { R [Py (RIPY)) <46} > Ro—v > R+ 2. (59)

(58)

Since F,,(R|PY’) is a non-decreasing function d¢, (59)
implies

Fy (R + 27|P(5)) ) (60)
On the other hand, by setting,, = "%, (3) holds trivially.

We now consider the ensemble of random codes for which
symbols of each codeword are randomly chosen according to

P(‘S) i.i.d. That is, Pxn(x) = lelP(‘s)(zz) (Ve € X").
Then Lemmab guarantees that there exists(an\l,,, ;)
code satisfying

En §ngPr

e

" (P W) (Yy")

+v4+ = log —} +e "7, (61)

Taking the limes superior with respecton both sides in (1),
Ly WEOPIX")
n (P( )We)xn(yén)

1
<R+v+-— log—}

limsupe, < Z wy lim sup Pr

<Zw41{ o (X; Y4)<R+2v} (62)
LeQ
= Fu (R+2|P{)) < e+ 63)

holds by the sub-additivity of the limes superior. The inglgu

ity in (62) is due to Lemm@&]7, and the last inequality follow

from (€0). Since[(63) holds for an arbitrary fixéd> 0,

limsup ¢, < e
n— o0

holds, and thusR is s-achievable.

(64)

APPENDIXA
PROOF OFLEMMA [I]

A. Property (a): Continuity ofd(Px,¢) in Px
Mutual informationp, (X;Yy) is uniformly continuous in

% >

following lemma.
Lemma 8:For at most countably many stationary memory-
less channel§W;},cq, we have

V>0, IA(n)>0, YLEQ, VPy, PyeP(X) st
1Px = Px|[ < M) = [Ipe (X3Y2) = Ip (X3 Y0)| <,

(65)
where we define
[Px = Pkl =) [Px(x) = Pk(x)], (66)
reX
the variational distance betweéd? and P%. O

Remark 5:This lemma holds for an arbitrary family of
uniform continuous function$ f,(Px)| f¢ : D — R}, where
D is a compact set ifP(X). A constant\(n) in (63) can be
chosen independent of channel inddxecause of the uniform
continuity of fo(Px). O

Fix n > 0 arbitrarily, and choose any’x, Py € P(X)
satisfying || Px — P%|| < A(n). By Lemma[8, we have

[Py (X5Ye) — Ip (X;Y0)[ < (VL EQ).
Since [&Y) implies

> wel {Ip (X;Yy) < R} > > wil {Ipy (X;Y2) < R—n},
LeqQ Leq
'we have a chain of expansions

{R ‘Zwél {Ip, (X;Yy) < R—1} < 5}

£eQ

(67)

A(PXv(S) < sup

Sup{R+77 1> wil {Ipy (X;Y2) SR}Sé}

e
= A(Px,0) +n. (68)
By the same argument, we also have
A(Px,6) < A(Px,0) + . (69)

Since Px, P% are arbitrarily chosen[-(68) and{69) imply
and thus the functiomd(Px, ) is continuous inPx.

B. Property (d): Right Continuity oR(d|D) in &

The function R(-|D) is non-decreasing i because of
Property (b) ofA(Px,-). Then it is sufficient to show

Jim R(6 + M\i|D) = R(5|D) (71)

by fixing 4 € [0, 1) and a decreasing sequence, > 0|\, >
-+« — 0} arbitrarily. We denote byN the set of all
natural numbers. We assign an index N to A(Px,0+ Ag)
and relabel asi,(Px|6) := A(Px,d + ).
By the properties ofA(Px,J) (Property (a)—(c)), we have
the following:

0] {Ak(PX|5)}k6N is a monotonically decreasing sequence
of functions ink.

(II) limk_,oo Ak(Px|(S) =
in Px).

A(Px,d) (pointwise convergence

Px since the input alphabet is finite. Then we have the (iii) A(Px,d) is a continuous function oPx.



Thus, since a monotonically decreasing sequence of fursticoncludingRy < A(e|Px) sincey > 0 is fixed arbitrarily,
converges pointwise to a continuous function over a compdi} Proof of A(e|Px) < B(e|Px):

set D, Dini’'s theorem holds, ane{[lk(PXM)}keN converge

We define the set

to A(Px,d) uniformly. By the uniform convergence, we have S(p) = {g c Q\Ip (X;Yy) > p} (80)
,}520 ay A(Px|8) = PN e Hm Ak(Px|0) for p > 0. It should be noticed that
= max A(Px,0) (72) w (S(p1)) > w (S(p2)) (81)
(c.f. [1, Lemma 2]). By the relation forcany Qd< PLS P2|- he ol g
onsider the valug* > 0 satisfying the following condi-
R(5+ M\ [D) = max A(Px|9) (73)  tone # fying g

and the definition ofR(d|D), (IB) means[{41).

APPENDIXB
PROOF OFLEMMA [Z

Fix an input probability distributiorPx € P(X) arbitrarily.

w(S(p*—7))=21-¢ (Vy>0), (82)
w(S(p)) <l—e (Vp>p"). (83)

For an arbitrarily fixedy > 0, we haveS(p* +n) C S(p* —n)

It is easily verified that the I.h.s. of {IL7) can be expressed azwél {Ipy (X5Y0) 2 p" +n} =w(S(p" +n)) <1-¢

sup {Rl Fw(Rlpx) < 5}

:sup{R’ ngl{IpX(X;Yg) <R} < 5}
¢

= sup {R’ > wel{Ip  (X;Yy) > R} > 11— 6} . (74)
[
Therefore, defining

A(g|Px) = sup {R‘ ngl{lpx (X;Y) >R} >1—¢
V4

(75)

B(e|Px) = sup inf Ip, (X;Y)), (76)

{SCQ|w(S)>1—¢} £€S
we shall showA(e|Px) = B(e|Px).
(i) Proof of A(¢|Px) > B(e|Px):
SetR, := B(e|Px). By the definition ofB(¢|Px), for any
fixed v > 0, there existsSy C Q satisfyingw(Sy) > 1 — ¢
and

RO S inf IPX (X;Yk) +’}/. (77)
k€eSoH

Also, by the definition of infimum, we have a chain of

inequalities

inf IPX(X Yk)
keSo
:sup{R‘IpX(X;Yg)zR(VEGSO)}

= sup {R ‘ Ipo (X;Y0) > R (V€ So),

> wel{Ip (X;Y;) > R} > 11— 5}

€S,
< SUP{R‘ > wl{Ip (X;Y2) > R} > 1 —s}
LeSy
= A(e|Px). (78)
By (Z7) and [[7B), we have
Ry — v < A(e| Px), (79)

e

(84)
from (83). Since evenRk > 0 such that
> wl {Ipg (X;Yy) > R} <1-¢
e
satisfiesR > A(e|Px) by the definition of A(¢|Px), (84)
implies

(85)

A(elPx) < p* +1. (86)
Meanwhile, we have
pt—=n< inf Ip (X;Yi) < B(e|Px), (87)
keS(p*—n)

where the first inequality follows from the definition 61 p),
and the second one follows from the faetS(p*—n)) > 1—¢
and the definition ofB(¢|Px). It follows from (88) and[(8l7)
that

A(e|Px) < B(e|Px) + 27 (88)

holds. Since) > 0 is arbitrarily fixed, it concludes(s| Py ) <
B(€|Px)

APPENDIXC
PrROOF oFLEMMA [3

Suppose that the decoder Y — {1,..., M, } attains the
error probabilitye,, without loss of generality. Setting, =
¢ (V¢ € ), and denoting byM the maximum likelihood
decoder oveWe", we have

en—lf—ZZW”ylfb £(ily)
n =1 yeyn
1
= w1 A > Wrylo(i)&lily) ¢ (89)
LeQ) i=1 yeyn
1
> w1 > W ylo()E™ (ily)
LeQ M, i=1 yeyn
(90)

Here, the terms inside the brage} in (89) corresponds to



the average error probabilityﬁf) of the decoder(, = ¢ Then a standard bounding technique gives
over Wp, and the terms inside the bra¢¢ in (@0) denotes | _ eo = PAT* = Hy)

the average error probabilit)'™ of the maximum likelihood

decode)'". The inequality in[(9D) follows from the fact that - P {T* = Hy,log Pe(Ze) > Ro}

the maximum likelihood decoder attains the minimum error Qe(Z0)
probability among all decoders ovBr;*. The probability=)"- . Py(Zy)
can be evaluated by usings (-, ) according to the following TP 17 = Holog Qe(Zy) < Ro
lemma shown by Vazquez-Vilar et al. [13]. PAZ
) <P {1og o(Ze) >R0}+€R0Qe {T* = Hy},
Lemma 9 (Vazquez-Vilar et al. [13]For a given code&,, Qu(Zy)

of lengthn and the number of codeword¥,,, the average (96)
error probability of the maximum likelihood decoder ovee thand this implies

channellW;* is given by Py(Zy)
g0 >P<lo < Ryyp —efp., (P, Ve €
et = Sup a1 (Pxn W, PxnQy;). o1 7 e{ 5 Qu(Z0) ~ 0} Bee(Fir Q) (9)7)
an

Here, Pxn» denote; the uniform distribution.qﬁn, and the by the definition of¢;. Since{es}ica Satisﬁeszéeg weep =
max on the r.h.s. is taken over all probability measures entaking the mixture of both sides witfuw,}¢cq yields

Y - € > ngpg {log PZ(Ze) <R } —efto Zwlﬂ (PE Qé)
Applying Lemma® for[(3D) yields 5 Qi(Ze) = e
o> L (Pxn W, PxnQyn). (92
En > Y wp gli[jam( xn Wit PxnQyyp). (92) S wePe {log Pi(Zy) <Ryb—s. (98)
e i Qe(Z)
Thus, [Z5) holds. e

Here, the equality simply follows from the definition &.
By using a duality of(, 5,) and(ag, §) in simple hypoth- (@8) indicates

esis testing,[{91) implies Pu(Z0)
1 " Ry <sup< R wy Py {log SR} <e+6
A > Bey (Pxn W', PxnQyp) (93) { } z%s:z Qe(Ze)
for every fixedQy,, which can be easily verified by consider- = D ({P}{Q0)), (99)
in.g the region(?)f possible pairs ¢f, 3) (c.f. [8, Figure 3.1]). 4nq thus[(29) holds.
Sinces) < &;,’, we have
" n APPENDIXE
Beww (Px» W', Px»Qyyp) 2 B (Pxn W', Px»Qyy) (94) PROOF OFLEMMA[T]
for any givenQy;, yielding the inequality Fix v > 0 and{py., > 0} arbitrarily. We define
1 n n n
T 2 S Ao (PoeWF PeoQyp), - (96) B (3) = { (@, y) € x" x ¥
Y n
from (93). Lower bounding the r.h.s. df (95) by fixing some 1 1og% —Ip (X;Yy)| < 7} (100)
{Qvy}ico and taking the mixture with the mixing ratio no 7 (PxWy) (3{) _
{wl}lesl conclude that{26) holds. and use a standard bounding technique for each Q to
expand
1 WY Xm) }
Pr{=log—tt = ' <R+,
{n Sy ST
1 WY X™)
<Pr{—log—-t— " <R+ pyn,
. {n Sy S
APPENDIXD S (n) I (n)
PROOF OFLEMMA @ (X", Y")eB, (7)}+Pr{(X Y[ € B, (7)}
(101)
The random variabl%g% is a sum of inde-
pendent random variables. Then, similar to Lenitha 6, we can
We first setRy := —log Y ,cq wefe,(Pr, Qe) +logé and  apply the Chebyshev inequality to the second term_of](101)
denote by¢; a probabilistic test that attains., (P, Q,) in and obtain
the hypothesis testing {(28). We denote’By € {Hy, H,} the pel(xn vy o B < AM) 102
random variable corresponding to the hypothesis estintated r{( Yi') € By (7)} ~ n (102)

this test. That isP,{T* = H,} = ¢, andQ,{T* = Hy} = with some constantd(y) > 0. It should be noticed that

Bz, (Ps, Q¢) hold by the well-known Neyman-Pearson lemmahe variance of the random variabfelog % is
12



uniformly bounded in¢ becauseY is finite (c.f. [, Remark [10] E. Telatar, “Capacity of multi-antenna Gaussian cledsh European

3.1.1]), and thus a constaAf~) can be chosen independently

of £. On the other hand, the first term 6f(101) can be bound
as

1 WY X™)
Pr{—log—t -t =~
{n S (Px W) (v
< 1{IPX(X;}/Z) -7 < R+pé,n}7 (103)
which can be verified as follows: (i) fp, (X;Yr) — v <
R + pe.n, (I03) holds trivially becausg{Ip, (X;Y;) — v <
R+ pent =1, and (i) If Ip, (X;Ye) =7 > R+ prn, We

SR+MmmmmeWwﬁ

have
1 WY X™)
Pr<—log—4t-Lt = - < R+ ppn,
ngu&mwwww— &
(X" ¥ e B =0 (104)
because
1 Wi (ylz)
I(X:Y;) — v < —log —22—7__
(Xo¥e) =7 < o8 (e )

for all (z,y) € Bé")(v). This implies that[{I03) also holds.
By (101)-[108), we obtain

1 WY X™) }
Pr{=log—4tt= ' <R,
{n AR 70 I
. A(v)
<1{Ip  (X;Y)) <R+ pon+7}+ — (105)

Taking the limes superior with respecton both sides yields

. 1 WY X™)
limsupPr{ —log—4t"£t = 7 < R4y,
e {n B PaW ey~
(106)

S 1{Ipy (X;Y) S R+ 29},
concluding [(Bb) sinces > 0 is arbitrary.
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