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Abstract

We present fundamental limits on the reliable classification of linear and affine subspaces from noisy, linear
features. Drawing an analogy between discrimination among subspaces and communication over vector wireless
channels, we propose two Shannon-inspired measures to characterize asymptotic classifier performance. First, we
define the classification capacity, which characterizes necessary and sufficient conditions for the misclassification
probability to vanish as the signal dimension, the number of features, and the number of subspaces to be discerned
all approach infinity. Second, we define the diversity-discrimination tradeoff which, by analogy with the diversity-
multiplexing tradeoff of fading vector channels, characterizes relationships between the number of discernible
subspaces and the misclassification probability as the noise power approaches zero. We derive upper and lower bounds
on these measures which are tight in many regimes. Numerical results, including a face recognition application,
validate the results in practice.

I. INTRODUCTION

The classification of high-dimensional signals arises in a host of situations, from face and digit recognition
[1]–[3] to tumor classification [4], [5], and to the music-identification app Shazam [6]. These problems involve
massive data sets—images with millions of pixels, DNA arrays with thousands of genes, or audio clips with tens of
thousands of samples—which presents a substantial burden of computation and storage. Frequently, however, the
data lie near a low-dimensional subspace of ambient space. For example, images of an individual’s face, subject to
constraints on pose, lighting, and convexity, lie almost entirely on a subspace of five to nine dimensions, regardless
of the ambient dimension of the image [7]–[9]. One therefore can pose classification tasks like face recognition as
subspace classification problems.

When identifying low-dimensional subspaces, one can reduce the computation and storage burden by classifying
from a low-dimensional representation of the signal of interest. This process is called feature extraction, and standard
techniques, including linear discriminant analysis (LDA) and principal component analysis (PCA) [10], as well as
their myriad variations, are well studied. One pays a price, however, for computational tractability. In principle,
extracting low-dimensional features from high-dimensional signals degrades classifier performance, and it is unclear
a priori how many features are necessary to ensure success.

In this paper, we present a rigorous, information-theoretic characterization of classifier performance of high-
dimensional data from low-dimensional features. We show that performance depends on several factors, including
the number of subspaces to be discriminated, the number of features extracted, and the underlying subspace structure.
In particular, we consider the classification of k-dimensional linear and affine subspaces of RN from M linear
features corrupted by Gaussian noise. To characterize classifier performance, we define two performance measures:
• The classification capacity, which characterizes the number of unique subspaces that can be discerned as a

function of the noise power, N , M , and k, as the latter three quantities approach infinity. Just as the usual
Shannon capacity captures the phase transition of the error probability, as a function of the information rate, as
the code length goes to infinity, the classification capacity captures the phase transition of the misclassification
probability, in terms of the (logarithm of the) number of subspaces, as the signal dimension goes to infinity.

• The diversity-discrimination tradeoff (DDT), which characterizes the relationship between the number of
subspaces and the misclassification probability as the noise power goes to zero. Just as the diversity-multiplexing
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tradeoff for fading vector wireless channels [11] characterizes the number of codewords and the error probability
in terms of a region of achievable exponent pairs in the signal-to-noise ratio (SNR), the DDT specifies a
region of achievable exponent pairs in the noise power for the number of subspaces and the misclassification
probability.

The motivation for the preceding definitions is an analogy between classification from noisy features and
communication over non-coherent vector channels. Indeed, the title of our paper alludes to [12], which investigates
the capacity of the block-fading non-coherent channel in geometric terms. It shows that, at high SNR and for
sufficiently long coherence time, transmitters achieve near-capacity rates by sending subspaces as codewords.
Therefore the decoding task is to discern subspaces from noisy observations, and the capacity corresponds to
asymptotic packings in the Grassmann manifold. Further works give tighter bounds on the capacity and explore
the diversity-multiplexing tradeoff of the non-coherent channel [12]–[15].

For the classification of k-dimensional linear subspaces from noisy, linear features, one can demonstrate a syntactic
duality with communications over non-coherent vector channels. Specifically, the classification problem is dual to
a non-coherent communications over a channel with k transmit antennas, a single receive antenna, and a coherence
time of M . In a preliminary version of this work, we applied results from [12], [14] directly to prove necessary
conditions for successful classification [16]. These bounds translate into upper bounds on the classification capacity
and diversity-discrimination tradeoff considered in this paper.

However, these bounds are somewhat crude. In the dual communications problem, the optimal transmission
strategy employs only a single transmit antenna, which is equivalent to classifying subspaces of dimension k = 1.
Therefore, the upper bounds are loose when classifying subspaces of higher dimension. Furthermore, because
the classification problem is not known to be information stable [17], the mutual information between subspaces
and features does not lower bound the classification capacity even for k = 1. To prove tighter upper bounds on
performance, we develop new bounds on the mutual information, and to prove lower bounds on performance we
analyze the misclassification probability directly.

A. Summary of Results

Our primary contributions are upper and lower bounds, which are tight in many regimes, on the classification
capacity and the diversity-discrimination tradeoff.

In Section III, we study the classification capacity. First we consider the classification of linear subspaces, which
we model by taking the classes to follow zero-mean Gaussian distributions with approximately low-rank covariances.
The covariances have two components: a rank k component corresponding to the class subspace, and an identity
component scaled by σ2 corresponding to deviations from the subspace. We further suppose a prior distribution
the subspaces which is uniform over the Grassmann manifold of k-dimensional subspaces in RN . We present an
upper bound on the classification capacity, showing almost surely that the number of subspaces cannot scale any
faster than (1/σ2)

M−k
2 . This result is intuitive: The lower the inherent signal dimension, the fewer features are

required to classify the signal reliably. We also present a lower bound on the classification capacity, showing that
the misclassification probability decays to zero, except for a set of subspaces having vanishing probability, provided
the number of subspaces grows slower than (1/σ2)

min{k,M−k}
2 . When M ≤ 2k, the bounds are tight up to a O(1)

term. Furthermore, based on simulations presented in Section V, we conjecture that the upper bound is tight and
that the gap between lower and upper bounds when M > 2k is merely an artifact of the analysis.

We then consider the classification of affine subspaces, or linear subspaces translated by nonzero points. We
model affine spaces by taking the classes to again be modeled by approximately rank-k covariances, but this time
to have nonzero means. We again suppose a uniform prior over the Grassmann manifold, and we further suppose that
the means are distributed according to a standard Gaussian distribution. We characterize the classification capacity
up to a O(1) term, showing that the number of subspaces growing no faster than (1/σ2)

M−k
2 is both necessary

and sufficient for the probability of error to decay to zero, again except for a set of subspaces having vanishing
probability.

In Section IV, we study the diversity-discrimination tradeoff. For linear subspaces, we derive an upper bound,
showing that the average misclassification probability decays no faster than (1/σ2)−

min{k,M−k}
2 as σ2 → 0 and that

the misclassification probability exhibits an error floor when the number of subspaces scales faster than (1/σ2)
M−k

2 .
We also derive a lower bound, showing that the misclassification capacity decays at least as (1/σ2)−

min{k,M−k}−r
2
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when the number of subspaces scales as (1/σ2)
r

2 . For affine spaces, we specify the DDT exactly, showing that the
average probability decays as (1/σ2)−

M−k−r
2 when the number of subspaces scales as (1/σ2)

r

2 .
For both linear and affine subspace classification, the lower bounds on performance are realized by any feature

matrix having M orthonormal rows in RN . Therefore, for regimes in which the bounds are tight, the asymptotic
performance as characterized by the classification capacity and DDT is invariant to rotations of the linear features.

In Section V, we evaluate our claims empirically. We first examine the error performance of classifiers over
randomly-drawn linear subspaces, focusing on the regimes in which the upper and lower bounds disagree. Then,
we test the correspondence of our theoretical results to a practical face recognition application. Using standard
classification algorithms against public datasets, we observe error performance that agrees with our predictions to
within a reasonable tolerance.

B. Prior Work

The statistics and machine learning literature contains a large body of work on feature extraction or supervised
dimensionality reduction. In addition to the venerable linear discriminant analysis and principal component analysis,
which depend only on the second-order statistics of the data, linear techniques based on higher-order statistics were
developed in [18]–[26]. Owing to Fano’s inequality, the algorithm of [18] chooses linear features having maximal
the mutual information with the classes, whereas [20], [25], [26] employ approximations to the mutual information
based on Rényi entropy. In [27] linear features are chosen for subspace classification according to a nuclear-norm
optimization problem, and in [28] an LDA-inspired Grassmann discriminant analysis is proposed. Finally, nonlinear
dimensionality reduction techniques have recently become popular [29], [30].

In the signal processing literature, information-theoretic limits on subspace classification arise under the frame-
work of sparse support recovery. The set of all k-sparse vectors in RN is a union of subspaces, and recovering the
sparsity pattern is equivalent to finding the subspace in which the signal lies. A (data) deluge of recent works [31]–
[43] provides necessary and sufficient scaling laws on the triplet (N, k,M), where M is the number of compressive
measurements taken, for recovery of a sparse signal. Different assumptions on the measurement matrices, decoders,
error metrics, and sparsity regimes give rise to different scaling laws. While these works do provide fundamental
limits on subspace classifier performance, sparse support recovery entails a specialization to the union of canonical
subspaces, and the results presented in the preceding works do not bear directly on our study.

Reference [44] considers compressed learning, i.e. learning directly in the compressive measurement domain
rather than in the original data domain, showing that when data admit a sparse representation, low-dimensional
feature extraction preserves the learnability and the separability of the data. Along a similar vein, a recent work [45]
considers the compressive classification of convex sets, proving limits on the number of measurements required to
ensure that the projected sets remain separated.

A few works have focused on the classification of Gaussian mixtures, which is closely related to the linear
and affine subspace classification considered herein. In [46] classifier performance is studied for a finite number
of classes as a function of signal geometry; these results prefigure the DDT results presented in the sequel. In
[47], the number of measurements required to classify and reconstruct a signal drawn from a Gaussian mixture is
characterized.

Researchers have also studied information-theoretic limits on other classification problems. The authors of [48]
provide asymptotic limits on the success of model selection of Markov random fields. The authors of [49] use
results in universal source coding to prove general bounds on classifier performance. The authors of [50] study
the limits of database recovery from low-dimensional features, characterizing an “identification capacity” which is
analogous to the classification capacity studied in this paper.

C. Notation

We let bold lowercase letters denote vectors and bold uppercase letters to denote matrices. We let R and Z denote
the field of reals and integers, respectively. We let I and 0 denote the identity matrix and the all-zeros matrix,
respectively, indicating the size of the matrix in a subscript when necessary. We let ‖·‖ denote the Euclidean norm;
when applied to a matrix it denotes the induced operator norm. We let E[·] denote the expectation, indicating the
distribution over which the expectation is taken by a subscript when necessary. We let b·c and [·]+ denote the floor
function and the positive part of a number, respectively. We let eig(·) denote the vector of eigenvalues of a square
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matrix. We let d
= denote equality in distribution. We let N (µ,Σ) denote a Gaussian distribution with mean µ and

covariance matrix Σ. We let WM (N,V) denote the M ×M Wishart distribution with degrees of freedom N and
shape matrix V.

II. PRELIMINARIES

A. Problem Definition

We consider the statistical classification problem, in which the signal of interest x ∈ RN is distributed according
to one of L class-conditional densities pl(x), each of which is known to the classifier. The classifier observes noisy
linear projections of x, from which it attempts to determine the class-conditional density from which x was drawn.
These projections, denoted by y ∈ RM , are related to the signal x ∈ RN as follows:

y = Φx + z, (1)

where Φ ∈ RM×N is a matrix describing the linear features, and z ∈ RM is white Gaussian noise with mean zero
and per-component variance σ2 for some σ2 > 0. We suppose M ≤ N , and we constrain ‖Φ‖ ≤ 1. The noise z
describes the deviation between the postulated subspace model and the true signal of interest.1 Signals will not lie
perfectly on the linear or affine subspaces, so we suppose that the projected signal lies approximately within a ball
centered at the specified subspaces and having radius

√
Mσ.

To model the classification of linear and affine subspaces, we impose structure on the class-conditional densities
pl(x). In particular, we suppose that the class conditional densities are Gaussian with low-rank covariances that
correspond to the subspaces. In the case of linear subspaces, these Gaussians have zero mean. In the case of affine
subspaces, which are simply translations of linear subspaces, the Gaussians have nonzero means.

We therefore define two sets. For the classification of k-dimensional linear subspaces of RN , the class-conditional
densities pl(x) belong to2

Qlinear(N, k) = {N (0,UUT ) : U ∈ RN×k}. (2)

In other words, each class-conditional density is a Gaussian supported on the k-dimensional subspace spanned by
the columns of U. Similarly, for the classification of k-dimensional affine spaces, the class-conditional densities
belong to

Qaffine(N, k) = {N (µ,UUT ) : µ ∈ RN ,U ∈ RN×k}. (3)

That is, the class-conditional densities are supported on a k-dimensional subspace as before, but here they are
translated by a non-zero vector µ.

We parameterize the sets Qlinear(N, k) and Qaffine(N, k) by the following two sets

Alinear(N, k) = RN×k (4)

Aaffine(N, k) = RN × RN×k. (5)

Clearly Alinear(N, k) and Aaffine(N, k) are isomorphic to Qlinear(N, k) and Qaffine(N, k), respectively. We can
represent a linear or affine subspace classification problem by a tuple a = (a1, · · · , aL) ∈ AL(N, k), where AL is
the L-fold Cartesian product of A(N, k). The tuple a encodes the L covariances and, when appropriate, the L means
corresponding to the subspaces to be classified. Let p(x; al) = pl(x), for 1 ≤ l ≤ L, denote the class-conditional
densities parameterized by a ∈ A(N, k).

Let l̂ = f(y) denote the classifier output, where f is a mapping from RM to {1, · · · , L}. Then, for a classification
problem described by the tuple a, define the average misclassification probability:

Pe(a) = min
‖Φ‖≤1

1

L

L∑
i=1

Pr(l̂ 6= l|x ∼ p(x; al)), (6)

1Equivalently, we could remove the additive noise z and add a σ2I term to the covariance matrix of each class-conditional density.
2We will drop the subscripts linear and affine throughout when discussing classification generally rather than particularizing to linear or

affine subspaces.
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where each term in the sum is the misclassification probability when x is drawn according to p(x; al). Observe
that we define Pe(a) in terms of the best feature matrix Φ. Therefore, in proving our results we will characterize
the feature matrix that achieves optimal classifier performance in the asymptote.

The focus of this paper is the analysis of Pe in two asymptotic regimes: (i) as the signal dimensions N,M, k
go to infinity, and (ii) as the noise power σ2 goes to zero. In the first case, we derive conditions for which the
probability of error decays to zero, except for a set of vanishing probability over AL. In the second case, we derive
scaling laws on the probability of error, averaged over the possible choices of a ∈ AL. To this end, define the
following probability distributions over the parameter sets Alinear(N, k) and Aaffine(N, k):

plinear(a) =

N∏
i=1

k∏
j=1

N (uij ; 0, 1/k) (7)

paffine(a) =

N∏
i=1

k∏
j=1

N (uij ; 0, 1/k) ·
N∏
l=1

N (µi; 0, 1), (8)

where uij is the (i, j)th element of the matrix U and µi is the ith element of the vector µ. These distributions
define a measure over the sets of class-conditional densities. In other words, in computing probabilities we suppose
that the elements of the matrix U and the mean vector µ are standard i.i.d. Gaussian.

For both plinear and paffine, the distribution is supported over the entire parameter space, is invariant to rotations,
and yields finite expected signal energy. Specifically, the distribution over the bases U is isotropic, which means
that the linear subspaces are drawn uniformly from the Grassmann manifold. Therefore, our analysis characterizes
classifier performance when “nature” presents us with subspaces without favoring a particular region of the
Grassmann; we contend that this assumption is reasonable. Furthermore, while changes to the distributions plinear

and paffine will change the classification capacity and DDT in general, the coarse behavior is robust to variations.
In particular, one can recover our proofs subject to straightforward constraints on the eigenvalue distribution of
UTU, showing bounds on the classification capacity that differ at most by a O(1) term and DDT bounds that agree
exactly.

Next, we define the classification capacity and the diversity-discrimination tradeoff.

B. Classification Capacity

The classification capacity characterizes fundamental performance limits as the signal dimensions approach
infinity. We derive bounds on how fast the number of subspaces can grow, as a function of N , M , and k, while
ensuring the misclassification probability decays to zero almost surely.

By analogy with the sequence of codebooks defined for the Shannon capacity, we characterize the classification
capacity in terms of a sequence of classification problems indexed by M . We let the number of features M grow
to infinity, and we let the dimensions N and k scale linearly with M as follows:

N(M) = bνMc, k(M) = bκMc, (9)

for ν ≥ 1 and 0 < κ < 1. We also let the number of subspaces L scale exponentially in M as follows:

L(M) = b2ρMc, (10)

for some ρ ≥ 0. By analogy with communications theory, the quantity ρ can be interpreted as the “rate” of the
sequence of class alphabets, or the average number of bits discerned per feature if classification succeeds. Indeed,
in the sequel we refer to ρ a the classification rate.

Definition 1: Fix the dimension ratios ν and κ and the classification rate ρ. Then, define the set of classification
problems for which the probability of classification error exceeds an arbitrary small constant ε > 0:

E(M) = {a ∈ AL(M)(N(M), k(M)) : Pe(a) > ε}. (11)

Then, we say that ρ is achievable provided

lim
M→∞

∫
E(M)

L(M)∏
i=1

p(ai)da = 0, (12)
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for any fixed ε > 0.
Observe that a classification rate ρ is achievable if

lim
M→∞

E[Pe(a)] = lim
M→∞

∫
AL(M)(N(M),k(M))

Pe(a)

L(M)∏
i=1

p(ai)da = 0. (13)

This observation follows by contradiction: If there is a subset of AL(N, k) having non-trivial probability for which
the misclassification probability remains bounded away from zero, the expected error also remains bounded away
from zero.

Definition 2: Fix the dimension ratios ν and κ. The classification capacity, denoted by Clinear(ν, κ) and Caffine(ν, κ)
for linear and affine space classification, respectively, is the supremum over achievable classification rates ρ.

In other words, if the classification rate is smaller than C(ν, κ), then the probability of classification error
approaches zero almost surely over the set of subspace classification problems. Otherwise, the error probability
remains bounded away from zero for a non-trivial subset of AL(N, k).

Although the classification capacity is defined to characterize classifier behavior when N and k scale linearly
in M and L scales exponentially in M , it also captures other regimes automatically. For example, if k scales
sub-linearly in M , the asymptotic behavior is the same as if κ → 0. Similarly, if L scales sub-exponentially in
M , the misclassification probability decays to zero whenever the classification capacity is nonzero, and if L scales
super-exponentially the misclassification capacity remains bounded from zero whenever the classification capacity
is finite. In view of Theorems 1 and 2, this implies that whenever κ > 0 and the number of subspaces grows
polynomially in M , the misclassification probability goes to zero. Because we are dealing with subspaces, it is
impossible to have N scale sub-linearly or k scale super-linearly in M . However, at least one regime remains
unspecified by our analysis: If N scales super-linearly in M , classifier behavior is unclear.

We can bound the classification capacity via the mutual information between the vector a ∈ A and the feature
vector y.

Lemma 1: The classification capacity satisfies

C ≤ lim
M→∞

max
‖Φ‖≤1

I(a;y)

M
, (14)

where the mutual information is computed with respect to plinear(a) or paffine(a) as appropriate.
Proof: The proof follows from Fano’s inequality. By the standard arguments (e.g. from [51]), we obtain

Pe(a) ≥ 1−
max‖Φ‖≤1 I(a;y)− 1

Mρ
,

which is bounded away from zero when ρ exceeds the RHS of (14).
Observe that we have proven more than just an upper bound on the capacity. When ρ exceeds RHS of (14), not

only is there a non-trivial set for which the error probability remains positive, but that set is also all of AL(N, k).
If the upper bound of Lemma 1 is tight, then the mutual information characterizes a sharp phase transition in the
error probability. If the number of subspaces grows sufficiently slowly, the probability of error vanishes almost
everywhere; otherwise, is bounded away from zero everywhere.

However, it is not clear whether Lemma 1 is tight. If the “channel” between subspaces and features is information
stable—meaning roughly that the normalized information density converges on the normalized mutual information—
then the mutual information completely characterizes the classification capacity and (14) holds with equality [17].
Alternatively, applying the results of [52], one can express the classification capacity directly in terms of the
information density. Analysis of the information density is difficult, however, as is the verification of information
stability, so Lemma 1 remains an upper bound only.

To prove lower bounds on the classification capacity, we analyze directly the misclassification probability. Our
main tool is the Bhattacharyya bound on the pairwise misclassification probability [53], [54], which we state here
for Gaussian distributions.

Lemma 2: Suppose we observe a signal that is distributed according to N (µ1,Σ1) or N (µ2,Σ2) with equal prior
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probability. Define

B =
1

2
ln

(
|Σ1+Σ2

2 |
|Σ1|

1

2 |Σ2|
1

2

)
+

1

8
(µ1 − µ2)

[
Σ1 + Σ2

2

]−1

(µ1 − µ2). (15)

Then, supposing maximum likelihood classification, the misclassification probability is bounded by

Pe((µ1,Σ1, µ2,Σ2)) ≤ 1

2
exp(−B). (16)

In [54] it is also observed that the Bhattacharyya bound is exponentially tight in the sense that, if the pairwise error
decays to zero, it approaches c · exp(−B) for some constant c. A consequence of this observation, which we will
see in Section IV, is that the Bhattacharyya bound predicts the maximum diversity gain for both linear and affine
subspace classifiers.

C. Diversity-Discrimination Tradeoff

The diversity-multiplexing tradeoff (DMT) was introduced in the context of wireless communications to char-
acterize the high-SNR performance of fading vector channels. It was shown in [11] that the spatial flexibility
provided by multiple antennas can simultaneously increase the achievable rate and decrease the probability of error,
but only according to a tradeoff that is precisely characterized at high SNR. We define a similar characterization
in the context of classification, called the diversity-discrimination tradeoff (DDT), which captures the relationship
between the increase of discernible subspaces and the decay of misclassification probability as the noise power
approaches zero.

For the DDT, we keep N , M , and k fixed, but we let the number of subspaces scale in the noise power as
follows:

L(σ2) = b(1/σ2)
r

2 c, (17)

for some r ≥ 0, which we call the discrimination gain. We define the DDT in terms of the misclassification
probability averaged over the ensemble of classification problems, which we denote by

P̄e(σ
2, r) = E[Pe(a)] =

∫
A(N,k)

Pe(a)

L(σ2)∏
l=1

p(al)da, (18)

where here we express the probability of error as a function of the discrimination gain r and the noise power σ2.
Specifically, the diversity-discrimination tradeoff is defined as the following function:

d(r) = lim
σ2→0

− log P̄e(σ
2, r)

1
2 log(1/σ2)

. (19)

We refer to d(r) as the diversity gain for discrimination gain r. In other words, when the number of subspaces
increases as (1/σ2)r/2, the probability of error decays as (1/σ2)−d(r)/2 + o(log(σ2)). In the sequel we refer to
dlinear(r) and daffine(r) as appropriate.

By contrast to the classification capacity, where we characterize phase transitions in the error probability that
hold almost surely, for the DDT we specify scaling laws in the error probability that hold on the average over A.
Rather than specifying if the probability of error decays to zero, the DDT specifies how quickly it decays. In the
former case, it is straightforward to define the failure event and show that it has vanishing probability. In the latter
case, it is unclear how to define such a failure event, so we state only an average-case result.

As with the classification capacity, we can derive bounds on the DDT from the mutual information.
Lemma 3: Fix N , M , and k. Then, d(r) = 0 whenever

r ≥ lim
σ2→0

max
Φ,‖Φ‖≤1

I(a;y)
1
2 log(1/σ2)

, (20)

where again the mutual information is calculated with respect to plinear(a) or paffine(a) as appropriate.
Proof: Again we invoke Fano’s inequality. Whenever r is as large as the specified quantity, the probability of

error is bounded away from zero, and the diversity gain is zero by definition.
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III. CLASSIFICATION CAPACITY

Here we characterize the classification capacities Clinear(ν, κ) and Caffine(ν, κ). We prove upper bounds that
show that, for both linear and affine subspace classification, the probability of error remains bounded away from
zero almost surely whenever the number of subspaces scales faster than (1/σ2)

M−k
2 . For linear spaces, we prove a

lower bound which matches the upper bound to within an O(1) term for κ ≥ 1/2; otherwise the bounds disagree.
For affine spaces, we prove a lower bound which is tight to within an O(1) term for all κ. This suggests the
somewhat surprising conclusion that, at least for κ ≥ 1/2, translating subspaces by nonzero vectors does not
substantially increase the number of subspaces a classifier can discriminate. Whether this conclusion extends to
κ < 1/2 depends on the tightness of the upper bound. However, as we will see in Section IV, affine subspaces are
easier to discriminate in the sense that the misclassification probability decays faster as σ2 → 0.

A. Linear Subspaces

First, we bound on Clinear(ν, κ).
Theorem 1: For linear subspace classification, the classification capacity is bounded by

min{κ, 1− κ}
2

log2

(
1 +

(
√

1/(2κ)− 1)2

σ2

)
− κ

2
≤ Clinear(ν, κ) ≤

1− κ
2

log2

(
1

σ2

)
+

1

2
log2(1 + σ2)− κ

2
log2((

√
1/κ− 1)2 + σ2). (21)

Proof: We first prove the upper bound by estimating the mutual information between the subspaces and the
features and invoking Lemma 1. Then, we prove the lower bound by invoking Lemma 2 and applying the union
bound.

Upper Bound: To bound the mutual information I(a;y) = I(U;y), we first characterize the optimum choice
of Φ. Following the argument in [18, Theorem 2], we compute the gradient of the mutual information with respect
to the singular values of Φ. Writing the singular value decomposition as Φ = WΦΛΦV

T
Φ, the gradient is

∇ΛΦ
I(U;y) = ΛΦV

T
ΦE

[∫
p(y|U)(m−mU)(m−mU)Tdy

]
VΦ, (22)

where
m =

∫
xp(x|y)dx

is the mean with respect to the posterior distribution, and

mU =

∫
xp(x|y,U)dx

is the mean with respect to the conditional posterior. Observe from (22) that the diagonal elements of the gradient are
non-negative, which implies that the mutual information is non-decreasing with the singular values of Φ. Because
we constrain ‖Φ‖ ≤ 1, it follows that the singular values of the optimal Φ are identically unity.

Assuming this condition on Φ, we bound the mutual information. By definition,

I(U;y) = h(y)− h(y|U).

To bound the conditional entropy, observe that the conditional distribution of y is

p(y|U) = N (0,ΦUUTΦT + σ2 · I).

Let λi denote the ith ordered eigenvalue of UTΦTΦU. Then, the conditional entropy is

h(y|U) =

k∑
i=1

1

2
E[log2(2πe(λi + σ2))] +

M − k
2

log2(2πeσ2)

≥ k

2
E
[
log2(λk + σ2)

]
+
M − k

2
log2(σ2) +

M

2
log2(2πe),
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where the expectation is with respect to U, and where the inequality is trivially obtained by substituting the smallest
positive eigenvalue λk. We next bound this eigenvalue. Because Φ has singular values identically equal to unity, and
because U has i.i.d. Gaussian entries with variance 1/k, the matrix ΦU ∈ RM×k also has i.i.d. Gaussian entries
with variance 1/k. Therefore,

UTΦTΦU
d
=

1

k
W,

where W ∼ Wk(I,M). In [55, Theorem 1] it is shown that the smallest eigenvalue of 1/M ·W converges to
(1 −

√
κ)2 almost surely as M → ∞. Therefore, the minimum eigenvalue of UTΦTΦU, which is equal to λk,

converges on (
√

1/κ− 1)2 almost surely. We can therefore bound the conditional mutual information by

h(y|U) ≥ k

2
log2((

√
1/κ− 1)2 + ε(M) + σ2) +

M − k
2

log2(σ2) +
M

2
log2(2πe), (23)

where ε(M)→ 0 as M →∞.
We turn next to the differential entropy of y. We first compute the expected covariance, which is

E[yyT ] = EU[ΦUUTΦ + σ2I]

= (1 + σ2)I.

Noting that the differential entropy for a fixed covariance is maximized by the multivariate Gaussian distribution,
we obtain

h(y) ≤ M

2
log2(2πe(1 + σ2)). (24)

Combining terms and letting M →∞, we finally obtain

lim
M→∞

max
Φ

I(y;U)

M
≤ 1− κ

2
log

(
1

σ2

)
+

1

2
log2(1 + σ2)− κ

2
log2((

√
1/κ− 1)2 + σ2). (25)

Applying Lemma 1 to (25), we obtain the upper bound.
Lower Bound: Choose Φ ∈ RM×N to be any matrix with orthonormal rows. Observe that while this choice

maximizes the mutual information, it does not minimize the probability of error in general. Applying the Bhat-
tacharyya bound from Lemma 2, the probability of a pairwise error between two subspaces i and j is bounded
by

Pe(Ui,Uj) ≤
1

2
·

(
|ΦUiUT

i ΦT+ΦUjUT
j ΦT+2σ2I

2 |
|ΦUiUT

i Φ + σ2I|
1

2 |ΦUjUT
j ΦT + σ2I|

1

2

)− 1

2

.

With probability one, the matrices ΦUiU
T
i ΦT and ΦUjU

T
j ΦT have rank k, and the matrix (ΦUiU

T
i +ΦUjU

T
j Φ)/2

has rank min{M, 2k}. Let λil and λjl denote the nonzero eigenvalues of ΦUiU
T
i and ΦUjU

T
j , respectively, and

let λijl denote the nonzero eigenvalues of the latter matrix. Then, we can write the pairwise bound as

Pe(Ui,Uj) ≤
1

2

 (σ2)M−min{M,2k}∏min(2k,M)
l=1

(
λijl + σ2

)√
(σ2)M−k

∏k
l=1 (λil + σ2) · (σ2)M−k

∏k
l=1 (λjl + σ2)

− 1

2

=
1

2
·
(

1

σ2

)−min{M−k,k}
2

·

 ∏min(2k,M)
l=1

(
λijl + σ2

)√∏k
l=1(λil + σ2) ·

∏k
l=1(λjl + σ2)

− 1

2

.

By construction,
ΦUiU

T
i ΦT + ΦUjU

T
j ΦT ≥ ΦUiU

T
i ΦT ,ΦUjU

T
j ΦT .

By Weyl’s monotonicity theorem (see, e.g., [56]), 2λijl ≥ λil and 2λijl ≥ λjlfor every 1 ≤ l ≤ k. Therefore,

k∏
l=1

2
(
λijl + σ2

)
≥

√√√√ k∏
l=1

(λil + σ2) ·
k∏
l=1

(λjl + σ2),
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from which it follows that

Pe(Ui,Uj) ≤
1

2
·
(

1

σ2

)−min{M−k,k}
2

· 2
k

2 ·

min(2k,M)∏
l=k+1

(
λijl + σ2

)− 1

2

≤ 1

2
·
(

1

σ2

)−min{M−k,k}
2

· 2
k

2 ·
(
λijmin{2k,M} + σ2

)−min{M−k,k}
2

= 2
k−2

2 ·
(

1 +
λijmin{2k,M}

σ2

)−min{M−k,k}
2

.

Next, we bound the eigenvalue λijmin{2k,M}
. Because each matrix Ui has i.i.d. Gaussian entries with zero mean

and variance 1/k, so too does each matrix ΦUl ∈ RM×k. Furthermore, observe that

ΦUiU
T
i ΦT + ΦUjU

T
j ΦT =

[
ΦUi ΦUj

]
·
[

(ΦUi)
T

(ΦUj)
T

]
.

Therefore, the nonzero eigenvalues of ΦUiU
T
i ΦT + ΦUjU

T
j ΦT are those of a scaled Wishart matrix. Specifically,

if 2k < M , the eigenvalues are those of 1/k ·W1, where W1 ∼ W2k(M, I). If M ≥ 2k, the eigenvalues are those
of 1/k ·W2, where W2 ∼ WM (2k, I). By [55, Theorem 1], the minimum eigenvalue in either case converges on
(
√

1/κ−
√

2)2 almost surely. Therefore, λijmin{2k,M}
converges on (

√
1/(2κ)− 1)2 almost surely, and we obtain

Pe(Ui,Uj) ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)−min{M−k,k}
2

, (26)

where ε(M)→ 0 almost surely as M →∞. A fortiori, the bound in (26) is also a bound on the expected pairwise
probability, with ε(M) independent for each i, j pair.

Invoking the union bound over all L(M) subspaces, we obtain

E[Pe(a)] ≤ 1

L(M)

L(M)∑
l=1

∑
l′ 6=l

E[Pe(Ul,Ul′)]

= (L(M)− 1)E[Pe(Ul,Ul′)]

≤ 2ρME[Pe(Ul,Ul′)],

where the second equality follows because each Ul is drawn independently. Taking the logarithm of both sides
yields

log2(E[Pe(a)]) ≤ ρM +
k − 2

2
− min{M − k, k}

2
log2

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)
. (27)

Therefore, if

ρ <
min{1− κ, κ}

2
log2

(
1 +

(
√

1/(2κ)− 1)2

σ2

)
− κ

2
,

then E[Pe(a)] goes to zero as M →∞, and thus Pe(a) goes to zero almost surely, as was to be shown.
When κ ≥ 1

2 , the lower and upper bounds agree to within a O(1) term; otherwise they are loose. Based on the
numerical experiments presented in Section V, we conjecture that the upper bound is approximately tight, while
the lower bound is loose.

B. Affine Subspaces

Next, we bound Caffine(ν, κ).
Theorem 2: For affine subspace classification, the classification capacity satisfies

Caffine(ν, κ) ≤ 1− κ
2

log2

(
1

σ2

)
+

1

2
log2(2 + σ2)− κ

2
log2((

√
1/κ− 1)2 + σ2), (28)
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and

Caffine(ν, κ) ≥


1−κ

2 log2

(
1 +

min{(
√

1/(2κ)−1)2,1/2}
σ2

)
− κ

2 for κ < 1/2

1−κ
2 log2

(
1 +

(
√

1/(2κ)−1)2

σ2

)
− κ

2 for κ ≥ 1/2
. (29)

Proof: As before, we prove the upper bound by bounding the mutual information, and the lower bound by
direct analysis of the probability of error via the Bhattacharyya bound.

Upper Bound: To prove the upper bound, we expand the mutual information as

I(a;y) = I(U, µ;y) = h(y)− h(y|U, µ). (30)

As in the case of linear subspaces, the Φ that maximizes the mutual information has unit singular values. Further-
more, because the entropy of a Gaussian does not depend on the mean, h(y|U, µ) = h(y|U). Therefore, applying
(23), we obtain

h(y|U, µ) ≥ k

2
log2((

√
1/κ− 1)2 + ε(M) + σ2) +

M − k
2

log2(σ2) +
M

2
log2(2πe), (31)

where ε(M)→ 0. Then, observing that

E[yyT ] = Eµ[ΦµµTΦT ] + EU[ΦUUTΦT ] + σ2I

= (2 + σ2)I,

we conclude that
h(y) ≤ M

2
log2(2πe(2 + σ2)), (32)

from which it follows that

lim
M→∞

I(y;U, µ)

M
≤ 1− κ

2
log

(
1

σ2

)
+

1

2
log2(2 + σ2)− κ

2
log2((

√
1/κ− 1)2 + σ2). (33)

Applying the preceding to Lemma 1, we obtain the upper bound.
Lower Bound: Suppose that we choose Φ to be any matrix with orthonormal rows. We bound the pairwise

misclassification error via Lemma 2, which yields

Pe(µi,Ui, µj ,Uj) ≤
1

2
·

(
|ΦUiUT

i +ΦUjUT
j ΦT+2σ2I

2 |
|ΦUiUT

i Φ + σ2I|
1

2 |ΦUjUT
j ΦT + σ2I|

1

2

)− 1

2

·

exp

−1

8
· (µi − µj)T ΦT

Φ
(
UiU

T
i + UjU

T
j

)
ΦT + 2σ2I

2

−1

Φ (µi − µj)

 . (34)

Observe that the argument of the exponential term is always nonnegative, so the exponential is always smaller than
one. Therefore, the bound on the misclassification probability of affine subspaces is always smaller than that of
linear subspaces, and the lower bound from Theorem 1 also applies to affine subspaces. Applying this fact yields
the lower bound for κ ≥ 1/2.

For κ < 1/2, we apply (26) to (34), yielding

Pe(µi,Ui, µj ,Uj) ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)− k
2

·

exp

−1

8
· (µi − µj)T ΦT

Φ
(
UiU

T
j + UiU

T
j

)
ΦT + 2σ2I

2

−1

Φ (µi − µj)

 , (35)

where again ε(M) → 0. Next, let Φ(UiU
T
i + UjU

T
j )ΦT = WijΛijW

T
ij be the eigenvalue decomposition of the

covariance pair sum. Also define ω = WT
ijΦ(µi−µj)/2, which is i.i.d. Gaussian with zero mean and unit variance.
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We therefore obtain

Pe(µi,Ui, µj ,Uj) ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)− k
2

· exp

(
−1

4
ωT
(
Λij/2 + σ2I

)−1
ω

)
.

With probability one, Λij contains 2k nonzero eigenvalues. The preceding bound increases in these eigenvalues, so
to bound the error we bound the eigenvalues by infinity, which yields

Pe(µi,Ui, µj ,Uj) ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)− k
2

·
M∏

i=2k+1

exp

(
− 1

4σ2
ω2
i

)
.

Taking the expectation yields

E[Pe(µi,Ui, µj ,Uj)] ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)− k
2

·
M∏

i=2k+1

E

[
exp

(
− 1

4σ2
ω2
i )

)]
,

where the expectation moves inside the product because each ωi is independent of the others. Noting that each
expectation in the final expression is just the moment-generating function of a Chi-squared random variable, we
obtain

E[Pe(µi,Ui, µj ,Uj)] ≤ 2
k−2

2 ·

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)− k
2

·
(

1 +
1

2σ2

)−M−2k

2

(36)

Applying the union bound and taking the logarithm, we obtain

log2(E[Pe(a)]) ≤ ρM − k

2
log2

(
1 +

(
√

1/(2κ)− 1)2 + ε(M)

σ2

)
− M − 2k

2
log2

(
1 +

1

2σ2

)
+
k − 2

2
(37)

≤ ρM − M − k
2

log2

(
1 +

min{(
√

1/(2κ)− 1)2 + ε(M), 1/2}
σ2

)
+
k − 2

2
. (38)

Letting M →∞, we obtain the lower bound for κ < 1/2.
For affine subspaces, the bounds are tight to within an O(1) term for all values of κ. Roughly speaking, the

term in the Bhattacharyya bound associated with discriminating the means cancels out the gap to the upper bound
associated with discriminating the associated linear subspaces. Therefore pairwise analysis, along with the union
bound, is sufficient for establishing tight bounds on the classification capacity for affine subspaces even when it
fails for linear subspaces.

IV. DIVERSITY-DISCRIMINATION TRADEOFF

Here we prove bounds on the diversity-discrimination tradeoff. Similar to the classification capacity, we prove
an upper bound on dlinear(r), which shows that the maximum diversity gain is min{k,M − k} and the maximum
discrimination gain is M − k. We also prove a lower bound, based on the Bhattacharyya bound, which establishes
that the average misclassification probability decays at least as (1/σ2)−

min{k,M−k}−r
2 when the number of subspaces

grows as (1/σ2)
r

2 . For affine subspaces, we prove an upper bound which shows that the misclassification probability
decays no faster than (1/σ2)−

M−k−r
2 . In this case, the Bhattacharyya analysis shows that the upper bound is tight.

A. Linear Subspaces

First, we prove bounds on dlinear(r).
Theorem 3: For linear subspaces, the DDT is upper bounded by

dlinear(r) ≤
[
min

{
M − k − r, k

(
1− r

M

)}]+
, (39)

and the DDT is bounded below by

dlinear(r) ≥ [min{M − k, k} − r]+ . (40)
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Proof: First we prove the upper bound, the first term of which follows from Lemma 3. Combining (23) and
(24), it is easy to see that

lim
σ2→0

I(U;y)
1
2 log(1/σ2)

≤M − k. (41)

Therefore, by Lemma 3, dlinear(r) = 0 whenever r ≥M − k. Next, suppose that dlinear(r) > M − k− r for some
0 ≤ r < M − k, meaning that, for some ε > 0,

log2(P̄e(r, σ
2)) ≤ −M − k − r + ε

2
log2(1/σ2) + o(log(σ2)). (42)

Using the union bound, we can express the probability of error for r = M − k in terms of (42):

log2(P̄e(M − k, σ2)) ≤ log2((1/σ2)
M−k−r

2 P̄e(r, σ
2))

≤ M − k − r
2

log2(1/σ2) + log2(P̄e(r, σ
2))

≤ − ε
2

log2(1/σ2) + o(log(σ2)).

This implies dlinear(M − k) > 0, which is a contradiction.
The second term in the upper bound follows from an “outage”-style argument reminiscent of that of [14]. For

linear subspaces, we can rewrite the signal model (1) as

y = ΦUh + z,

where h = (h1, · · ·hk)T ∼ N (0, I). We define an outage event

F = {h2
i ≤ (1/σ2)−β,∀ i}, (43)

for 0 ≤ β ≤ 1. Because each h2
i is Chi squared with a single degree of freedom,

Pr(F) ≤ (1/σ2)−
kβ

2 · exp(k/2). (44)

Next, we bound the conditional normalized mutual information:

lim
σ2→0

I(U;y|F)

1/2 log2(1/σ2)
= lim

σ2→0

h(y|F)− h(y|U,F)

1/2 log2(1/σ2)

≤ lim
σ2→0

log2(Eh,U[det(ΦUhhTUTΦT + σ2I)|F ])−M/2 log2(σ2)

1/2 log2(1/σ2)
,

where the inequality follows because (i) the Gaussian distribution maximizes mutual information, and (ii) h(y|U,F)) ≥
h(z) by the entropy power inequality. Conditioned on the outage event, we have hhT ≤ (1/σ2)−β · I, from which
it follows that

lim
σ2→0

I(U;y|F)

1/2 log2(1/σ2)
≤ lim

σ2→0

log2(EU[|(1/σ2)−β · ΦUUTΦT + σ2I|])−M/2 log2(σ2)

1/2 log2(1/σ2)

≤ lim
σ2→0

M/2 log2((1/σ2)−β + σ2)−M/2 log2(σ2)

1/2 log2(1/σ2)

= M(1− β).

By the law of total probability,

E[Pe(a)] = E[Pe(a)|F ]Pr(F) + E[Pe(a)|Fc](1− Pr(F))

≥ E[Pe(a)|F ]Pr(F).
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By Lemma 3, whenever r > M(1 − β), the conditional probability E[P (a)|F ] is bounded away from zero.
Therefore,

dlinear(M(1− β) + ε) = lim
σ2→0

− log2(E[Pe(a)])

1/2 log2(1/σ2)

≤ lim
σ2→0

− log2(E[P (a)|F ]) + log2(Pr(F))

1/2 log2(1/σ2)

= lim
σ2→0

− log2(Pr(F))

1/2 log2(1/σ2)

≤ kβ.

Taking ε→ 0, we obtain the second term of the upper bound.
The lower bound follows from the Bhattachayya analysis from Section III-A. For discrimination gain r, we

combine (26) with the union bound, yielding

log2(P̄e(r, σ
2)) ≤ r

2
log2

(
1

σ2

)
− min{M − k, k}

2
log2

(
1 +

(
√

1/κ−
√

2)2 + ε(M)

σ2

)
+
k

2
.

Therefore, we have

dlinear(r) = lim
σ2→0

log2(P̄e(r, σ
2))

1
2 log2(1/σ2)

≥ min{M − k, k} − r.

Similar to the classification capacity, the lower bound is tight when k ≥ M/2. Otherwise, the lower bound
achieves full diversity for r = 0, but falls short of the upper bound for higher discrimination gain. Note, however,
that the second term in (39), which establishes that the diversity gain is no greater than k, is clearly loose because
it predicts nonzero diversity for discrimination gains higher than M − k. This looseness is due to the bound on the
normalized mutual information, in which we employed h(y|U,F)) ≥ h(z); this bound neglects the effect of the
outage event on the eigenvalues.

A tighter bound on the conditional entropy is difficult because y is no longer Gaussian conditioned on F .
However, we can make heuristic calculations by bounding the conditional covariance and supposing that the entropy
is approximately that of the equivalent Gaussian. Then, the normalized mutual information is instead bounded by
(M − k)(1− β). Following that analysis leads to the following bound on DDT function

dlinear(r) = min{M − k, k}
[
1− r

M − k

]+

. (45)

This function is just the line segment connecting the maximum diversity order and the maximum discrimination
gain in the upper bound. Based on the preceding intuition and the numerical results in Section V, we conjecture
that this is the true diversity-discrimination tradeoff for linear classification.

B. Affine Subspaces

Next, we derive daffine(r).
Theorem 4: For affine subspace classification, the DDT is

daffine(r) = [M − k − r]+. (46)

Proof: We can upper bound the DDT using the same argument as in the proof of Theorem 3. Combining (31)
and (32), we obtain

lim
σ2→0

I(µ,U;y)
1
2 log(1/σ2)

≤M − k. (47)

Therefore, daffine(r) = 0 for r ≥ M − k by Lemma 3. As before, by the union bound there is a contradiction if
d(r) > M − k − r for any 0 ≤ r ≤M − k.
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To lower bound the DDT, observe from the proof of Theorem 2 that

log2(E[Pe(µi,Σi, µj ,Σj)]) ≤ −
M − k

2
log2(1/σ2) + o(log(σ2)). (48)

For discrimination gain 0 ≤ r ≤M − k, the union bound yields

log2(P̄e(r, σ
2)) ≤ −M − k − r

2
log2(1/σ2) + o(log(σ2)), (49)

which establishes the result.
For affine spaces, similar to the classification capacity, the upper bound is tight. Therefore, the Bhattacharyya

bound is tight not only with respect to the pairwise error, but also upon application of the union bound. Therefore,
while the translation of linear subspaces into affine subspaces does not necessarily improve the number of subspaces
that a classifier can discriminate reliably, for k < M/2 translation does improve the decay of the error probability
as the noise power vanishes.

V. NUMERICAL RESULTS

Here we validate our results numerically. First, we study the performance of linear subspace classifiers with
subspaces drawn randomly from plinear, focusing on the regimes in which the upper and lower bounds disagree and
drawing conclusions about the tightness of the bounds. Then, we study the classifier performance over the YaleB
database of face images, comparing empirical performance to the predictions of Section III.

A. Linear Subspaces

Here, we want to see whether the upper bound on the Clinear(ν, κ) is tight for κ < 1/2, as we conjectured in
Section III-A. We also want to see whether the diversity-discrimination function we conjectured in Section IV-A
is correct.

To answer these questions, we examine classifier performance as σ2 → 0. We draw subspaces from plinear and
we choose Φ to be the first M rows of a randomly-chosen unitary matrix. We corrupt the features with white
Gaussian noise of variance σ2, and we perform maximum-likelihood classification on the noisy features. Because
of computational limitations, it is infeasible to study empirical performance as the signal dimension becomes
large. Therefore, instead of testing the classification capacity directly, we examine the DDT performance. If, for
discrimination gain r, the diversity gain is nonzero, then the classification capacity must be at least as great as
r/M log2(1/σ2) + o(log(σ2)).

In Figure 1 we plot the misclassification probability as a function of σ2. For each value of σ2, we compute the
average misclassification probability over 102 realizations of the subspaces Ul and 102 realizations of the signal of
interest per set of subspaces. We also plot the error slopes predicted by (45). We select dimensions N = M = 3,
k = 1 and discrimination gains r ∈ {0, 0.75, 1.5, 1.8}. We observe decaying misclassification probability for all
values of r; furthermore, we observe rates of decay consistent with the conjectured DDT function. Therefore, we
conclude that, regardless of κ, the classification capacity satisfies

Clinear(ν, κ) =
1− κ

2
log2(1/σ2) + o(log2(σ2)),

and that the DDT is

dlinear(r) = min{k,M − k}
[
1− r

M − k

]+

.

Recall that these conclusions were proven only in the regimes k ≥M/2 or κ ≥ 1/2.

B. Face Recognition

Next, we explore the correspondence between the theoretical results derived in the previous sections and a
practical face recognition application. We examine face recognition when the orientation of the face relative to the
camera remains fixed but the illumination varies. Supposing the faces to be approximately convex and to reflect
light according to Lambert’s law, [57] shows via spherical harmonics that the set of images of an individual face lies
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Fig. 1. Misclassification probability vs. SNR for linear subspaces. Dashed lines indicate the slopes predicted by (45).

approximately on a nine-dimensional subspace, regardless of the inherent dimension of the images. It is therefore
sufficient to discriminate between the subspaces to classify faces.

We use 38 cropped faces from the Extended Yale Face Database B, described in [7], [8]. For each face,
the database contains a few dozen greyscale photographs, each having 32,256 pixels, taken under a variety of
illumination conditions as shown in Figure 2. We vectorize these images and pass them through a feature matrix Φ,
chosen as before to be the first M rows of an arbitrary unitary matrix. We classify the faces using the maximum-
likelihood classifier supposing zero-mean Gaussian classes. We divide the database into two, using half of the
images to estimate the nearest covariance for each face, using the other half as test images.

Fig. 2. Two sample images from the Extended Yale Face Database B. These images are of the same face, but are taken under different
illumination conditions.

In Figure 3 we plot the misclassification probability as a function of M and for L ranging from 2 to 38. While
we do not label each curve, it is easy to see that the misclassification probability increases with L and decreases
with M . However, even for large M the error probability remains as high as 0.2 for L = 38. We take 0.2 as a
baseline for “successful” performance when the number of faces and signal dimension are high.

Finally, we examine how well our theory predicts the performance seen here. To estimate the noise power σ2, we
project each image onto its estimated subspace, transformed by Φ, and we take take the projected squared norm as
the signal power and the squared residual norm, normalized by the number of features M , as the noise power. We
then estimate the number of faces that Theorem 1 predicts can be discriminated reliably. Discarding the constants,
we simply compute

max{1,min{1/σ2(M−9)/2
, 38}}. (50)
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Fig. 3. Misclassification probability as a function of M , for L ranging from 1 to 38.

Naturally, this number grows quickly in M , and beyond M = 11 or M = 12, theory suggests that we ought to
be able to discriminate all 38 of the faces with low probability of error. In Figure 4 we compare this prediction
against the empirical performance of our classifier. Using the results shown in Figure 3, we compute, for each M ,
the maximum L for which the probability of error is less than 0.2.
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Fig. 4. Misclassification probability as a function of M , for L ranging from 1 to 38.

The empirical performance is similar to theoretical prediction. As M increases past 9, the number of faces rises
swiftly as predicted. After M = 15 or so, all 38 of the faces can be discriminated, and it is not advantageous to
extract more features. We do observe, however, that the transition is not as sharp as Theorem 1 predicts. Whereas
the theoretical transition occurs over only 2-3 features, in practice the transition stretches out over 5-10 features.
In addition to mild model mismatch due to non-Lambertian reflectances, shadows due to the non-convexity of real
faces, imperfect estimation of subspaces, etc., we suspect that this is primarily a phenomenon of classification at
finite dimension. The transition between success and failure becomes sharp in the limit, but remains gradual when
dimensions measure in the tens or hundreds.
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VI. CONCLUSION

Inspired by dualities between wireless communication over non-coherent channels and the classification from
noisy, linear features, we have derived fundamental limits on the classification of linear and affine subspaces
from noisy, linear features. We defined performance limits reminiscent of those in wireless information theory:
the classification capacity, which governs classifier performance in the limit of high signal dimension, and the
diversity-discrimination tradeoff, which governs classifier performance in the limit of low noise power. We proved
inner and outer bounds on these quantities. For linear subspaces, the bounds are tight in some regimes of N,M ,
and k, and for affine subspaces they are tight everywhere. Based on numerical evaluation, we conjectured that the
true classification capacity and DDT for linear subspaces in the regimes in which the bounds are not tight. Beyond
the characterization of such limits, we showed via an application to face recognition that theoretical trends agree
reasonably with practical ones.
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