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Abstract—The objective of this paper is to further investigate
various applications of information Nonanticipative Rate Distor-
tion Function (NRDF) by discussing two working examples, the
Binary Symmetric Markov Source with parameter p (BSMS(p))
with Hamming distance distortion, and the multidimensional
partially observed Gaussian-Markov source. For the BSMS(p), we
give the solution to the NRDF, and we use it to compute the Rate
Loss (RL) of causal codes with respect to noncausal codes. For the
multidimensional Gaussian-Markov source, we give the solution
to the NRDF, we show its operational meaning via joint source-
channel matching over a vector of parallel Gaussian channels,
and we compute the RL of causal and zero-delay codes with
respect to noncausal codes.

I. INTRODUCTION

In this paper, we consider an information theoretic measure
called Nonanticipative Rate Distortion Function (NRDF) [1],
[2] which is a variation of the classical RDF [3], and we
discuss some of its applications in problems on information
theory. In [1], it is pointed out that the information NRDF
and nonanticipatory ε-entropy introduced in [4] to facilitate
real-time applications are equivalent notions, and a varia-
tional equality is derived and utilized to introduce a Blahut-
Arimoto Algorithm (BAA) to iteratively compute the informa-
tion NRDF. In addition, existence of the optimal nonanticipa-
tive reproduction conditional distribution is shown, under the
topology of weak convergence of probability measures, while
in [2], the closed form expression of the optimal reproduction
conditional distribution for stationary processes is derived.
Moreover, in [2], the realization of the optimal reproduction
distribution of the information NRDF is discussed (see Fig. 3)
in the context of filtering applications with fidelity constraints.
In this paper, we present results in the following directions.

(R1) Compute the NRDF in closed form for two examples
of sources with memory: (a) the Binary Symmetric Markov
Source with parameter p with Hamming distortion (BSMS(p)),
for which the classical RDF is only known in the distortion
region 0 ≤ D ≤ Dc [5], while for the rest Dc ≤ D ≤ 1

2
only upper and lower bounds are known [6]. We show that the
solution of the NRDF is a tight upper bound for Dc ≤ D ≤ 1

2 ,
and performs much more reliably in comparison to the upper
bound found in [6]; (b) the multidimensional Gaussian-Markov
source, for which only upper bounds are known, since no
closed form expression is given in the literature apart from
the first-order (scalar) Gauss-Markov sources [7, Th. 3].
(R2) Compute the Rate Loss (RL) of causal codes, that

is, the gap between the Optimal Performance Theoretically
Attainable (OPTA) by causal codes with respect to noncausal
codes for the BSMS(p).
(R3) Compute the RL of causal and zero-delay codes with
respect to noncausal codes for the multidimensional Gaussian-
Markov source, and show achievability of the NRDF using
symbol-by-symbol transmission [8].
(R4) Provide an alternative characterization of the closed form
expression to the information NRDF, from which a lower
bound on the NRDF similar to Shannon’s Lower Bound (SLB)
[3, Ch. 4] can be derived, for any source with memory,
including Gaussian-Markov sources. This bound is utilized in
the derivation of the closed form expression of the multidi-
mensional Gaussian-Markov source.

The alternative characterization of the solution to the informa-
tion NRDF (see Theorem 3) is the analogue of the single letter
characterization of the classical RDF of discrete memoryless
sources, often used to facilitate the computation of the classical
BAA [9, Th. 6.3.9].
Finally, we point out that the multidimensional Gaussian-
Markov source example is a generalization to arbitrary dimen-
sions of the example considered in [10, Cor. 1.2] for systems
with low delay tolerance at both the encoder and decoder,
such as, the classical Differential Predictive Coded Modulation
(DPCM) system [3], often applied to compression applications
of video, audio, image, and speech coding.

II. NRDF ON ABSTRACT SPACES

In this section, we define the information NRDF by adopting
the general mathematical framework described in [1].
Notation. Let N 4

= {0, 1, . . .}. Introduce two sequence of
spaces {(Xn,B(Xn)) : n ∈ N} and {(Yn,B(Yn)) : n ∈
N}, where Xn,Yn, n ∈ N, are Polish spaces, and B(Xn)
and B(Yn) are Borel σ−algebras of subsets of Xn and
Yn, respectively. Points in XN 4

= ×n∈NXn are denoted by
x
4
= {x0, x1, . . .} ∈ XN, while their restrictions to finite

coordinates are denoted by xn
4
= {x0, x1, . . . , xn} ∈ X0,n,

for n ∈ N, and similarly of Yn. Let B(XN)
4
= �i∈NB(Xi)

denote the σ−algebra on XN generated by cylinder sets
and similarly for B(YN)

4
= �i∈NB(Yi), while B(X0,n) and

B(Y0,n) denote the σ−algebras with bases over Ai ∈ B(Xi),
and Bi ∈ B(Yi), i = 0, 1, . . . , n, respectively. Let Q(Y;X )
denote the set of stochastic kernels on Y given X and M(X )
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the set of probability measures on X .
Source Distribution. Consider the sequence of source dis-
tributions {pn(dxn;xn−1) : n ∈ N}, where pn(·; ·) ∈
Q(Xn;X0,n−1). For A ∈ B(X0,n) a cylinder set of the form
A
4
=
{
x ∈ XN : x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An

}
, Ai ∈

B(Xi), i = 0, 1, . . . , n, we define P(·) on B(XN) by

P(A)
4
=

∫
A0

p0(dx0) . . .

∫
An

pn(dxn;xn−1) ≡ µ0,n(A0,n) (1)

where A0,n = ×ni=0Ai, and µ0,n(·) denotes the restriction of
the measure P(·) on cylinder sets A ∈ B(X0,n), for n ∈ N.
Reproduction Distribution. Consider the sequence of repro-
duction distributions {qn(dyn; yn−1, xn) : n ∈ N}, where
qn(·; ·, ·) ∈ Q(Yn;Y0,n−1 × X0,n). For a cylinder set B

4
={

y ∈ YN : y0∈B0, y1∈B1, . . . , yn∈Bn
}

, we define Q(·|x)
on B(YN) by

Q(B|x)
4
=

∫
B0

q0(dy0;x0) . . .

∫
Bn

qn(dyn; yn−1, xn) (2)

≡
−→
Q0,n(B0,n|xn), B0,n ∈ B(Y0,n). (3)

For Polish spaces, it can be shown [11, Sec. II] that any
family of measures Q(·|x) on B(YN) defined by (2) is
equivalent to a family of measures Q(·|x) on (YN,B(YN))
satisfying the following consistency condition.
C1: If D ∈ B(Y0,n), then Q(D|x) is B(X0,n)−measurable
function of x ∈ XN.
We denote the set of measures satisfying C1 by
QC1(YN;XN) ⊆ Q(YN;XN).
Indeed, for any family of measures Q(·|x) on
(YN,B(YN)) satisfying consistency condition C1 one
can construct a collection of probability distributions
{qn(dyn; yn−1, xn) : n ∈ N} which are connected
to Q(·|x) via relation (2) [11, Sec. II]. Here,−→
Q0,n(·|xn) ∈ QC1(Y0,n;X0,n) denotes the restriction
of Q(·|x) ∈ QC1(YN;XN) to finite coordinates.

Next, we introduce the precise definition of information
NRDF by using relative entropy. Given P(·) ∈ M(XN) and
Q(·|·) ∈ QC1(YN;XN) we define the joint distribution on
XN × YN by P0,n(dxn, dyn)

4
= (µ0,n ⊗

−→
Q0,n)(dxn, dyn),

the marginal distribution on YN by ν0,n(dyn)
4
= (µ0,n ⊗−→

Q0,n)(X0,n, dy
n), and the product distribution

−→
Π 0,n :

B(X0,n)� B(Y0,n) 7→ [0, 1] by
−→
Π 0,n(dxn, dyn)

4
= (µ0,n × ν0,n)(dxn, dyn)

4
=

∫
A0

p0(dx0) . . .

∫
An

pn(xn;xn−1)

∫
Bn

νn(dyn; yn−1).

The information theoretic measure of interest is a special case
of directed information [1, Sec. IV] defined by relative entropy
D(·||·)

Iµ0,n(Xn → Y n)
4
= D(µ0,n ⊗

−→
Q0,n||

−→
Π 0,n) (4)

=

∫
log
(−→Q0,n(dyn|xn)

ν0,n(dyn)

)
(µ0,n ⊗

−→
Q0,n)(dxn, dyn) (5)

≡ IXn→Y n(µ0,n,
−→
Q0,n). (6)

The notation IXn→Y n(·, ·) indicates the functional depen-
dence of Iµ0,n(Xn → Y n) on {µ0,n,

−→
Q0,n}. Consider a

measurable distortion function d0,n(xn, yn) : X0,n × Y0,n 7→
[0,∞], d0,n =

∑n
i=0 ρ(xi, yi), and define the fidelity of

reproduction by

QC1
0,n(D)

4
=
{−→
Q0,n(·|xn) ∈ QC1(Y0,n;X0,n) :

1

n+ 1

∫
d0,n(xn, yn)(µ0,n ⊗

−→
Q0,n)(dxn, dyn) ≤ D

}
, D ≥ 0.

Next, we define the information NRDF.

Definition 1. (Information NRDF) The information NRDF is

Rna0,n(D)
4
= inf−→

Q0,n(·|xn)∈QC1
0,n(D)

IXn→Y n(µ0,n,
−→
Q0,n). (7)

If the infimum over QC1
0,n(D) in (7) does not exist then we set

Rna0,n(D) =∞. The information NRDF rate is

Rna(D) = lim
n−→∞

1

n+ 1
Rna0,n(D) (8)

provided the limit on the right hand side (RHS) of (8) exists
(if not we use lim supn→∞ ). If the infimum over QC1

0,n(D)
does not exist then we set Rna(D) =∞.

Note that Rna0,n(D) is also related to classical RDF
[3], denoted by R0,n(D), as follows. Let Q0,n(D) ={
PY n|Xn(·|xn) : 1

n+1

∫
d0,n(xn, yn)PY n|Xn(dyn|xn) ⊗

PXn(dxn) ≤ D
}
, D ≥ 0, then

R0,n(D) = inf
PY n|Xn (·|xn)∈Q0,n(D)

D(PY n|Xn ⊗ PXn ||PY n × PXn)

(a)

≤ inf
PY n|Xn (·|xn)∈Q0,n(D)∩QC1

0,n(D)
D(PY n|Xn ⊗ PXn ||PY n × PXn).

For memoryless sources, (a) holds with equality.

III. OPTIMIZATION OF NRDF AND PROPERTIES

In this section, we state conditions for the existence of
solution to the extremum problem (7), we give the optimal
reproduction minimizing (7) and some of its properties. These
results are used when we discuss the various applications.
The following existence result is outlined in [1], while a
complete derivation is given in [12, Sec. III].

Theorem 1. [12, Sec. III](Existence) Suppose (A1) Y0,n is
a compact; (A2) for all h(·)∈BC(Yn), (xn, yn−1) ∈ X0,n ×
Y0,n−1 7→

∫
Yn
h(y)PY |Y n−1,Xn(dy|yn−1, xn) ∈ R is contin-

uous jointly in (xn, yn−1) ∈ X0,n×Y0,n−1; (A3) d0,n(xn, ·) is
continuous on Y0,n; (A4) There exist (xn, yn) ∈ X0,n ×Y0,n

such that d0,n(xn, yn) < D.
Then the infimum in Rna0,n(D) is achieved by some
−→
Q∗0,n(dyn|xn) ∈ QC1

0,n(D).

It can be easily shown that Rna0,n(D) is equivalent to Gor-
bunov and Pinsker [4] definition of nonanticipatory ε-entropy
defined via mutual information I(Xn;Y n) by Rε0,n(D) =
inf
{
I(Xn;Y n) : PY n|Xn(·|xn) ∈ Q0,n(D) ∩ {Xn

i+1 ↔
Xi ↔ Y i, i = 0, 1, . . . , n−1}

}
. An extensive elaboration on



the equality is given in [12, Sec. III]. By combining Theorem 1
and [4, Th. 2-4] we have the following important results.

Corollary 1. Suppose the conditions of Theorem 1 hold. In
addition, assume (A5) the source is stationary; (A6) for any
k = 1, 2, . . ., the sets QC1

0,n(D) and QC1
k,n+k(D) are copies of

the same set.
Then limn→∞

1
n+1R

na
0,n(D) exists and it is finite.

If also, (A7)
−→
Q0,n(·|xn) ∈ QC1

0,n(D) implies
−→
Q0,k(·|xk) ∈

QC1
0,k(D),

−→
Qk+1,n(·|xk+1, . . . , xn) ∈ QC1

k+1,n(D) ∀k =
0, 1, . . . , n − 1; (A8) for any αt : [s1, s2] 7−→ [0,∞),∑s2
t=s1

αt = 1, ∀t ∈ (0,∞), and PY n|Xn(·|xn) ∈
Q0,n(D) =⇒ PỸ n|Xn(·|xn) ∈ Q0,n(D), ∀n ∈ N, where

PXn,Ỹ n(A) = (PỸ n|Xn ⊗ PXn)(A)
4
=
∑s2
s1
αs(PỸ n|Xn ⊗

PXn)(As), A 4
= {(Xi, Yi) = (xi, yi) : i = 0, 1, . . .} ⊆

XN × YN, As
4
= {(Xi−s, Yi−s) = (xi, yi) : i = 0, 1, . . .}.

Then the infimum in (7) is achieved by
−→
Q∗0,n(dyn|xn) ∈

QC1
0,n(D) and {(Xn, Yn) : n ∈ N} is jointly stationary.

Proof: By Theorem 1, Rna0,n(D) is finite for any finite n.
Using this and [4, Theorem 2-4], the results follow.
Utilizing the convexity of the extremum problem (7) (see
[12, Th. II.2]), and applying variational methods, the general
closed form expression of the optimal stationary reproduction
conditional distribution of (7) is derived in [2, Sec. IV]. Here,
we only state the main theorem.

Theorem 2. [2](Optimal stationary reproduction distribution)
We suppose the optimal reproduction distribution and source
distribution are stationary, i.e., conditions of Corollary 1 hold.
The optimal solution of information NRDF is given by1

−→
Q∗0,n(dyn|xn) = ⊗ni=0q

∗
i (dyi; y

i−1, xi)

= ⊗ni=0

esρ(xi,yi)ν∗i (dyi; y
i−1)∫

Yi
esρ(xi,yi)ν∗i (dyi; yi−1)

, s ≤ 0 (9)

and ν∗i (·; yi−1) ∈ Q(Yi;Y0,i−1). The information NRDF is
given by

Rna0,n(D) = sD(n+ 1)−
n∑
i=0

∫
log
(∫

esρ(xi,yi)ν∗i (dyi; y
i−1)

)
×
−→
Q∗0,i−1(dyi−1|xi−1)⊗ µ0,i(dx

i).

Moreover, if Rna0,n(D) > 0 then s < 0, and

1

n+ 1

n∑
i=0

∫
ρ(xi, yi)

−→
Q∗0,i(dy

i|xi)⊗ µ0,i(dx
i) = D.

Remark 1. Note that for single letter distortion function
ρ(xi, yi) the optimal reproduction is Markov with respect
to xi given by q∗i (dyi; y

i−1, xi). If the distortion function is
generalized to ρ(xi, T

iyn), where T iyn is the shift operator on
yn, then

−→
Q∗0,n(dyn|xn) is given by (9) with ρ(xi, yi) replaced

by ρ(xi, T
iyn), and similarly for ρ(T ixn, yi).

1Due to stationarity assumption ν∗i (·; ·) = ν∗(·; ·) and q∗i (·; ·, ·) =
q∗(·; ·, ·).

Next, we present an alternative equivalent characterization of
the solution of Rna0,n(D), which can be used to derive a lower
bound on Rna0,n(D) similar to the SLB [3, Ch. 4].

Theorem 3. (Alternative characterization) Suppose the con-
ditions of Theorem 2 hold. Then

Rna0,n(D) = max
s≤0

max
λ∈Ψs

{
sD(n+ 1) +

n∑
i=0

∫
log
(
λi(x

i, yi−1)
)

× P0,i−1(dxi−1, dyi−1)⊗ pi(dxi;xi−1)
}

where Ψs
4
=
{
λ
4
= {λi(xi, yi−1) ≥ 0 : i = 0, 1, . . . , n} :∫

esρ(xi,yi)λi(x
i, yi−1)P0,i(dx

i|yi−1) ≤ 1, i = 0, 1, . . . , n
}

.

Proof: The derivation is found in [12, App. E].

IV. APPLICATIONS VIA EXAMPLES

In this section, we describe some applications of informa-
tion NRDF using the following two working examples: (i)
the BSMS(p), (ii) the multidimensional Gaussian stationary
source.

Bound and RL due to Causal Codes. Let R(D) denotes the
OPTA by noncausal codes [3], and rc(D) the OPTA by causal
codes [13]. Then we have the following bounds.

R(D)
(b)

≤ Rna(D)
(c)

≤ rc(D) (10)

where (b) follows from the fact that R(D) is optimized over a
larger set than that of Rna(D), and (c) follows by the converse
coding theorem and [13]. Since the OPTA by noncausal codes
for sources with memory is often unknown (unless one con-
sider memoryless or Gaussian sources), then Rna(D) can be
used to find an upper bound to the OPTA by noncausal codes.
For memoryless sources R(D) = Rna(D), and this bound is
tight. Moreover, since rc(D)−R(D) ≥ Rna(D)−R(D), we
can find the RL of causal codes with respect to the noncausal
codes using Rna(D).
Noisy Coding Theorem (Source-Channel Matching). An
operational definition for Rna(D) can be established by using
symbol-by-symbol transmission, provided for a given source
and distortion function we can find the optimal reproduction
distribution, and then realize it over an encoder-channel-
decoder, so that the source is matched to the channel. We give
an example for multidimensional Gaussian stationary sources
providing a noisy coding theorem for Rna(D).

A. BSMS(p): Exact Solution, Bounds, and Rate Loss

Consider a BSMS(p), with stationary transition probabilities{
PXi|Xi−1

(xi|xi−1) : (xi, xi−1) ∈ {0, 1} × {0, 1}
}

given by
PXi|Xi−1

(0|0) = PXi|Xi−1
(1|1) = 1 − p, PXi|Xi−1

(1|0) =
PXi|Xi−1

(0|1) = p, i ∈ 0, 1, . . ., and single letter Hamming
distortion criterion, ρ(x, y) = 0 if x = y and ρ(x, y) = 1 if
x 6= y. The solution to the NRDF is given to the next theorem.

Theorem 4. For a BSMS(p) and single letter Hamming
distortion

Rna(D) =

{
H(m)−H(D) if D ≤ 1

2
0 otherwise (11)



where m = 1 − p − D + 2pD, and the optimal (stationary)
reproduction distribution is

P ∗Yi|Xi,Yi−1
(yi|xi, yi−1) =

 α β 1− β 1− α

1− α 1− β β α


where α = (1−p)(1−D)

1−p−D+2pD , β = p(1−D)
p+D−2pD .

Proof: The proof is found in [12, Th. IV.11].
Note that for p = 1

2 , then BSMS( 1
2 ) is the IID Bernoulli

source, and Rna(D) = 1 − H(D) ≡ R(D), D < 1
2 , as

expected. The graph of Rna(D) is illustrated in Fig. 1.

Fig. 1. Rna(D) for different values of parameter p.

Bounds on R(D). The classical RDF for the BSMS(p) is only
known for the distortion region 0 ≤ D ≤ Dc [5], while for the
rest distortion region only bounds are known [6]. Fig. 2 shows
the graph of R(D) for 0 ≤ D ≤ Dc, Berger’s lower and upper
bounds [6], SLB, and the upper bound based on Rna(D). We
observe that for p = 0.25, the upper bound based on Rna(D)
does slightly better than Berger’s upper bound. However, for
small values of D, we have observed that Berger’s upper bound

Fig. 2. R(D) for BSMS(p) for 0 ≤ D ≤ Dc and Bounds for p = 0.25.

fails to be tight, while the one based on Rna(D) is tight [12,

Sec. V.C].
RL of Causal Codes. By utilizing the bound Rna(D) ≥
R(D), we can deduce that the RL of causal codes for
the BSMS(p) cannot exceed Rna(D) − R(D) = H(m) −
H(q), 0 ≤ D ≤ Dc, where R(D) = H(q) − H(D),

p = 1 − q, q ≤ 1
2 , D ≤ Dc = 1

2

(
1 −

√
1−

(
q
p

)2)
.

Note that the exact value of RL is only given for the region
0 ≤ D ≤ Dc, where the exact solution of R(D) is known.
Beyond this region, upper and lower bounds for RL can be
found [12, Sec. V.C].

B. Multidimensional Gaussian Stationary Sources: Source-
Channel Matching and Rate Loss

In this section, we consider a vector partially observable
Gaussian-Markov process and we compute explicitly the
closed form expression of Rna(D). This expression makes
feasible the matching of the source to the channel.
Consider the following multidimensional partially observed
linear Gauss-Markov system{

Zt+1 = AZt +BWt, Z0 = z, t ∈ N
Xt = CZt +NVt, t ∈ N (12)

where Zt ∈ Rm is the state (unobserved) process and Xt ∈ Rp
is the information source, obtained from noisy measurements
of CZt. In this application the objective is to compress the
sensor data, which is the only observable information. Next,
we introduce certain assumptions which are standard in infinite
horizon Kalman Filter [14], and they are also sufficient for
existence of the limit, limn−→∞

1
n+1R

na
0,n(D).

(E1) (C,A) is detectable and (A,
√
BBtr) is stabilizable,

(N 6= 0); (E2) the state and observation noise {(Wt, Vt) :
t ∈ N} are Gaussian IID vectors Wt ∈ Rk, Vt ∈
Rd, mutually independent with parameters N(0, Ik×k) and
N(0, Id×d), independent of the Gaussian RV Z0, with param-
eters N(z̄0, Σ̄0); (E3) the distortion function is single letter
defined by d0,n(xn, yn)

4
=
∑n
t=0 ||xt − yt||2Rp .

According to Theorem 2, the optimal stationary reproduction
distribution is given for s ≤ 0 by

P ∗Yt|Y t−1,Xt
(dyt|yt−1, xt) =

es||yt−xt||2RpP ∗Yt|Y t−1(dyt|yt−1)∫
Yt
es||yt−xt||2RpP ∗Yt|Y t−1(dyt|yt−1)

.

(13)

Note that the exponential quadratic term in (13) implies that
PYt|Y t−1,Xt

(·|yt−1, xt) is conditionally Gaussian (using com-
pletion of squares if necessary). Hence, the channel connecting
{Xt : t ∈ N} to {Yt : t ∈ N} has the general form

Yt = ĀXt + B̄Y t−1 + V ct , t ∈ N (14)

where Ā ∈ Rp×p, B̄ ∈ Rp×tp, and {V ct : t ∈ N} is an
independent sequence of Gaussian vectors with zero mean and
covariance cov(V ct ) = Q = diag{q1, . . . , qp}. Consider a pre-
encoder introducing the Gaussian error process {Kt : t ∈ N},
Kt , Xt − E{Xt|Y t−1} and its steady state covariance Λ∞,



Λ∞ = limn→∞ Λt, Λt , E{KtK
tr
t }, t ∈ N. Let E∞ be a

unitary matrix such that

E∞Λ∞E
tr
∞ = diag{λ∞,1, . . . λ∞,p}, Γt , E∞Kt, t ∈ N. (15)

Analogously, introduce the process {K̃t : t ∈
N} defined by K̃t

4
= Yt − E{Xt|Y t−1} ≡ Yt −

X̂t|t−1, Γ̃t = E∞K̃t. It is easily shown that d0,n(Xn, Y n) =

d0,n(Kn, K̃n) =
∑n
t=0 ||K̃t − Kt||2Rp =

∑n
t=0 ||Γ̃t −

Γt||2Rp . Using basic properties of conditional entropy we

Fig. 3. Realization of the optimal stationary reproduction distribution.

can show that Rna(D) = limn−→∞
1

n+1R
na,Kn,K̃n

0,n (D) =

limn−→∞
1

n+1R
na,Γn,Γ̃n

0,n (D). Next, we state the main result.

Theorem 5. Under Assumptions (E1)-(E3), the information
NRDF rate for (12) is given by

Rna(D) =
1

2

p∑
i=1

log
(λ∞,i
δ∞,i

)
where diag{λ∞,1, . . . , λ∞,p} = limt−→∞EtΛtE

tr
t =

E∞Λ∞E
tr
∞, Λ∞ = CΣ∞C

tr +NN tr

δ∞,i
4
=

{
ξ∞ if ξ∞ ≤ λ∞,i
λ∞,i if ξ∞ > λ∞,i

, i = 2, . . . , p

and ξ∞ is chosen such that
∑p
i=1 δ∞,i = D. Define

H∞ = limt−→∞Ht, Ht
4
= diag{ηt,1, . . . , ηt,p}, ηt,i =

1 − δt,i
λt,i

, i = 1, . . . , p, B∞ = limt−→∞ Bt =√
H∞∆∞Q−1, Bt ,

√
Ht∆tQ−1, ∆∞ =

limt−→∞∆t, ∆t = diag{δt,1, . . . , δt,p}, t ∈ N.
Moreover, Σ∞ is the steady state covariance of the
error Zt − E{Zt|Y t−1} ∼ N(0,Σ∞) of the Kalman filter
given by

Ẑt+1|t = AẐt|t−1

+AΣ∞(Etr∞H∞E∞C)trM−1
∞
(
Yt − CẐt|t−1

)
Σ∞ = AΣ∞A

tr

−AΣ∞(Etr∞H∞E∞C)trM−1
∞ (Etr∞H∞E∞C)Σ∞A

tr +BBtr∞

M∞ = Etr∞H∞E∞CΣ∞(Etr∞H∞E∞C)tr

+ Etr∞H∞E∞NN
tr(Etr∞H∞E∞)tr + Etr∞B∞QBtr∞E∞

where Ẑt|t−1
4
= E{Zt|Y t−1} and Ẑ0 = E{Z0|Y −1}, Z0 −

Ẑ0 ∼ N(0,Σ∞).

Proof: The proof is found in [12, App. F].

Source-Channel Matching. In view of Fig. 3, the conditional
distribution of NRDF is realized via an encoder-channel-
decoder. Moreover, the channel consists of parallel additive
Gaussian noisy channels with feedback defined by

Bt,i = At,i(Xt, B
t−1) + V ct,i, t ∈ N, i = 1, . . . , p.

Recall that the capacity of a parallel memoryless
Gaussian channel with feedback subject to a power
constraint 1

n+1E{
∑n
t=0 ||At||Rp ≤ P}, is given

by C(P ) = limn→∞
1
2

1
n+1

∑n
t=0

∑p
i=1 log |1 +

E{(At,i)2}Q−1| = 1
2

∑p
i=1 log(1 +

P∞,i

qi
),
∑p
i=0 P∞,i = P ,

P∞,i = limn→∞E{(At,i)2}. As a result, for a given
D ≥ 0, we can let P = D, i.e., P∞,i

qi
=

λ∞,i

δ∞,i
− 1, then

C(P ) = Rna(D), and the end-to-end distortion is satisfied.
RL of Zero-Delay Codes. The source distribution
{Xt : t ∈ N} in (12) is Gaussian, hence we can
compute the OPTA by noncausal codes, R(D), by using
power spectral density expression [3]. The RL of causal
and zero-delay codes with respect to the noncausal codes is
precisely 1

2

∑p
i=1 log

(
λ∞,i

δ∞,i

)
−R(D) bits/sample.
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