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Abstract

Gabidulin codes can be seen as the rank-metric equivaleReefl-Solomon codes. It was recently proven, using subspace
polynomials, that Gabidulin codes cannot be list decodear the so-called Johnson radius. In another result, cgclbspace
codes were constructed by inspecting the connection batwaebspaces and their subspace polynomials. In this pdpese t
subspace codes are used to prove two bounds on the list siteedaling certain Gabidulin codes. The first bound is an exiistl
one, showing that exponentially-sized lists exist for codith specific parameters. The second bound presents exjaihesized
lists explicitly, for a different set of parameters. Bothubds rule out the possibility of efficiently list decodingreeal families of
Gabidulin codes for any radius beyond half the minimum dis¢a Such a result was known so far only for non-linear raekria
codes, and not for Gabidulin codes. Using a standard operatlled lifting, identical results also follow for an impant class
of constant dimension subspace codes.

Index Terms
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I. INTRODUCTION

Rank-metric codes have recently attracted increasingeistelue to their application to error correction in randogbwork
coding [30] where they can be used to construct constantrdimoe subspace codes. Further applications of codes irattie r
metric include cryptography [11], [19], space-time cod[@@], [21] and distributed storage systems|[28].1[29].

For a prime powey, let IF, be the field withq elements. For an integer, let Fy» be the extension field of degreeof
F, (which may be seen as the vector space of dimensiaver I, denoted byFy), andF;. £ Fyo \ {0}. Form > n, a
rank-metric code is a set of x n matrices oveif,, or alternatively, a set of vectors of lengthover the extension fiel',
where the distance between two matrices is the rank of tliéérence. Therate of a rank metric code of sizd/ is l(’fn#nM
Gabidulin codes, introduced by [6]/ [10]/_[27], may be seen as the raekic equivalent of Reed—Solomon codes. These
codes are defined as evaluationdingéarized polynomialg¢see below) of bounded degree at a given set of linearly iedagnt
evaluation points. We note that Gabidulin codes, and rasliimcodes in general, may be defined for any> n, while our
results only apply for the casedividesm (and in some cases, whent 1 dividesm by puncturing). In particular, our results
apply forn = m.

Given a wordw € Fy... (or alternatively, a matrixv € F;**"), a list decodingalgorithm outputs all Gabidulin codewords
that are inside a ball of radius, centered atv, wherer is possibly larger than the unique decoding radius of theecod
For a given code, a natural question to ask is: for which \&ahfer can list decoding be done efficiently? List decoding of
rank-metric codes and Gabidulin codes was recently studig€], [15], [31]. In [31], it was shown that Gabidulin codeannot
be list decoded beyond the Johnson radius. This result wasrglezed to any rank-metric code by [7]. Whenis sufficiently
large, [7] also showed that with high probability a randomkranetric code can be efficiently list decoded. Further, dsw
shown in [31] that there is ho Johnson-like polynomial upp@und on the list size since there exists a non-linear raatim
code with exponentially growing list size for any radius aes than the unique decoding radius.[In|[15], an explidicade
of a Gabidulin code was shown to be efficiently list decodalleaddition, [7], [15], and[[31] have noted that it is not kvo
if Gabidulin codes themselves can be efficiently list decbdeyond the unique decoding radius. In this paper, it is show
that the answer to this question is negative.

Clearly, if there exists a word) € Fj.. with exponentially many Gabidulin codewords in a radiuaround it, then efficient
list decoding is not possible for this radius. This comhimi@ technique was used inl[4] to show the limits of list deicg
of Reed—-Solomon codes, and in[31] to show the limits of lstating of Gabidulin codes.

The main tool in[[4], [[31] is subspace polynomials, which arepecial type of linearized polynomials. Linearized polyn
mials, defined by Ore_[24], are polynomials of the form

P@)=ar-a +- a2 4 ap- o,
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where[i] £ ¢' and the coefficients are in the finite fiel}. for some givenn. For a linearized polynomiaP, define the
q-degree ofP asdeg, P Ly = log, deg P. Using the isomorphism betwee» andFy, every linearized polynomial may
be seen as af,-linear function fromky to itself [18, Chapter 4, p. 108], that is, for evey3 € F, andu,v € Fyn, each
linearized polynomialP satisfiesP(av + fu) = aP(v) + SP(u). A subspace polynomial is defined as follows.

Definition 1. [2]-[5], [81] A monic linearized polynomialP is called a subspace polynomial with respeckip if it satisfies
the following equivalent conditions:

Al. P dividesz!"l — z.
A2. P splits completely oveF,~ and all its roots have multiplicity one.
A3. For some0 < r < n, there exists am-dimensional subspack of F,. such thatP(z) =[],y (z —v).

By A3, each subspack corresponds to a unique subspace polynomial, denBfedSubspace polynomials are an efficient
method of representing subspaces, from which one can igduce certain properties of the subspace which are rdémty
in some other representations. These objects were studitteipast for various other purposes, e.g., constructiocaffofe
dispersers [3], finding an element of high multiplicativelerin a finite field[[5], and construction of cyclic subspaodes [2].
Albeit this wide range of applications, not much is known atbthe coefficients of subspace polynomials and their caiorec
to the properties of the subspace.

It is known that all roots of every linearized polynomial kathe same multiplicity, which is an integer power @fand
these roots form a subspace in the extension fleld [18, The&&0, p. 108]. Therefore, any monic linearized polynomial
is a power of a subspace polynomial with respect to its sgiitfield. However, the structure of the coefficients of swusp
polynomials, compared to other linearized polynomialshef same degree, is generally not known. A partial answeriso th
question was given by [2], and we use similar techniques tovdimits of list decoding of Gabidulin codes.

Ben-Sasson et al.|[4] proved that a given set of subspaca@aiials with mutual top coefficients provides an upper bound
on the list decoding radius of Reed—-Solomon codes. A cograigument was later applied in order to show that such large
sets of subspace polynomials do exist. A similar techniqae used in[[31] to show the limits of list decoding of Gabiduli
codes. In the sequel, the existence of a set of subspace® whbsomials have a larger agreement is proved (Thebitem 3).
This set is a subset of a subspace codelby [2]. Furthernegpicit dense sets of words in a Gabidulin code are provided
(Theoreni#). Both bounds are used to show that the respdativiies of Gabidulin codes cannot be list decoded effitjent
at all. That is, there exist received words that have exponentiadiny codewords around them, already for a radius which is
only larger than the unique decoding radius by one (ExaniBlesd2, and Theoref 4). Due to a technical limitation of our
techniques, the presented families have rate at lobast

Subspace codes have attracted an increasing interestlyedea to their application in error correction in randomvaerk
coding [17]. It is widely known that rank-metric codes areegly connected to constant dimension subspace codes thewug
operation called lifting[[12],[130]. This operation preges the distance and the cardinality of the original rankrimeode.

An important family of nearly optimal constant dimensiorbspace codes atdted Gabidulin codegthat are a special case
of the so-called Kotter and Kschischang codes [17]), whigsult from Gabidulin codes by lifting (see Definitibh 4).sti
decoding of subspace codes was extensively studied intrgears. In particular, several variants and subcodes oKtitter

and Kschischang codes were shown to be efficiently list delgede.qg.,[[I7],[[15],[[16],[[22],[[23] and references thajeand
bounds equivalent tg [31] were discussed[inl [26]. Our resaliout Gabidulin codes also apply for lifted Gabidulin de
and thus we get families of subspace codes that cannot beelistded efficiently at any radius. Our techniques may also be
used for showing limits to list decoding of Reed—Solomonesydut the resulting bounds are too weak to provide any usefu
insight.

These results reveal a significant difference in list dergdbabidulin and Reed—Solomon codes, although the defigitio
of these code classes strongly resemble each other. NaReygl-Solomon codes can be efficiently list decoded up to the
Johnson radius (with the Guruswami-Sudan algorithm [14])ereas we have just proven that (some classes of) Gabidulin
codes cannot be list decoded efficiently at all.

The rest of the paper is organized as follows. Notationsudbspace codes and the subspace code from [2] will be dedcribe
in SectiorL), together with the required background on icyshifts of subspaces andassociates of polynomials. In Sectloq I,
the code from Sectidn]ll is used to prove the existence of @iceset of subspace polynomials, and the notiop-atsociates
is used to show an explicit set of another type of subspaggpolials. The improved bounds on list decodability of Gabid
codes are discussed in Sectfon 1V, implications about aadespodes are discussed in Secfidn V, and conclusions aa giv
in Section[V]. A discussion about the inapplicability of aigchnigues to list decodability of Reed—Solomon codes aqgpe
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Il. PRELIMINARIES

The selG, (n,r), called theGrassmannianis the set of all subspaces of dimensiofr-subspaces, in short) & . The size of

G, (n, ) is given by the Gaussian coefficiefff] £ | % which satisfieg"~") < [*] < 4¢"("~") [12]. A constant

dimensionsubspace codfl7] is a subset of, (n,r) under thesubspace metrids(U, V) = dimU +dimV —2dim(UNV).



An extensively used concept in this paperciglic shiftsof subspaces, defined as follows.
Definition 2. For V € G, (n,r) anda € F}. letaV £ {av|v € V}.

The setaV, which is clearly a subspace of the same dimensioW ais called acyclic shiftof V. Cyclic shifts were shown
to be useful for constructing subspace codes [2], [9]. Thesall cyclic shifts of V' € G, (n,r) is called theorbit of /', and
its size isL—t . for some integet which dividesn. The size of the orbit and the structure of its subspace poiyals can be
derived by inspecting the subspace polynomial/ofas shown in the following lemmas.

Lemma 1. [2] Lemma 5] IfV e gq (n,7) anda € F. thenPay (z) = ol Py (a~12). Thatis, it Py (z) = 2+ 37 2) a2l
then P,y (z) = 2"+ 3777, s alr=lila, 2,

Lemma 2. [2| Corollary 3] Let V € G, (n,7) and Py (z) = 2" + 37" a;zll). If o, # 0 for somes € {1,...,r — 1} and
ged(s,n) =t, thenV has at Ieast?;jl1 distinct cyclic shifts.

In [2] it is shown that subspaces @, (n,r), that may be considered as subspaces over a subfidig-ofvhich is larger
thanF,, admit a unique subspace polynomial structure. In whabotdlwe cite the essentials from [2]. For an integesuch
that g| ged(n, r), let h be anyF,, isomorphism betweelﬁ"/" andF,~, and notice that for alk,v € IF"/" anda, 3 € Fyo,
we have thath(av + fu) = ah(v) + Bh(u). ForV € Gy (n/g,r/g Iet H(V) £ {h(v)lv € V}. The setH(V) is clearly
a subspace of dimensionoverF, in F,». Furthermore, the functiol : G, (n/g,r/g) — G, (n,r) is injective sinceh is
injective.

Construction 1. [2] Construction 1] For integerg;, n, andr such that0 < » < n and g| ged(n, ), let

Cy 2 {H(V)|V € Ggs (n/g,7/9)}.

Clearly, forg = 1 Constructior 1L is trivial. Thus, we henceforth assume that 2, i.e., n andr have a non-triviaked.
The subspace codg, has minimum subspace distarzg and it may alternatively be defined as direct sums of cydlitis
of Fys or as the set of all subspace @f (n, r) that are subspaces ovBy, as well [2]. SinceC,, is the image of an injective
function fromGys (n/g,r/g) to G, (n,r), we have the following.

Corollary 1. [2] Corollary 5] |C,| = [7]

r/glqe’

The subspaces i, admit a unique subspace polynomial structure, from whiehrésults in this paper follow.
Lemma 3. [2] Lemma 14] IV € G, (n,r) thenV € C, ifand only if Py (z) = 32779 ¢;l9%), wherec; € Fyn,Vi € {0,...,r/g}.

Another concept used in our constructions is the notio-aSsociates. Two polynomials ovEy~ of the form /(z) =
Zf:o a;xt and L(z) = Zf: a;zd’, are calledg-associates of each other. For agyc N, one can similarly defing?-
associativity, wheré(z) = 37 a;z%, andL(z) = Z?:o a;z?”" areq9-associates of each other. Linearized polynomials over
IF, are deeply connected to thejrassociates as follows.

Lemma 4. [18| Theorem 3.62, p. 116] IE,(z) and L(z) are linearized polynomials oveF, with g-associated; (z) and
¢(x), then Ly () dividesL(x) if and only if ¢;(z) divides{(x).

IIl. SETS OFSUBSPACESPOLYNOMIALS WITH MUTUAL TOP COEFFICIENTS

In [4] (resp. [31]) it was shown that sets of subspace polyiatsthat agree on many of their top coefficients provide anlou
on the list decodability of Reed—Solomon (resp. Gabidutimjes. By Lemm@l]3 it is evident that all subspace polynonafls
subspaces i, agree on their topmost coefficients(1,0, ..., 0). Using a counting argument we may prove the existence of
a subset ofC, whose corresponding subspace polynomials agree on a langaer of top coefficients.

Theorem 1. If g,n, andr are integers such thal < r < n, g|ged(r,n), and £ is the unique non-negative integer such that
r=mn—g(¢+ 1), then there exists a subset @}, of size at least

n/
I:r/((]]] q9
nt

q
whose subspace polynomials agree on their topm@st 1) coefficients.

Proof: Consider the set of all subspace polynomials of subspac&s, ifConstructior{fl). Lemmgl3 implies that these
polynomials have zero coefficients for all monomiald such thatg { j. Hence, they may be partitioned ingé* subsets
according to theiw + 1 top coefficients which correspond to monomials whes#egree is divisible by;. According to the
pigeonhole principle, there exists a subset of size at I[éfé(?}qg/q"é whose polynomials agree on their tgf¥+1) coefficients.

]



Notice that forg = 1, TheorenllL reduces to the ordinary counting argument eregldy [4] and [[31]. In addition, the
case wherev —rr = g(¢ + 1) > r, in which the polynomials in the set agree alh coefficients, is also trivial, since it merely
implies the existence of a set of size one. Hence, this thedseapplicable only whem > n/2.

The notion of¢?-associativity, together with Lemnia 1, allows us to corddtan explicit large set of subspace polynomials.
It will also be noted that in certain cases, this set of poiyiais corresponds to the entire €&f. The construction is based
on the following lemma.

Lemma 5. If g, s, andr are integers such thats|r andn £ r+ gs, then the polynomiaP(x) £ Zf/gs ! glios] s a subspace
polynomial with respect td& ,»

Proof: Sincegsir, there exists an integer such thatgsa = r, thusn = gs(a + 1) ands|%. It follows that
"9 —1
s —1
and hencegz™/9=% 4 /9725 1 4+ 1)|(z"/9 — 1). According to Lemmal4, thg?-associates of these polynomials satisfy
S/gs=L glios]|(zln) — z), and thusP is a subspace polynomial of ansubspace iff,» by Definition[d. [ ]

=

By Lemmall and Lemmia 5, we have a large set of subspace polgtsowlose coefficients may be given explicitly.

n_s —2s

=9 —|—x9 +...+1,

Construction 2. If g, s, andr are integers such thags|r andn £ r + gs, then

n/gs—1

za! S ghi-lslgiel | ge p

=0

consists ofq | 7 Subspace polynomials of subspacegjinn, ), where B is any set of nonzero representatives of the orbit
of Fgos.

Proof: Sincen = r + gs andgs|r, it follows thatgs|n, and thusF .- is a subfield off;». By Lemma5, the polynomial
Pv(ac) = z;;/gs—l zl9%l is a subspace polynomial of somie< G, (n,r). Let B be any set of representatives of the orbit of
Fgos, that is a set consisting of a single nonzero element froch sabspace ifaF ;o- -} Since the size of the orbit
of Fyos is L= 1, and since all subspaces in it intersect trivially [9, Smattill], it follows that |B| qu:11 By Lemma(d, for

all 8 € B we have thatPgy (z) € Z. We are left to show that iy, 52 € B, thens,V # G,V

Assume for contradiction that there exists, 52 € B such thatﬁlv = . V. It follows that Ps,v (z) = Pg,v(x), and
Lemmal] implies that the coefficients ofare equal, that |38[" gsl=1 Bé”’gs]’l. Therefore, since every € F,. satisfies
9" = a, we have that

gs

(ﬂ?nfgsil)_q _ (ﬂgnfgsil)_q

B‘llg‘g*qn _ ngsiq

Bq9571 9s _1
1

B3

S
(xﬁ) - b

It is widely known (e.g.,[[18, Theorem 3.20, p. 91]) that théspace polynomial of - is 27" — z, which implies that
ﬁlﬁgl € Fyos, and thusB; € oF gos. SincePs € 5oF 0, it follows that 51 and 82 belong to the same cyclic shifiFgq-, a
contradiction. [ |
Notice that the seB of representatives df ;.- (see Constructionl2) may easily be found. For example, ig a primitive
element off ., since the sef0} U {y(¢"~1)/(a”~1D}12" =2 is ¥ ,. it follows that a possible set of representatives of thétorb

of Fyes is
B2 {f

Remark 1. For s = 1, the setZ from Construction 2 consists of all subspace polynomialsufspaces irC, (see
is [/ — [/ — -1
g 1S [:/S]qg - [n7ggl]qg - 39—1 '
In Section 1V, we consider subspace polynomials dugr as polynomials over an extension fidign of F,». In order to
use the above claims ovél, the following formal lemma is required. The proof of thisrima is an immediate corollary
of the existence of an injective homomorphigmF» — F

gs




Lemma 6. Let Py (z) = 2" + 37~  v;2Ul and Py () = 2" + 277) u;z1/) be two subspace polynomials of subspaces in
Gq (n,7), and letF,~ be an extension field &,~. If we considerPy, Py as polynomialsPy, Py overFgm, i.e.,

r—1
Pl (z) = 2l 4 ngx[jl
j=0

r—1

Pl (z) = 2l 4 Zu;xb‘]
3=0

where the coefficients are iy, then for allj € {0,...,r — 1}, v; = u; if and only ifv; = u}. Furthermore, the polynomials
Py, Py are subspace polynomials @, (m,r).

Notice that generalizing Lemnid 6 to the case wheye is not an extension field df., i.e. U andV are subspaces in
F,» which are contained in a subspace of dimensipiis not clear. However, such a generalization is necessaugsé our
techniques to bound the list size for any> n.

IV. IMPROVED BOUNDS ONLIST DECODABILITY OF GABIDULIN CODES

We begin by formally defining Gabidulin codes, which are ramétric codes that attain @ingletonlike bound. Any rank-
metric code oveif,~ of lengthn, minimum rank distance, and sizeM satisfiesM < ¢™("~4+1) [g], [27]. For a linear
rank-metric code of dimensiadh this bound implies thal < n—k+1. Codes which attain this bound are calldximum rank
distance(MRD) codes. It can be shown that Gabidulin codes, definedvwedre linear MRD codes, attaining=n — k + 1.

Definition 3. [L0] A linear Gabidulin codeGab[n, k] overF =, lengthn < m, and dimensiork < n is the set
Gab[n, k] £ {(P(a1),...,P(ay)) | deg, P < k},

where P traverses allg-degree restricted linearized polynomials, aag, ..., o, are some fixed elements Bf~ which are
linearly independent oveF,.

In [31] it was shown that large sets of subspace polynomlas agree on many top coefficients may be used to show
the limits of list decoding of Gabidulin codes. For the ladkkaowledge about the structure of the coefficients of subspa
polynomials, a counting argument was later applied to shmeixistence of such a set. The resulting bound on list degodi
of Gabidulin codes is cited below. In what follows, fer€ Fy.. andr € N, let B (w) £ {c \rank(w —c¢) <7}, thatis, a
ball of radiusT centered atw.

Theorem 2. [B1, Theorem 1] Consider the codgab[n, k| overF =, with d = n — k + 1. If 7 < d, then there exists a word
w € Fy. such that

|Gab[n, k] N B, (w)| > [7%
(¢™)

As a result, the following bound is achieved.

Corollary 2. [31], Section Ill] The code&zabn, k] overF =, with d = n — k 4+ 1 cannot be list decoded efficiently for any

list decoding radius
2
T m2 - _\/(m 4n) —m(d —e),

for any fixed0 < e < 1.

For n = m, this bound simplifies to
T>n—y/nn—d+e),

which may be seen as the rank-metric equivalent of the Johrestius [13], and foe = 0 it is equal to the Hamming-metric
Johnson radius.

By Lemma[3, in certain cases there exists a large set of subgmdynomials with a unique coefficient structure. Restric
the counting argument used in the proof of Theofém 2 to theCgefTheorent]l) provides a bound which may outperform
Corollary[2. The proof of the following theorem is illusteatin Fig.[1, and its consequences are discussed in the sequel

Theorem 3. For integersk < n < m such thatn dividesm, let Gab[n, k] be a linear Gabidulin code oveF -, with
d = n—k+1 and evaluation points, . .., a;, € 8F, for somes € F7... Letr, g be integers such tha{t‘%J +1<7<d-1,



Fig. 1. An illustration of the proof of Theorefd 3. The proof Bheorem[# is similar. The ball aroune; of radiusr contains the wordg g p, , for

B
Pip € Pg, where|Ps| = hnﬁg/g]qg /qnl'

g > 2, and g| ged(n — 7,n). If £ is the unique integer such that=n — 7 + g(£+ 1) (and thus,m = g(¢ + 1)), then there
exists a wordcg € Iy, \ Gab[n, k] such that

[ )
|Gabln, k] N By (cr)| > % L)

Proof: According to Theorerl1, there exists a Beof [(nﬁg/q] /q™* subspace polynomials of subspace§jriin, n — 7),
- q9

that agree on their topmost= g(¢ + 1) coefficients. The coefficients of these polynomials are mfibld Fy-». Sincen|m,
we have thaff,- is a subfield off,~, and thus these coefficients may be considered as elemefijs. oRecall that according
to Lemma[®$, these polynomials agree on their topmosbefficients also when considered as polynomials der.

Further, let{Vp}pep C G, (n,n — 7) be the subspaces which correspond to the subspace polysomi@. For P € P,
let P; be the subspace polynomial 6V, and letPs = {Ps} pep. According to Lemmall, and according to the properties
of P, it follows that the polynomials irPg agree on their topmost coefficients. Since multiplication by is an injection, it
also follows thafP| = |Pgs|.

Let R be any linearized polynomial ovéy, of ¢-degree.— that has the mutual top coefficients®f, and letc € Fy.. be
the word resulting from the evaluation &fatas, . .., a,. Similarly, for Ps € Pg letcg—p, € Fj.» be the word corresponding
to the evaluation ofR — Pg atay, ..., ay.

Sincedeg, (R — Pg) <n—7—g({+1)andT = g({+1) > 4-1 = nok it follows that2r = 7+ g({ + 1) > n — k,
and hence,

k>n—71—g(l+1)>deg, (R~ Pg).

Therefore, the wordtr_p, is a codeword ofGab[n, k] for all Ps € Pg. In addition, sincer < d — 1 it follows that
deg, R=n—72>n—d+1=Fk, and hencer ¢ Gab[n, k].
Since every linearized polynomial can be viewed ad'atinear mapping (see Section I), it follows that for evety € Pg,

rank(cg — cr—p,) = rank((Pg(ay),. .., Pg(an)))
= dim <PB(CY1), ceey PB(an»
=dim Ps ({&1, ..., )
= dim Pg(BF,n),
where the last equality follows from the fact that, ..., «, aren linearly independent elements j§IF,~, a subspace of

dimensionn. SinceP; is a subspace polynomial ¢fVp, which is a subspace of dimensien- 7 that is contained irfF -, it

follows thatdim Pg(8Fq») = 7. Thus, the sefcr_p, } p,ep, C Gab[n, k] is a set of size{(nf/f)/g] /g™, which is contained
qg

in a ball of radiusr around the word:g. [ |



Notice that the restriction on the parametermentioned after the proof of Theordm 1, implies the necgssandition
r=n—7 >n/2, and hence < n/2. However, this limitation becomes trivial when discussinwhich is approximately the
unique decoding radiug/2, sinced < n.

A simple analysis of[{1) shows that

q9

n/
[(n—'r(;/g]

|Gab[n, k| N B;(cg)| > p
(¢9) 5 G5
= qnf
_ q(nf‘r)gfnl _ q”—;fgfnl
qn(€+1)—g(€+l)2—n€
qn—g(€+1)2 — qn—'r(é-ﬁ—l)7
and hence, this bound results in a list of exponential sizenelierg (¢+1)? < c-n for ¢ € (0, 1), or alternatively, when < -

The following examples provide infinite sets of Gabidulirdes, with rates frorr% to 1, that cannot be list decoded efficiently
at all according to the bound from Theorér 3. This result strictiyperforms the bound from Corollaky 2, and provides an
answer to an open problem hyi [7],_[15, Section 6], and [31ti&ed/], that is, there exist Gabidulin codes that cannot be
efficiently list decoded beyond the unique decoding radius.

Example 1. Let n be an integer power of 2, and ldt< i <logn — 2. For any integerm such thatn|m, consider a
Gab[n, (1 — 5r)n + 2] code overF,~ with evaluation points that spafiF,. for somef € F;.., and let7 be the smallest
possible list decoding radius, that is,

d—1 22 n
A _ | 2 _
T L2 J+1_{ 2 J+1_2HY

Letg £ st = 7, and notice thay > 2. To see thay|ged(n,n — 7), notice that since: is an integer power of 2, it follows
that 7|n, and thusg|n. In addition, we have that(2'™! — 1) = n — 7, thus7|(n — 7) and g|(n — 7). Therefore, in Theoreid 3

1

we may choosg = 574, ¢ = 0, and get that there exists a worg; € .. with ¢1=27")n codewords in a ball of radius

7 around it. Sincer is larger than the unique decoding radius by one, this codeno& be efficiently list decoded at all. A
detailed comparison between this bound and [31] appeafsppeldix |

Example 2. Let g, o, and o, be positive integers such that, > o2 + 1. For n = a,,g, T = a,g, and any integern such
that n|m, consider aGab[n,n — 27 + 1] code overF,~ with evaluation points that spaflF,. for somej € F;.., whose
minimum distance igd = 27, and whose rate is

—274+1 20, 1

u =1— o + =,

n Oy n

According to Theorerl 3, there exists a wefgl having
(7
n—t g g
747 )
q

codewords in radiug around it, where! = 7/g — 1 = o, — 1. Simplifying this expression, we have that

n/ Qn
I:(nng)/g} q9 o [anfaT] q9
qnf - qn(aT—l)
(ap—ar)ar
)
- qn(a,.fl)
_ qnf‘raf — q(anfai)g.

If o, and o, are constants thep = Q(n) and g(@»—99 = ¢ which implies that the list size is exponential in the code
length. Sincer < n/2, as mentioned after Theorér 3, it follows that > 2a., and thus we have the following two interesting
families of codes.
1) For o, = 3 and ., = 1 we have the cod&ab[3g, g + 1] over any fieldF,~ such that3g|m, with evaluation points
that spangF s, for someg € Fy... The rate of this code i% + % and its minimum distance Bg. For the radius
T = g, there exists a wordy with at leastg?? = ¢**(") codewords around it, and hence this code cannot be list detod
efficiently at all.
2) For a,, = 5 and a; = 2 we have the cod&ab[5¢g, g + 1] over any fieldF,~» such that5g|m, with evaluation points
that spangF s, for someg € F;... The rate of this code i% + % and its minimum distance i¢g. For the radius



T = 2g, there exists a wordp with at leastq? = ¢®(") codewords around it, and hence this code cannot be list detod
efficiently at all.

Clearly, this strategy can be used to construct examplearoflies with larger code rates, bl%t—i— % is the smallest one. This
may be seen by considering all integers and «,, which comply with the above constraints. That is, dgr= 1 and «,, > 4,
the rate is at leas + 2, for ar = 2 and o, > 6 the rate is at least + 1, and for anya, > 3 and anya,, > o2 + 1 the
rate is at least} + .

In the following, we present a simple algorithmic way of cwasting many dense sets of Gabidulin codewords. These sets
also show that the corresponding Gabidulin codes cannofflméesptly list decoded beyond the unique decoding radius. |
addition, we have that for certain Gabidulin codes, dense alecodewords abound and may easily be computed explicitly

Theorem 4. Let g, s,n, andm be integers such that > 2, gs|n, andn|m. Let Gab[n,n — 2gs + 1] be a linear Gabidulin

code overlf,~, with d = 2gs and evaluation pointsu, ..., a, € fF. for somes € Fy... If 7 = L%J +1 = gs, then there
exists an (explicitly defined) worek € Iy, \ Gab[n,n — 2gs + 1] such that
-1
|Gabln, n — 2gs +1] 1 B- (cg)| > - .
Q‘ s __
In particular, if R is the polynomial whose evaluation in, . .., «, Yyieldscg, then q;jll of the codewords B (cg) are
given by the evaluations dfR — Ps}p,cz, in ai,...,a,, Where Z3 is the set of subspace polynomials which result from

shifting Z (Constructior2) by3.

Proof: Since gs|n — gs, by settingr = n — gs it follows from Constructiof 2 that the sef is a set of subspace
polynomials of subspaces i@, (n,n — gs), whose size |squ—:11 Sincen|m, we have thaff,. is a subfield ofF,~, and
therefore the polynomials i& may be considered as polynomials o¥fgr. as well. According to Constructién 2 and Lempia 6,
the polynomials inZ agree on their topmosis coefficients(1,0,...,0), even when considered as polynomials oFgs..
Similar to the proof of Theoref 3, 1§V} pc z be the set of subspacesdy (n,n — gs) which corresponds to the subspace
polyonmials inZ, let P; denote the subspace polynomial @y, and letZ; £ {Ps} pez. Clearly, we have thatZ| = | 25|,
and by Lemma]1 it follows that the subspace polynomial€inagree of their topmogjs coefficients(1,0,...,0).

Let R be any linearized polynomial of-degreen — gs whose topgs coefficients arg(1,0,...,0), and letcg € Fj.. be
the word resulting from the evaluation &f at ..., a,. For eachPs € Zg letcg_p, € Fom be the word corresponding to
the evaluation ofR — P ataq,...,ay,. For all Ps € Z3 we have tha’degq(R — P3) <n—2gs <n-—2¢s+1, and thus
cr-p, € Gab[n,n — 2gs + 1]. In addition,deg, R = n — gs, and thuscg ¢ Gab[n,n — 2gs + 1].

As in the proof of Theorerl3, for alP; € Z3 we have thatank(cr — cr—p,) = dim Pg(5F4) = gs. Therefore, the set
{cr-Ps}Pscz, IS a set ofg:;:ll codewords inGab[n,n — 2gs + 1], all of which are of distance at most= gs from cg. ®

Notice that each code in the family of codes mentioned in Témd satisfiesi = 2gs, and hence the unique decoding
radius is| %5% | = gs — 1. Furthermore, sinces|n, it follows thatgs < 2, and thus the wordy hasQ(q"/?) codewords in a
ball of radiust = L%J -+ 1 around it. Hence, this family of Gabidulin codes cannot lse diecoded efficientlyt all.

It is an interesting question if our results can be used taveea lower bound on the number of words that have an
exponentially-sized list of codewords around themsel\fe.can be proved that there are just a few just words, we migh
be able to remove a few codewords of the Gabidulin code toirltdist decodable code of slightly smaller rate. The code
constructed in[[15] seems to be such a list decodable code.

Further, forfolded Gabidulin codes such a subcode might be easy to find. Thetsdsoin [1] show that theaveragelist
size of folded Gabidulin codes is quite small, indicatingttthere are only a few words with an exponentially-sizeddisund
them.

Finally, the results in this section can be used to prove Heuior punctured Gabidulin codes, which are obtained by
removing coordinates from the original code. Puncturin@adn, k] code bys < n — k + 1 positions yields &ab[n — s, k]
code. We can therefore provide lower bounds on list decodfn@abidulin codes where does not dividen.

Lemma 7. LetC be aGab[n, k] code oveiF, with minimum distance = n—k+1, let s be an integer such that< d, and
let C, be aGab[n— s, k] code which results froré by s puncturing operations, whose minimum distancé i§: n — s — k + 1.
If C cannot be list decoded efficiently at all, i.e., there exéstsord w € Iy, such that

€N B (w)] = ¢

wherer £ L%J + 1, thenC; cannot be list decoded efficiently for any radius at ledst s’, wherer’ = [L;lj +1, and
1) If s is even, then’ = 3.
2) If s is odd andn — k is even, ther’ =
3) If s andn — k are both odd, then’ =

s 1
§2_ l2
2 2



r=[25E] 41 |« =|2=k=s| 11 || Resulting radius
n — k ands are both even. kg ook g4 T=1+3
n — k is odd ands is even. %4_1 %—%—kl T=1+3%
n — k is even ands is odd. nok o nok sl r=7+5+1
n —k ands are both odd. nok=l g nohol sty |l r=r 45—
TABLE |

THE RESULTING RADIUS INLEMMA[Z. IF Gab[n, k] CANNOT BE LIST DECODED EFFICIENTLY FOR THE RADIUS, THEN THE PUNCTURED CODE
Gab[n — s,k], s <n —k + 1, CANNOT BE LIST DECODED EFFICIENTLY FOR THIS RADIUS AS WELLTHE RIGHTMOST COLUMN PROVIDEST AS A
FUNCTION OF 7/ AND s, WHERE THE UNIQUE DECODING RADIUS OFGab[n — s, k] IS7’ — 1. THE GIVEN VALUES FORT’ ARE SIMPLE CALCULATIONS
WHICH FOLLOW FROMn — k — s BEING EITHER EVEN OR ODD

Proof: Since puncturing may only reduce the distance between aoygiven words, and since any two codeword<in
cannot coincide by puncturing< d coordinates, it follows that

|Cs N By (w')] > ¢4™),

wherew’ € Fg..* is the result of puncturings. Hence,C, cannot be list decoded efficiently beyond the radiusTable[]

presents the values afas a function ofr’ and s, from which the claim follows. ]
Since the addition to the unique decoding radil®f Gab[n — s, k] in LemmalT is usually nonzero, it is not clear if those

punctured codes indeed cannot be list decoded efficientyatadius. However, for the special case where 1 andn — k

is odd, we obtain the following corollary.

Corollary 3. For integersO < k < n such thatn — k is odd, if Gab[n, k] cannot be list decoded efficiently at all, i.e., there
exist a wordw € Fy., such that

€N By (w)] > ¢
wherer £ [4=1| 4+ 1, then the punctured cod@ab[n — 1, k] cannot be list decoded efficiently at all.

Although Corollary 8 does not provide a drastic improveneithe variety of codes to which our bounds apply, it does impl
the important observation that the divisibility consttaibetweem andm in Theoren B and Theoremafe not necessaryn
addition, one may obtain infinite examples of Corollaly 3 lygturing either of the codeSab(3g, g+ 1] andGab[5g, g + 1]
from Exampld®2, and thus obtafBab[3g — 1, g+ 1] andGab[5g — 1, g+ 1] codes that cannot be list decoded efficiently at all.

V. BOUNDS FORCONSTANT-DIMENSION SUBSPACE CODES

In this section, we state new bounds on list decodiftgd Gabidulin codegsee [30]), which are a class of almost-optimal
constant dimension subspace codes. Lifted Gabidulin cadesf special interest since, in contrast to many otherpgadescode
constructions, they can be efficiently decoded (seé [30])ewdmly losing a relatively small number of codewords comguh
to other subspace code constructions. These bounds areca cnsequence of our bounds for list decoding Gabiduldeso
(Theoren B and Theoreni 4).

Throughout this section, the quadruple, M, d,,r), denotes a constant dimension subspace code in the Grasamann
Gq (n, ) of cardinality M, and minimum subspace distanég Further,(A) denotes the subspace spanned by the rows of a
matrix A. Thelifting is a map which is applied to a single matrix or a set of matrened is defined as follows.

Definition 4. Consider the mapping
Z: Fy*™—Gy(n,n+m)
X = ([, X]),

wherel,, denotes the: x n identity matrix. The subspace(X) = ([I,, X]) is called lifting of the matrixX. If we apply this
map on all codewords of a codg(in matrix representation), then the subspace c@d€) is called lifting of the code”.

The properties of a lifted code were studied by Silva, Katasig and Kotter and are summarized in the following two
lemmas.

Lemma 8. [30] Let X,Y € F;*™ and letZ (X),Z(Y) € G, (n+ m,n) be as in Definitio 4. Then,
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Proof:

ds (Z(X),Z(Y)) = 2dim (Z (X) +Z(Y))
— dim (Z (X)) — dim (Z (Y))

— 2rank ‘5" XY Zan
(& %)
(

n Y
= 2rank I X )—Zn

0 Y-X
= 2 [rank(l,) + rank(X —Y)] — 2n
= 2rank(X —Y) = 2dp(X,Y).
[ |
The following lemma directly follows from Lemnid 8.

Lemma 9. [B0] Let C be a rank-metric code ovéf,~ of lengthn < m, minimum rank distancdr and cardinality Mg,
whose codewords are representedras< n matrices ovefF,. Then, the lifting of the transposed codewords, i.e.,

(") 2 {z(c") = (Il ")) | c e}
is an (n + m, My = Mg, ds = 2dr,n), constant dimension subspace code.

Hence, the lifting of the transpose ofGab(n, k] code overF,» with n < m, minimum rank distancd = n — k + 1 and
cardinality M = ¢™* results in an(n+m, ¢™*, 2d, n), constant dimension subspace code in the Grassmagpian+ m, m).

So far, the only known bound to list decoding subspace codesgiven in[[26] and is based on the results for Gabidulin
codes from|[[31]. The following theorem summarizes the tefsam [26].

Theorem 5. [26, Theorem 37] LeC be a linear Gab[n, k] Gabidulin code oveff,~ of lengthn < m, d =n—k +1,
evaluation pointsyy, ..., o, € F,=, and letr be an integer such thdtr/2] < d. Denote byZ (CT) the (n+m,¢™*,2d,n),
subspace code from the lifting of the cades in Definition 4. Then, there is a subspgd® such that

s [\_T?ZJ]
Let B:((W)) £ {(V) | ds((W),(V)) < 7} denote a ball of radius centered af}¥') in the subspace distance. With
Lemmal[8, we obtain the following relation between a rankfinetodeC and its lifted subspace codfe(CT):

|CN By(cr)| < |Z(C")NBs(Z (ck))]. (3)
This relation and Theorefd 3 provide the following theoremtlos list size of lifted Gabidulin codes.

Theorem 6. Let C be a linearGab[n, k] Gabidulin code oveff,~ with lengthn | m, d = n — k + 1, and evaluation points
ai,...,an € BF for somes € ;.. Letr, g be integers such that! | +1 < |Z| <d—1,g > 2, andg|ged(n—[Z],n).
Let ¢ be the unique integer such that = n — [Z] + g(¢ + 1) (and thus,[Z] = g(¢ + 1)) and denote byZ (C*) the
(n +m, ¢™*,2d,n), subspace code from the lifting of the cades in Definition[ 4.

Then there exists a subspafdc;) € G, (n +m,n), wherecg € F7%.. \ Gab[n, k] such that

a1y /6) o
1Z(CT) N BT (cp))| = qu

> qn— |7/2] (€+1).

Proof: The statement follows froni3) and Theorém 3. The floor opamafior | /2] is necessary since the subspace

distance is an even number, see explanation of the proof&fifReorem 37]. ]
Thus, this bound results in a list of exponential size fomevevhenr < fjﬁ and for oddr whenrt < ffr’{ +1force (0,1),

which results for many cases in a better bound than the ome [2&@, Theorem 37]. Similarly, from Theorelmh 4, we obtain
the following theorem.

Theorem 7. Let g,s,n, and m be integers such thay > 2, gs|n, and n|m. Let C be a linear Gab[n,n — 2gs + 1]
Gabidulin code oveff,~ , with d = 2gs and evaluation pointsy, ..., o, € F,~ for somes € F;... Denote byZ (CT) the
(n +m, ¢™("=295+1) 24 n), subspace code from the lifting of the cades in Definitior#.

If [Z] £ [41] 4+ 1 = gs, then there exists an (explicitly defined) subspade?,) € G, (n +m,n), where

cr € Fyn \ Gab[n,n — 2gs + 1],
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such that q" —1 q"—1
Z(E) BT (R 2 o = Far =T

The explicitly defined subspace follows directly from liftj the matrix representation of the explicit word of Theoidm
In [31], a non-linear rank-metric code was presented whimhnot be list decoded efficiently at all. The lifting of thiede
obviously results in a subspace code with the same restrictio list decoding as lifted Gabidulin codes. Howevetedif
Gabidulin codes are of special interest for network coding therefore, we have analyzed their list decoding capbiii
this section.

VI. CONCLUSIONS ANDFUTURE WORK

We have improved the worst-case bound on the list decotiabili Gabidulin codes in many cases. This was shown by
using the structure of the subspace polynomials of a sulisg} @, ) for n andr that have a non-triviagcd. In addition,
we have presented such subspace polynomials explicitiyg ube notions of cyclic shifts ang-associativity. Both of these
results outperform the counting argument applied_in [3h[ provide examples of infinite families of Gabidulin codaatt
cannot be list decoded efficiently beyond the unique degpdidius. This resolves an open question[By [7]! [15], andl
reveals a significant difference between decoding Galricarid Reed—Solomon codes despite their similar code defisiti

The work of [31] ruled out the existence of an efficient algom for list decoding of Gabidulin codes beyond the Johnson
radius. Our work rules out the existence of an efficient listatling algorithm that applies for any Gabidulin code ang an
radius beyond half the minimum distance. However, thisadelst does not rule out the existence of an efficient algarifor
list decoding of very large subcodes of Gabidulin codes dsi@din codes with lower rates, since our work requires thdec
parameters to satisfy some strict number-theoretic and-firdoretic constraints, and our examples have rate at %edéor
example, [[15] provides a subcode of a Gabidulin code whichbmlist decoded efficiently.

We have also shown that identical results hold for lifted i@alin codes, which are an important class of nearly optimal
subspace codes. Additional discussion about the inafiiliiyaof our techniques to improve the known combinatoalund
on list decoding of Reed—Solomon codes appeafs in Appendix A

For future research, we would like to have similar bounds @hi@ulin codes inF;.. where the evaluation points do not
necessarily come from a cyclic shift &f». This seems to require a rigorous understanding of the abiomebetween the
subspace polynomials of a given subspatend the subspacd - V', where A is a nonsingular transform. Moreover, we
would like to generalize our results fany case where:, does not necessarily divide, a problem which seems to require
generalizing Lemmal6 to the casef m. In addition, we would like to derive bounds for Gabidulindes with rates less
thani.

APPENDIXA

In [4], limits for list decoding of Reed—Solomon codes welnewn using techniques which highly resemble the ones ih [31]
and in this paper. The interested reader might conjectatetle improvement achieved here (see Theddem 3 and Thédrem 4
Gabidulin codes may also be attained for Reed—Solomon céateshich list decoding related problems were very extesigi
studied. In what follows we briefly describe why such an iny@rnent cannot be directly attained by our techniques. Adgpt
these techniques to Reed—Solomon codes remains an ingigpien problem. In the sequel, we briefly describe the msthod
and results of([4]. .

Following the notations in[[4], a Reed—Solomon cd@ig[q", ¢"] of length¢" and dimensiory" is a subset off. such
that p:Fgp —Fgnis a

RS[¢", ¢"] £ { (p(a1),...,p(agn)) | polynomial with 3,
deg(p) < ¢"

Where{ai}fll areall elements off,». Notice that Reed—Solomon codes may be defined as the gwalwéitpolynomials in
any number of elements in the field. However, we considerdafmition for convenience. Notice also that any ward: Fg:

may be regarded as a polynomial o\d&f., and any worde € RS[¢", ¢%] may be regarded as a polynomial oy of

bounded degree

Definition 5. [4] Definition 3.3] A family of polynomial® C F,~[z] is said to be an(a, s)-family if
1) Each polynomial inP has at leasiz roots inFyn.
2) There is a polynomiaP* such that for allP € P, P* — P has degree at most We refer toP* as a pivot of the family.

Lemma 10. [4} Proposition 3.5] Leta, s and ¢ be positive integers. Then, the following are equivalent.
1) There is a wordw : Fy» — Fg» and /¢ polynomialsP, . .., P, of degree at most¢ such that fori = 1,2,...,4, F; and
w agree on at least: points ofF .
2) There is an(a, s)-family of size¢ of polynomials, whose pivot is the unique polynonital that agrees with the word
w on all elements irFyn.
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The polynomial P,, corresponds to the “problematic” word, that is, the wordt thas exponentially many codewords in
a small radius around it. The polynomialy, ..., P, having a low degree, are the codewords surroundipglt is readily
verified that the polynomiald,..., P, are inside a ball of small radius centered 13} if and only if the polynomials
{Pw — P;}{_, have multiple roots irF,~. As subspace polynomials have many roots dUgr, they are good candidates for
playing the role of the polynomial§P,, — P;};_,. This intuition is formalized as follows.

Lemma 11. [4] If S C G, (n,r) is a set of subspaces whose corresponding subspace pobisdmve identical — ¢ top
coefficients for some integér< r, then the set of subspace polynomialsSoforms a(q", ¢*)-family.

Proof: Let W be the set of subspace polynomials of the subspace in the Skhce every polynomial if is a subspace
polynomial, it has exactly” roots inF,.. If P, is the linearized polynomial consisting of tlre- ¢ mutual top coefficients
of the polynomials inW, thendeg(P,, — P;) < ¢* for all P, € W. ]
In light of Lemma 10 and Lemmn{all, presenting a large familgudispace polynomials that agree on many top coefficients
suffices for providing a word that is adjacent to too many R&domon codewords. Such a family of si?g;’] qg/q"‘ was

presented in Theorel 1, whegéged(n,r) and ¢ = % — 1. Using the standard bound on the Gaussian coefficient (see
Sectior]) we have that '

o)

qngqg < 4q§(n7r)fnl.
Plugging in the expression fdrresults in an upper bound df", and hence the size of the family is not more than 4 times
the length of the code, which ig*. In addition, an explicit family can be derived from Constian[2 whose size is not
super-polynomial im either, and hence a super-polynomial list decoding bounsbisachieved.

Both of these families do provide dense sets that are lahgar the ones achieved by a counting argument. Dense sets of
Reed-Solomon codewords have applications in hardnesspobxdmating the minimum distance of a linear code [8] and in
constructing error-correcting codes with improved parense[32]. However, the dense sets provided by our resuésnat
nearly large enough for these applications.

APPENDIXB

The following lemmas shows that the bound from Theofém Zthtroutperforms the bound implied by Theoréin 2 and
Corollary[2, given in[[31], when applied over the code in Exdail.

Lemma 12. For anyi > 1,

1 2t —1 1
VT T
Proof: Clearly, 72 > 0, and hence,
2t -1 L 20— 1
— 1+ 21? > _
2 1 20— 1
T it + 92i+2 > 9i
1\? 2 — 1
T i+l > 9i
1 2t —1
T it > i
2t —1 1
1= i 9i+1

Lemma 13. For a large enough, the radiusT = 5=, for which the code in Examplg 1 cannot be list decoded etfigie
according to Theoreml 3, is strictly smaller than the raditisvhich is guaranteed by the Corollaky 2.

Proof: Insertinge = 1 into the bound of Corollar]2 provides a stronger bound tharottary[2 for any= < 1. Therefore,
when our bound outperforms Corolldry 2 with= 1, our bound also outperforms Corolldry 2 with< 1.
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Since in Examplé]1l we hawé= - — 1 it follows that

RS m;—n_\/(m—;ny_m(d_l)
g (BTG

(4)

Notice that by Theoreml 2, the bound 6f [31] is weakernif> n, whereas the bound of Theorét 3 does not depenghon
Therefore, it suffices to show that the bound from Theokém tperiorms the one froni[31] form = n. In this case,[(4)
simplifies to

1 2

7e>nll—y/1-=+=]. (5)
2t n

For a large enough the term% may be neglected. Hence, by Lemma 12, (5) implies that

. . 2i —1 no
T 2N — i > ol — T.
|
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