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Abstract—Error probabilities of random codes for memoryless
channels are considered in this paper1. In the area of communi-
cation systems, admissible error probability is very smalland it
is sometimes more important to discuss the relative gap between
the achievable error probability and its bound than to discuss
the absolute gap. Scarlett et al. derived a good upper bound
of a random coding union bound based on the technique of
saddlepoint approximation but it is not proved that the relative
gap of their bound converges to zero. This paper derives a new
bound on the achievable error probability in this viewpoint for
a class of memoryless channels. The derived bound is strictly
smaller than that by Scarlett et al. and its relative gap with the
random coding error probability (not a union bound) vanishes
as the block length increases for a fixed coding rate.
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I. I NTRODUCTION

It is one of the most important task of information theory to
clarify the achievable performance of channel codes under fi-
nite block length. For this purpose Polyanskiy [2] and Hayashi
[3] considered the achievable coding rate under a fixed error
probability and a block length. They revealed that the next
term to the channel capacity isO(1/

√
n) for the block length

n and expressed by a percentile of a normal distribution.

The essential point for derivation of such a bound is to
evaluate error probabilities of channel codes with an accurate
form. For this evaluation an asymptotic expansion of sums
of random variables is used in [2]. On the other hand, the
admissible error probability in communication systems is very
small, say,10−10 for example. In such cases it is sometimes
more important to consider therelative gap between the
achievable error probability and its bound than the absolute
gap. Nevertheless, an approximation of a tail probability ob-
tained by the asymptotic expansion sometimes results in a large
relative gap and it is known that the technique of saddlepoint
approximation and the (higher-order) large deviation principle
is a more powerful tool rather than the asymptotic expansion
[4].

Bounds of the error probability of random codes with a
small relative gap have been researched extensively although
most of them treat a fixed rateR whereas [2][3] consider
varying rate for the fixed error probability. Gallager [5] derived
an upper bound called a random coding union bound on
the rate of exponential decay of the random coding error

1This paper is the full version of [1] in ISIT2015 with some corrections
and refinements.

probability for fixed rateR. It is proved that this exponent
of the random code is tight for both rates below the critical
rate [5] and above the critical rate [6].

There have also been many researches on tight bounds of
the random coding error probability with vanishing or constant
relative error for a fixed rateR. Dobrushin [7] derived a bound
of the random coding error probability for symmetric channels
in the strong sense that each row and the column of the
transition probability matrix are permutations of the others.
The relative error of this bound is asymptotically bounded by
a constant. In particular, it vanishes in the case that the channel
satisfies a nonlattice condition.

For general class of discrete memoryless channels, Gallager
[8] derived a bound with a vanishing relative error for the
rate below the critical rate based on the technique of exact
asymptotics for i.i.d. random variables, and Altuğ and Wagner
[9] corrected his result for singular channels. For general
(possibly variable) rateR, Scarlett et al. [10] derived a simple
upper bound (we write this asPS(n)) of a random coding
union boundPRCU(n) based on the technique of saddlepoint
approximation and showed thatPRCU(n) ≤ (1 + o(1))PS(n)
for nonsingular finite-alphabet discrete memoryless channels
[10]. However, This bound does not assurePRCU(n) = (1 +
o(1))PS(n).

In this paper we consider the error probabilityPRC

of random coding for a fixed but arbitrary rateR below
the capacity. We derive a new boundPnew which satisfies
Pnew(n) = (1 + o(1))PRC(n) for (possibly infinite-alphabet
or nondiscrete) nonsingular memoryless channels such that
random variables associated with the channels satisfy a condi-
tion called a strongly nonlattice condition. The derived bound
matches that by Gallager [8] for the rate below the critical
rate2.

The essential point to derive the new bound is that we
optimize the parameter depending on the sent and the received
sequences(X,Y ) to bound the error probability. This fact
contrasts to discussion in [10] and the classic random coding
error exponent where the parameter is first fixed and optimized
after the expectation over(X,Y ) is taken. We confirm that
this difference actually affects the derived bound and by this
difference we can assure that the bound also becomes a lower
bound of the probability with a vanishing relative error.

2In the ISIT proceedings version it was described that the result contradicts
the bound in [8] but it was the confirmation error of the authorbecause of the
difference of notations between this paper and [11]. See Remark 4 for detail.
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II. PRELIMINARY

We consider a memoryless channel with input alphabetX
and output alphabetY. The output distribution for inputx ∈ X
is denoted byW (·|x). Let X ∈ X be a random variable with
distributionPX and Y ∈ Y be following W (·|X) given X .
We definePY as the marginal distribution ofY . We assume
that W (·|x) is absolutely continuous with respect toPY for
any x with density

ν(x, y) =
dW (·|x)
dPY

(y) .

We also assume that the mutual information is finite, that is,
I(X ;Y ) = EXY [log ν(X,Y )] <∞.

Let X ′ be a random variable with the same dis-
tribution as X and independent of(X,Y ) and define
r(x, y, x′) = log ν(x′, y)/ν(x, y). Since ν(X,Y ) > 0
holds almost surely we haver(X,Y,X ′) ∈ R =
[−∞,∞) is well-defined almost surely.(X,Y ,X ′) =
((X1, · · · , Xn), (Y1, · · · , Yn), (X ′

1, · · · , X ′
n)) denotesn in-

dependent copies of(X,Y,X ′). We definer(X,Y ,X ′) =
∑n

i=1 r(Xi, Yi, X
′
i).

We consider the error probability of a random code such
that each element of codewords(X1, · · · ,XM ) ∈ Xn×M is
generated independently from distributionPX . The coding rate
of this code is given byR = (logM)/n. We use the maximum
likelihood decoding with ties broken uniformly at random.

A. Error Exponent

Define a random variableZ(λ) on the space of functions
R → R by

Z(λ) = log EX′

[

eλr(X,Y,X
′)
]

and its derivatives by

Z(m)(λ) =
dm

dλm
log EX′

[

eλr(X,Y,X
′)
]

,

which we sometimes write byZ ′(λ), Z ′′(λ), · · · . HereEX′

denotes the expectation overX ′ for given (X,Y ). We define3

Z(λ+ iξ) = log EX′

[

e(λ+iξ)r(X,Y,X′)
]

Za(λ+ iξ) = log
∣

∣

∣
EX′

[

e(λ+iξ)r(X,Y,X′)
]∣

∣

∣
,

whereλ, ξ ∈ R and i is the imaginary unit. Here we always
consider the caseλ > 0 and definee(λ+iξ)(−∞) = 0. We define

Zi(λ) = log EX′

[

eλr(Xi,Yi,X
′)
]

, Z̄(λ) =
1

n

n
∑

i=1

Zi(λ) .

Za,i, Z̄a, Z
(m)
i and Z̄(m) are defined in the same way.

The random coding error exponent for0 < R < I(X ;Y )
is denoted by

Er(R) = − inf
(α,λ)∈[0,1]×[0,∞)

{αR+ logE[eαZ(λ)]}

= − min
α∈(0,1]

{αR+ logE[eαZ(1/(1+α))]} , (1)

3We omit the discussion on the multi-valuedness oflog z. The discussion
involving logarithm of a complex number in this paper arisesby following
[12, Sect. XVI.2] and refer this to see that no problem occurs.

and we write the optimal solution of(α, λ) as (ρ, η) =
(ρ, 1/(1 + ρ)). We write log E[eαZ(1/(1+α))] = Λ(α).

In the strict sense the random coding error exponent
represents the supremum of (1) overPX but for notational
simplicity we fixPX and omit its dependence. See [9, Theorem
2] for a condition that there existsPX which attains this
supremum.

Let Pρ be the probability measure such thatdPρ/dP =
eρZ(η)−Λ(ρ). We write the expectation underPρ by Eρ and
define

µi = Eρ[Z
(i)(η)] = e−Λ(ρ)E[Z(i)(η)eρZ(η)]

σij = Eρ[(Z
(i)(η)− µi)(Z

(j)(η)− µj)]

= e−Λ(ρ)E[(Z(i)(η)− µi)(Z
(j)(η)− µj)e

ρZ(η)]

Σij =

(

σii σij
σji σjj

)

.

From derivatives ofαR + logE[eαZ(λ)] in α andλ we have

∂ log E[eαZ(η)]

∂α

∣

∣

∣

∣

α=ρ

= µ0

{

= −R, if R ≥ Rcrit,

< −R, otherwise,
(2)

∂ log E[eρZ(λ)]

∂λ

∣

∣

∣

∣

λ=η

= αµ1 = 0 . (3)

whereRcrit is the critical rate, that is, the largestR such that
the optimal solution of (1) isρ = 1. We assume thatµ2 > 0,
or equivalently,PY [|Q(Y ) \ {0}| > 1] > 0 whereQ(y) is
the support ofν(X ′, y). This corresponds to the non-singular
assumption in [10][13] for the finite alphabet.

To avoid somewhat technical argument on the continuity
and integrability we also assume that there existsα, b0 > 0
and a neighborhoodS of λ = η such that for any0 < b1 <
b2 < 2π/h ≤ ∞

sup
λ∈S

Eρ[e
α|Z(m)(λ)|] <∞ , i = 1, 2, 3,

sup
λ∈S, ξ∈[−b0,b0]

Eρ[e
α|(∂4/∂ξ4)Z(λ+iξ)|] <∞ ,

sup
λ∈S, ξ∈[b1,b2]

Eρ[e
α|Za(λ+iξ)−Za(λ)|] <∞ . (4)

whereh ≥ 0 is given later. Note that these conditions trivially
hold if the input and output alphabets are finite.

B. Lattice and Nonlattice Distributions

In the asymptotic expansion with an order higher than the
central-limit theorem, it is necessary to consider cases that
the distribution is lattice or nonlattice separately. Herewe call
that a random variableV ∈ R

m has a lattice distribution if
V ∈ {a +

∑m
i=1 bihi : {bi} ∈ Z

m} almost surely for some
a ∈ R

m and linearly independent vectors{hi}mi=1 ∈ R
m×m.

For the casem = 1 we call the largesth1 satisfying the above
condition the span of the lattice.

On the other hand, we call thatV ∈ R
m has a strongly

nonlattice distribution if|E[ei〈ξ,V 〉]| < 1 for all ξ ∈ R
m \ {0},

where〈·, ·〉 denotes the inner product. Note that a one dimen-
sional random variableV ∈ R is lattice or strongly nonlattice
but, in general, there exists a random variable which is not
lattice and not strongly nonlattice.



As given above, a lattice distribution is defined for a
random variableV ∈ R

m in standard references such as [14].
In this paper we call that the distribution ofV ∈ R is lattice
if the conditional distribution ofV given V > −∞ is lattice
and nonlattice otherwise. It is easy to see that no contradiction
occurs under this definition.

We consider the following condition regarding lattice and
nonlattice distributions.

Definition 1. We call that the log-likelihood ratioν satisfies
the lattice condition with spanh > 0 if the conditional
distribution of log ν(X,Y ) givenY is lattice with spanhmY

almost surely wheremY ∈ N may depend onY andh is the
largest value satisfying this condition.

For notational simplicity we define the span of the lattice
for ν to beh = 0 if ν does not satisfy the lattice condition.
Other than the classification ofν, we also discuss cases that
(Z(η), Z ′(η)) is strongly nonlattice or not separately.

Note that a one-dimentional random variableV ∈ R

with support supp(V ) is always lattice if |supp(V )| ≤ 2,
and is strongly nonlattice except for some special cases if
|supp(V )| ≥ 3. Similarly, a two-dimensional random variable
V ∈ R

2 is always not strongly nonlattice if|supp(V )| ≤ 3,
and is strongly nonlattice except for some special cases if
|supp(V )| ≥ 4. Based on this observation we see that most
channels with input and output alphabet sizes larger than 3 are
strongly nonlattice. Another example of each class of channels
(excluding those with specially chosen parameters) are given
in Table. I.

Remark 1. The above conditions are different from the
condition considered in [10] as a classification of lattice and
nonlattice cases. This difference arises from two reasons.First,
we considerZ ′(η) in addition toZ(η) to derive an accurate
bound. Second, the proof of [10, Lemma 1] does not use the
correct span when applying the result [15, Sect. VII.1, Thm.2].

III. M AIN RESULT

Define

gh(u) = 1− e
− hη

ehη−1
u
(1 − e−hηu)

hηu
.

for h ≥ 0. Here we define(ex − 1)/x = (1− e−x)/x = 1 for
x = 0 and thereforeg0(u) = limh↓0 g(u) = 1− e−u. We give
some properties ongh in Appendix A. Now we can represent
the random coding error probability as follows.

Theorem 1. Fix any 0 < R < I(X ;Y ) and ǫ > 0, and let
δ2 > 0 be sufficiently small. Then, for the spanh ≥ 0 of the

lattice for ν, there existsn0 > 0 such that for alln ≥ n0

(1− ǫ)E

[

gh

(

(1 − ǫ)
en(Z̄(η)+R−(Z̄′(η))2/2(µ2−δ2))

η
√
2πnµ2

)]

≤ PRC(n)

≤ (1 + ǫ)E

[

gh

(

(1 + ǫ)
en(Z̄(η)+R−(Z̄′(η))2/2(µ2+δ2))

η
√
2πnµ2

)]

,

By this theorem we can reduce the evaluation of error
probability into that of an expectation over two-dimensional
random variable(Z̄(η), Z̄ ′(η)), although this expectation is
still difficult to compute. If(Z(η), Z ′(η)) is strongly nonlattice
then we can derive the following bound which gives an explicit
representation for the asymptotic behavior ofPRC.

Theorem 2. Fix 0 < R < I(X ;Y ) and assume that
(Z(η), Z ′(η)) has a strongly nonlattice distribution. Then

PRC(n)

=



















ψρ,hµ
(1−ρ)/2
2 (1+o(1))

ηρ(2πn)(1+ρ)/2
√

(µ2σ00+ρ|Σ01|)
e−nEr(R), R > Rcrit,

h(1+o(1))

2(eηh−1)
√

2πn(µ2+σ11)
e−nEr(R), R = Rcrit,

h(1+o(1))

(eηh−1)
√

2πn(µ2+σ11)
e−nEr(R), R < Rcrit,

(5)

where

ψρ,h =

∫ ∞

−∞
e−ρwgh(e

w)dw

=
Γ(1− ρ)

ρ

(

hη

ehη − 1

)ρ+1
eh − 1

h

for the gamma functionΓ.

We prove Theorems 1 and 2 in Sections IV and V,
respectively. From this theorem we see that at least for the
strongly nonlattice case the error probability of the random
coding is

PRC(n) =

{

Ω(n−(1+ρ)/2e−nEr(R)), R > Rcrit

Ω(n−1/2e−nEr(R)), R ≤ Rcrit.
(6)

The RHS of (6) forR > Rcrit is the same expression as
the upper bounds in [10][13] but our bound is tighter in its
coefficient and is also assured to be the lower bound.

It may be possible to derive a similar bound as Theorem
2 for the case that(Z(η), Z ′(η)) is not strongly nonlattice
by replacement of integrals with summations, but for this case
the author was not able to find an expression of the asymptotic
expansion straightforwardly applicable to our problem andthis
remains as a future work.

Remark 2. We can show in the same way as Theorem 2 that
the random codingunionbound is obtained by replacement of

TABLE I. CLASSIFICATION OF NONSINGULAR CHANNELS.

(Z(η), Z′(η))
not strongly nonlattice strongly nonlattice

log-likelihood ratioν
lattice BSC asymmetric BEC
nonlattice ternary symmetric channels binary asymmetric channels



ψρ,h with
∫ ∞

−∞
e−ρwmin

{

hηew

ehη − 1
, 1

}

dw

=

(

1

1− ρ
+

1

ρ

)(

hη

ehη − 1

)ρ

.

On the other hand, the terms|ρΣ01| and σ11 in the square
roots of (5) are the characteristic parts of the analysis of this
paper obtained by the optimization of parameterλ depending
on (X,Y ). Thus, the optimization ofλ is necessary to derive
a tight coefficient whether we evaluate the error probability
itself or the union bound.

Remark 3. The results in this paper assume afixed coding
rateR and are weaker in this sense than the result by Scarlett
et al. [10] where they assure an upper bound for varying rate
by leaving an integral (or a summation) to a form such that the
integrant depends onn. It may be possible to extend Theorem
1 for varying rate since the most part of the proof deals
with R and the error probability of each codeword separately.
However, the proof of Theorem 2 heavily depends on fixed
R and it is also an important problem to derive an easily
computable bound for varying rate.

Remark 4. In [8] it is shown for discrete nonlattice4 channels
with R < Rcrit that

PRC(n) =
(1 + o(1))

η
√

2πnµ′
2

e−nEr(R), (7)

where

µ′
2 =

∂2 log E[eZ(λ)]

∂λ2

∣

∣

∣

∣

λ=η

=
2
∑

y(ω0(y)ω2(y)− ω1(y)
2)

∑

y ω
2
0(y)

(8)

for

ωm(y) =
∑

x

PX(x)(logW (y|x))m
√

W (y|x) .

The author misunderstood thatµ′
2 = µ2 in the ISIT version

and described that Theorem 2 contradicts (7). The correct
calculation show thatµ′

2 6= µ2 and

µ2 = σ11 =

∑

y

(

ω0(y)ω2(y)− ω1(y)
2
)

∑

y ω
2
0(y)

for (ρ, η) = (1, 1/2). Therefore no contradiction occurs
between this paper and [8].

IV. F IRST ASYMPTOTIC EXPANSION

In this section we give a sketch of the proof of Theorem
1. We prove Theorem 1 separately depending on whetherν
satisfies the lattice condition or not. The proofs are different
to each other in some places for two reasons. First, we cannot
ignore the case that a codeword has the same likelihood as
that of the sent codeword under the lattice condition whereas
such a case is almost negligible in the nonlattice case. Second,
especially in the case of infinite alphabet we have to use the

4There is a calculation error for the lattice case in [8] with aredundant
factor

√
π.

asymptotic expansion with a careful attention to components
implicitly assumed to be fixed and the derivation of asymptotic
expansion varies in some places between the lattice and
nonlattice cases regarding this aspect.

Here we give a proof of Theorem 1 for the case thatν
satisfies the lattice condition with spanh > 0. The proof for
the nonlattice case is easier than the lattice case in most places
because ties of likelihoods can be almost ignored as described
above. See Appendix D for the difference of the proof in the
nonlattice case.

Now define

p0(x,y) = PX′ [r(x,y,X ′) = 0]

p+(x,y) = PX′ [r(x,y,X ′) > 0] = PX′ [r(x,y,X ′) ≥ h] .
(9)

The last equation of (9) holds sincer(x, y, x′) = log ν(x′, y)−
log ν(x, y) and the offset of the lattice oflog ν(x′, y) equals
to that of log ν(x, y) given y. Under the maximum likelihood
decoding, the average error probabilityPRC is expressed as
PRC = EXY [qM (p+(X,Y ), p0(X,Y ))] for

qM (p+, p0) = 1− (1− p+)
M−1

+
M−1
∑

i=1

pi0(1− p+ − p0)
M−i−1

(

M − 1

i

)(

1− 1

i+ 1

)

.

(10)

Here the first term corresponds to the probability that the like-
lihood of some codeword exceeds that of the sent codeword,
and each component of the second term corresponds to the
probability thati codewords have the same likelihood as the
sent codeword and the others do not exceed this likelihood.

One of the most basic bound for this quantity is to use a
union bound given by

qM (p+, p0) ≤ min{1, (M − 1)(p+ + p0)} .

A lower can also be found in, e.g., [16, Chap. 23]. For
evaluation of the error probability with a vanishing relative
error the following lemma is useful.

Lemma 1. It holds for anyc ∈ (0, 1/2) that

lim
M→∞

sup
(p+,p0)∈(0,1/3]2:p+≤Mcp0

qM (p+, p0)

1− e−Mp+(1−e−Mp0)
Mp0

= lim
M→∞

inf
(p+,p0)∈(0,1/3]2:p+≤Mcp0

qM (p+, p0)

1− e−Mp+(1−e−Mp0)
Mp0

= 1 .

We prove this lemma in Appendix E. We see from this
theorem that the error probability can be approximated by

1− e−Mp+(X,Y )(1− e−Mp0(X,Y ))

Mp0(X,Y )

for (X,Y ) satisfying some regularity condition.

Next we consider the evaluation ofp0(X,Y ) and
p+(X,Y ). We use Lemma 2 in the following as a fundamental
tool of the proof. LetV1, · · · , Vn ∈ R be (possibly not
identically distributed) independent lattice random variables



such that the greatest common divisor of their spans5 is h.
Define

ΛVi(λ) = log E[eλVi ] , ΛV (λ) =

n
∑

i=1

ΛVi(λ) .

Then its large deviation probability is evaluated as follows.

Lemma 2. Fix x >
∑n

i=1 E[Vi] such thatPr[(Vi − x)/h ∈
Z] = 1 and defineλ∗ > 0 as the solution ofΛ′

V
(λ∗) =

x. Let ǫ, γ2, b0 s2, s2, s4 > 0 and s3, s3 ∈ R be arbi-
trary. Then there existsb1 = b1(b0, s2, s2, s3, s3, s4), n0 =
n0(ǫ, b0, γ2, s2, s2, s3, s3, s4) > 0 such that

∣

∣

∣

∣

∣

∣

∣

Pr[
∑n
i=1 Vi = x]

he−n(ηx−ΛV (λ∗))√
2πΛ′′

V
(λ∗)

− 1

∣

∣

∣

∣

∣

∣

∣

≤ ǫ ,

∣

∣

∣

∣

∣

∣

∣

Pr[
∑n

i=1 Vi ≥ x+ h]
he−n(ηx−ΛV (λ∗))

(ehλ∗−1)
√

2πΛ′′
V
(λ∗)

− 1

∣

∣

∣

∣

∣

∣

∣

≤ ǫ ,

hold for all n ≥ n0 satisfying

nsm ≤
n
∑

i=1

dmΛVi(λ)

dλm

∣

∣

∣

∣

λ=λ∗

≤ nsm, i = 2, 3,

n
∑

i=1

∣

∣

∣

∣

∂4ΛVi(λ
∗ + iξ)

∂ξ4

∣

∣

∣

∣

≤ ns4, ∀|ξ| ≤ b0

n
∑

i=1

(

log |E[e(λ∗+iξ)Vi ]| − log E[eλ
∗Vi ]
)

≤ −nγ2,

∀ξ ∈ [−π/h, π/h] \ [−b1, b1] .

The proof of this lemma is largely the same as that of [17,
Thm. 3.7.4] for the i.i.d. case and given in Appendix B.

Let b0, δ1, δ2, δ3, γ1, γ2, s4 > 0 satisfy δ2 < min{µ2/2,
µ2

√

R/12}. To apply Lemma 2 we consider the following
setsAm, m = 2, 3, B, C to formulate regularity conditions.

Am = {f1 ∈ C1 : ∀λ, |fm(λ)− µm| ≤ δ2} ,
B = {f2 ∈ C2 : ∀λ, ξ /∈ [−b1, b1], f2(λ, ξ) ≤ −γ2} ,
C = {f2 ∈ C2 : ∀λ, ξ ∈ [−b0, b0], f2(λ, ξ) ≤ s4} ,

whereC1 andC2 are the spaces of continuous functions[η −
γ1, η+γ1] → R and[η−γ1, η+γ1]×[−π/h, π/h] → R, respec-
tively, andb1 is a constant determined fromb0, s2, s2, s3, s3, s4
with Lemma 2.

We define the eventS as

S = {|Z̄(1)(η)| ≤ δ1} ∪ {Z̄(2)(λ) ∈ A2} ∪ {Z̄(3)(λ) ∈ A3}
∪ {Z̄a(λ + iξ)− Z̄a(λ) ∈ B}

∪
{∣

∣

∣

∣

∂4

∂ξ4
Z̄(4)(λ+ iξ)

∣

∣

∣

∣

∈ C
}

,

where we regard̄Z(λ + iξ) as function(λ, ξ) 7→ Z̄(λ + iξ).
Under this condition we can bound the excess probability of

5 The greatest common divisor for a set{h1, h2, · · · }, hi > 0, is defined
as h > 0 if h is the maximum number such thathi/h ∈ N for all i and
defined as0 if such h does not exist.

the likelihood of each codeword given the sent codewordX
and the received sequenceY as follows.

Lemma 3. Let ǫ > 0 be arbitrary andδ1 > 0 in the definition
of S be sufficiently small with respect toγ1. Then, there exists
n1 > 0 such that under the eventS it holds for all n ≥ n1

that,

hen(Z̄(η)−Z̄′(η)2/2(µ2−δ2))
√

2πn(µ2 + δ2)
(1 − ǫ) ≤ p0(X,Y )

≤ hen(Z̄(η)−Z̄′(η)2/2(µ2+δ2))

√

2πn(µ2 − δ2)
(1 + ǫ) ,

hen(Z̄(η)−Z̄′(η)2/2(µ2−δ2))

(eh(η+γ1) − 1)
√

2πn(µ2 + δ2)
(1− ǫ) ≤ p+(X,Y )

≤ hen(Z̄(η)−Z̄′(η)2/2(µ2+δ2))

(eh(η−γ1) − 1)
√

2πn(µ2 − δ2)
(1 + ǫ) .

Proof: Note that|Z̄ ′(η)| ≤ δ1 and Z̄ ′′(λ) ≥ µ2/2 for all
λ ∈ [η − γ1, η + γ1] from Z̄(m)(λ) ∈ Am and (3). From the
convexity of Z̄(λ) in λ, if we setδ1 ≤ γ1µ2/2 then Z̄(λ) is
minimized at a point in[η − γ1, η + γ1] with

Z̄(η)− (Z̄ ′(η))2

2(µ2 − δ2)
≤ min

λ
Z̄(λ) ≤ Z̄(η)− (Z̄ ′(η))2

2(µ2 + δ2)
.

Thus the lemma follows from Lemma 2.

Next we define

g
(−)
h (X,Y ) = (1 − ǫ/2)gh

(

en(Z̄(η)+R−(Z̄′(η))2/2(µ2−δ2))

c(−)
√
n

)

,

g
(+)
h (X,Y ) = (1 + ǫ/2)gh

(

en(Z̄(η)+R−(Z̄′(η))2/2(µ2+δ2))

c(+)
√
n

)

,

G
(s)
h = E[g

(s)
h (X,Y )], s ∈ {−,+} ,

where

c(−) =
η(eh(η+γ1) − 1)

√

2π(µ2 + δ2)

(ehη − 1)(1− ǫ/2)
,

c(+) =
η(eh(η−γ1) − 1)

√

2π(µ2 − δ2)

(ehη − 1)(1 + ǫ/2)
.

Then the error probability can be evaluated as follows.

Lemma 4. Fix the coding rateR and assume that the same
condition as Lemma 3 holds. Then, for all sufficiently largen,

g
(−)
h (X,Y ) ≤ qM (p+(X,Y ), p0(X,Y )) ≤ g

(+)
h (X,Y ) .

This lemma is straightforward from Lemmas 1 and 3. We
use the following lemma to evaluate the contribution of the
caseSc.

Lemma 5. Let g̃(X,Y ) = enρ(Z̄(η)+R). Then

qM (p+(X,Y ), p0(X,Y )) ≤ g̃(X,Y ) , (11)

g
(−)
h (X,Y ) ≤ 1 + hη/2

(c(−))ρ
g̃(X,Y ) . (12)



Furthermore, for sufficiently larges4 and sufficiently small
γ1 ≪ min{δ2, δ3} and γ2 ≪ b1 we have

lim
n→∞

1

n
log EXY [1l [Sc] g̃(X,Y )] < −Er(R) .

We prove this lemma in Appendix C. The proof is obtained
by Cramér’s theorem for general topological vector spaces[17,
Theorem 6.1.3] with the fact thatC1 and C2 are separable
Banach spaces under the max norm.

Proof of Theorem 1:From Lemma 4, it holds forδ1 ≪
γ1 ≪ min{δ2, δ3}, γ2 ≪ b1 and sufficiently largen that

PRC = EXY [1l [S] qM (p+(X,Y ), p0(X,Y ))]

+ EXY [1l [Sc] qM (p+(X,Y ), p0(X,Y ))]

≤ G
(+)
h + EXY [1l [Sc] qM (p+(X,Y ), p0(X,Y ))] .

Thus we obtain from Lemma 5 that

PRC

G
(+)
h

= 1 +
PRC −G

(+)
h

G
(+)
h

≤ 1 +
EXY [1l [Sc] g̃(X,Y )]

G
(+)
h

.

Similarly we have

PRC ≥ EXY [1l [S] g(−)
h (X,Y )]

= G
(−)
h − E[1l [Sc] g(−)

h (X,Y )]

and therefore

PRC

G
(−)
h

≥ 1− 1 + hη/2

(c(−))ρ
g̃(X,Y )

G
(−)
h

and we see from Lemma 5 and Lemma 6 below that

g̃(X,Y )

G
(s)
h

= o(1), s ∈ {+,−}

and we obtain Theorem 1.

V. SECOND ASYMPTOTIC EXPANSION

To prove Theorem 2 it is necessary to evaluate the expecta-
tion G(s)

h = E[g
(s)
h (X,Y )]. This expectation can be bounded

by Lemma 6 below and we give a sketch of its proof in this
section.

Lemma 6. Fix the coding rate0 < R < I(X ;Y ) assume
that (Z(η), Z ′(η)) is strongly nonlattice. Then, for any fixed
c1, c2 > 0 and sufficiently largen,

E

[

gh

(

en(Z̄(η)+R−(Z̄′(η))2/2c1)

c2
√
n

)]

=























ψρ(c2
√
n)−ρ√

2πn(σ00+ρ|Σ01|/c1)
e−nEr(R)(1 + o(1)), R > Rcrit,

hη(c2
√
n)−1

2(ehη−1)
√

1+σ11/c1
e−nEr(R)(1 + o(1)), R = Rcrit,

hη(c2
√
n)−1

(ehη−1)
√

1+σ11/c1
e−nEr(R)(1 + o(1)), R < Rcrit.

Let ΦΣ and φΣ be the cumulative distribution function
and the density of a normal distribution with mean zero and
covarianceΣ, respectively. We define theδ-ball Bδ(z) ∈ R

2

aroundz ∈ R
2 asBδ(z) = {z′ : ‖z−z′‖ ≤ δ}. The oscillation

ωf of f is defined as

ωf (S) = sup
z′∈S

f(z′)− inf
z′∈S

f(z′) , S ⊂ R
2 ,

ωf (δ; ΦΣ) = sup
a∈R2

∫

ωf(Bδ(z))φΣ(z + a)dz .

We use the following proposition on the asymptotic expan-
sion for the proof of Lemma 6.

Proposition 1 ([14, Theorem 20.8]). Let V1, V2, · · · ∈ R
2

be i.i.d. strongly nonlattice random variables with mean zero
and covariance matrixΣ. Then, there exists a three-degree
polynomial6 h(z) = h(z1, z2) such that for any functionf(z)

∣

∣

∣

∣

∫

f(z)

(

1− h(z)√
n

)

φΣ(z)dz − E[f(V̄ )]

∣

∣

∣

∣

≤ ωf (R
2)δn + ωf (δn; ΦΣ) ,

whereδn satisfieslimn→∞
√
nδn = 0 and does not depend on

f .

To apply this proposition we define

fn(z) = e−
√
nρz1gh

(

e
√
nz1−z2/2c1

c2
√
n

)

.

The oscillationsωfn(R
2) andωfn(δn; Φ) of fn are equal to

those of

e−
√
nρ(z1−

√
n∆)gh

(

e
√
n(z1−

√
n∆)−z2/2c1)

c2
√
n

)

from their definitions.

We can bound the oscillation offn as follows.

Lemma 7. It holds that

ωfn(R
2) = O(n−ρ/2) , (13)

ωfn(δn; Φ) = o(n−ρ/2) . (14)

Furthermore, ifρ < 1 then

ωf (δn; Φ) = o(n−(1+ρ)/2) . (15)

We prove this lemma in Appendix F. By this lemma we
can apply Proposition 1 to the proof of Lemma 6, which we
give in Appendix G.

VI. CONCLUSION

We derived a bound of random coding error probability,
the relative gap of which converges to zero as the block length
increases. The bound applies to any nonsingular memoryless
channel such that(Z(η), Z ′(η)) is strongly nonlattice. The
main difference from other analyses is that we optimize the
parameterλ aroundη depending on the sent and the received
sequences(X,Y ). A future work is to extend the bound to
the case that(Z(η), Z ′(η)) is not strongly nonlattice, that is,
(Z(η), Z ′(η)) is distributed on a set of lattice points or on a
set of parallel lines with an equal interval. It may be possible
to derive an expression of asymptotic expansion applicableto
our problem by following the discussion in [14, Chap. 5].

6The explicit representation ofh(z) is given in the original reference [14]
but we do not use it in this paper.
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APPENDIX

A. Properties of Functiongh

Lemma 8. For ch = 1 + hη it holds that

gh(u) ≤ min{1, chu} (16)
≤ chu

ρ (17)

and

0 ≤ dgh(u)

du
≤ (u + hη)e−u (18)

≤ ch . (19)

Proof: We obtain (16) by

gh(u) = 1− e
− hη

ehη−1
u
(1 − e−hηu)

hηu

≤ 1− e−ue−hηu(ehηu − 1)

hηu

≤ 1− e−(1+hη)u

≤ min{1, chu}
and (17) is straightforward from0 < ρ ≤ 1. We obtain (18)
by

dgh(u)

du
= e

− hηu

ehη−1

(

1− e−hηu

ehη − 1
+

1− e−hηu(1 + hηu)

hηu2

)

≤ e−u
(

hηu

hη
+

1− (1 − hηu)(1 + hηu)

hηu2

)

= (u + hη)e−u

and (19) follows fromue−u ≤ 1 for any u ≥ 0.

B. Proof of Lemma 2

The proof of Lemma 2 is almost the same as [17,
Thm. 3.7.4] where the same result is proved for the i.i.d. case
based on the asymptotic expansion for i.i.d. random variables.

In [12, Thm. 2, Sect. XVI], the asymptotic expansion
for one-dimensional lattice random variables is derived for
i.i.d. cases. It is discussed in [12, Sect. XVI.6.6] that theresult
is easily extended to non-i.i.d. cases by slightly modifying the
proof with some examples depending on regularity conditions.
In our setting the following expression is convenient as an
asymptotic expansion for non-i.i.d. lattice random variables.

Proposition 2. Let ǫ, s2, s2, s3, s3, s4, b0, γ2 > 0 be arbitrary
andV1, · · · , Vn ∈ R be independent lattice random variables
such that the greatest common divisor of their spans ish,
E[Vi] = 0 and Pr[Vi/h ∈ Z] = 1. Then there existsb1 =
b1(s2, s2, s3, s3, s4, b0), n0 = n0(ǫ, s2, s2, s3, s3, s4, b0, γ2)
satisfying the following: it holds for alln ≥ n0 satisfying

ns2 ≤
n
∑

i=1

V 2
i ≤ ns2 ,

ns3 ≤
n
∑

i=1

V 3
i ≤ ns3 ,

n
∑

i=1

log |E[eiξVi ]| ≤ −nγ2, ∀ξ ∈ [−π/h, π/h] \ [−b1, b1] ,

n
∑

i=1

∣

∣

∣

∣

d4 log E[eiξVi ]

dξ4

∣

∣

∣

∣

≤ ns4, ∀|ξ| ≤ b0

that

sup
v

∣

∣

∣

∣

∣

Pr

[∑n
i=1 Vi√
ns2

≤ v

]

− Φ(v)− s3
6
√
n
(1 − v2)φ(v)

− φ(v)τ

(

v,
h√
nA2

)

∣

∣

∣

∣

∣

≤ ǫ√
n
,

wheresm = n−1
∑n
i=1 V

m
i , τ(v, d) = d⌈v/d⌉ − v − d/2, Φ

andφ are the cumulative distribution function and the density
of the standard normal distribution.

http://people.lids.mit.edu/yp/homepage/data/itlectures_v3.pdf


Proof of Lemma 2:Let P ′ be the probability distribution
of {Vi} such thatdP ′/dP = eλ

∗ ∑n
i=1 Vi/eΛV (λ∗). Then

P

[

n
∑

i=1

Vi ≥ x

]

= e−ΛV (λ∗)EP ′

[

eλ
∗ ∑n

i=1 Vi1l

[

n
∑

i=1

Vi ≥ x

]]

.

Here note that

EP ′ [Vi] =
E[Vie

λ∗Vi ]

eΛVi
(λ∗)

and
n
∑

i=1

E[Vie
λ∗Vi ]

eλ∗Vi
= Λ′

V (λ∗) = x

from the definition ofλ∗. Therefore

P

[

n
∑

i=1

Vi ≥ x

]

=

e−ΛV (λ∗)EP ′

[

eλ
∗ ∑n

i=1 Vi1l

[

n
∑

i=1

(Vi − EP ′ [Vi]) ≥ 0

]]

. (20)

Here the variance ofVi underP ′ are represented by

EP ′ [(Vi − EP ′ [Vi])
2] =

d2ΛVi(λ)

dλ2

∣

∣

∣

∣

λ=λ∗

and similarly
n
∑

i=1

log |EP ′ [eiξVi ]| =
n
∑

i=1

log

∣

∣

∣

∣

E[eλ
∗VieiξVi ]

eΛ(λ∗)

∣

∣

∣

∣

=

n
∑

i=1

(

log |E[e(λ∗+iξ)Vi ]| − log E[eλ
∗Vi ]
)

.

Thus we can apply Prop. 2 to the evaluation of (20) and we
obtain Lemma 2 by the same argument as [17, Thm. 3.7.4] for
the i.i.d. case.

C. Proof of Lemma 5

In this appendix we show Lemma 5. Note that (11) is ob-
tained easily by the standard discussion used in the derivation
of random coding exponent and (12) also easily follows from
(17).

We prove Lemma 5 based on Cramér’s theorem in [17]
for general vector spaces, which is written for our setting as
follows7.

Proposition 3 (Cramér’s theorem [17, Theorem 6.1.3]). Let µ
denote the distribution of i.i.d. random variablesV1, V2, · · · on
a topological real vector spaceV . Assume thatV is a separable
Banach space. Then, for any compact setS ⊂ V ,

lim
n→∞

1

n
log Pr

[

1

n

n
∑

i=1

Vi ∈ S
]

≤ − inf
v∈S

sup
θ∈V∗

{〈v, θ〉 − log E[e〈V1,θ〉]} ,

7Cramér’s theorem in [17] is described for a more general setting such that
V is sufficient to be a metric space under some regularity conditions. When
we consider Banach spaces some of these conditions are satisfied and the
theorem can be represented in the form of this paper.

whereV∗ is the topological dual ofV .

We use the following lemma derived from this proposition.

Lemma 9. Let V be the space of continuous functions
on a compact setA into R and V1, · · · , Vn be i.i.d. ran-
dom variables onV such that E[V (s)] = v(s) and
sups∈S E[eα0|V (s)|] < ∞ for someα0 > 0. Then, for any
compact setA′ ⊂ A and ǫ > 0, the empirical mean
V̄ = n−1

∑n
i=1 Vi satisfies

lim
n→∞

1

n
log Pr

[

sup
s∈A′

|V̄ (s)− v(s)| ≥ ǫ

]

< 0 .

Proof: Let V ∋ f be equipped with the max norm

‖f‖ = max
s∈S

|f(s)|

andV∗ be its topological dual, that is, the family of (signed)
finite Borel measures onS. Then, we obtain from Cramér’s
theorem forS = {f ∈ V : sups∈A′ |f(s)− v(s)| ≥ ǫ} that

lim
n→∞

1

n
log Pr

[

sup
s∈A′

|V̄ (s)− v(s)| ≥ ǫ

]

≤ − inf
f∈S

sup
θ∈V∗

{〈f, θ〉 − log E[e〈V1,θ〉]} .

By considering a set of point mass measures{αδ{s} : α ∈
R, s ∈ A} as a subset ofV∗, we obtain

inf
f∈S

sup
θ∈V∗

{〈f, θ〉 − log E[e〈V1,θ〉]}

≥ inf
f∈S

sup
s∈A′

sup
α

{

αf(s)− log E[eαV (s)]
}

.

Here note that

0 <
∂2

∂α2
log E

[

eαV (s)
]

≤ E[V (s)2eαV (s)]

E[eαV (s)]

≤ E[V (s)2eαV (s)]

E[1 + αV (s)]

≤ E[V (s)2eα|V (s)|]

1− |α|E[|V (s)|]
for |α| < 1/E[|V (s)|]. Since there existsβ > 0 such that
x2eα0|x|/2 ≤ β(eα0|x| + 1) and |x| ≤ βeα0|x| hold for all
x ∈ R,

sup
|α|<α0/2

∂2

∂α
log E

[

eαV (s)
]

< c

for somec > 0. Therefore

inf
f∈S

sup
θ∈V∗

{〈f, θ〉 − log E[e〈V1,θ〉]}

≥ inf
f∈S

sup
s∈A′

sup
|α|≤α0/2

{

αf(s)− αV (s)− cα2/2
}

≥ inf
f∈S

sup
|α|≤α0

{

|α|ǫ − cα2/2
}

> 0

and we obtain the lemma.



We can apply Lemma 9 to the proof of Lemma 5 from the
following lemma.

Lemma 10. Letλ > 0 andξ ∈ [−π/h, π/h]\{0} be arbitrary.
If ν satisfy the lattice condition then

Eρ[Za(λ+ iξ)]− Eρ[Za(λ)] < 0 .

Proof: Let EX′,λ be the conditional expectation on
X ′ given (X,Y ) under distribution PX′,λ such that
dPX′,λ/dPX′ = eλr(X,Y,X

′)/EX′ [eλr(X,Y,X
′)]. Then

Eρ[Z(λ+ iξ)]− Eρ[Z(λ)]

= Eρ

[

log
|EX′ [e(λ+iξ)r(X,Y,X′)]|

EX′ [eλr(X,Y,X′)]

]

= Eρ

[

log |EX′,λ[e
iξr(X,Y,X′)]|

]

= Eρ

[

log |EX′,λ[e
iξ log ν(X′,Y )]e−iξ log ν(X,Y )|

]

= Eρ

[

log |EX′,λ[e
iξ log ν(X′,Y )]|

]

.

On the other hand, the definition of lattice condition in
Def. 1 implies thatP [|EX′,λ[e

iξ log ν(X′,Y )]| = 1] < 1 holds
for any ξ /∈ {2mπ/h : m ∈ Z}.

Since P is absolutely continuous with respect to
Pρ we have Pρ[|EX′,λ[e

iξ log ν(X′,Y )]| = 1] < 1 for
any ξ /∈ {2mπ/h : m ∈ Z}. Thus we obtain
Eρ[log |EX′,λ[e

iξ log ν(X′,Y )]|] < 0 by noting thatE[V ] < 0
holds for any random variableV ∈ R such thatV ≤ 0 a.s. and
Pr[V < 0] > 0.

Proof of Lemma 5: First we have

EXY [1l [Sc] enρ(Z̄(η)+R)]

= en(Λ(ρ)+ρR)Pρ[S
c]

≤ en(Λ(ρ)+ρR)

(

Pρ[|Z̄(1)(η)| ≥ δ1] + Pρ[Z̄
(2)(λ) /∈ A2]

+ Pρ[Z̄
(3)(λ) /∈ A3] + Pρ[Z̄a(λ+ iξ)− Z̄a(λ) ∈ B]

+ Pρ

[∣

∣

∣

∣

∂4

∂ξ4
Z̄(4)(λ+ iξ)

∣

∣

∣

∣

∈ C
]

)

. (21)

Note that the moment generating functions of the absolute
values of the empirical means in (21) exist from the regularity
conditions assumed in (4). It is straightforward from Cram´er’s
inequality that

lim
n→∞

1

n
logPρ[|Z̄(1)(η)| ≥ δ1] < 0

sinceEρ[Z(1)(η)] = 0. It is also straightforward from Lemmas
9 and 10 that the other four probabilities in (21) are exponen-
tially small for sufficiently smallγ1 with respect to(δ2, δ3)
and

γ2 = −1

2
sup

λ∈[η−γ1,η+γ1]
ξ∈[−π/h,π/h]\[−b1,b1]

Eρ[Za(λ+ iξ)− Za(λ)]

s4 = 2 sup
λ∈[η−γ1,η+γ1]
ξ∈[−b0,b0]

Eρ

[∣

∣

∣

∣

∂4Z(λ+ iξ)

∂ξ4

∣

∣

∣

∣

]

.

D. Theorem 1 for Nonlattice Channels

In this appendix we give a brief explanation for the proof
of Theorem 1 in the case thath = 0, that is, ν does not
satisfy the lattice condition. For this case we bound the error
probability by

EXY [q̃M (p̃1/
√
n(X,Y ))] ≤ PRC ≤ EXY [q̃M (p̃0(X,Y ))]

where

p̃ζ(x,y) = PX′ [r(x,y,X ′) ≥ ζ]

q̃M (p) = 1− (1− p)M−1 .

Similarly to Lemma 1 we have the following lemma.

Lemma 11. It holds for anyc ∈ (0, 1/2) that

lim
M→∞

sup
p∈(0,1/2]

q̃M (p)

1− e−pM
= lim

M→∞
inf

p∈(0,1/2]

q̃M (p)

1− e−pM
= 1 .

The proof of this lemma is given in Appendix E. We can
obtain Theorem 1 forh = 0 by replacing the exact asymptotics
for non-i.i.d. lattice random variables with that for nonlattice
random variables based on the asymptotic expansion for non-
lattice random variables considered in [12, Thm. 1, Sect. XVI].
More precisely we can show Theorem 1 by replacing Prop. 2
with the following proposition, which is also easily obtain
from the discussion in [12, Sect. XVI.6.6] for non-i.i.d. random
variables.

Proposition 4. Let ǫ, s2, s2, s3, s3, s4, b0, γ2 > 0 be ar-
bitrary and V1, · · · , Vn ∈ R be strongly nonlattice
independent random variables such thatE[Vi] = 0
and Pr[Vi/h ∈ Z] = 1. Then there existsd =
d(s2, s2, s3, s3, s4, b0) < d = d(ǫ, s2, s2, s3, s3, s4, b0) and
n0 = n0(ǫ, s2, s2, s3, s3, s4, b0, γ2) satisfying the following:
it holds for all n ≥ n0 satisfying

ns2 ≤
n
∑

i=1

V 2
i ≤ ns2 ,

ns3 ≤
n
∑

i=1

V 3
i ≤ ns3 ,

n
∑

i=1

log |E[eiξVi ]| ≤ −nγ2, ∀ξ ∈ [d, d] ,

n
∑

i=1

∣

∣

∣

∣

d4 log E[eiξVi ]

dξ4

∣

∣

∣

∣

≤ ns4, ∀|ξ| ≤ b0

that

sup
v

∣

∣

∣

∣

∣

Pr

[∑n
i=1 Vi√
ns2

≤ v

]

− Φ(v)

− s3
6
√
n
(1 − v2)φ(v)

∣

∣

∣

∣

∣

≤ ǫ√
n
.

E. Bounds on Error Probability forM Codewords

In this appendix we prove Lemmas 1 and 11.



Proof of Lemma 1: First we have

M−1
∑

i=1

pi0(1 − p0 − p+)
M−i−1

(

M − 1

i

)

= (1− p+)
M−1 − (1 − p0 − p+)

M−1 (22)

and
M−1
∑

i=1

pi0(1 − p0 − p+)
M−i−1

(

M − 1

i

)

1

i+ 1

=
1

M

M−1
∑

i=1

pi0(1 − p0 − p+)
M−i−1

(

M

i + 1

)

=
1

Mp0

M
∑

i=2

pi0(1− p0 − p+)
M−i

(

M

i

)

=
(1− p+)

M − (1− p0 − p+)
M

Mp0
− (1 − p0 − p+)

M−1.

(23)

Combining (22) and (23) with (10) we obtain

qM (p+, p0) = 1− (1− p+)
M − (1− p0 − p+)

M

Mp0

and

1− qM (p+, p0)

1− e−Mp+(1−e−Mp0)
Mp0

= 1− Mp0 − (1− p+)
M − (1− p0 − p+)

M

Mp0 − e−Mp+(1− e−Mp0)

= 1−
Mp0 − (1− p+)

M

(

1−
(

1− p0
1−p+

)M
)

Mp0 − e−Mp+(1− e−Mp0)

=

(1− p+)
M

(

1−
(

1− p0
1−p+

)M
)

− e−Mp+(1− e−Mp0)

Mp0 − e−Mp+(1− e−Mp0)
.

Here note thatlog(1−x) ≥ −x− 2x2 for x ≤ 1/2. Therefore
for p0, p+ ≤ 1/3 we have

(1 − p+)
M

(

1−
(

1− p0
1− p+

)M
)

≤ e−Mp+

(

1− e
− Mp0

1−p+
− 2Mp20

(1−p+)2

)

≤ e−Mp+
(

1− e−Mp0−2Mp0p+−5Mp20

)

≤ e−Mp+
(

1− (1 −min{1, 5M(p2+ + p+p0)})e−Mp0
)

,

which implies

lim
M→∞

sup
(p+,p0)∈(0,1/3]2:p+≤Mcp0







1− qM (p+, p0)

1− e−Mp+(1−e−Mp0)
Mp0







≤ lim
M→∞

sup
p0∈(0,1/3]

min{1, 10M1+2cp20}
Mp0 − (1 − e−Mp0)

.

= lim
M→∞

sup
p0∈(0,1/3]

1

M1−2c

min{1, 10(Mp0)
2}

Mp0 − (1− e−Mp0)

= 0 .

Similarly, for p0, p+ ≤ 1/3 we have

(1− p+)
M

(

1−
(

1− p0
1− p+

)M
)

≥ e−Mp+−2Mp2+

(

1− e
− Mp0

1−p+

)

≥ e−Mp+−2Mp2+
(

1− e−Mp0
)

≥ e−Mp+(1−min{1, 2Mp2+})
(

1− e−Mp0
)

and

lim
M→∞

inf
(p+,p0)∈(0,1/3]2:p+≤Mcp0







1− qM (p+, p0)

1− e−Mp+(1−e−Mp0)
Mp0







≥ − lim
M→∞

sup
(p+,p0)∈(0,1/3]2:p+≤M1+cp0

min{1, 2M1+2cp20}
Mp0 − (1− e−Mp0)

= 0 ,

which concludes the proof.

Proof of Lemma 11: By letting t(x) = x−1 log(1 − x)
we have

1− (1− p)M−1

1− e−pM
=

1− ep(M−1)t(p)

1− e−pM

= 1− e−pM
(

ep(M+(M−1)t(p)) − 1
)

1− e−pM

= 1− ep(M+(M−1)t(p)) − 1

epM − 1
.

By t(x) ≤ −1, the second term is bounded from above as

ep(M+(M−1)t(p)) − 1

epM − 1
≤ ep − 1

epM − 1

≤ ep − 1

pM

≤ e− 1

M
(24)

and bounded from below as

ep(M+(M−1)t(p)) − 1

epM − 1

≥ p(M + (M − 1)t(p))

epM − 1

=
M(p+ log(1− p))

epM − 1
− pt(p)

epM − 1

≥ M(−2p2)

epM − 1
(25)

≥ − 2

M

(Mp)2

epM − 1

≥ − 2

M
,

(

by
x2

ex − 1
≤ 1 for x > 0

)

(26)

where we usedlog(1 − p) ≥ −p − 2p2 for p ∈ [0, 1/2] and
t(x) ≤ 0 in (25). We complete the proof by lettingM → ∞
in (24) and (26).



F. Evaluation of Oscillations

In this appendix we prove Lemma 7 on the oscillations of
function fn. We first show Lemmas 12 and 13 below.

Lemma 12. For any setS ⊂ R
2,

ωfn(S) ≤ ch(c2)
−ρn−ρ/2 sup

z2:z∈S
e−ρz

2
2/2c1 .

Proof: We can boundfn as

fn(z1, z2) = e−
√
nρz1gh

(

e
√
nz1−z22/2c1

c2
√
n

)

= (c2
√
n)−ρe−ρz

2
2/2c1u−ρgh (u)

(

by letting u = e
√

nz1−z22/2c1

c2
√
n

)

≤ ch
(

c2
√
n
)−ρ

e−ρz
2
2/2c1 . (by (17))

Thus we obtain the lemma sincefn(z) ≥ 0.

Lemma 13. Letu > 0 andr ∈ [−1/2, 1/2] be arbitrary. Then

|gh((1 + r)u)− gh(u)| ≤ ch|r|u , (27)
|gh((1 + r)u)− gh(u)| ≤ ch|r| . (28)

Proof: Eq. (27) is straightforward from (19). We obtain
(28) from

dgh((1 + r)u)

dr
= u

dgh(v)

dv

∣

∣

∣

∣

v=(1+r)u

≤ u((1 + r)u + hη)e−u (by (18))

≤ 6e−2 + hηe−1

≤ ch .

By using these lemmas we can evaluate the oscillation of
fn within a ball as follows.

Lemma 14. Assume|z2| ≤ c1
√
n/2. Then, for sufficiently

large n,

ωfn(Bδn(z)) ≤
8ch
c2
δne

(1−ρ)√nz1 , (29)

ωfn(Bδn(z)) ≤ 4(1 + ch)
√
nδne

−ρ√nz1 . (30)

Proof: First we obtain forz′ satisfying‖z′−z‖ ≤ δn and
sufficiently largen that

|(z′2)2 − z22 | ≤ |z′2 − z2|(|z′2|+ |z2|)
≤ |z′2 − z2|(2|z2|+ |z2 − z′2|)
≤ δn

∣

∣c1
√
n+ δn

∣

∣

≤ 2c1δn
√
n . (by limn→∞ δn = 0)

Let w = z1 − z22/(2c1
√
n) and w′ = z′1 − (z′2)

2/(2c1
√
n).

Then

|w′ − w| ≤ |z′1 − z1|+
|z22 − (z′2)

2|
2c1

√
n

≤ 2δn .

Therefore we obtain for sufficiently largen that
∣

∣

∣

∣

∣

eρ
√
nw′

eρ
√
nw

− 1

∣

∣

∣

∣

∣

≤ 2(ρ
√
n|w′ − w|) ≤ 2

√
nδn

∣

∣

∣

∣

∣

eρ
√
nz′1

eρ
√
nz1

− 1

∣

∣

∣

∣

∣

≤ 2
√
nδn

since limn→∞
√
nδn = 0. Therefore by lettingδ′n = 2δn

√
n

and using (27) we obtain for sufficiently largen that

fn(z
′) ≤ (1 + δ′n)e

−ρ√nz1gh

(

(1 + δ′n)e
√
nw

c2
√
n

)

≤ (1 + δ′n)e
−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

+
chδ

′
ne

√
nw

c2
√
n

)

,

fn(z
′) ≥ (1 − δ′n)e

−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

− chδ
′
ne

√
nw

c2
√
n

)

.

We obtain (29) from these inequalities by

ωfn(Bδn(z)) ≤ 2δ′ne
−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

+
che

√
nw

c2
√
n

)

≤ 4δ′ne
−ρ√nz1 che

√
nw

c2
√
n

(by (16))

≤ 4δ′ne
(1−ρ)√nz1 ch

c2
√
n
.

Similarly we obtain from (28) that

fn(z
′) ≤ (1 + δ′n)e

−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

+ chδ
′
n

)

fn(z
′) ≥ (1 − δ′n)e

−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

− chδ
′
n

)

.

From these inequalities we obtain (30) by

ωfn(Bδn(z)) ≤ 2δ′ne
−ρ√nz1

(

gh

(

e
√
nw

c2
√
n

)

+ ch

)

≤ 2(1 + ch)δ
′
ne

−ρ√nz1 .

Proof of Lemma 7: Let bn be such that

e
√
nbn = n1/2+1/4ρδ1/2ρn .

First we have
∫

ωf ({z′ : ‖z′ − z‖ ≤ δ})φΣ(z + a)dz

≤
∫

|z2|≤c1
√
n/2,z1≤bn

ωf (Bδn(z))φΣ(z + a)dz

+

∫

|z2|≤c1
√
n/2,z1≥bn

ωf(Bδn(z))φΣ(z + a)dz

+

∫

|z2|≥c1
√
n/2

ωf (Bδn(z))φΣ(z + a)dz

≤
∫

|z2|≤c1
√
n/2,z1≤bn

4c4ch
c2

δne
(1−ρ)√nz1φΣ(z + a)dz



+

∫

|z2|≤c1
√
n/2,z1≥bn

2c4(1 + ch)
√
nδne

−ρ√nz1φΣ(z + a)dz

+

∫

|z2|≥c1
√
n/2

ch(c2
√
n)−ρe−c1ρn/8φΣ(z + a)dz

(by Lemmas 12 and 14)

≤
∫ bn

−∞

4c4ch
c2

δne
(1−ρ)√nz1φσ11(z1 + a1)dz1

+

∫ ∞

bn

2c4(1 + ch)
√
nδne

−ρ√nz1φσ11 (z1 + a1)dz1

+ o(n−(1+ρ)/2) . (31)

Here recall thatlimn→∞
√
nδn = 0 and therefore the second

term of (31) is bounded as

∫ ∞

bn

√
nδne

−ρ√nz1φσ11(z1 + a1)dz1

≤ 1
√

2πσ2
1

∫ ∞

bn

√
nδne

−ρ√nz1dz1

=
1

√

2πσ2
1

δne
−ρ√nbn

ρ

=
1

√

2πσ2
1

δn(n
1/2+1/4ρδ

1/2ρ
n )−ρ

ρ

=
1

√

2πσ2
1

(
√
nδn)

1/2

ρn(1+ρ)/2

= o(n−(1+ρ)/2) .

We obtain (14) since the first term of (31) is bounded as

∫ bn

−∞
δne

(1−ρ)√nz1φσ11 (z1 + a1)dz1

≤ δne
(1−ρ)√nbn

= δn(
√
n(
√
nδn)

1/2ρ)(1−ρ)

= n−ρ(
√
nδn)(

√
nδn)

(1−ρ)/2ρ

= o(n−ρ) .

We obtain (15) since the first term of (31) is also bounded for
ρ < 1 as

∫ bn

−∞
δne

(1−ρ)√nz1φσ11 (z1 + a1)dz1

≤ 1
√

2πσ2
11

∫ bn

−∞
δne

(1−ρ)√nz1dz1

=
1

√

2πσ2
11

δn(
√
n(
√
nδn)

1/2ρ)1−ρ

(1 − ρ)
√
n

=
1

√

2πσ2
11

n−(1+ρ)/2(
√
nδn)(

√
nδn)

(1−ρ)/2ρ

1− ρ

= o(n−(1+ρ)/2) .

G. Proof of Lemma 6

First we have

E

[

gh

(

en(Z̄(η)+R−(Z̄′(η))2/2c1)

c2
√
n

)]

= enΛ(ρ)Eρ

[

e−nρZ̄(η)gh

(

en(Z̄(η)+R−(Z̄′(η))2/2c1)

c2
√
n

)]

.

Here recall thatEρ[Z̄(η)] = µ0 ≤ −R andEρ[Z̄ ′(η)] = µ1 =
0 from (2). By letting ∆ = −(R + µ0), we have∆ = 0
for R ≥ Rcrit and∆ > 0 for R < Rcrit. Normalizing Z̄(η)
and Z̄ ′(η) as Z̃1 =

√
n(Z̄(η) + R +∆) and Z̃2 =

√
nZ̄ ′(η),

respectively, we have

E

[

gh

(

en(Z̄(η)+R−(Z̄′(η))2/2c1)

c2
√
n

)]

= e−nEr(R)

· Eρ
[

e−
√
nρ(Z̃1−

√
n∆)gh

(

e
√
n(Z̃1−

√
n∆)−Z̃2/2c1)

c2
√
n

)]

.

We obtain from Prop. 1 that

Eρ

[

e−
√
nρ(Z̃1−

√
n∆)g

(

e
√
n(Z̃1−

√
n∆)−Z̃2/2c1)

c2
√
n

)]

=

∫∫

e−z
TΣ−1

01 z/2

2π
√

|Σ|

(

1− h(z)√
n

)

e−
√
nρ(z1−

√
n∆)

· g
(

e
√
n(z1−

√
n∆)−z22/2c1)

c1
√
n

)

dz1dz2 + ωfn(δn; Φ) .

For the case (i)ρ < 1,∆ = 0, this integral is evaluated
as (33). Similarly for cases (ii)ρ = 1,∆ = 0 and (iii) ρ =
1, ∆ > 0, it is evaluated as (34) and (35), respectively, since
e−

√
nwgh(e

√
nw) ≤ e−

√
nw holds for anyw and

e−
√
nwgh(e

√
nw) =

hη(1 + o(1))

ehη − 1

holds forw ≤ −n−1/4.

(See the next two pages for Eqs. (33)–(35). )

Now, combined with Lemma 7, it suffices to show that
∫ ∞

−∞
e−ρwgh(e

w)dw =

∫ ∞

0

z−(1+ρ)gh(z)dz

=
1

ρ

∫ ∞

0

z−ρ
dgh(z)

dz
dz

= ψρ,h . (36)

By letting a = hη and b = a/(ea − 1), we can evaluate this
integral as

∫ ∞

0

z−ρ
dgh(z)

dz
dz

=

∫ ∞

0

z−ρ−1 be
−bz − (a+ b)e−(a+b)z

a
dz

+

∫ ∞

0

z−ρ−2 e
−bz − e−(a+b)z

a
dz (37)



(i) ρ < 1, ∆ = 0.
∫∫

(

1− h(z1, z2)√
n

)

e−(z1,z2)Σ
−1
01 (z1,z2)

T /2

2π
√

|Σ|
e−

√
nρz1gh

(

e
√
nz1−z22/2c1

c2
√
n

)

dz1dz2

=
(c2

√
n)−ρ√
n

∫∫
(

1− h((w + z22/2c1 + dn)/
√
n, z2)√

n

)

·

e−((w+z22/2c1+dn)/
√
n,z2)Σ

−1
01 ((w+z22/2c1+dn)/

√
n,z2)

T /2

2π
√

|Σ01|
e−ρw−ρz22/2c1gh (e

w) dwdz2

(

by letting ew =
e
√
nz1−z22/2c1

c2
√
n

anddn = log c2
√
n

)

=
(c2

√
n)−ρ√
n

∫∫

(1 + o(1))
e−(0,z2)Σ

−1
01 (0,z2)

T /2

2π
√

|Σ01|
e−ρw−ρz22/2c1gh (e

w) dwdz2

+ n−(1+ρ)/2

∫∫

max{|w|,|z2|}≥n1/5

e−ρw−ρz22/2c1gh (e
w) dwdz2

·O
(

sup
w,z′

{

(

1− h((w + (z′2)
2/2c1 + dn)/

√
n, z′2)√

n

)

e−((w+(z′2)
2/2c1+dn)/

√
n,z′2)Σ

−1
01 ((w+(z′2)

2/2c1+dn)/
√
n,z′2)

T /2

2π
√

|Σ01|

})

(32)

=
(c2

√
n)−ρ(1 + o(1))√

n

∫∫

e−(0,z2)Σ
−1
01 (0,z2)

T /2

2π
√

|Σ01|
e−ρw−ρz22/2c1gh (e

w) dwdz2

+ n−(1+ρ)/2

∫∫

max{|w|,|z2|}≥n1/5

e−ρw−ρz22/2c1gh (e
w) dwdz2 ·O(1)

=
(c2

√
n)−ρ

2π
√

n|Σ01|

∫

e−z
2
2(σ00/|Σ01|+ρ/c1)/2dz2

∫

e−ρwgh (e
w) dw +O

(

n−(1+ρ)/2

∫∫

|z2|≥n1/5

e−ρw−ρz22/2c1gh (e
w) dwdz2

)

+O

(

n−(1+ρ)/2

∫∫

|w|≥n1/5

e−ρw−ρz22/2c1gh (e
w) dwdz2

)

=
(c2

√
n)−ρ

√

2πn(σ00 + ρ|Σ01|/c1)

∫

e−ρwgh (e
w) dw + o(n− 1+ρ

2 ) , (33)

where (32) follows from
(

1− h((w + (z2)
2/2c1 + dn)/

√
n, z2)√

n

)

e−((w+(z2)
2/2c1+dn)/

√
n,z2)Σ

−1
01 ((w+(z2)

2/2c1+dn)/
√
n,z2)

T /2

2π
√

|Σ01|

= (1 + o(1))
e−(0,z2)Σ

−1
01 (0,z2)

T /2

2π
√

|Σ01|
for (w, z2) such thatmax{|w|, |z2|} ≤ n1/5.

Here the first term is evaluated by integration by parts as

∫ ∞

0

z−ρ−1 be
−bz − (a+ b)e−(a+b)z

a
dz

=
1

ρ

∫ ∞

0

z−ρ
(a+ b)2e−(a+b)z − b2e−bz

a
dz

=
Γ(1− ρ)

ρ

(a+ b)ρ+1 − bρ+1

a
, (38)

where we used the fact that for anyc > 0

∫ ∞

0

e−czz−ρdz = Γ(1− ρ)cρ−1 .

Similarly we have
∫ ∞

0

z−ρ−2 e
−bz − e−(a+b)z

a
dz

=
1

ρ+ 1

∫ ∞

0

z−ρ−1−be−bz + (a+ b)e−(a+b)z

a
dz

=
1

ρ(ρ+ 1)

∫ ∞

0

z−ρ
b2e−bz − (a+ b)2e−(a+b)z

a
dz

=
Γ(1− ρ)

ρ(ρ+ 1)

bρ−1 − (a+ b)ρ−1

a
. (39)

Combining (37) with (38) and (39) we obtain (36) by
∫ ∞

0

z−ρ
dgh(z)

dz
dz



(ii) ρ = 1, ∆ = 0.
∫∫

(

1− h(z1, z2)√
n

)

e−(z1,z2)Σ
−1
01 (z1,z2)

T /2

2π
√

|Σ01|
e−

√
nρz1gh

(

e
√
nz1−z2/2c1

c2
√
n

)

dz1dz2

= (c2
√
n)−1

∫∫
(

1− h(w + (z22/2c1 + dn)/
√
n, z2)√

n

)

·

e−(w+(z22/2c1+dn)/
√
n,z2)Σ

−1
01 (w+(z22/2c1+dn)/

√
n,z2)

T /2

2π
√

|Σ01|
e−z

2
2/2c1e−

√
nwgh

(

e
√
nw
)

dwdz2

(

by letting e
√
nw =

e
√
nz1−z2/2c1

c2
√
n

)

= (c2
√
n)−1 hη

ehη − 1

∫∫

w≤−n−1/4

(1 + o(1))
e−(w,z2)Σ

−1
01 (w,z2)

T /2

2π
√

|Σ01|
e−z

2
2/2c1dwdz2 + o(n−1/2)

= (c2
√
n)−1 hη

ehη − 1

1

2

√

|Σ01|
∣

∣

∣

∣

Σ−1
01 +

(

0 0
0 1/c1

)∣

∣

∣

∣

+ o(n−1/2)

= (c2
√
n)−1 hη

ehη − 1

1

2
√

1 + σ11/c1
+ o(n−1/2) . (34)

(iii) ρ = 1, ∆ > 0.
∫∫

e−(z1,z2)Σ
−1
01 (z1,z2)

T /2

2π
√

|Σ01|

(

1− h(z1, z2)√
n

)

e−
√
nρ(z1−

√
n∆)gh

(

e
√
n(z1−

√
n∆)−z2/2c1)

c1
√
n

)

dz1dz2

= (c2
√
n)−1

∫∫
(

1− h(w + (z22/2c1 + dn)/
√
n, z2)√

n

)

·

e−(w+(z22/2c1+dn)/
√
n,z2)Σ

−1
01 (w+(z22/2c1+dn)/

√
n,z2)

T /2

2π
√

|Σ01|
e−z

2
2/2c1e−

√
n(w−√

n∆)gh

(

e
√
n(w−√

n∆)
)

dwdz2

(

by letting e
√
nw =

e
√
nz1−z2/2c1

c2
√
n

)

= (c2
√
n)−1 hη

ehη − 1

∫∫

w≤√
n∆−n−1/4

(1 + o(1))
e−(w,z2)Σ

−1
01 (w,z2)

T /2

2π
√

|Σ01|
e−z

2
2/2c1dwdz2 + o(n−1/2)

= (c2
√
n)−1 hη

ehη − 1

1
√

1 + σ11/c1
+ o(n−1/2) . (35)

=
Γ(1− ρ)

ρ

(a+ b)ρ+1 − bρ+1

a

(

1− 1

1 + ρ

)

=
Γ(1− ρ)

1 + ρ

(

hηehη

ehη−1

)ρ+1

−
(

hη
ehη−1

)ρ+1

hη

=
Γ(1− ρ)

hη(1 + ρ)

(

hη

ehη − 1

)ρ+1
(

ehη(1+ρ) − 1
)

= Γ(1− ρ)

(

hη

ehη − 1

)ρ+1
eh − 1

h
= ρψρ,h ,

where we usedη = 1/(1 + ρ).
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