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Abstract—Error probabilities of random codes for memoryless ~ probability for fixed rateR. It is proved that this exponent
channels are considered in this papék In the area of communi-  of the random code is tight for both rates below the critical
cation systems, admissible error probability is very smalland it rate [5] and above the critical ratel [6].
is sometimes more important to discuss the relative gap bewen )
the achievable error probability and its bound than to discuss There have also been many researches on tight bounds of
the absolute gap. Scarlett et al. derived a good upper bound the random coding error probability with vanishing or camst
of a random coding union bound based on the technique of rg|ative error for a fixed rat&. Dobrushin[[7] derived a bound
saddlepoint approximation but it is not proved that the relative  f the yandom coding error probability for symmetric chasne
gap of their bound converges to zero. This paper derives a new in the strong sense that each row and the column of the

bound on the achievable error probability in this viewpoint for o - . .
a class of memoryless channels. The derived bound is strigtl transition probability matrix are permutations of the athe

smaller than that by Scarlett et al. and its relative gap withthe 1 Nhe relative error of this bound is asymptotically boundgd b
random coding error probability (not a union bound) vanishes @ constant. In particular, it vanishes in the case that taeml

as the block length increases for a fixed coding rate. satisfies a nonlattice condition.
~Keywords—channel coding, random coding, error exponent, For general class of discrete memoryless channels, Gallage
finite-length analysis, asymptotic expansion. [8] derived a bound with a vanishing relative error for the
rate below the critical rate based on the technique of exact
. INTRODUCTION asymptotics for i.i.d. random variables, and Altug and Yag

[Q] corrected his result for singular channels. For general

Itis one of the most important task of information theory t0 ., ,qqihy variable) rate?, Scarlett et al.[[10] derived a simple
clarify the achievable performance of channel codes under f'upper bound (we write this a&(n)) of a random coding

nite block length. For this purpose Polyanskiy [2] and Hayas union boundPrcu (n) based on the technique of saddlepoint

[8] considered the achievable coding rate under a fixed errofo o imation and showed th&kcu () < (1 + o(1))Ps(n)

probability and a block length. They revealed that the nexg, " onsingular finite-alphabet discrete memoryless chinn
term to the channel capacity @(1/+/n) for the block length [10]. Howe%/er This boupnd does not assU?@CU(x) =(1+
n and expressed by a percentile of a normal distribution. o(1))Ps(n). '

The essential point for derivation of such a bound is to
evaluate error probabilities of channel codes with an ateur
form. For this evaluation an asymptotic expansion of sum
of random variables is used inl[2]. On the other hand, th
admissible error probability in communication systemsesyv
small, say,10~!° for example. In such cases it is sometimes
more important to consider theslative gap between the
achievable error probability and its bound than the abeolut .
gap. Nevertheless, an approximation of a tail probabilty o matches that by Gallager![8] for the rate below the critical
tained by the asymptotic expansion sometimes results irga la ratd
relat|ve_ gap and it is knoyvn that the techmque_of_ sad_d_letpom The essential point to derive the new bound is that we
approximation and the (higher-order) large deviation@ple  htimize the parameter depending on the sent and the receive
is a more powerful tool rather than the asymptotic expansioequence¢ X, Y) to bound the error probability. This fact
[4]- contrasts to discussion in [10] and the classic random gpdin

Bounds of the error probability of random codes with a€fror exponent where the parameter is first fixed and optinize
small relative gap have been researched extensively gthou after the expectation overX,Y') is taken. We confirm that
most of them treat a fixed rat® whereas [2”:3] consider thIS d|ﬁerence aCtually affeCtS the de”Ved bound and bg th
varying rate for the fixed error probability. Gallager [Syived ~ difference we can assure that the bound also becomes a lower
an upper bound called a random coding union bound ofpound of the probability with a vanishing relative error.
the rate of exponential decay of the random coding error

In this paper we consider the error probabilifyrc
f random coding for a fixed but arbitrary ratg8 below
he capacity. We derive a new bouré., which satisfies
Prew(n) = (1 + o(1))Prc(n) for (possibly infinite-alphabet
or nondiscrete) nonsingular memoryless channels such that
random variables associated with the channels satisfy di-con
tion called a strongly nonlattice condition. The derivedibd

2In the ISIT proceedings version it was described that thelresntradicts
1This paper is the full version of [1] in ISIT2015 with some Emtions the bound in[[8] but it was the confirmation error of the authecause of the
and refinements. difference of notations between this paper dnd [11]. SeedRdd for detail.
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Il.  PRELIMINARY and we write the optimal solution oga,/\) as (p,n) =

i aZ(1/(1+a))] —
We consider a memoryless channel with input alphabet (p: 1/(L + p)). We write log Ele ] = Aa).

and output alphabét. The output distribution for input € X In the strict sense the random coding error exponent

is denoted by (-|z). Let X € X be a random variable with represents the supremum &f (1) ovBx but for notational

distribution Px andY € Y be following W (-|X) given X.  simplicity we fix Px and omit its dependence. Séé [9, Theorem

We definePy as the marginal distribution of . We assume 2] for a condition that there exist®y which attains this
that W (-|z) is absolutely continuous with respect 1 for  supremum.

any x with density Let P(, be the probability measure such théP,/dP =

W, y) = dW('|$)( ) erZ(mM=AP)  We write the expectation unde?, by E, and
Y dPy vl define
We also assume that the mutual information is finite, that is, i = B, (20 ()] = e AOE[Z) (n)erZ )]
I(X;Y) =Exyllogr(X,Y)] < co. _E[(7 )
oij = Ep[(Z2% (n) — i) (2 (n) — )]

Let X’ be a random variable with the same dis- _ Al () () Z(n)
tribution as X and independent of(X,Y) and define = e TE(Z () — ) (27 (n) — p3)e" ]
r(e.y,a’) = logu(s’,y)/v(z,y). Since v(X,Y) > 0 s — (o Ty
holds almost surely we have(X,Y,X’) € R = * oji O )

—

[-00,00) is well-defined almost surely(X,Y,X’) = o Z001 -
(X1, Xp), (Yi,--,Ys), (X],---, X)) denotesn in-  From derivatives ofvR + log E[e M]in a and X we have

dependent copies ofX,Y, X’). We definer(X,Y,X’) = dlog E[e®Z(™) =R, if R> Rt

S (X, Vi X, PR {T R e @
We consider the error probability of a random code such dlog E[erZ(V)] -

that each element of codewordX,--- , X,;) € "M is dgogrie ] =op =0. (3)

generated independently from distributi®y . The coding rate oA A=n

of this code is given by = (log M)/n. We use the maximum  \yhere g is the critical rate, that is, the largeBtsuch that
likelihood decoding with ties broken uniformly at random. 14 optimal solution of[{1) i = 1. We assume that, > 0

or equivalently, Py [|Q(Y) \ {0} > 1] > 0 where Q(y) is
A. Error Exponent the support of/(X’, ). This corresponds to the non-singular

Define a random variabl&(\) on the space of functions assumption in[[10][13] for the finite alphabet.

R — R by To avoid somewhat technical argument on the continuity
Z(A\) =logEx: {eAT(XvY-,X’)} and integrability we also assume that there exists, > 0
= oghx and a neighborhood of A = 5 such that for any) < b, <
and its derivatives by by < 2m/h < o0
m dm . / sup B, [e? 2™ V] < | =1,2,3
Z( )(A) = EpND 10gEX, |:e>‘ (X, v, X ):| , ilelg P[ ] oo, 1 y 4y 9y
o (6% 4 i
which we sometimes write by’(\), Z”(\),---. Here Ex. sup E,[e?I7/0602040]) < o,
denotes the expectation ov&t for given (X,Y). We definf AES, £€[—bo,bo] _
Q| Za(A+i€) = Za(N)]
] , sup E,le | <oo. 4)
Z(\ +i€) = log Exs [e<A+lf>T<XvY=X >] AES, E€lbi ba]
S [arHiOr (XY, X7 whereh > 0 is given later. Note that these conditions trivially
Za(A +1€) = log ‘EX {e } ‘ ’ hold if the input and output alphabets are finite.

where \,¢ € R andi is the imaginary unit. Here we always ) ) o
consider the cask > 0 and define(* &) (=>) — 0. We define B. Lattice and Nonlattice Distributions

In the asymptotic expansion with an order higher than the

, _ 1 «
Zi(\) = log Ex [GM(X“Y“X )} s Z(A) = - ZZi()\)- central-limit theorem, it is necessary to consider cases$ th
i=1 the distribution is lattice or nonlattice separately. Hee call
that a random variabl® € R™ has a lattice distribution if
Ve {a+ >, bih; : {b;} € Z™} almost surely for some
The random coding error exponent for< R < I(X;Y)  a € R™ and linearly independent vectof, }, € R™*™,

Zaiy Za Zi(m) and Z(™) are defined in the same way.

is denoted by For the casen = 1 we call the largest; satisfying the above
B (R) = — inf {aR + logE[eaZ()‘)]} condition the span of the lattice.
(,2)€[0,1]x[0,00) On the other hand, we call thaf € R™ has a strongly
_— m(ionl]{aR +log Be®Z(/(+eNy = (1) nonlattice distribution if{E[el(¢-V)]| < 1 for all ¢ € R™ \ {0},
ac(0,

3We omit the discussion on the multi-valuednessia z. The discussion sional random variabl®” € R is lattice or Strongly nonlattice

where(-, -) denotes the inner product. Note that a one dimen-

involving logarithm of a complex number in this paper arisgsfollowing but, in general, there exists a random variable which is not

[12, Sect. XVI.2] and refer this to see that no problem occurs lattice and not strongly nonlattice.



As given above, a lattice distribution is defined for alattice for v, there exist:y > 0 such that for alln > ng
random variablé” € R™ in standard references such asl [14]. <( )en(z(nHR(z/(n)wz(#z&))ﬂ
gn | (1 —€

In this paper we call that the distribution &f € R is lattice (1-e)E

if the conditional distribution of” givenV' > —oc is lattice /27N
and nonlattice otherwise. It is easy to see that no contiiadic < Pao(n)
occurs under this definition. = T RC . .
( ) ( )en(Z(n)Jer(Z’(n))2/2(u2+62))
We consider the following condition regarding lattice and = (1 = €)E{gn | (1 +¢ T TN )
nonlattice distributions. K Hz

Definition 1. We call that the log-likelihood ratie satisfies By this theorem we can reduce the evaluation of error
the lattice condition with sparh > 0 if the conditional probability into that of an expectation over two-dimensibn
distribution oflog »(X,Y) givenY is lattice with spamumy  random variable(Z (), Z' (1)), although this expectation is
almost surely whereny € N may depend o” andh is the  still difficult to compute. If(Z(n), Z'(n)) is strongly nonlattice
largest value satisfying this condition. then we can derive the following bound which gives an explici
representation for the asymptotic behaviorffc.

For notational simplicity we define the span of the latticeTheorem 2. Fix 0 < R < I(X;Y) and assume that

for v to beh = 0 if v _doe;s not satisfy the_lattice condition. (Z(n), Z'(n)) has a strongly nonlattice distribution. Then
Other than the classification of we also discuss cases that

(Z(n), Z'(n)) is strongly nonlattice or not separately. Prc(n)
) ) ] Yo' "% (140(1)) e "Er(R) RS R
Note that a one-dimentional random variadle € R P (27n) 14072 [(ia000+p|Z01|) ’ erit)
with supportsupp(V) is always lattice if[supp(V)| < 2, — h(1+o(1)) e "Er(R) R = Reyit
and is strongly nonlattice except for some special cases if 2(e —1)y/2mn(pa+o11) ’ ’
lsupp(V)| > 3. Similarly, a two-dimensional random variable h(lto(l)) e nEr(R), R < Rexit,

V € R? is always not strongly nonlattice {upp(V)| < 3, (e 1)/ 2mn(uz+on)

and is strongly nonlattice except for some special cases if
|supp(V)| > 4. Based on this observation we see that mostvhere

(%)

channels with input and output alphabet sizes larger thae 3 a oo

strongly nonlattice. Another example of each class of celnn Ypn = / e "gp(e”)dw
(excluding those with specially chosen parameters) arengiv =0 o

in Table[]. (1 -p) ( hn )p eh —1
Remark 1. The above conditions are different from the p el —1 h

condition considered in_[10] as a classification of latticela for the gamma functiof.

nonlattice cases. This difference arises from two readeirs,

we considerZ’(n) in addition to Z(n) to derive an accurate We prove Theorem§]1l and 2 in Sectionsl IV and V,
bound. Second, the proof df [10, Lemma 1] does not use thgespectively. From this theorem we see that at least for the
correct span when applying the resulti[15, Sect. VIL.1, TAIn.  strongly nonlattice case the error probability of the rando

coding is
Q(n7(1+p)/2eanr(R)), R > Reit
l1l. M AIN RESULT Pro(n) = {Q(nl/Qe"Er<R>), R < Rerit. ©)
Define The RHS of [6) forR > R is the same expression as

the upper bounds ir_[10][13] but our bound is tighter in its

__hn oy, B coefficient and is also assured to be the lower bound.
e ohi-1 (1 —e hnu)

gn(u) =1— It may be possible to derive a similar bound as Theorem
for the case thatZ(n),Z’(n)) is not strongly nonlattice

by replacement of integrals with summations, but for thiseca
the author was not able to find an expression of the asymptotic
expansion straightforwardly applicable to our problem tmisl

remains as a future work.

hnu

for h > 0. Here we definde® —1)/x = (1 —e ) /z =1 for

x = 0 and thereforgyy(u) = limp o g(u) =1 —e . We give
some properties opy, in Appendix[A. Now we can represent
the random coding error probability as follows.

Theorem 1. Fix any0 < R < I(X;Y) ande > 0, and let
02 > 0 be sufficiently small. Then, for the span> 0 of the

Remark 2. We can show in the same way as Theofém 2 that
the random codinginionbound is obtained by replacement of

TABLE I. CLASSIFICATION OF NONSINGULAR CHANNELS.
(Z(n), Z'(n)) ,
not strongly nonlattice strongly nonlattice
log-likelihood ratiow lattice BSC asymmetric BEC
nonlattice | ternary symmetric channel$ binary asymmetric channel




Y, With asymptotic expansion with a careful attention to compoment
o et implicitly assumed to be fixed and the derivation of asyniptot
/ e~ P min {L7 1} dw expansion varies in some places between the lattice and

i —1 nonlattice cases regarding this aspect.

— 00

P
= (L + l) ( hh" ) ) Here we give a proof of Theorefd 1 for the case that
L=p p/ \e"—1 satisfies the lattice condition with span> 0. The proof for
On the other hand, the termgXy;| and o1 in the square the nonlattice case is easier than the lattice case in masel
roots of [5) are the characteristic parts of the ana|ysig"]m t because ties of likelihoods can be almost |gn0red as dmtrlb
paper obtained by the Optimization of parame‘eﬂepending abOVe..See AppendD for the difference of the prOOf in the
on (X,Y). Thus, the optimization of is necessary to derive nonlattice case.
a tight coefficient whether we evaluate the error probabilit
itself or the union bound.

Remark 3. The results in this paper assumdixed coding po(z,y) = Px:[r(z,y, X') = 0]

rate R and are weaker in this sense than the result by Scarletp (z,y) = Px/[r(z,y, X') > 0] = Px/[r(xz,y,X') > h].

et al. [10] where they assure an upper bound for varying rate 9)
by leaving an integral (or a summation) to a form such that the . .

integrant depends on. It may be possible to extend Theorem 1€ last equation of{9) holds sinegr, y, z') = lo/g v(z',y)—
[ for varying rate since the most part of the proof dealso8¥(z;y) and the offset of the lattice dbg(z’,y) equals
with R and the error probability of each codeword separately!© that oflogv(z,y) giveny. Under the maximum likelihood
However, the proof of Theorefd 2 heavily depends on fixedl€coding, the average error probabilikc is expressed as
R and it is also an important problem to derive an easinPRC = Exylam(p+(X,Y), po(X,Y))] for

Now define

computable bound for varying rate. arr(pospo) =1 — (1 — py )Mt
Remark 4. In [8] it is shown for discrete nonlattilehannels M—1 M—1 1
with R < Rerit that + Z pé(l—p+—p0)Mil< . > <1— +1)
(3 (3
1 1 i=1
Pron) = S0 i), ™ (10

v/ 2mnpl,

Here the first term corresponds to the probability that the-li

where lihood of some codeword exceeds that of the sent codeword,
,  0? log E[e?(V)] and each component of the second term corresponds to the

P2 = N2 — probability thati codewords have the same likelihood as the

- 9 sent codeword and the others do not exceed this likelihood.

2>, (wo(y)wa(y) —wi(y)?) _ _ o
= 2 (8) One of the most basic bound for this quantity is to use a
union bound given by
for

qr (p+,po) < min{l, (M —1)(p+ +po)} -

A lower can also be found in, e.g.l _[16, Chap. 23]. For
evaluation of the error probability with a vanishing relati
§rror the following lemma is useful.

wim(y) =Y _ Px(x)(log W (yl|z))" /W (y|z) .

The author misunderstood that = p» in the ISIT version
and described that Theore 2 contradi¢ts (7). The corre

calculation show that}, # us and Lemma 1. It holds for anyc € (0,1/2) that
= o1y = >, (wo(y)w2(y) —wi(y)?) m sup am (p+; Po)
2 =011 = —iip v
>y wi(y) M =20 (p_ po)e(0,1/3]2:p4 <Mepo 1 — %
for (p,n) = (1,1/2). Therefore no contradiction occurs lim inf qr (p+, o) _
between this paper and [8]. T Mo (9p0)€(0,1/32:ps <Mep | _ CfMpz(\},chpo) =
Po

IV. FIRST ASYMPTOTIC EXPANSION ) ) )
We prove this lemma in Appendix] E. We see from this

In this section we give a sketch of the proof of Theoremiyeorem that the error probability can be approximated by
. We prove Theorer] 1 separately depending on whether
satisfies the lattice condition or not. The proofs are déffer e MP+(XY) (1 — o= Mpo(X,Y))
to each other in some places for two reasons. First, we cannot 1- Mpo(X,Y)
ignore the case that a codeword has the same likelihood as ’
that of the sent codeword under the lattice condition wrereafor (X,Y") satisfying some regularity condition.
such a case is almost negligible in the nonlattice case.rfseco

especially in the case of infinite alphabet we have to use thg
+

Next we consider the evaluation ofy(X,Y) and
(X,Y). We use LemmE&l2 in the following as a fundamental

“There is a calculation error for the lattice caselin [8] withegundant ~ tool of the proof. LetVi,.--,V, € R be (possibly not
factor /7. identically distributed) independent lattice random abhes




such that the greatest common divisor of their spaash.
Define

Av,(\) = log E[e?V], A

= ZAW()\)

Then its large deviation probability is evaluated as foow

Lemma 2. Fix z > Y. | E[V;] such thatPr[(V; — z)/h €
Z] = 1 and defineA* > 0 as the solution ofA’ v (A
x. Let €,72,b059,52,54 > 0 and s3,53 € R be arbi-
trary. Then there exist$; = b1(bo, 89,52, 53,53,54), N0 =
no(E,b0,72,§2,§2,§3,§3,§4) > (0 such that

Plyr, Vi=a] |

he—n(z—Ay(3%)

/2r A ()

PSS, Vi> o+ B
he—n(nz—Ay (X*)) -

(ehr™ — 1)\/27rA (A*)

hold for all n > ny satisfying
d™ Ay, (A

M8m = Z am

84AV1. (N +i€)
o€

i=23,

S ngmv
A=A*

-

s
Il
-

VIl < bo

‘ < m8y,

-

(log [Ele™ 9| — log E[e*]) < —nns,

=1

V¢ € [-m/h,m/h]\ [=b1,b1].

The proof of this lemma is Iargely the same as that of [17, (+

Thm. 3.7.4] for the i.i.d. case and given in Appendix B.

Let by, 01, 02,03, 71, V2,54 > 0 satisfy 02 < mm{ug/Q,

2/ R/12}. To apply Lemmd2 we consider the following
setsA,,, m = 2,3, B,C to formulate regularity conditions.

Am = {fl €Cp: VA, |fm()‘) _Nm| < 52} >
B={f2€Ca:Y\E&[~b1,b1], f2(\,§) < =2},
C:{fQECQ:VAvge[_ bo],f2(A,§)§§4},

whereC; and(C, are the spaces of continuous functidns-
v1,n+7] — Rand[n—~1,n+|x[—7n/h,7/h] — R, respec-
tively, andb, is a constant determined frobg, s,, 52, 55, 53, 54
with Lemmal2.

We define the even$ as
S={1ZWm)| <5} u{Z®)) € A} U{ZP()) € As}

b07

U{Z.(A+18) — Z.()\) € B}
u{’(%Z(‘*)(Hig) ec},

where we regard(\ + i) as function(), €) — Z(\ +i€).

the likelihood of each codeword given the sent codew&rd
and the received sequente as follows.

Lemma 3. Lete > 0 be arbitrary anddé; > 0 in the definition
of S be sufficiently small with respect tq. Then, there exists
n1 > 0 such that under the evemtt it holds for all n > n;
that,

he(Z(mM—Z'(n)?/2(p2—62))

2mn(p2 + 62)
het(Z(m)=Z'(n)?/2(p2+62))

(1 _6) SpO(va)

(1+e),

27TTL(,U,2 - 52)
her(Z(m) =2 (n)?/2(u2—32))

(eh(ner) —1)y/27n (2 + 62)
het(Z(n)=Z' ()% /2(p2+62))

= (eh—m) — 1)/2mn(uz — 62)

(I1—¢) <pi(X,Y)

(1+e).

Proof: Note that|Z/(n)| < 6; and Z”(\) > us/2 for all
A€ [n—m,n+mn] from Z(m>( ) € A, and [3). From the
convexity of Z(X) in A, if we setd; < yi1u2/2 thenZ(A) is
minimized at a point inn — 1,7 + 1] with

sy _(Z'(m)?

20 (Z' ()

<minZ(\) < Z(n) — im0

2(u2 —02) T A
Thus the lemma follows from Lemnid 2.
Next we define
oMU Z()+R~(Z' (n)) /2(p12~62))
O /n
e Z(m)+R—(Z'(m)?/2(p2+52))

(X,Y) = (1+€/2)gh< e

Elg\(X,Y)), s € {—, +},

)
)

g (X.Y) = (1—¢/2)gn (

c =
where

o) = (") — 1)\ /27 (pg + b5)
(ehm —1)(1 —€/2) ’

(=) — 1) /27 (2 — 02)
(eh —1)(1 +¢€/2)

Then the error probability can be evaluated as follows.

o) =

Lemma 4. Fix the coding rateR and assume that the same
condition as Lemmil 3 holds. Then, for all sufficiently large

(X,Y) < au(p+(X,Y),po(X,Y)) < g7 (X,Y).

This lemma is straightforward from Lemmias 1 did 3. We
use the following lemma to evaluate the contribution of the
casesS*.

Lemma 5. Let §j(X,Y) = e™(Z()+R) Then

Under this condition we can bound the excess probability of

5 The greatest common divisor for a g1, ha, - -}, h; > 0, is defined
ash > 0 if h is the maximum number such tha/h € N for all ¢ and
defined a9 if such h does not exist.

QI\f{(er(XvY)va(XvY)) < g(X Y)
1+ hn/2.
Oy

(11)

9 (X,Y) < J(X.Y). (12)



Furthermore, for sufficiently largeg, and sufficiently small aroundz € R? asBs(z) = {2’ : ||z—2’|| < §}. The oscillation
v < min{ds, d3} andy, < by we have wy of f is defined as

X — AN f / RQ

T~ log Exy [L[S°] §(X,Y)] < —E.(R). wi(§) = sup f(z) = Inf f(=),  SCR,

n—,oo M

wyr(0; &x) = sup /wf(B(;(z))ngg(z—i—a)dz.

We prove this lemma in AppendiX C. The proof is obtained a€R?
by Cramér’s theorem for general topological vector sp§tés ) . )
Theorem 6.1.3] with the fact that; and C, are separable We use the following proposition on the asymptotic expan-
Banach spaces under the max norm. sion for the proof of Lemmal6.

" 5
Proof of TheorerflL:From Lemmd¥, it holds fof, < [OR i 0 e BEaet B0l aviabies with meamoze
71 < min{dz, 5}, 92 < by and sufficiently large: that and covariance matriX.. Then, there exists a three-degree

Prc = Exy (L[S qu(p (X, Y),po(X,Y))] polynomiall h(z) = h(z1, z2) such that for any functiorf(2)
+Exy [L[S] g (p+ (X, Y), po(X,Y))] O] L —E
<G 4+ Exy (L[S qn(p+ (X, Y), po(X,Y))]. ‘/f ( >¢E( : vl

< wf( )571 + wy (0n; @x),

whered,, satisfiedim,,_,~, v/nd,, = 0 and does not depend on
Exy[L[S]9(X.Y)] f
G(+)

Thus we obtain from Lemm@ 5 that

Pre 14 Prc — GEf)
o) o

<1+

To apply this proposition we define

Vnz—z2)2¢;
fa(2) =" <7\/ﬁ> |
Prc > Exvy[L[S] (7)(X Y)] ’

- illati . (R2 (5
_ Gg ) E[L [Sc] (X Y)] ;I;]r:)ié)z(;nlanonaujn (R*) andwy, (6,; @) of f,, are equal to

Similarly we have

and therefore
Pre _ _ 1+m/23(X.Y)

Vr(z1—y/mA)—22/2¢1)
eV —vRd) o <e )

Cg\/ﬁ

[ O Y (-)
G, () q, from their definitions.
and we see from Lemnid 5 and Lemija 6 below that We can bound the oscillation gf, as follows.
9(X,Y
( = ) —o(1), s {+,-} Lemma 7. It holds that
G wy, () = O(n~*7?), (13)
and we obtain Theoref 1. ] wf, (6, @) = o(n—p/2), (14)

Furthermore, ifp < 1 then
V. SECONDASYMPTOTIC EXPANSION

W (0n; ®) = o(n~1FP)/2), (15)
To rove Theorernl2 it is necessary to evaluate the expecta-
tion G,” = Elg (S)(X Y)]. This expectation can be bounded  We prove this lemma in AppendX F. By this lemma we
by Lemmfﬂs below and we give a sketch of its proof in thiscan apply Proposition] 1 to the proof of Leminla 6, which we
section. give in AppendiXG.
Lemma 6. Fix the coding rate0 < R < I(X;Y) assume
that (Z(n), Z'(n)) is strongly nonlattice. Then, for any fixed VI ConcLusioN
c1,c2 > 0 and sufficiently larges, We derived a bound of random coding error probability,
B B the relative gap of which converges to zero as the block kengt
e Z(m+R—(Z"(n))?/2¢1) increases. The bound applies to any nonsingular memoryless
E\gn o/ channel such thatZ(n), Z’(n)) is strongly nonlattice. The
main difference from other analyses is that we optimize the
A D e "Er(B) (14 0(1)), R > Rexit, parameter\ aroundn depending on the sent and the received
\/2”"("‘)0“'??1'/01) sequence$X,Y). A future work is to extend the bound to
= nlea Vi) e "B (14 0(1)), R = Rerit, the case thatZ(n), Z'(n)) is not strongly nonlattice, that is,

2(6’1"—1)\/1+0'11/01

- Z(n), Z' is distributed on a set of lattice points or on a
hn(czy/m) e_nET(R)(l-i-O(l)), R < Ryt (Z(n) (1)) p

(eh—1)\/T+on Jer set of parallel lines with an equal interval. It may be pokssib
to derive an expression of asymptotic expansion appliceble
Let 5, and ¢s, be the cumulative distribution function CUr Problem by following the discussion in [14, Chap. 5].

and the density of a normal distribution with mean zero and étnhe explicit representation df(z) is given in the original referencé [114]
covariancey, respectively. We define th&ball Bs(z) € R?>  but we do not use it in this paper.
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APPENDIX Z T ae < n3y, V|El < by
=1
A. Properties of Functiony, that
Lemma 8. For ¢, =1 + hn it holds that SV 53
) sup |Pr | ==L < o] — ®(v) — 1—v?)o(v
gn(u) < min{l, cpu} (16) WP { N () 6\/5( Jo(v)
< P
< cpu a7 s A e
— )T | v, —/—= —
and "VnAs ) | T Wn
dgn (u _
0< gg( ) < (et hn)e (18) wheres,, = n=' Y0, Vi, 7(v,d) = d[v/d] — v —d/2, ®
u and ¢ are the cumulative distribution function and the density
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Proof of Lemm&l2:Let P’ pe the probability distribution whereV* is the topological dual ol .
of {V;} such thatdP’/dP = e* 2i=1Vi /eAv (X)) Then

n n We use the following lemma derived from this proposition.
P ZVi >zl =e MWOAIER [ X Vil ZVZ- > 1 Lemma 9. Let V be the space of continuous functions
i=1 i=1 on a compact setd into R and V3,---,V, be iid. ran-
Here note that dom variables onV such that E[V(s)] = wv(s) and
N supyes Ele®!V®)] < oo for someay > 0. Then, for any
Ep[Vi] = E[Vie* "] compact setA’ C A and e > 0, the empirical mean
P T A ) V =n"13", V; satisfies
and 1 _
. ) im — logP V(s) — >e|l <0.
BV V] Jim —~logPr ssélfffl (s) —v(s)| =€
> o =MV =

=1 Proof: Let V > f be equipped with the max norm

11 = ma £ (s)]

from the definition of\*. Therefore

P ZVZ' ZT| = andV* be its topological dual, that is, the family of (signed)
=1 . finite Borel measures of§. Then, we obtain from Cramér’s
AVONE,, [N T Vg Z(Vi _Ep[V]) > OH (20) theorem forS = {f € V : sup,c 4 | f(5) —v(s)| > €} that
=1

=— 1 =
nl;rrgo ElogPr sup [V (s) —v(s)| > €

Here the variance o¥; underP’ are represented by sEA
2 < — inf sup {(f,0) — log B[V} .
Ep[(V; —Ep[V])?] = d*Av. () fes gev-
dx?
and similarly By considering a set of point mass measufesy; : a €
R, s € A} as a subset oP*, we obtain
znjlo |Ep/[el€Vi]] = znjlo BleX Vielt¥] inf sup {(f,0) —log E[e!"1:9]}
i=1 s i=1 © et fes 96\5)* ’ &
u . . > inf s —logE[e®V )]} .
-y (10g|E[e(>\ HOVI]| _ Jog B[ w]) . = Il sup szp{af(S) ogEle ]}
=l Here note that
Thus we can apply Prdpl. 2 to the evaluation [of] (20) and we 2
obtain Lemma&R by the same argument(as [17, Thm. 3.7.4] for 0< —-—logE [eaV(s)}
the i.i.d. case. [ | dax
- E[v(s)QeaV(s)]
C. Proof of Lemmal5 = EleaV )]
. . . E[V(S)Qeo‘v(s)]
In this appendix we show Lemnia 5. Note tHail(11) is ob- < E ]
tained easily by the standard discussion used in the dienivat E[l +aV(s)]
of random coding exponent arld {12) also easily follows from E[V (s)2e®!V )]
@d. = T-JaE[VE)]

We prove Lemmal5 based on Cramér's theoremiifl [17ko |o| < 1/E[|V(s)[]. Since there exist® > 0 such that
for general vector spaces, which is written for our settisg a .2 aolz|/2 < ﬂ(eao\w\ +1) and |2 < Beolzl hold for all

followd1. T EeR
Proposition 3 (Cramér’s theorem [17, Theorem 6.1.3et i1 92
denote the distribution of i.i.d. random variabl&s, Vs, - - - on sup o logE {e"‘v(s)} <c
a topological real vector space. Assume tha¥ is a separable |o|<ap/2 OC
Banach space. Then, for any compactSet V, for somec > 0. Therefore
— 1 1 & i _ (V1.6)
i —logPr lﬁ Y Vies inf, sup {(f,0) — log Ble™™ 7]}
i=1 . 9
> inf sup sup Jaf(s) —aV(s)—ca“/2
< - ing sup {(v, ) — log E[e(V19)]} | fesSsear \a|§ao/2{ 5) 5) /2
VES gy . 2
> inf su ale —ca” /2
= 7€5 falan thl &

“Crameér’s theorem ir [17] is described for a more generaingesuch that
V is sufficient to be a metric space under some regularity ¢ondi When >0
we consider Banach spaces some of these conditions aréesatsid the
theorem can be represented in the form of this paper. and we obtain the lemma. [ |



We can apply Lemmi@l 9 to the proof of Lemima 5 from the
following lemma.

Lemma 10. Let\ > 0 and¢ € [—n/h,w/h]\{0} be arbitrary.
If v satisfy the lattice condition then

E,[Za(\ +16)] — Ey[Zu(V)] < 0.

Proof: Let Ex., be the conditional expectation on
X' given (X,Y) under distribution Px,, such that
dPX/_’)\/dPX/ = e)‘T(X"Y’Xl)/EX/ [GAT(X’Y’X,)]. Then

EolZ(A+i6)] - B,[Z(V)]
log [Ex z [

|[Ex[e (A+ior(X,Y, X' )]|
_1og Exs 2 [ei€108 V(X',Y)]e—if log v(X,Y) |}

log Ex [ (X YX))]

-10g|EX/,,\[€i£ logV(Xl"Y)H] :

On the other hand, the definitio/n of lattice condition in
Def.d implies thatP[|Ex. y[e'¢°e¥(X"Y)]| = 1] < 1 holds
for any¢ ¢ {2mm/h :m € Z}.

Since P is absolutely continuous with
P, we have P,[|Ex ,[e!€lgr(X"Y)]| 1]
any ¢ ¢ {2mn/h : m € Z}. Thus we obtain
E,[log |[Ex x[e€1¥(X' Y)]|] < 0 by noting thatE[V] < 0
holds for any random variablé € R such that” < 0 a.s. and

respect to
< 1 for

Pr[V < 0] > 0. [
Proof of Lemma&l5: First we have
EXY[ [Sc] np Z(n)+R)]
— o(A(P)+pR) P,[S°]
st (PpHZ<”< )| = 61] + B[ZP(N) ¢ A
+ P[Z®(N) ¢ As] + Pp[Za(A +18) — Za()) € B]
0 .
+P, H8—€4Z(4)(A+1§) € c} ) (21)

Note that the moment generating functions of the absolute

values of the empirical means in_{21) exist from the regtyari
conditions assumed ifl(4). It is straightforward from Ceais”
inequality that

lim —logP 1ZW )| > 6] <0

n—oo N
sinceE,[Z() (n)] = 0. Itis also straightforward from Lemmas
andI0 that the other four probabilities [n](21) are expenen
tially small for sufficiently smally; with respect to(ds, d3)
and

1 .
V2 = -3 sup Ep[Za()‘ +1€) — Za(N)]
AE[N—1,m+71]
§€[—m/h,m/R]\[—b1,b1]
4Z :
S4=2 sup E, [ g2 +1) ()\:—15) H .
XE[N—1,m+71] 9¢
£€[—bo,bo]

D. Theoreni]l for Nonlattice Channels

In this appendix we give a brief explanation for the proof
of Theorem[l in the case that = 0, that is, v does not
satisfy the lattice condition. For this case we bound thererr
probability by

Exy [qrm(P1/m(X,Y))] < Pre < Exy[qum (o(X,Y))]
where

= PX/ [T(.’B, vy, X/) Z C]
_p)I\lfl )

ﬁC(mvy)
qu(p) =1-(1

Similarly to Lemmdll we have the following lemma.
Lemma 11. It holds for anyc € (0,1/2) that

qr(p)

17_17]” = hrn inf qnt (p)
— e

M 1.
M—oop€(0,1/2] 1 —e=PM

lim  sup
M—o0 pe(0,1/2]

The proof of this lemma is given in AppendiX E. We can
obtain Theorernll fok = 0 by replacing the exact asymptotics
for non-i.i.d. lattice random variables with that for nottilze
random variables based on the asymptotic expansion for non-
lattice random variables considered[in|[12, Thm. 1, Sect]XV
More precisely we can show Theoréin 1 by replacing Fiop. 2
with the following proposition, which is also easily obtain
from the discussion iri [12, Sect. XVI.6.6] for non-i.i.dndom
variables.

Proposition 4. Let e,s,, 32, s3,53,54,b0,72 > 0 be ar-
bitrary and V;,---,V,, € R be strongly nonlattice
independent random variables such th&[V;] 0
and Pr[V;/h € Z] 1._Then there existsd =
d(§27§27§37§37§4ab0) < d = d(€a§27§23§37§37§47b0) and
ng = no(€, Sq, 52, 83, 53,54, bo, y2) satisfying the following:
it holds for all n > ng satisfying

n
nsy <Y V72 < nss,
=1

n
nsy < Y VP < nss,
1=1
n

> log[E[Y]| < ~
i=1

d*log E[e'¢"?]
dgt

V¢ € [d,d],

< M8y,

VIEl < bo

=1

that

E. Bounds on Error Probability fol/ Codewords
In this appendix we prove Lemmpbs 1 dnd 11.



Proof of Lemma]1: First we have

M—1

, (M1
E (1 —po —p)™ 1( )
i1

1

=(1—p)M =1 —po—p)M! (22)
and
M—1
- ) M-1 1
i1 — _ M—i—1
;:1 Po( Do p+) ( i )i—i—l
M—1
1 X M
- 7 1— _ M—i—1
W 2 po(1 —po —py) (z’—i—l)
M
1 ) M
— ) 1— _ —1
Mpo ;:2 po( Do P+) ( i )
1—p )M — (1= po—p)M B
(23)

Combining [22) and{23) witH(10) we obtain
1—p)™ -1 —po—p)"

qm(py,po) =1 —

Mpo
and
1— am (P+,Po)
1 e~ MP+(1—e—Mpro)
N Mpo
1 Mpo— (1=p)™ = (1 =po—p)™
Mpoy — e~ MP+(1 — e~ Mpo)
M
Mpo — (1= ps ) <1 - (1- ) )
= 1 —

Mpoy — e~ MP+(1 — e~ Mpo)

M
=p (1= (1= 2) ") — o1 - o)
- Mpg — e~ Mp+(1 — e~ Mpo) ’

Here note thatog(1 — z) > —z — 222 for x < 1/2. Therefore
for po,p+ < 1/3 we have

Po M
1—p )M |[1- (1 — )
(1-p4) ( —
Mpg 2Mp3
<e Mpr |1 _e TP+ G-pp)?

< o~ Mpy (1 _ e—Mpo—szom—SMp%)

<e MPr(1— (1 —min{1,5M (p% + pipo)})e” M),

which implies

T qm (P+,Po)
lim sup 1-— —
M=00 (5. po)€(0,1/3]2:p+ <Mepo 1— CM+;O°’MP°)

T ind1.10M 1 t2¢p2
< lim sup min{l, —Mpo}'
M—o0 (0,173 Mpo — (1 — e~ Mro)

— 1 min{l,10(Mpo)?}
= lim sup T —7

A{*}OOP()E(O,]./?)] M Mpo— (1—6 po)
=0.

Similarly, for pg,p+ < 1/3 we have

Po M
1—p )M |[1- (1 - )
(1—py) -
671L{p+72Mp2+ <1 —_e 1Mgi>

o~ Mpy—2Mp% (1 _ e—Mpo)

e MP+(1 — min{1,2Mp3 }) (1 — e M)

Y

Vv v

and

1 _ _ au(p+,po)
e MP+ (1—e—Mpo)
Mpo

- : 1 2M1+2c 2
> — lim sup min{l, — ]50}
M—=00 (5. 150)E(0,1/3]2:p <M1+ep, Mpo — (1 —e Po)

lim inf
M—so00 (P+,P0)€(0,1/3]2:p <M°po 1—

which concludes the proof. ]

Proof of Lemmd_ll1: By letting ¢t(z) = 2~ ' log(1 — z)
we have

1— (1 _p)Iﬂfl B 1— ep(IMfl)t(p)

1 — e—pPM 1 —epPM
e—PM (ep(M-F(M—l)t(p)) — 1)
=1- 1—e M
. eP(M+(M—=1)t(p)) _q
o ePM _ 1

By ¢(x) < —1, the second term is bounded from above as

eP(M+(M-1)t(p)) _ 1 eP — 1
erM — 1 ~erM
el —1
<
S oM
e—1
< 24
< (24)
and bounded from below as
oP(M+(M—1)t(p)) _ 1
epM — 1
_ P(M + (M — 1)t(p))
- ePM — 1
_ M(pp+log(l—p))  ptlp)
N ePM — 1 epM — 1
M(=2p*)
> M 1 (25)
2 (Mp)?
- MerM 1
>—3 b « <lforxz>0 (26)
TR y w1 = T

where we usedog(1 — p) > —p — 2p? for p € [0,1/2] and
t(z) <0 in (25). We complete the proof by letting/ — oo
in 24) and [(2B). [ |



F. Evaluation of Oscillations Therefore we obtain for sufficiently large that

In this appendix we prove Lemnia 7 on the oscillations of epvnw’ ,
function f,,. We first show Lemmas 12 afnd]13 below. T S 2(pvnjw’ —wl) < 2v/néy,
2
Lemma 12. For any setS C R+, PVZ, | < 2vms
_ < n
wr, (S) < enle2) Pn~P? sup e P/, T R
22:2€S
sincelim,_,~ v/nd, = 0. Therefore by letting!, = 24,,4/n
Proof: We can boundf,, as and using[(27) we obtain for sufficiently largethat
\/ﬁzl—zg/ch , SN (1 “+ 5/ )e\/ﬁw
— o VP2 ° () < (148 )ePVrag, [T 0n/2"
fn(z1,22) = ¢ virezL g, (W) fa(2') < (1+4y,)e gn < oo/t
—pP,—PZ c1,,— Vnw Vnw
= (cay/n) Pe P2/2¢1=Pg, (v) <148V (g e N cnone ,
(b letti _ eVmE—23/201 CQ\/ﬁ Cg\/ﬁ
y ettlngu = T)
=P —pz2/2¢c / I \a—PV 21 e\/ﬁw ch&éeﬁw
< en (cav/m) e (by (7)) fa#) > (1= 8))e I\ i) T v )
Thus we obtain the lemma sing& (z) > 0. B We obtain [2D) from these inequalities by
Lemma 13. Letu > 0 andr € [-1/2,1/2] be arbitrary. Then
eVnw cpeVmw
wj, (Bs, (2)) < 20,677V | g, + 2
lgn (1 +7)u) — gn(u)| < cnlrlu, (27) Ao = cov/n cav/n
9 ((1+ 7)) = ga(w)] < exlr]. (28) v
< 4gje VT e (by (18)
Proof: Eq.(27) is straightforward froni_(19). We obtain “2 c:
@8) from <40, etmPVna
Cg\/ﬁ
dgn((1 4+ r)u) dgn(v)
ar ' ) Similarly we obtain from[(28) that
v=(14+7r)u
<u((I+r)u+hne™™  (by (18) / s eV /
n(2') < (149;,)e PV + cpd,
S to? e fl) < (1+8)) o o) e
<ecp. e\/ﬁw
(2) > (1 =4 )e PVna — el |
- f (Z ) = ( n)e <gh <CQ\/H> Ch n)
By using these lemmas we can evaluate the oscillation ofrom these inequalities we obtaln[30) by
fr» within a ball as follows. Jw
o/ e
Lemma 14. Assume|zy| < ¢14/n/2. Then, for sufficiently wy, (Bs, (2)) < 26,67V (gh (C \/ﬁ> +Ch>
large n, 2
8¢ <21+ )8l e PVrE
wr, (Bs, (2) € =800V (29)
C2 |
wr, (Bs,(2)) <A(1 4 cp)y/ndne V2 (30) Proof of Lemmal7: Let b,, be such that
) ) ) ) e\/ﬁbn _ n1/2+1/4p61/2p )
_Proof: First we obtain forz" satisfying||2’ —z|| < é, and "
sufficiently largen that First we have
|(2)* = 23| < |25 — 22| (23] + | 22) i
: —z|| < d
< |2 — z2l(2lea] + |2 — ) Jestte's 12—l < 8pste-+ e
< bn |erv/n+ 6y < / we(Bs, (2))¢s(z + a)dz
< 2c16,v/n.  (by lim, o 6, = 0) |z2]<c1v/m /2,21 <by
Let w = 2 — 25/(2c1v/n) andw’ = z| — (25)%/(2c1y/n). +/ wf(Bs, (2))¢s(z +a)dz
Then lz2|<c1v/n/2,21>bn
2 _ (02 +/ wr(Bs, (2))ds(z + a)dz
[w" —w| <2 —zl|—i-M |z2|>c1v/m/2
2c1v/n deqep,

Spel=PVRZL G0 (2 4 a)dz

<
< 26,,. —/
- 22| Sc1v/n/2,21<by, €2



+ / 2¢4(1 + cn)Vndne PV g (2 + a)dz G- Proof of Lemmal6
|2l <er v/ /2,1 2bn First we have

+ / cn(can/n)Pe™ P8 g (2 4+ a)dz e Z(m+R—(Z'(n))?/2c1)
|22 >e1 v/ /2 E\gn o
(by Lemmag IR and 34 2
b - n(Z(n)+R—(Z'(n))?/2¢1)
" deqep Vs — oA(P) —npZ(n) ©
< /_OO 75716(1 PVIELG o (21 + a1)dz =e""WE, [e7 """ g, o/ .

+ 2¢4(1 + e PV +ap)d Here recall thal,[Z(n)] = o < —R andE,[Z' ()] = i1 =

/bn call + ca)v/ndne Pou (21 +a1)dz 0 from (2). By letting A = —(R + 1), we haveA = 0
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b —+v/nw nw —vnw
/ 5ne PV G (2 4 ay)dzy e~ Vg, (eVnw) < e~ V™ holds for anyw and
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where we used) = 1/(1 + p). O
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