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Abstract

In this paper, we present nontrivial upper and lower boundthe secrecy capacity of the degraded
Gaussian diamond-wiretap channel and identify severalasiof channel parameters where these bounds
coincide with useful intuitions. Furthermore, we inveatig the effect of the presence of an eavesdropper
on the capacity. We consider the following two scenariosaréigg the availability of randomness: 1)

a common randomness is available at the source and the tagsrahd 2) a randomness is available
only at the source and there is no available randomness aelfgs. We obtain the upper bound by
taking into account the correlation between the two relgynals and the availability of randomness at
each encoder. For the lower bound, we propose two types afig@themes: 1) a decode-and-forward
scheme where the relays cooperatively transmit the messadj¢he fictitious message and 2) a partial
DF scheme incorporated with multicoding in which each redagds an independent partial message and

the whole or partial fictitious message using dependentveontks.

Index Terms

Wiretap channel, diamond channel, diamond-wiretap cHanmdticoding

. INTRODUCTION

The diamond channel introduced by Scheih [1] consists ofcadwast channel (BC) from a source
to two relays and a multiple access channel (MAC) from the telays to a destination. The capacity
of the diamond channel is not known in general. To simplifg fhroblem, let us consider a diamond

channel having BC with two orthogonal links and Gaussian Mi&Ghis setup, there is a tension between
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Fig. 1. Physically degraded diamond-wiretap channel

increasing the amount of information sent over the BC anckesing the coherent combining gain for the
MAC. Two coding schemes corresponding to the extremes wbelgartial decode-and-forward, where
independent partial messages are sent to the relays, andletanod-forward (DF), where the whole
message is sent to each of the relays. By incorporating eoditig at the sourcel, [[2],][3] proposed a
coding scheme in which the relays send independent pargasages using dependent codewords and
showed that this coding scheme strictly outperforms the BdFartial DF in some regime. Furthermore,
[3] showed an upper bound by taking into account the corcgldietween the two relay signals, which
is strictly tighter than the cutset bound. This upper boured whown to coincide with the lower bound
of [2], [3] for some channel parameters.

In this paper, we consider the degraded Gaussian diamomdawi channel presented in Fig. 1 and
present lower and upper bounds on the secrecy capacity Wgitxg the correlation between the two
relay signals. We identify several ranges of channel parammevhere these bounds coincide with useful
intuitions and investigate the effect of the presence of aresdropper on the capacity. We note that
this model is a natural first step to studying diamond-wpathannel because the sum secrecy capacity
of the multiple access-wiretap channel has been charaeteanly for the degraded Gaussian case [4].
A practical situation corresponding to this model is theesithannel attack [5] where the eavesdropper
attacks by probing the physical signals such as timing m&iion and power consumption leaked from the
legitimate destination. In the presence of an eavesdrofipetechnique of utilizing randomness is widely
used to confuse the eavesdropper. We consider the follotmingscenarios regarding the availability of
randomness: 1) a common randomness of fétés available at the source and the two relays and 2) a
randomness of rat&’ is available only at the source and there is no availableaameéss at the relays.
See [6], [7] for the related works assuming restricted ramoess at encoders.

For the upper bound, we generalize the upper bound on thecitamd the diamond channel[3]
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and the upper bound on the sum secrecy capacity of the neubiptess-wiretap channel [4]. For the
lower bound, we propose two types of coding schemes: 1) ad#deand-forward (DF) scheme where
the relays cooperatively transmit the message and thediditmessage and 2) a partial DF scheme
incorporated with multicoding in which each relay sendsradependent partial message and the whole
or partial fictitious message using dependent codewordkelt is no secrecy constraint, our partial DF
scheme incorporated with multicoding falls back to thatZi [3]. Interestingly, in the presence of the
eavesdropper, the availability of randomness at the emsddeshown to affect the optimal selection of
correlation coefficient between the two relay signals in praposed schemes.
The remaining this paper is organized as follows. In Sediibrnve formally present the model of

the degraded Gaussian diamond-wiretap channel. Our maittseon the secrecy capacity are given in
SectionIl. In Sectiol 1V, we derive our upper and lower bdsion the secrecy capacity. We conclude

this paper in SectionlV.

I[I. MODEL

Consider the degraded Gaussian diamond-wiretap chanka.id that consists of a source, two relays,
a legitimate destination, and an eavesdropper. The sosirceninected to two relays through orthogonal
links of capacities”; and Cy, and there is no direct link from the source to the legitimagstohation
or eavesdropper. The channel outpdfsand Z at the legitimate destination and the eavesdropper,
respectively, are given a8 = X; + Xy + Ny andZ = ,/gY + Nz, whereg € [0,1), X; and X;
are the channel inputs from relay 1 and relay 2, respectivélyis the Gaussian noise with zero mean
and unit variance at the legitimate destination, ahdis the Gaussian noise with zero mean and variance
of 1 — ¢ at the eavesdroppeNy and N, are assumed to be independent. The transmit power coristrain
at relayk = 1,2 is given as Z;’:lX,f’i < Py, wheren denotes the number of channel uses. Note
that the channel output at the eavesdropper is a physicadlyaded version of the channel output at the
legitimate destination.

We consider the following two scenarios regarding the abdity of randomness. In the first scenario,
a common fictitious messagd of rate R/, i.e., M ~ Unif[1 : 2"R']E| is available at the source and the
two relays. In this case, &"%,n) secrecy code consists of a messaige- Unif[1 : 2"f], an encoding
function at the source that mags/, M) € [1 : 2"%] x [1 : 277 to (Jy, Jo) € [1 : 271 x [1 : 2C2],
an encoding function at relay = 1,2 that maps(J, M) € [1 : 2] x [1 : 2"F] to X' € AP,

i : 4] for two integersi andj denotes the sefti,i +1,...,5}.
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Fig. 2. Stochastically degraded diamond-wiretap channel

and a decoding function at the legitimate destination thapsi’™ e V" to W e [1:2"%]. In the
second scenario, a fictitious messageof rate R’ is available only at the source and the encoding at
the two relays is restricted to be deterministic. In thisecdke encoding function at relady= 1,2 maps
Jr € [1:2"C%] to X' € A
For both scenarios, the probability of error is given}a@) = P(W # W). A secrecy rate ofR
is said to be achievable if there exists a sequenc@®f,n) codes such thalim,, Pe(”) =0 and
limy, o0 %I(W; Z™) = 0. The secrecy capacity is the supremum of all achievableesgcates. LeC‘él)
and ()g) denote the secrecy capacity for the first scenario and foséltend scenario, respectively.
Remark 1: Because the legitimate destination and the eavesdropperotd@ooperate, the secrecy
capacity in Fig[ll is the same as that of stochastically dgtaase in Fid.]2, in whicly is given as

Z = ./9X1+ /9X2 + N, whereN;, has zero mean and unit variance and is independeiof

I11. MAIN RESULTS

In this section, we present main results of this paper on ¢laeesy capacity of the degraded Gaussian
diamond-wiretap channel described in Section Il. For thevity of presentation, let us define the

following functions:

filp) = 1 + 5 log(1 + (1= )P) (12)
o) = Ca + 5 log(1 + (1= ) P) (1b)
falp) = C1-+ Cs — 3 logl =) (1)
Fa(p) = 5108(1+ Py + Py + 20/ P Fy) (1d)
fs(p) = % log(1 +g(P1 + Py + 2pv/ P Py)) (Le)
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_ 1 14+9(P+ P+ 2pvP P)
- 1 14+9(P1+ P+ 2pvP P)

where the domain of, fa, f3, fs, and f is [~1,1] and that off, and fs is [—p, 1] for p = 2@;%@

The following two theorems give upper and lower boundsﬂiﬁ, respectively, whose proofs are in
Section1V.
Theorem 1. For R’ > 0, Cg) is upper-bounded by

min(max(S1, S2), max(Ss, S1)),
where

S1 = max min(f1(p), f2(p), f3(p), fa(p))

0<p<p*
Sy = max min(fi(p), f2(p), f3(0), f1(p))

pr<p<l
f3(p) + fa(p)

5 , fa(p) = f5(p))

S5 = max min(fi(p), f2(p), f3(0),
Sy = max min(fi(p), f2(p), f3(0), fa(p) = f5(p))
p*<p<

for p* = \/1+ 155 — ﬁ. We note that the functiong,’s for k € [1 : 5] are defined in[{L).
Theorem 2: Forp € [—1,1] and R’ > f5(p), Cél) is lower-bounded by

max(RO)(0), RS e ri(0),

where

Rk (p) = min(Cy, Cs, fal(p) = f5(p))
RO i(p) = min(fa(p). fo(p). f3(p). fap) — f5(p)).
We note that the functiong,’s for k € [1 : 5] are defined in[(1).
In TheorenlL, we note that the upper boundx(S;, Ss) is the same as that in[3] that assumes no
secrecy constraint. This is natural because the secreacitafs upper-bounded by the capacity without
secrecy constraint, which is not affected by the commonaamss at the encoders. To derive the upper

boundmax(Ss, S4), we generalize the bounding techniquies [3] dnd [4] taking account the secrecy

constraint and the available randomness at the encoders.

2By convention, we assume th#i(p) becomes negative infinity whep| = 1.
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In TheorerrﬂZ,Rg%(p) is achieved by using a DF scheme where the source sends tlsagee®
both relays and the relays cooperatively transmit the ngesaad the common fictitious message over
the wiretap channel. On the other hadﬁl(j,%F_M(p) is achieved by a partial DF incorporated with
multicoding (PDF-M) where each relay sends an independamiap message and the common fictitious
message using dependent codewords. The source perfornisatinlg as follows: the message is
represented as two partial messages, ws), a codebook for relay = 1,2 consisting of independently
generated:} sequences is constructed for eaghandm, and the source finds a jointly typical sequence
pair (7 (w1, m, 1), x5 (wa, m,l2)) and send$wy, i) to relayk for k = 1,2. A more detailed explanation
for the PDF-M scheme is given in Sectipnl IV. LBZIS%F = RSI)DF_M(O) denote the partial DF (PDF)
rate without multicoding at the source.

To compare our lower and upper bounds, let us consider riflgilarge R’ and symmetric channel
parameters, i.eP, = P, = P and(C, = Cy = C for some nonnegativ® andC'. It can be easily proved
that 1) the PDF scheme, which achig/eﬁn(fg(o), f4(0) = f5(0)), is optimal forC' < 2(f4(0) — f5(0)),
i.e., the BC cut is the bottleneck, and 2) the DF scheme, whittievesnin(C, f1(1) — f5(1)), is optimal
for C > f4(1) — f5(1), i.e., the MAC cut is the bottleneck. When neither the BC autthe MAC cut is
the bottleneck, the PDF-M scheme strictly outperforms tBé Rnd DF schemes for some range(of
as shown in Figl13. For example, whéh= 1 andg = 0.1, the PDF-M scheme strictly outperforms the
PDF and DF schemes fdr33 < C' < 0.89. Furthermore, Fig.13 shows that the PDF bound gets close
to the upper bound in Theorem 1 &sincreases. The following theorem states that the PDF scleme
indeed asymtotically optimal aB; or P tends to infinity, whose proof is relegated to the end of this
section.

Theorem 3: For the first scenario wittR’ > f5(0) and P, — oo or P, — ooH the PDF scheme is
asymptotically optimal.

Next, the following two theorems give upper and lower bouods(7(2), respectively, whose proofs
are in Sectiof 1V.

Theorem 4: For R’ > 0, Cg?) is upper-bounded by

max(Tl, TQ, Tg),

3For PL = P, C1 = C2 = C, andp = 0, f1(0) and f2(0) become redundant.

4Cy and C. are not necessarily fixed and can be arbitrary function®,0énd P».
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Fig. 3. Bounds for the first scenario when @)= 1,9 = 0.1 and (b) P = 10,9 = 0.1.

where

Ty = max min(f1(0),f2(0), f3(0), f(p)) — f5(p)

—p<p<0

Ty = max min(fi(p), f2(p), f3(p), fa(p)) — f5(p)

0<p<p*

T3 = Ina}élmin(fl(p)’f2(p)7f3(0)7f4(p)) - f5(p)

p*<p
We note that the functiong,’s for k € [1 : 5] are defined in[{1)p = ;}%, andp* = \/1+ 55 —
1
24/ P1P2 '

Theorem 5: For p € [—1,1] such thatR’ > f5(p), Cé?) is lower-bounded by

2 2 2
max(Rip(0), Ropp_pr_i (0) Bope_ppr_ai(P);

August 28, 2021

DRAFT



where
RE(p) = min(Cy, Ca, f1(p)) — f5(p)
R e vr_wi(p) = min(f1(p), f2(0), f3(p) — f5(p): fa(p)) — f5(p)

R e opr i (p) = min(f1(p), f2(0), £5(0), F1(0)) = F5(0)) - Leys (o). Com fo(p)-

We note that the functiong,’s for k € [1 : 7] are defined in[(1).

Note that in both the upper and lower bounds for the first sienthe termf;(p), which corresponds
to the required rate of randomness to confuse the eavesgirggpears only witlf4(p), which signifies
the amount of information sent through the MAC. In contrastboth the upper and lower bounds for
the second scenario, because the fictitious message hasgenbehrough the BCf5(p) appears in
common for all terms. This affects sufficient ranges of datien coefficient for the lower bounds for
large enoughk’ as remarked in the following.

Remark 2: For large enouglk’, sufficient ranges of correlation coefficiemffor the lower bounds in
Theorem 2 and Theoref 5 are different. For the first scenadte that the DF rate is maximized at
p = 1 and that it is enough to consider nonnegativéor the PDF-M scheme. On the other hand, for
the second scenario, because the minus tefy(p) is common for all terms, considering smaljecan
be beneficial by decreasinf(p) and we need consider alll < p < 1.

In the DF scheme for the second scenario, the source sendsthiaddays the fictitious message as
well as the message. Hencﬁg% is obtained frole()ll)7 by replacingC, and Cy by Cy — f5(p) and
Cy — f5(p), respectively. For a partial DF scheme incorporated wittitioading for the second scenario,
a straightforward extension from that for the first scen&ito let the source send the fictitious message
m as well as the partial message and the relay codeword inddy to relay k for £ = 1,2. Since
each relay decodes a partial genuine message and a whdlieugtnessage, we call this scheme as
PDF-DF-M scheme. Note th"R%F_DF_M(P) is obtained by replacing’; andCs by C1 — f5(p) and
Cy — f5(p), respectively, inRg]))F_M. However, since the same fictitious message is sent to blatysre
there exists inefficiency in the use of the BC. To resolve itnéfficiency, we let each of relay codebooks
be indexed by independent partial fictitious message,daglebook for relay: = 1,2 is constructed for
each(wy, my) by representingn as two partial fictitious messagés:,, m2). By using this PDF-PDF-M
scheme where each relay decodes a partial genuine messhgepattial fictitious message, we show
that R »pp_u(p) is achievable, which hags(p) intead of f3(p) — f5(p) i RShe pe_ni(0). We
note that having independent fictitious message at eack retiuces the achievable rate region over

the MAC, which results in additional contraints; > fs(p) and Cy > frz(p) in R%F_PDF_M(;)).
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Fig. 4. For sufficiently largekR’, g = 0.1, 01 = C, Co = C +2, P, = 10, and P> = 1, R%LDLM(P) is strictly higher

than R%wpnwna(ﬂ) for some range ot”.

Nevertheless, as long & = C, Rgl))F—PDF—M(p) is always higher than or equal ﬂal(ng_DF_M(p)
becausefs(p) > 2f5(p), which should be satisfied iR1(>21)3F_DF_M(P) > 0, implies C; > fs(p) and
Co > fr(p). If C1 # Co, R%F_DF_M(p) can be strictly higher thangl))F_PDF_M(p) as illustrated
in Fig. [4. Let R%F_DF = Rg))F_DF_M(O) and R%F_PDF = R%F_PDF_M(O) denote the rates of
PDF-DF and PDF-PDF schemes (without multicoding).

Similarly as for the first scenario, let us consider suffidielarge R’ and symmetric channel parameters.
SinceCy = Cs, we only consider the DF, PDF-PDF-M, and PDF-PDF schemeth@otower bounds. It
can be easily proved that the DF scheme, which achigwes,c|_; ;; min(C, f1(p)) — f5(p), is optimal
for C > f4(1), i.e., the MAC cut is the bottleneck. We can see in Eig. 5 thatRDF-PDF rate coincides
with the PDF-PDF-M rate at one point. This is because a negatrrelation between the two relay
signals is helpful for small’’ due to the reason in Remalk 2, i.e., the BC cut is the bottlenaed
positive correlation becomes beneficial@sncreases, i.e., the MAC cut becomes bottleneck.[Big. 5 also
shows that the PDF-PDF-M rate is zero up to some thresholee\&iC' due to the constraint’ > fs(p)
in RSI)DF_PDF_M(p) and the threshold value decreaseslaslecreases. Indeed, we can prove that the
threshold value tends to zero &stends to zero. Furthermore, Fig. 5 shows that the PDF-PDR#! r
coincides with the upper bound in Theoréin 4 for some rang€,a.g.,1.1 < C < 2.18 whenP = 10
andg = 0.1. The following theorem gives a condition where the PDF-RDFate coincides with the
upper bound in Theorenis$ 4, whose proof is relegated to theoktids section.

Theorem 6: For the second scenario with sufficiently larfé and symmetric channel parameters, the
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Fig. 5. Bounds for the second scenario whenRar 1,9 = 0.1 and (b) P = 10,9 = 0.1.

PDF-PDF-M rate in Theorefld 5 coincide with the upper bound fredren(#, and the secrecy capacity

is given asfy(p') — f5(') for

1 1 1 1
Z < < = * Z
1108(1+2P) < C < Jlog(14+2(1 4 p")P) + 3 og(1——5) @)

such that that at least one $f(s*) — fs(p*) < f3(¢') — f5(¢) and f3(0) — f(p") < fa(p) — f5(p') is
satisfied, where* = \/% — ﬁ andp’ € [0, p*] is such thatfs(p') = fdp’)éﬂ

Theoreni b indicates that the upper and lower bounds in Theshdeand b coincide for.1 < C < 2.18
when P =10 andg = 0.1 and for1.91 < C < 3.82 when P = 100 andg = 0.1.

Remark 3: For g = 0, the bounds in Theoremis$[1-5 fall back to thoselin [3].

*We note that under the conditiolll (2), € [0, p*] such thatfs(p') = fa(p’) exists.
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Now, a natural question is how the presence of an eavesdr@ffeets the capacity. We partially
answer this question by comparing our results with the losred upper bounds i3] that are derived
without secrecy constraint. Note that when there is no sgarenstraint, the availability of randomness
at the encoders does not affect the capacity. Hence, thecibapdthout secrecy constraint is higher
than or equal to the secrecy capacity with secrecy constoaitn for the first and the second scenarios.
We compare the bounds in Fig. 6 for sufficiently larBeéand symmetric channel parameters. First, as
illustrated in Fig.[B-(a), the upper bound without secreopstraint and the lower bound for the first
scenario coincide up t6" < %(f4(0) — f5(0)). This indicates that, when there is a sufficient amount
of common randomness between the source and the relays, ithep decrease in capacity due to an
eavesdropper for some range®@f On the other hand, for the same channel parameterd,|Fip). $x6ws
that the lower bound without secrecy constraint is strittigher than the upper bound for the second
scenario for all range af’ > 0. This indicates that, when there is no randomness at thgsreltae secrecy
capacity for the second scenario can be strictly smallemn tha capacity without secrecy constraint for
all range ofC.

Proof of Theorem[3 The bound in Theorernl 1 is further upper-bounded as follows:

min(max(S7, S2), max(Ss, Sy)) < max(Ss, S4)

Y e min(£1(0), £2(0), £5(0), f1(0) — f5(0)),

T 0<p<l
where (a) is becausef;(p) and f2(p) are decreasing functions ¢f € [0,1]. Furthermore, for any

p € [0,1], we have

11 1+P+ P+ 20v/P P

I R = i -
P —00 %)IPPQ—mo f4(P) f5(p) P —00 gPPg—N)O 2 8 1+ g(Pl =+ P2 + 2p\/ Plpg)
1 1
= —log —
2 Ty

= lim f4(0) = f5(0).

P1—>OO or P2—>OO
Hence, the secrecy capacity for the first scenario wRen- oo or P, — oo is asymtotically upper-
bounded by

lim min(f1(0), f2(0), f3(0), f2(0) — f5(0)),

P1—>OO or P2—>OO

which is clearly achievable by the PDF scheme. |
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Fig. 6. Comparison with the lower and upper bounds withoatessy constraint whe® = 10 andg = 0.1.

Proof of Theorem[@ Let us first show thaimax(71,T:) = f3(p’) — f5(p’). For symmetric channel

parameters]; and7, can be rewritten as follows:

Ty = max min(f3(0), fa(p)) — f5(p)

—1<p<0

Ty = max min(f3(p), f4(p)) — f5(p).

0<p<p*

Let us define functiongss(p) and f45(p) of p € [—1, p*] as follows:

f3(0) = fs(p) if —1<p<0
f3s(p) = 0= 55 0) g » J15(p) = fa(p) — f5(p).
f3(p) — f5(p) otherwise
Note that we can rewrite the condition il (2) #8(0) > f15(0) and f35(p*) < fas(p*). Since f35(p)

and f45(p) are monotonically decreasing function and monotonicalreéasing function op € [—1, p*],
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respectively, the condition if](2) implies that there exjste [0, p*] such thatfss(p') = fa5(p’). Hence,

we havemax (71, Tz) = max_1<,<,- min(f35(p), f15(p)) = f35(0") = f3(p') — f5(0').
Now, let us showmax(fs5(¢), T3) = fs5(¢/). Since bothfi (p) — f5(p) and f3(0)— fs(p) for p & [p*, 1]
have the maximum gt = p*, we have

max(f35(p'), T3) < max(fas(p), min(fi(p*) — f5(p*), f3(0) = f5(p"))) = f35(¢)

it f1(p™) — f5(p") < f3(p) — f5(p) or f3(0) — f5(p") < f3(p') — f5(p). Hence, under the conditions in
TheoreniB, the upper bound in TheorEm 4 becorfiés’) — f5(p').

Now, it remains to showfs(p’) — f5(p') is achievable. We have

Rgl))F—PDF—M(p/) = (f3(0") = f5(0") - Lo o)
@ f3(0) — £5(0)

where (a) is becausefs(p’) = fa(p') and f3(p') — f5(p') = fa(p') — f5(p') > 0 imply C > fs(p'). This
completes the proof. [ |

IV. DERIVATION OF UPPER ANDLOWER BOUNDS ON THESECRECY CAPACITY

In this section, we prove the upper and lower bounds on theesgcapacity presented in Sectiod Ill.

A. Proof of Theorem[Q

We note that the upper bounmdax(S1, S2), which the same as the upper bound[ih [3] on the capacity
without secrecy constraint, is easily obtained by notingt tihe secrecy capacity is upper-bounded by
the capacity without secrecy constraint and that commodaiamess at the encoders does not affect the
capacity when there is no secrecy constraint. Neverthelasgrovide a direct proof for the upper bound
max(S1, S2) as well as the upper boundax(Ss, S4) since it can be useful for bounding in other related
problems.

The proof generalizes those in [3] and [4] taking into acedha secrecy constraint and the available
randomness at the encoders. Fog [1: 2] and: € [1: n], let P, ; = E(X,%vi) and let); = %

Let A, € [0,1] and X, € [0,1] be such that2Py = 157" A2P; and AP, = 1577  A2P, ;. We use

€, 10 denote a function ofi such thate,, tends to zero as tends to infinity.
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By applying similar bounding techniques as [in [3], we have
nR=H(W)
(a)
< I(W; 1, Y™, M) + ne,

D 1w 1, Y |M) + ney

—

< H(J) + I(W;Y"|Jy, M) + ney,

(c)

< H(Jy) + I(W; Y™ Jy, M, X}) + ney

< H(J) +I(W, X35 Y" 1, M, XT') + ney

<nCy+ I(X3; Y| XT) + ne,

<nCy + Z I(X2,;Yi|X14) + ney
i=1

(d) -~
< nCy+ Y log(L+ (1= A})Pa;) + ney

i=1

() 1 &
< nC; +nlog(— D A+ (1= M)Pyy)) + ney
=1
) ,
< nCp+nlog(l+ (1 = A))P) + ne, (3)

for sufficiently largen, where(a) is from the Fano’s inequalityp) is becausé&” and M are independent,
(c) is becauseX] is a function ofJ; and M, (d) is because the Gaussian distribution maximizes the
differential entropy given the power constaift) is due to the concavity of the logarithm function, and

(f) is from the definition of),. Similarly, we can obtain
nR < nCs + nlog(l+ (1 —A2)P) + ne, 4)

for sufficiently largen.

August 28, 2021 DRAFT



15

We also have for sufficiently large,
nR=H(W)
(a)
< IT(W5Y"™, M) + ney,

© 1wy M) + nep

© 1(X7, X2 Y M) + ney 5)
< H(X{, X3|M) + ne,

< H(XPIM) + H(X3|M) — I(X]; XE|M) + ne,

< nCy + nCy — (X1 X2IM) + nen, ©6)

where (a) is from the Fano’s inequalityb) is becausdV and M are independent, an@) is because
X7 and X3 are functions ofA/ and W and the Markov relationshipl” — (M, X{*, X3') — Y™ holds.

Furthermore, for any random variablg generated through a conditional pwu;|z1 ;, z24,v:), we

have

I(XT; X5 |M)

=I1(X7, X5 UM M) = I(X{; U"| Xy, M) = I(X55 UM XT, M) + T(X{5 X5 [U", M)

> I(XT X5 U M) —1(X15 U Xy) —1(X5; U XT). ()
By applying the above lower bound tal (6), we obtain

nR < nCy +nCy — I(XT, X5 UM M) + I(XT; U™ XZ) + I(X5; U™ XT) + ney. 8)
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For sufficiently largen, we have
nR=HW)
(a)
< HWI|Z") 4 ney,
()
< HW|Z™) — HW|Y™, Z") 4 2ne,
=I(W;Y"|Z") + 2ne,
< I(XT, X53:Y™Z™) 4 2ne,
(c)
< I(XT, X35 Y™) — I(XT, X33 Z%) + 2nep 9)
=h(Y") = h(Z") 4 2ne,
(d) n 2Zn(y™
< h(Y™) — 5 log(g2" ") 4 2me(1 — g)) + 2nen, (10)

where(a) is from the secrecy constrairgh) is due to the Fano’s inequality) is due to the degradedness
of the channel, an¢) is from the entropy power inequality. We note tHatl(10) is adecrreasing function
of h(Y™). h(Y™) is further upper-bounded as follows:

h(Y™) <Y h(Y)
=1
"1
< Z 5 log(2me)(1 + P1; + P + 2Xi\/P1,iPs;)

i=1
n

1
g log(27re)(ﬁ Z(l + Pri+ Poi+2Xi\/ P1iPa))

i=1

n 2 —
< 5 log(2me)(1 + Py + Py + - Z; \/A2PL Py ).
1=
From the Cauchy-Schwarz inequality, we have
1< 1< 1<
- D APy < (- > ALPL) (— > Py)
i=1 i=1 i=1
< \/AZPP;.
Similarly, we havel S>> | \/A2Py ;P>; < \/A\2P, P»>. Hence, we obtain

h(Y™) <

IN

log(2me)(1 + Py 4+ Po + 2min(Ag, \p)\/ P1P). (11)

o3

August 28, 2021 DRAFT



17

Now we are ready to prove Theoré&in 1. Define [0, 1] andv € [0, 1] as follows. Firsty is determined

from h(Y™|M). p =0 if
%h(Y"|M) < %log(%re)(l + P+ Py). (12)
Otherwise,u is such that
%h(Y"]M) = %log(27re)(1 + P+ Py + 2u\/Pi Py). (13)

Next, v is determined fromh(Y™"). v = 0 if

%h(Y") < % log(2re)(1 + Py + Py). (14)

Otherwise,v is such that
%h(Y") _ %log(%re)(l 4 PL+ P+ 20/ PiP). (15)

Let us first show that
R < max(S1,52) + €. (16)

If u =0, from @), @), [6), [b), and{d2), we havé < min(f1(0), f2(0), f3(0), f4(0)) + €,. Consider
w > 0. Fromh(Y™|M) < h(Y™), (@3), and[(Il), we have < min()\,, Ay). Then, from [B), [(#), [(B),

(@), and [(1B), we obtaiR < min(f1(u), fo(r), f3(0), fa(i)) + €,. If p further satisfied < pu < p*,
we letU; = Y; + V;, whereV; is an i.i.d. Gaussian random variable with zero mean ancnee of

v = \/P1P2(% — ) — 18 Then, the mutual information terms inl (8) are bounded agvail
I(X7, X35 U™ |M)

> h(U™|M) — glog(%re)(l +7)

(a’) 2 n
> glog(%h(y M) 4 97ey) — glog(%re)(l +7)
n 1+vy+ P+ P+ 2u/Pi P
= —log (17)
2 1+~
n. o 1+y+01-9)P
(X7 UMX)) < =1 1
(X1; 0" 2)_20g 1++ (18)
n,rrm|yn n 1+’Y+(1_’Y2)P2
. <
I(szU ‘Xl) =7 log 1+~ > (19)

®For 0 < i < p*, 7 is nonnegative.
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where (a) is from the conditional entropy power inequality. Subgtitg the above bounds t@1(8), we

obtain R < f3(u) + €,. Hence, we have? < min(fi(u), fa(u), f3(u), fa(p)) + €, for 0 < u < p*. This
concludes the proof of (16).

Now, let us show
R < max(Ss, Sy) + 2€,. (20)

If v =0, from @), (3), (6), [ID), and_(14), we have < min(f1(0), f2(0), f3(0), f1(0) — f5(0)) + 2¢,.
Considerv > 0. From [15) and[(11), we have < min()\,, \y). Then, from [(B), [(4),[(6),[(10), and_(IL5),
we obtain R < min(f1(u), fo(u), f3(0), fa(v) — f5(v)) + 2¢,. If v further satisfied) < v < p*, we
consider the following bound by adding the inequalitigls 46y [3):

2nR < nCy +nCo + I(X7, X5 Y"|M) — I(X{', X5;U"|M)
+ I(XT; U |XB) + I(X3; UP|XT) + 2ney
<nCi+nCq+ I(XT, X5:; Y™ U™, M)

+ I( X7 UXY) + [(XS; U XT) + 2ne,

<nCi+nCy+ I(X7, X5 Y"U™)

+ I( X7 UMXS) + [(X3; U™ XT) + 2ne,

< nCy 4y 1KY X32Y™) — I(X]. X5:U)

+ I( X7 UMXY) + [(XS U XT) + 2ney, (22)
where (a) holds when(X{', X3) — Y™ — U™ We letU; = Y; + V/, whereV/ is an i.i.d. Gaussian
random variable with zero mean and varianceybf= m@ — v) — 1. Then, by substituting (15)
and similar bounds as in_(L7)-(19) tb {21), we obtdin< M + €,. Hence, we haveR <

min(f1(v), f2(v), f3(0), M fa(v) — f5(v)) + 2¢, for 0 < v < p*. This concludes the proof of
20).

B. Proof of Theorem

Let us first assume that the channel from the relays to thérege destination and the eavesdropper

is a discrete memoryless channel with a conditional pf z|z1, z2). Fix p(z1,x2) and let
R = I1(X1,X2;Z) — d(e). (22)
Fix ¢ > 0. We used(¢) to denote a function of such thati(e) tends to zero as tends to zero.
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In the DF scheme, the source sends the message to both relaghs,requiresk < min(C1, Cs). Once
the relays share both the message and the fictitious messagan treat the channel from the relays to
the legitimate destination and the eavesdropper as a cdhssgiretap channe[[8]/]9] with randomness
of rate R’ in (22) and hence the secrecy rate Bf< I(X;,X9;Y) — I(X1,X2; Z) is achievable. By

combining two inequalities foRz, we conclude the following secrecy rate is achievable:
min(Cl,Cg,I(Xl,Xg;Y)—I(Xl,XQ;Z)). (23)

The PDF-M scheme is described in the following.

« Codebook generation: We represent the messagd1 : 2] as the partial message péir, , wo) €

[1:278] x [1: 2"%:] for someR; > 0 and Ry > 0 such that
Ri+ Ry =R, (24)

i.e., Wy for k € [1 : 2] is uniformly distributed overfl : 2"f+] and W; and W, are independent.
ConsiderR;, > 0 for k € [1: 2]. For eachk € [1 : 2] and (wy, m, ;) € [1: 2] x [1: 2] x [1
2"Rk], generater} (wy, m, ;) independently according tp[;", p(z ;).

« Encoding at the source: For messdge, w2) and fictitious message, the source finds afi;, l2)

such that
(x?(wl, m, ll), ﬂfg(ZUg, m, l2)) (= 7;(")

For k € [1 : 2], the source sendSuy, li) to relayk.
« Encoding at relayt € [1 : 2]: Note that fictitious message is given at relayk. After receiving
(wg, ly;) from the source, relay sendse} (wy, m, ).

o Decoding at the legitimate destination: The legitimatetidaton finds(wl,wg,m,il,ig) such that

~
~

(@} (y, 1, Iy ), 25 (i, 0, ), y™) € T,

The legitimate destination declares tlial , w,) is the message.
« Error analysis: From the mutual covering lemmal[10], theoegling error at the source averaged

over the codebooks tends to zeroratends to infinity if
Ry + Ry > I(X1; Xo) + 6(e). (25)
For k € [1 : 2], the transmission ofwy, ;) from the source to relay requires

Ry, + Ry, < Cj. (26)
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From the standard error analysis, the decoding error atethiirhate destination averaged over the

codebooks tends to zero astends to infinity if

Ry + Ry < I(X1; Y| X2) + I(X1; X5) — 6(e) (27)
Ry + Ry < I(Xo; Y |X1) + I(X1; X2) — 6(e) (28)
Ri+Ry+ R + Ry + Ry < I(X1, Xo;Y) + I(X1; Xo) — 6(e). (29)

o Secrecy analysis: We can shown,, .. %I(W; Z™|C) < d(e) + € if (B2) and the following inequal-

ities are satisfied.

Ry < I(X1; Z|X2) 4+ I(X1; Xa) — 6(e) (30)
Ry < I(X2; Z|X1) 4 1(X1; Xo) — 6(e) (31)
R + Ry + Ry < I(X1, X9;: Z) + I(X1; X2) — 6(e) (32)

See Sectiof IV-E for the detail.
Therefore, there exists a sequence of codes suchAfiattends to zero andI(W;Z") < 6(e) + ¢
asn tends to infinity if [22), [24)i3R) are satisfied. By perfang Fourier-Mozkin elimination to[{22),
(24)-(32) and by taking — 0, the PDF-M rate of

min(C’1 + I(Xg; Y|X1), 02 + I(Xl; Y|X2), Cl + 02 - I(Xl; XQ), I(Xl,XQ; Y) — I(Xl, XQ; Z))
(33)
is obtained. From the standard discretization procedutd ﬂg%(p) and R;I%F_M(p) are obtained by
evaluating[(ZB) and (33) for the degraded Gaussian diamnmoredap channel discussed in Sectign Il and

a jointly Gaussian distributiop(z1,z2) such thatr; for k£ € [1 : 2] has zero mean and variance Bf

and the correlation coefficient betweéh and X5 is p € [—1,1].
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C. Proof of Theoremid

We note that the upper bound (9) continues to hold when thigédict message is given only at the
source. Then, we have

nR < I(XP, X3 Y™ — [(XP, X3 Z™) + ney (34)
< I(XP, X5 T, Y") — I(X2, X5 Z™) + ney,
< H(J) + I(XP, X3 Y Jy) — I(XT, X3 Z™) + ney
€ B + 105 Y, XT) — T(XP X35 27 + e
<nCy+ I(XE;Y™XD) — (X2, X5 Z™) + ney,
(%) nCy +nlog(l + (1 — A2)Py) — I(X], X5 Z™) + ney (35)

where ), is defined in the proof of Theoref 1g) is becauseX? is a function of.J;, and (b) is from

some similar steps as in the derivation [df (3). Similarly, see obtain
nR < nCy 4 nlog(l+ (1 — M)P) — [(XT, X3 Z™) + ney, (36)

where )\, is defined in the proof of Theoremn 1.

For any random variabl®; generated through a conditional pw(u;|z1 ;, z2:, ), we have
nR < I(XY, X35 Y") — I(XT, X3, Z") + ney

< H(XT) + H(XY) — I(XT5 X5) — I(XT', X355 27) + ney

(a)
< nCy +nCy — I(XT; X)) — [(XT, X5 Z") + nep, (37)

(v)
< nCy +nCy — I(XT, X U™) + (X U™ | X
+ I(X3; UM XY) = I(XT, X3 Z") + nen, (38)

where(a) is becauseX}! is a function ofJj, for k € [1: 2] and (b) is from some similar steps as in the

derivation of 7).
Note that we have the following lower and upper bounds%dwr@Y“):

1 1 1
h(Y™) 2 —h(YIXT, XF) =

1
—h(Y") < 3 log(2me)(1 + P1 + Py + 24/ P P»).

n

1
h(Ny) = 3 log(2me)

n

—3
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Hence, there exists € [—p, 1] such that

1 1
—h(Y™) = = log(2me)(1 + P, + Py + 2p\/ P Py). (39)

n T2
Then, we have the following lower bound di(.X7{', X%'; Z"):
n
I(XT, X35 27) 2 S log(L+ g(Py + Po +2p P11%)) (40)

from the entropy power inequality.

Now, we are ready to prove Theordm 4. First consider [—p,0). Then, from [(34){(37),[(39), and
(40), we haveR < min(f;(0), f2(0), f3(0), fa(p)) — f5(p) + €. Next, considerp € [0, 1]. Then, due
to similar reasons as in the proof of Theorem 1, we have min(\,, \y). Then, from [(34){(3[7),[(39),
and [40), we have? < min(fi(p), f2(p), f3(0), fa(p)) — f5(p) + €. Now, assume thas further satisfies
p € [0, p*]. We choosdJ; =Y; + V;, whereV; is an i.i.d. Guassian random variable with zero mean and
variance ofy = m(% — p) — 1. Then, by substitutind (40) and similar bounds [ad (L7)-(09{38),

we obtaini < f3(p) — f5(p) + €,. Hence, we havé? < min(fi(p), f2(p), f3(p), f4(p)) — f5(p) + € for
p € [0, p*]. This concludes the proof of Theorém 4.

D. Proof of Theorem[H

As in the proof of Theorem]2, we first assume that the chanmeh fthe relays to the legitimate
destination and the eavesdropper is a discrete memonyhesmel with a conditional pmb(y, z|z1, z2).

Fix p(xz1,z2) ande > 0. Let
R =1I(X1,X2;Z) — 6(e). (42)

For the DF scheme, by letting the source send both the messalg#ne fictitious message to the relays,

an achievable secrecy rate of
min(Cl —R/7C2—R,,I(X17X2;Y) —I(Xl,XQ;Z)) (42)

is obtained from[(23) by replacing; andCs by C; — R andCy — R/, respectively.
Similarly, for the PDF-DF-M scheme, by letting the sourcadséhe fictitious message as well as the
partial message and the relay codeword index to réléyr & = 1,2 in the PDF-M scheme for the first

scenario, an achievable secrecy rate of
min(Cy + I[(Xo; Y|X3) — R, Co + I(X1;Y|Xo) — R,

Ci1+ Cy — I(X1;X2) — 2R I(X1, X0, Y) — (X1, X2; 7)) (43)
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is obtained from[(33) by replacing; andCs by C; — R’ andCy — R/, respectively.
The PDF-PDF-M scheme is described in the following.
« Codebook generation: We represent the message[l : 2] and the fictitious message < [1 :
2"'] as a partial message pdin;, w;) € [1: 27%] x [1 : 272] and a partial fictitious message
pair (mq,mg) € [1: 27%] x [1 : 27%2], respectively, for some nonnegative rafes Rq, R}, and R},

such that
Ry+ Ry =R, Ri+Ry=R. (44)

ConsiderRy, > 0 for k € [1 : 2]. For eachk € [1 : 2] and (wy, my, Iy) € [1: 278 x [1: 2% x [1
2"Rk], generater} (wy, mg, l;;) independently according tp["_; p(x. ;).

« Encoding at the source: For messdge, w2) and fictitious messageni, m2), the source finds an
(I1,12) such that

(@ (wi,ma, 1y), 2 (we, ma, 1)) € T,

For k € [1: 2], the source sendsuvy, my,l);) to relayk.
« Encoding atrelay: € [1 : 2]: After receiving(wy, mx, ;) from the source, relay sendsc} (wy, my, ly,).
« Decoding at the legitimate destination: The legitimatetidation finds(wy, ws, 111, Mo, l],l}) such

that
(@ (doy, 1oy, 1), 2 (g, T, ), ™) € TA),

The legitimate destination declaré$;, ws) is the message.
« Error analysis: From the mutual covering lemma, the enapdimor at the source averaged over the

codebooks tends to zero astends to infinity if
Ry + Ry > I(X1; Xo) + 6(e). (45)
For k € [1 : 2], the transmission ofwy, my, ;) from the source to relay requires
Ry + R}, + Ry, < C. (46)

From the standard error analysis, the decoding error atetjigirhate destination averaged over the

codebooks tends to zero astends to infinity if

Ri+ Ry + Ry < I(X1;Y|Xy) + I(X1; X3) — 6(e) (47)
Ro+ Ry + Ry < I(X0; Y |X1) + I(X1; X3) — 6(e) (48)
Ri+Ro+ R+ Ry+ Ry + Ry < I(X1, X2, Y) + I(X1; Xo) — d(e). (49)
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o Secrecy analysis: We can shown,, .. %I(W; Z™|C) < d(e) + € if (AI) and the following inequal-

ities are satisfied.

L Ry < I(X1; Z|X2) + 1(X1; X3) — 8(e) (50)
Ry + Ry < I(X9; Z|X1) + 1(X15 X2) — 6(e) (51)
Ry +Rh+ R+ Ry < I(X1,X9:; Z) + I(X1; X3) — 6(e) (52)

See Sectiof IV-E for the detail.

Therefore, there exists a sequence of codes suchAffattends to zero andI(W;Z") < 6(e) + ¢
asn tends to infinity if [41), [44)E(5R) are satisfied. By perfang Fourier-Mozkin elimination to[(41),
(44)-(52) and by taking — 0, a secrecy rate of

min(C'1 + I(Xg; Y|X1), Cy + I(Xl; Y|X2), Ch+Cy— I(Xl; XQ), I(Xl,XQ; Y)) — I(Xl,XQ; Z)

(53)
subject to the constraints
Cy > 1(X1;2),Co > 1(Xo9; Z) (54)
is obtained. From the standard discretization procedag%,(p), Rl(>2])DF—DF—M(p)' ande(f]))F_PDF_M(p)
are obtained by evaluating (42), {43),153), and (54) fordegraded Gaussian diamond-wiretap channel
discussed in Sectidnl Il and a jointly Gaussian distribu@m , z2) such thatz;, for k& € [1 : 2] has zero

mean and variance df;, and the correlation coefficient betweé&h and X5 is p € [-1,1].

E. Secrecy analysis
Let C denote the random codebook. For mesdagdictitious messagé/, and chosen relay codeword

indicesL = (L4, L2), we have

HW|z",C)=H(W,M,L|Z",C) — H(M,L|IW,Z",C)

(a)

> H(W, M, L|Z",C) — ne

— H(W, M, L|C) — I(W, M, L; Z"|C) — ne

> H(W) +nR — I(W, M, L, X, X2,C: Z") — ne
=HW)+nR — (X}, X5;Z™) — ne

> HW)+nR —nl(X1,Xs;Z) — ne

= H(W) —nd(e) — ne
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for sufficiently lagen, where(a) is because the eavesdropper who already kriéwand Z™ can decode
M and L with high probability when[(30):(32) are satisfied for thesfiscenario and wheh (50)-(52) are

satisfied for the second scenario. Hence, we Haug o 11(W; Z"|C) < §(e) + e.

V. CONCLUSION

In this paper, we derived nontrivial upper and lower boundglee secrecy capacity of the degraded
Gaussian diamond-wiretap channel under two scenariosdiegathe availability of randomness.

Our upper bound was obtained by taking into account the ledioa between the two relay signals and
the availability of randomness at each encoder, which gdizes both the upper bound on the capacity
of the diamond channel without secrecy constrdint [3] amdupper bound on the sum secrecy capacity
of the MAC wiretap channel[4]. For the lower bound, we pram®F scheme and partial DF scheme
incorporated with multicoding that is called PDF-M scheroe the first scenario and PDF-DF-M and
PDF-PDF-M schemes for the second scenario depending omerttbe relay decodes the whole or partial
fictitious message. In the first scenario, PDF-M scheme wiibtly positive correlation coefficient was
shown to outperform DF and PDF (without multicoding) scherfee some channel parameters. We also
showed that the PDF scheme is asymptotically optimal forfilsé scenario when at least one of relay
power constraint tends to infinity. For the second scenatégpresented a condition for channel parameters
where the PDF-PDF-M scheme is optimal. Furthermore, becthss fictitious message has to be sent
through the BC for the second scenario, it was shown to beibigfirio consider negative correlation
in all DF, PDF-DF-M, PDF-PDF-M schemes when the BC cut bec®the bottleneck. Furthermore, we
investigated the effect of the presence of an eavesdropp#reocapacity. If there is a sufficient amount
of common randomness between the source and the relayssishmvn that there is no decrease in
capacity due to an eavesdropper for some rang€.of

As a final remark, it seems to be straightforward to combine@ scheme and partial DF scheme
incorporated with multicoding by using superposition cagibut the resultant rate expression would be

rather complicated with less useful insights.
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