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Abstract

In this paper, we present nontrivial upper and lower bounds on the secrecy capacity of the degraded

Gaussian diamond-wiretap channel and identify several ranges of channel parameters where these bounds

coincide with useful intuitions. Furthermore, we investigate the effect of the presence of an eavesdropper

on the capacity. We consider the following two scenarios regarding the availability of randomness: 1)

a common randomness is available at the source and the two relays and 2) a randomness is available

only at the source and there is no available randomness at therelays. We obtain the upper bound by

taking into account the correlation between the two relay signals and the availability of randomness at

each encoder. For the lower bound, we propose two types of coding schemes: 1) a decode-and-forward

scheme where the relays cooperatively transmit the messageand the fictitious message and 2) a partial

DF scheme incorporated with multicoding in which each relaysends an independent partial message and

the whole or partial fictitious message using dependent codewords.

Index Terms

Wiretap channel, diamond channel, diamond-wiretap channel, multicoding

I. INTRODUCTION

The diamond channel introduced by Schein [1] consists of a broadcast channel (BC) from a source

to two relays and a multiple access channel (MAC) from the tworelays to a destination. The capacity

of the diamond channel is not known in general. To simplify the problem, let us consider a diamond

channel having BC with two orthogonal links and Gaussian MAC. In this setup, there is a tension between
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Fig. 1. Physically degraded diamond-wiretap channel

increasing the amount of information sent over the BC and increasing the coherent combining gain for the

MAC. Two coding schemes corresponding to the extremes wouldbe partial decode-and-forward, where

independent partial messages are sent to the relays, and decode-and-forward (DF), where the whole

message is sent to each of the relays. By incorporating multicoding at the source, [2], [3] proposed a

coding scheme in which the relays send independent partial messages using dependent codewords and

showed that this coding scheme strictly outperforms the DF and partial DF in some regime. Furthermore,

[3] showed an upper bound by taking into account the correlation between the two relay signals, which

is strictly tighter than the cutset bound. This upper bound was shown to coincide with the lower bound

of [2], [3] for some channel parameters.

In this paper, we consider the degraded Gaussian diamond-wiretap channel presented in Fig. 1 and

present lower and upper bounds on the secrecy capacity by exploiting the correlation between the two

relay signals. We identify several ranges of channel parameters where these bounds coincide with useful

intuitions and investigate the effect of the presence of an eavesdropper on the capacity. We note that

this model is a natural first step to studying diamond-wiretap channel because the sum secrecy capacity

of the multiple access-wiretap channel has been characterized only for the degraded Gaussian case [4].

A practical situation corresponding to this model is the side channel attack [5] where the eavesdropper

attacks by probing the physical signals such as timing information and power consumption leaked from the

legitimate destination. In the presence of an eavesdropper, the technique of utilizing randomness is widely

used to confuse the eavesdropper. We consider the followingtwo scenarios regarding the availability of

randomness: 1) a common randomness of rateR′ is available at the source and the two relays and 2) a

randomness of rateR′ is available only at the source and there is no available randomness at the relays.

See [6], [7] for the related works assuming restricted randomness at encoders.

For the upper bound, we generalize the upper bound on the capacity of the diamond channel [3]
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and the upper bound on the sum secrecy capacity of the multiple access-wiretap channel [4]. For the

lower bound, we propose two types of coding schemes: 1) a decode-and-forward (DF) scheme where

the relays cooperatively transmit the message and the fictitious message and 2) a partial DF scheme

incorporated with multicoding in which each relay sends an independent partial message and the whole

or partial fictitious message using dependent codewords. Ifthere is no secrecy constraint, our partial DF

scheme incorporated with multicoding falls back to that in [2], [3]. Interestingly, in the presence of the

eavesdropper, the availability of randomness at the encoders is shown to affect the optimal selection of

correlation coefficient between the two relay signals in ourproposed schemes.

The remaining this paper is organized as follows. In SectionII, we formally present the model of

the degraded Gaussian diamond-wiretap channel. Our main results on the secrecy capacity are given in

Section III. In Section IV, we derive our upper and lower bounds on the secrecy capacity. We conclude

this paper in Section V.

II. M ODEL

Consider the degraded Gaussian diamond-wiretap channel inFig. 1 that consists of a source, two relays,

a legitimate destination, and an eavesdropper. The source is connected to two relays through orthogonal

links of capacitiesC1 andC2 and there is no direct link from the source to the legitimate destination

or eavesdropper. The channel outputsY and Z at the legitimate destination and the eavesdropper,

respectively, are given asY = X1 + X2 + NY and Z =
√
gY + NZ , whereg ∈ [0, 1), X1 and X2

are the channel inputs from relay 1 and relay 2, respectively, NY is the Gaussian noise with zero mean

and unit variance at the legitimate destination, andNZ is the Gaussian noise with zero mean and variance

of 1− g at the eavesdropper.NY andNZ are assumed to be independent. The transmit power constraint

at relayk = 1, 2 is given as 1
n

∑n
i=1 X

2
k,i ≤ Pk, wheren denotes the number of channel uses. Note

that the channel output at the eavesdropper is a physically degraded version of the channel output at the

legitimate destination.

We consider the following two scenarios regarding the availability of randomness. In the first scenario,

a common fictitious messageM of rateR′, i.e., M ∼ Unif[1 : 2nR
′

]1 is available at the source and the

two relays. In this case, a(2nR, n) secrecy code consists of a messageW ∼ Unif[1 : 2nR], an encoding

function at the source that maps(W,M) ∈ [1 : 2nR] × [1 : 2nR
′

] to (J1, J2) ∈ [1 : 2nC1 ] × [1 : 2nC2 ],

an encoding function at relayk = 1, 2 that maps(Jk,M) ∈ [1 : 2nCk ] × [1 : 2nR
′

] to Xn
k ∈ X n

k ,

1[i : j] for two integersi and j denotes the set{i, i+ 1, . . . , j}.
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Fig. 2. Stochastically degraded diamond-wiretap channel

and a decoding function at the legitimate destination that mapsY n ∈ Yn to Ŵ ∈ [1 : 2nR]. In the

second scenario, a fictitious messageM of rateR′ is available only at the source and the encoding at

the two relays is restricted to be deterministic. In this case, the encoding function at relayk = 1, 2 maps

Jk ∈ [1 : 2nCk ] to Xn
k ∈ X n

k .

For both scenarios, the probability of error is given asP
(n)
e = P (Ŵ 6= W ). A secrecy rate ofR

is said to be achievable if there exists a sequence of(2nR, n) codes such thatlimn→∞ P
(n)
e = 0 and

limn→∞
1
n
I(W ;Zn) = 0. The secrecy capacity is the supremum of all achievable secrecy rates. LetC(1)

S

andC(2)
S denote the secrecy capacity for the first scenario and for thesecond scenario, respectively.

Remark 1: Because the legitimate destination and the eavesdropper donot cooperate, the secrecy

capacity in Fig. 1 is the same as that of stochastically degraded case in Fig. 2, in whichZ is given as

Z =
√
gX1 +

√
gX2 +N ′

Z , whereN ′
Z has zero mean and unit variance and is independent ofNY .

III. M AIN RESULTS

In this section, we present main results of this paper on the secrecy capacity of the degraded Gaussian

diamond-wiretap channel described in Section II. For the brevity of presentation, let us define the

following functions:

f1(ρ) = C1 +
1

2
log(1 + (1− ρ2)P2) (1a)

f2(ρ) = C2 +
1

2
log(1 + (1− ρ2)P1) (1b)

f3(ρ) = C1 + C2 −
1

2
log(

1

1− ρ2
) (1c)

f4(ρ) =
1

2
log(1 + P1 + P2 + 2ρ

√

P1P2) (1d)

f5(ρ) =
1

2
log(1 + g(P1 + P2 + 2ρ

√

P1P2)) (1e)
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f6(ρ) =
1

2
log

(

1 + g(P1 + P2 + 2ρ
√
P1P2)

1 + g(1 − ρ2)P2

)

(1f)

f7(ρ) =
1

2
log

(

1 + g(P1 + P2 + 2ρ
√
P1P2)

1 + g(1 − ρ2)P1

)

, (1g)

where the domain off1, f2, f3, f6, andf7 is [−1, 1] and that off4 andf5 is [−ρ̄, 1] for ρ̄ = P1+P2

2
√
P1P2

.2

The following two theorems give upper and lower bounds onC
(1)
S , respectively, whose proofs are in

Section IV.

Theorem 1: For R′ ≥ 0, C(1)
S is upper-bounded by

min(max(S1, S2),max(S3, S4)),

where

S1 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))

S2 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ))

S3 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(0),
f3(ρ) + f4(ρ)

2
, f4(ρ)− f5(ρ))

S4 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ)− f5(ρ))

for ρ∗ =
√

1 + 1
4P1P2

− 1
2
√
P1P2

. We note that the functionsfk’s for k ∈ [1 : 5] are defined in (1).

Theorem 2: For ρ ∈ [−1, 1] andR′ ≥ f5(ρ), C
(1)
S is lower-bounded by

max(R
(1)
DF(ρ), R

(1)
PDF−M(ρ)),

where

R
(1)
DF(ρ) = min(C1, C2, f4(ρ)− f5(ρ))

R
(1)
PDF−M(ρ) = min(f1(ρ), f2(ρ), f3(ρ), f4(ρ)− f5(ρ)).

We note that the functionsfk’s for k ∈ [1 : 5] are defined in (1).

In Theorem 1, we note that the upper boundmax(S1, S2) is the same as that in [3] that assumes no

secrecy constraint. This is natural because the secrecy capacity is upper-bounded by the capacity without

secrecy constraint, which is not affected by the common randomness at the encoders. To derive the upper

boundmax(S3, S4), we generalize the bounding techniques [3] and [4] taking into account the secrecy

constraint and the available randomness at the encoders.

2By convention, we assume thatf3(ρ) becomes negative infinity when|ρ| = 1.

August 28, 2021 DRAFT
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In Theorem 2,R(1)
DF(ρ) is achieved by using a DF scheme where the source sends the message to

both relays and the relays cooperatively transmit the message and the common fictitious message over

the wiretap channel. On the other hand,R
(1)
PDF−M(ρ) is achieved by a partial DF incorporated with

multicoding (PDF-M) where each relay sends an independent partial message and the common fictitious

message using dependent codewords. The source performs multicoding as follows: the messagew is

represented as two partial messages(w1, w2), a codebook for relayk = 1, 2 consisting of independently

generatedxnk sequences is constructed for eachwk andm, and the source finds a jointly typical sequence

pair (xn1 (w1,m, l1), x
n
2 (w2,m, l2)) and sends(wk, lk) to relayk for k = 1, 2. A more detailed explanation

for the PDF-M scheme is given in Section IV. LetR(1)
PDF = R

(1)
PDF−M(0) denote the partial DF (PDF)

rate without multicoding at the source.

To compare our lower and upper bounds, let us consider sufficiently largeR′ and symmetric channel

parameters, i.e.,P1 = P2 = P andC1 = C2 = C for some nonnegativeP andC. It can be easily proved

that 1) the PDF scheme, which achieves3 min(f3(0), f4(0)−f5(0)), is optimal forC ≤ 1
2 (f4(0)−f5(0)),

i.e., the BC cut is the bottleneck, and 2) the DF scheme, whichachievesmin(C, f4(1)−f5(1)), is optimal

for C ≥ f4(1)− f5(1), i.e., the MAC cut is the bottleneck. When neither the BC cut nor the MAC cut is

the bottleneck, the PDF-M scheme strictly outperforms the PDF and DF schemes for some range ofC

as shown in Fig. 3. For example, whenP = 1 andg = 0.1, the PDF-M scheme strictly outperforms the

PDF and DF schemes for0.33 < C < 0.89. Furthermore, Fig. 3 shows that the PDF bound gets close

to the upper bound in Theorem 1 asP increases. The following theorem states that the PDF schemeis

indeed asymtotically optimal asP1 or P2 tends to infinity, whose proof is relegated to the end of this

section.

Theorem 3: For the first scenario withR′ ≥ f5(0) andP1 → ∞ or P2 → ∞,4 the PDF scheme is

asymptotically optimal.

Next, the following two theorems give upper and lower boundson C
(2)
S , respectively, whose proofs

are in Section IV.

Theorem 4: For R′ ≥ 0, C(2)
S is upper-bounded by

max(T1, T2, T3),

3For P1 = P2, C1 = C2 = C, andρ = 0, f1(0) andf2(0) become redundant.

4C1 andC2 are not necessarily fixed and can be arbitrary functions ofP1 andP2.
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Fig. 3. Bounds for the first scenario when (a)P = 1, g = 0.1 and (b)P = 10, g = 0.1.

where

T1 = max
−ρ̄≤ρ<0

min(f1(0), f2(0), f3(0), f4(ρ))− f5(ρ)

T2 = max
0≤ρ≤ρ∗

min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ)

T3 = max
ρ∗<ρ≤1

min(f1(ρ), f2(ρ), f3(0), f4(ρ))− f5(ρ).

We note that the functionsfk ’s for k ∈ [1 : 5] are defined in (1),̄ρ = P1+P2

2
√
P1P2

, andρ∗ =
√

1 + 1
4P1P2

−
1

2
√
P1P2

.

Theorem 5: For ρ ∈ [−1, 1] such thatR′ ≥ f5(ρ), C
(2)
S is lower-bounded by

max(R
(2)
DF(ρ), R

(2)
PDF−DF−M(ρ), R

(2)
PDF−PDF−M(ρ)),

August 28, 2021 DRAFT
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where

R
(2)
DF(ρ) = min(C1, C2, f4(ρ))− f5(ρ)

R
(2)
PDF−DF−M(ρ) = min(f1(ρ), f2(ρ), f3(ρ)− f5(ρ), f4(ρ)) − f5(ρ)

R
(2)
PDF−PDF−M(ρ) = (min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ)) · 1C1>f6(ρ),C2>f7(ρ).

We note that the functionsfk’s for k ∈ [1 : 7] are defined in (1).

Note that in both the upper and lower bounds for the first scenario, the termf5(ρ), which corresponds

to the required rate of randomness to confuse the eavesdropper, appears only withf4(ρ), which signifies

the amount of information sent through the MAC. In contrast,in both the upper and lower bounds for

the second scenario, because the fictitious message has to besent through the BC,f5(ρ) appears in

common for all terms. This affects sufficient ranges of correlation coefficient for the lower bounds for

large enoughR′ as remarked in the following.

Remark 2: For large enoughR′, sufficient ranges of correlation coefficientρ for the lower bounds in

Theorem 2 and Theorem 5 are different. For the first scenario,note that the DF rate is maximized at

ρ = 1 and that it is enough to consider nonnegativeρ for the PDF-M scheme. On the other hand, for

the second scenario, because the minus term−f5(ρ) is common for all terms, considering smallerρ can

be beneficial by decreasingf5(ρ) and we need consider all−1 ≤ ρ ≤ 1.

In the DF scheme for the second scenario, the source sends to both relays the fictitious message as

well as the message. Hence,R
(2)
DF is obtained fromR

(1)
DF by replacingC1 andC2 by C1 − f5(ρ) and

C2− f5(ρ), respectively. For a partial DF scheme incorporated with multicoding for the second scenario,

a straightforward extension from that for the first scenariois to let the source send the fictitious message

m as well as the partial messagewk and the relay codeword indexlk to relay k for k = 1, 2. Since

each relay decodes a partial genuine message and a whole fictitious message, we call this scheme as

PDF-DF-M scheme. Note thatR(2)
PDF−DF−M(ρ) is obtained by replacingC1 andC2 by C1 − f5(ρ) and

C2 − f5(ρ), respectively, inR(1)
PDF−M. However, since the same fictitious message is sent to both relays,

there exists inefficiency in the use of the BC. To resolve thisinefficiency, we let each of relay codebooks

be indexed by independent partial fictitious message, i.e.,codebook for relayk = 1, 2 is constructed for

each(wk,mk) by representingm as two partial fictitious messages(m1,m2). By using this PDF-PDF-M

scheme where each relay decodes a partial genuine message and a partial fictitious message, we show

that R(2)
PDF−PDF−M(ρ) is achievable, which hasf3(ρ) intead off3(ρ) − f5(ρ) in R

(2)
PDF−DF−M(ρ). We

note that having independent fictitious message at each relay reduces the achievable rate region over

the MAC, which results in additional contraintsC1 > f6(ρ) and C2 > f7(ρ) in R
(2)
PDF−PDF−M(ρ).

August 28, 2021 DRAFT
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Fig. 4. For sufficiently largeR′, g = 0.1, C1 = C, C2 = C + 2, P1 = 10, andP2 = 1, R(2)
PDF−DF−M(ρ) is strictly higher

thanR(2)
PDF−PDF−M(ρ) for some range ofC.

Nevertheless, as long asC1 = C2, R
(2)
PDF−PDF−M(ρ) is always higher than or equal toR(2)

PDF−DF−M(ρ)

becausef3(ρ) > 2f5(ρ), which should be satisfied ifR(2)
PDF−DF−M(ρ) > 0, implies C1 > f6(ρ) and

C2 > f7(ρ). If C1 6= C2, R
(2)
PDF−DF−M(ρ) can be strictly higher thanR(2)

PDF−PDF−M(ρ) as illustrated

in Fig. 4. Let R(2)
PDF−DF = R

(2)
PDF−DF−M(0) and R

(2)
PDF−PDF = R

(2)
PDF−PDF−M(0) denote the rates of

PDF-DF and PDF-PDF schemes (without multicoding).

Similarly as for the first scenario, let us consider sufficiently largeR′ and symmetric channel parameters.

SinceC1 = C2, we only consider the DF, PDF-PDF-M, and PDF-PDF schemes forthe lower bounds. It

can be easily proved that the DF scheme, which achievesmaxρ∈[−1,1]min(C, f4(ρ))− f5(ρ), is optimal

for C ≥ f4(1), i.e., the MAC cut is the bottleneck. We can see in Fig. 5 that the PDF-PDF rate coincides

with the PDF-PDF-M rate at one point. This is because a negative correlation between the two relay

signals is helpful for smallC due to the reason in Remark 2, i.e., the BC cut is the bottleneck, and

positive correlation becomes beneficial asC increases, i.e., the MAC cut becomes bottleneck. Fig. 5 also

shows that the PDF-PDF-M rate is zero up to some threshold value ofC due to the constraintC > f6(ρ)

in R
(2)
PDF−PDF−M(ρ) and the threshold value decreases asP decreases. Indeed, we can prove that the

threshold value tends to zero asP tends to zero. Furthermore, Fig. 5 shows that the PDF-PDF-M rate

coincides with the upper bound in Theorem 4 for some range ofC, e.g.,1.1 < C < 2.18 whenP = 10

and g = 0.1. The following theorem gives a condition where the PDF-PDF-M rate coincides with the

upper bound in Theorems 4, whose proof is relegated to the endof this section.

Theorem 6: For the second scenario with sufficiently largeR′ and symmetric channel parameters, the

August 28, 2021 DRAFT
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Fig. 5. Bounds for the second scenario when (a)P = 1, g = 0.1 and (b)P = 10, g = 0.1.

PDF-PDF-M rate in Theorem 5 coincide with the upper bound in Theorem 4, and the secrecy capacity

is given asf3(ρ′)− f5(ρ
′) for

1

4
log(1 + 2P ) ≤ C ≤ 1

4
log(1 + 2(1 + ρ∗)P ) +

1

4
log(

1

1− ρ∗2
) (2)

such that that at least one off1(ρ∗)− f5(ρ
∗) ≤ f3(ρ

′)− f5(ρ
′) andf3(0)− f5(ρ

∗) ≤ f3(ρ
′)− f5(ρ

′) is

satisfied, whereρ∗ =
√

1 + 1
4P1P2

− 1
2
√
P1P2

andρ′ ∈ [0, ρ∗] is such thatf3(ρ′) = f4(ρ
′).5

Theorem 6 indicates that the upper and lower bounds in Theorems 4 and 5 coincide for1.1 < C < 2.18

whenP = 10 andg = 0.1 and for1.91 < C < 3.82 whenP = 100 andg = 0.1.

Remark 3: For g = 0, the bounds in Theorems 1-5 fall back to those in [3].

5We note that under the condition (2),ρ′ ∈ [0, ρ∗] such thatf3(ρ′) = f4(ρ
′) exists.
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Now, a natural question is how the presence of an eavesdropper affects the capacity. We partially

answer this question by comparing our results with the lowerand upper bounds in [3] that are derived

without secrecy constraint. Note that when there is no secrecy constraint, the availability of randomness

at the encoders does not affect the capacity. Hence, the capacity without secrecy constraint is higher

than or equal to the secrecy capacity with secrecy constraint both for the first and the second scenarios.

We compare the bounds in Fig. 6 for sufficiently largeR′ and symmetric channel parameters. First, as

illustrated in Fig. 6-(a), the upper bound without secrecy constraint and the lower bound for the first

scenario coincide up toC ≤ 1
2 (f4(0) − f5(0)). This indicates that, when there is a sufficient amount

of common randomness between the source and the relays, there is no decrease in capacity due to an

eavesdropper for some range ofC. On the other hand, for the same channel parameters, Fig. 6-(b) shows

that the lower bound without secrecy constraint is strictlyhigher than the upper bound for the second

scenario for all range ofC > 0. This indicates that, when there is no randomness at the relays, the secrecy

capacity for the second scenario can be strictly smaller than the capacity without secrecy constraint for

all range ofC.

Proof of Theorem 3: The bound in Theorem 1 is further upper-bounded as follows:

min(max(S1, S2),max(S3, S4)) ≤ max(S3, S4)

(a)

≤ max
0≤ρ≤1

min(f1(0), f2(0), f3(0), f4(ρ)− f5(ρ)),

where (a) is becausef1(ρ) and f2(ρ) are decreasing functions ofρ ∈ [0, 1]. Furthermore, for any

ρ ∈ [0, 1], we have

lim
P1→∞ or P2→∞

f4(ρ)− f5(ρ) = lim
P1→∞ or P2→∞

1

2
log

1 + P1 + P2 + 2ρ
√
P1P2

1 + g(P1 + P2 + 2ρ
√
P1P2)

=
1

2
log

1

g

= lim
P1→∞ or P2→∞

f4(0) − f5(0).

Hence, the secrecy capacity for the first scenario whenP1 → ∞ or P2 → ∞ is asymtotically upper-

bounded by

lim
P1→∞ or P2→∞

min(f1(0), f2(0), f3(0), f4(0)− f5(0)),

which is clearly achievable by the PDF scheme.
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(b)

Fig. 6. Comparison with the lower and upper bounds without secrecy constraint whenP = 10 andg = 0.1.

Proof of Theorem 6: Let us first show thatmax(T1, T2) = f3(ρ
′) − f5(ρ

′). For symmetric channel

parameters,T1 andT2 can be rewritten as follows:

T1 = max
−1≤ρ<0

min(f3(0), f4(ρ))− f5(ρ)

T2 = max
0≤ρ≤ρ∗

min(f3(ρ), f4(ρ)) − f5(ρ).

Let us define functionsf35(ρ) andf45(ρ) of ρ ∈ [−1, ρ∗] as follows:

f35(ρ) =











f3(0) − f5(ρ) if − 1 ≤ ρ < 0

f3(ρ)− f5(ρ) otherwise
, f45(ρ) = f4(ρ)− f5(ρ).

Note that we can rewrite the condition in (2) asf35(0) ≥ f45(0) and f35(ρ
∗) ≤ f45(ρ

∗). Sincef35(ρ)

andf45(ρ) are monotonically decreasing function and monotonically increasing function ofρ ∈ [−1, ρ∗],
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respectively, the condition in (2) implies that there exists ρ′ ∈ [0, ρ∗] such thatf35(ρ′) = f45(ρ
′). Hence,

we havemax(T1, T2) = max−1≤ρ≤ρ∗ min(f35(ρ), f45(ρ)) = f35(ρ
′) = f3(ρ

′)− f5(ρ
′).

Now, let us showmax(f35(ρ
′), T3) = f35(ρ

′). Since bothf1(ρ)−f5(ρ) andf3(0)−f5(ρ) for ρ ∈ [ρ∗, 1]

have the maximum atρ = ρ∗, we have

max(f35(ρ
′), T3) ≤ max(f35(ρ

′),min(f1(ρ
∗)− f5(ρ

∗), f3(0)− f5(ρ
∗))) = f35(ρ

′)

if f1(ρ
∗)− f5(ρ

∗) ≤ f3(ρ
′)− f5(ρ

′) or f3(0)− f5(ρ
∗) ≤ f3(ρ

′)− f5(ρ
′). Hence, under the conditions in

Theorem 6, the upper bound in Theorem 4 becomesf3(ρ
′)− f5(ρ

′).

Now, it remains to showf3(ρ′)− f5(ρ
′) is achievable. We have

R
(2)
PDF−PDF−M(ρ′) = (f3(ρ

′)− f5(ρ
′)) · 1C>f6(ρ′)

(a)
= f3(ρ

′)− f5(ρ
′)

where(a) is becausef3(ρ′) = f4(ρ
′) andf3(ρ′)− f5(ρ

′) = f4(ρ
′)− f5(ρ

′) > 0 imply C > f6(ρ
′). This

completes the proof.

IV. D ERIVATION OF UPPER ANDLOWER BOUNDS ON THESECRECY CAPACITY

In this section, we prove the upper and lower bounds on the secrecy capacity presented in Section III.

A. Proof of Theorem 1

We note that the upper boundmax(S1, S2), which the same as the upper bound in [3] on the capacity

without secrecy constraint, is easily obtained by noting that the secrecy capacity is upper-bounded by

the capacity without secrecy constraint and that common randomness at the encoders does not affect the

capacity when there is no secrecy constraint. Nevertheless, we provide a direct proof for the upper bound

max(S1, S2) as well as the upper boundmax(S3, S4) since it can be useful for bounding in other related

problems.

The proof generalizes those in [3] and [4] taking into account the secrecy constraint and the available

randomness at the encoders. Fork ∈ [1 : 2] and i ∈ [1 : n], let Pk,i = E(X2
k,i) and letλi =

E(X1,iX2,i)√
P1,iP2,i

.

Let λa ∈ [0, 1] andλb ∈ [0, 1] be such thatλ2
aP1 = 1

n

∑n
i=1 λ

2
iP1,i andλ2

bP2 = 1
n

∑n
i=1 λ

2
iP2,i. We use

ǫn to denote a function ofn such thatǫn tends to zero asn tends to infinity.
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By applying similar bounding techniques as in [3], we have

nR = H(W )

(a)

≤ I(W ;J1, Y
n,M) + nǫn

(b)
= I(W ;J1, Y

n|M) + nǫn

≤ H(J1) + I(W ;Y n|J1,M) + nǫn

(c)

≤ H(J1) + I(W ;Y n|J1,M,Xn
1 ) + nǫn

≤ H(J1) + I(W,Xn
2 ;Y

n|J1,M,Xn
1 ) + nǫn

≤ nC1 + I(Xn
2 ;Y

n|Xn
1 ) + nǫn

≤ nC1 +

n
∑

i=1

I(X2,i;Yi|X1,i) + nǫn

(d)

≤ nC1 +

n
∑

i=1

log(1 + (1− λ2
i )P2,i) + nǫn

(e)

≤ nC1 + n log(
1

n

n
∑

i=1

(1 + (1− λ2
i )P2,i)) + nǫn

(f)

≤ nC1 + n log(1 + (1− λ2
b)P2) + nǫn (3)

for sufficiently largen, where(a) is from the Fano’s inequality,(b) is becauseW andM are independent,

(c) is becauseXn
1 is a function ofJ1 andM , (d) is because the Gaussian distribution maximizes the

differential entropy given the power constaint,(e) is due to the concavity of the logarithm function, and

(f) is from the definition ofλb. Similarly, we can obtain

nR ≤ nC2 + n log(1 + (1− λ2
a)P1) + nǫn (4)

for sufficiently largen.
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We also have for sufficiently largen,

nR = H(W )

(a)

≤ I(W ;Y n,M) + nǫn

(b)
= I(W ;Y n|M) + nǫn

(c)
= I(Xn

1 ,X
n
2 ;Y

n|M) + nǫn (5)

≤ H(Xn
1 ,X

n
2 |M) + nǫn

≤ H(Xn
1 |M) +H(Xn

2 |M)− I(Xn
1 ;X

n
2 |M) + nǫn

≤ nC1 + nC2 − I(Xn
1 ;X

n
2 |M) + nǫn, (6)

where(a) is from the Fano’s inequality,(b) is becauseW andM are independent, and(c) is because

Xn
1 andXn

2 are functions ofM andW and the Markov relationshipW − (M,Xn
1 ,X

n
2 )− Y n holds.

Furthermore, for any random variableUi generated through a conditional pmfp(ui|x1,i, x2,i, yi), we

have

I(Xn
1 ;X

n
2 |M)

=I(Xn
1 ,X

n
2 ;U

n|M)− I(Xn
1 ;U

n|Xn
2 ,M)− I(Xn

2 ;U
n|Xn

1 ,M) + I(Xn
1 ;X

n
2 |Un,M)

≥I(Xn
1 ,X

n
2 ;U

n|M)−I(Xn
1 ;U

n|Xn
2 )−I(Xn

2 ;U
n|Xn

1 ). (7)

By applying the above lower bound to (6), we obtain

nR ≤ nC1 + nC2 − I(Xn
1 ,X

n
2 ;U

n|M) + I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ) + nǫn. (8)
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For sufficiently largen, we have

nR = H(W )

(a)

≤ H(W |Zn) + nǫn

(b)

≤ H(W |Zn)−H(W |Y n, Zn) + 2nǫn

= I(W ;Y n|Zn) + 2nǫn

≤ I(Xn
1 ,X

n
2 ;Y

n|Zn) + 2nǫn

(c)

≤ I(Xn
1 ,X

n
2 ;Y

n)− I(Xn
1 ,X

n
2 ;Z

n) + 2nǫn (9)

= h(Y n)− h(Zn) + 2nǫn

(d)

≤ h(Y n)− n

2
log(g2

2

n
h(Y n) + 2πe(1 − g)) + 2nǫn, (10)

where(a) is from the secrecy constraint,(b) is due to the Fano’s inequality,(c) is due to the degradedness

of the channel, and(d) is from the entropy power inequality. We note that (10) is a nondecreasing function

of h(Y n). h(Y n) is further upper-bounded as follows:

h(Y n) ≤
n
∑

i=1

h(Yi)

≤
n
∑

i=1

1

2
log(2πe)(1 + P1,i + P2,i + 2λi

√

P1,iP2,i)

≤ n

2
log(2πe)(

1

n

n
∑

i=1

(1 + P1,i + P2,i + 2λi

√

P1,iP2,i))

≤ n

2
log(2πe)(1 + P1 + P2 +

2

n

n
∑

i=1

√

λ2
iP1,iP2,i).

From the Cauchy-Schwarz inequality, we have

1

n

n
∑

i=1

√

λ2
iP1,iP2,i ≤

√

√

√

√(
1

n

n
∑

i=1

λ2
iP1,i)(

1

n

n
∑

i=1

P2,i)

≤
√

λ2
aP1P2.

Similarly, we have1
n

∑n
i=1

√

λ2
iP1,iP2,i ≤

√

λ2
bP1P2. Hence, we obtain

h(Y n) ≤ n

2
log(2πe)(1 + P1 + P2 + 2min(λa, λb)

√

P1P2). (11)

August 28, 2021 DRAFT



17

Now we are ready to prove Theorem 1. Defineµ ∈ [0, 1] andν ∈ [0, 1] as follows. First,µ is determined

from h(Y n|M). µ = 0 if

1

n
h(Y n|M) ≤ 1

2
log(2πe)(1 + P1 + P2). (12)

Otherwise,µ is such that

1

n
h(Y n|M) =

1

2
log(2πe)(1 + P1 + P2 + 2µ

√

P1P2). (13)

Next, ν is determined fromh(Y n). ν = 0 if

1

n
h(Y n) ≤ 1

2
log(2πe)(1 + P1 + P2). (14)

Otherwise,ν is such that

1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ν

√

P1P2). (15)

Let us first show that

R ≤ max(S1, S2) + ǫn. (16)

If µ = 0, from (3), (4), (6), (5), and (12), we haveR ≤ min(f1(0), f2(0), f3(0), f4(0)) + ǫn. Consider

µ > 0. From h(Y n|M) ≤ h(Y n), (13), and (11), we haveµ ≤ min(λa, λb). Then, from (3), (4), (6),

(5), and (13), we obtainR ≤ min(f1(µ), f2(µ), f3(0), f4(µ)) + ǫn. If µ further satisfies0 < µ ≤ ρ∗,

we let Ui = Yi + Vi, whereVi is an i.i.d. Gaussian random variable with zero mean and variance of

γ =
√
P1P2(

1
µ
− µ)− 1.6 Then, the mutual information terms in (8) are bounded as follows:

I(Xn
1 ,X

n
2 ;U

n|M)

≥ h(Un|M)− n

2
log(2πe)(1 + γ)

(a)

≥ n

2
log(2

2

n
h(Y n|M) + 2πeγ) − n

2
log(2πe)(1 + γ)

=
n

2
log

1 + γ + P1 + P2 + 2µ
√
P1P2

1 + γ
(17)

I(Xn
1 ;U

n|Xn
2 ) ≤

n

2
log

1 + γ + (1− γ2)P1

1 + γ
(18)

I(Xn
2 ;U

n|Xn
1 ) ≤

n

2
log

1 + γ + (1− γ2)P2

1 + γ
, (19)

6For 0 < µ ≤ ρ∗, γ is nonnegative.
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where (a) is from the conditional entropy power inequality. Substituting the above bounds to (8), we

obtainR ≤ f3(µ) + ǫn. Hence, we haveR ≤ min(f1(µ), f2(µ), f3(µ), f4(µ)) + ǫn for 0 < µ ≤ ρ∗. This

concludes the proof of (16).

Now, let us show

R ≤ max(S3, S4) + 2ǫn. (20)

If ν = 0, from (3), (4), (6), (10), and (14), we haveR ≤ min(f1(0), f2(0), f3(0), f4(0) − f5(0)) + 2ǫn.

Considerν > 0. From (15) and (11), we haveν ≤ min(λa, λb). Then, from (3), (4), (6), (10), and (15),

we obtainR ≤ min(f1(µ), f2(µ), f3(0), f4(ν) − f5(ν)) + 2ǫn. If ν further satisfies0 < ν ≤ ρ∗, we

consider the following bound by adding the inequalities (5)and (8):

2nR ≤ nC1 + nC2 + I(Xn
1 ,X

n
2 ;Y

n|M)− I(Xn
1 ,X

n
2 ;U

n|M)

+ I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ) + 2nǫn

≤ nC1 + nC2 + I(Xn
1 ,X

n
2 ;Y

n|Un,M)

+ I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ) + 2nǫn

≤ nC1 + nC2 + I(Xn
1 ,X

n
2 ;Y

n|Un)

+ I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ) + 2nǫn

(a)

≤ nC1 + nC2 + I(Xn
1 ,X

n
2 ;Y

n)− I(Xn
1 ,X

n
2 ;U

n)

+ I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ) + 2nǫn, (21)

where (a) holds when(Xn
1 ,X

n
2 ) − Y n − Un. We let Ui = Yi + V ′

i , whereV ′
i is an i.i.d. Gaussian

random variable with zero mean and variance ofγ′ =
√
P1P2(

1
ν
− ν) − 1. Then, by substituting (15)

and similar bounds as in (17)-(19) to (21), we obtainR ≤ f3(ν)+f4(ν)
2 + ǫn. Hence, we haveR ≤

min(f1(ν), f2(ν), f3(0),
f3(ν)+f4(ν)

2 , f4(ν) − f5(ν)) + 2ǫn for 0 < ν ≤ ρ∗. This concludes the proof of

(20).

B. Proof of Theorem 2

Let us first assume that the channel from the relays to the legitimate destination and the eavesdropper

is a discrete memoryless channel with a conditional pmfp(y, z|x1, x2). Fix p(x1, x2) and let

R′ = I(X1,X2;Z)− δ(ǫ). (22)

Fix ǫ > 0. We useδ(ǫ) to denote a function ofǫ such thatδ(ǫ) tends to zero asǫ tends to zero.
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In the DF scheme, the source sends the message to both relays,which requiresR < min(C1, C2). Once

the relays share both the message and the fictitious message,we can treat the channel from the relays to

the legitimate destination and the eavesdropper as a classical wiretap channel [8], [9] with randomness

of rateR′ in (22) and hence the secrecy rate ofR < I(X1,X2;Y ) − I(X1,X2;Z) is achievable. By

combining two inequalities forR, we conclude the following secrecy rate is achievable:

min(C1, C2, I(X1,X2;Y )− I(X1,X2;Z)). (23)

The PDF-M scheme is described in the following.

• Codebook generation: We represent the messagew ∈ [1 : 2nR] as the partial message pair(w1, w2) ∈
[1 : 2nR1 ]× [1 : 2nR2 ] for someR1 ≥ 0 andR2 ≥ 0 such that

R1 +R2 = R, (24)

i.e., Wk for k ∈ [1 : 2] is uniformly distributed over[1 : 2nRk ] andW1 andW2 are independent.

ConsiderR̃k ≥ 0 for k ∈ [1 : 2]. For eachk ∈ [1 : 2] and(wk,m, lk) ∈ [1 : 2nRk ]× [1 : 2nR
′

]× [1 :

2nR̃k ], generatexnk(wk,m, lk) independently according to
∏n

i=1 p(xk,i).

• Encoding at the source: For message(w1, w2) and fictitious messagem, the source finds an(l1, l2)

such that

(xn1 (w1,m, l1), x
n
2 (w2,m, l2)) ∈ T (n)

ǫ .

For k ∈ [1 : 2], the source sends(wk, lk) to relayk.

• Encoding at relayk ∈ [1 : 2]: Note that fictitious messagem is given at relayk. After receiving

(wk, lk) from the source, relayk sendsxnk(wk,m, lk).

• Decoding at the legitimate destination: The legitimate destination finds(ŵ1, ŵ2, m̂, l̂1, l̂2) such that

(xn1 (ŵ1, m̂, l̂1), x
n
2 (ŵ2, m̂, l̂2), y

n) ∈ T (n)
ǫ .

The legitimate destination declares that(ŵ1, ŵ2) is the message.

• Error analysis: From the mutual covering lemma [10], the encoding error at the source averaged

over the codebooks tends to zero asn tends to infinity if

R̃1 + R̃2 > I(X1;X2) + δ(ǫ). (25)

For k ∈ [1 : 2], the transmission of(wk, lk) from the source to relayk requires

Rk + R̃k < Ck. (26)
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From the standard error analysis, the decoding error at the legitimate destination averaged over the

codebooks tends to zero asn tends to infinity if

R1 + R̃1 < I(X1;Y |X2) + I(X1;X2)− δ(ǫ) (27)

R2 + R̃2 < I(X2;Y |X1) + I(X1;X2)− δ(ǫ) (28)

R1 +R2 +R′ + R̃1 + R̃2 < I(X1,X2;Y ) + I(X1;X2)− δ(ǫ). (29)

• Secrecy analysis: We can showlimn→∞
1
n
I(W ;Zn|C) ≤ δ(ǫ)+ ǫ if (22) and the following inequal-

ities are satisfied.

R̃1 < I(X1;Z|X2) + I(X1;X2)− δ(ǫ) (30)

R̃2 < I(X2;Z|X1) + I(X1;X2)− δ(ǫ) (31)

R′ + R̃1 + R̃2 < I(X1,X2;Z) + I(X1;X2)− δ(ǫ) (32)

See Section IV-E for the detail.

Therefore, there exists a sequence of codes such thatP
(n)
e tends to zero and1

n
I(W ;Zn) ≤ δ(ǫ) + ǫ

asn tends to infinity if (22), (24)-(32) are satisfied. By performing Fourier-Mozkin elimination to (22),

(24)-(32) and by takingǫ → 0, the PDF-M rate of

min(C1 + I(X2;Y |X1), C2 + I(X1;Y |X2), C1 + C2 − I(X1;X2), I(X1,X2;Y )− I(X1,X2;Z))

(33)

is obtained. From the standard discretization procedure [11], R(1)
DF(ρ) andR

(1)
PDF−M(ρ) are obtained by

evaluating (23) and (33) for the degraded Gaussian diamond-wiretap channel discussed in Section II and

a jointly Gaussian distributionp(x1, x2) such thatxk for k ∈ [1 : 2] has zero mean and variance ofPk

and the correlation coefficient betweenX1 andX2 is ρ ∈ [−1, 1].
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C. Proof of Theorem 4

We note that the upper bound (9) continues to hold when the fictitious message is given only at the

source. Then, we have

nR ≤ I(Xn
1 ,X

n
2 ;Y

n)− I(Xn
1 ,X

n
2 ;Z

n) + nǫn (34)

≤ I(Xn
1 ,X

n
2 ;J1, Y

n)− I(Xn
1 ,X

n
2 ;Z

n) + nǫn

≤ H(J1) + I(Xn
1 ,X

n
2 ;Y

n|J1)− I(Xn
1 ,X

n
2 ;Z

n) + nǫn

(a)

≤ H(J1) + I(Xn
2 ;Y

n|J1,Xn
1 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn

≤ nC1 + I(Xn
2 ;Y

n|Xn
1 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn

(b)

≤ nC1 + n log(1 + (1− λ2
b)P2)− I(Xn

1 ,X
n
2 ;Z

n) + nǫn (35)

whereλb is defined in the proof of Theorem 1,(a) is becauseXn
1 is a function ofJ1, and(b) is from

some similar steps as in the derivation of (3). Similarly, wecan obtain

nR ≤ nC2 + n log(1 + (1− λ2
a)P1)− I(Xn

1 ,X
n
2 ;Z

n) + nǫn, (36)

whereλa is defined in the proof of Theorem 1.

For any random variableUi generated through a conditional pmfp(ui|x1,i, x2,i, yi), we have

nR ≤ I(Xn
1 ,X

n
2 ;Y

n)− I(Xn
1 ,X

n
2 ;Z

n) + nǫn

≤ H(Xn
1 ,X

n
2 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn

≤ H(Xn
1 ) +H(Xn

2 )− I(Xn
1 ;X

n
2 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn

(a)

≤ nC1 + nC2 − I(Xn
1 ;X

n
2 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn (37)

(b)

≤ nC1 + nC2 − I(Xn
1 ,X

n
2 ;U

n) + I(Xn
1 ;U

n|Xn
2 )

+ I(Xn
2 ;U

n|Xn
1 )− I(Xn

1 ,X
n
2 ;Z

n) + nǫn, (38)

where(a) is becauseXn
k is a function ofJk for k ∈ [1 : 2] and(b) is from some similar steps as in the

derivation of (7).

Note that we have the following lower and upper bounds on1
n
h(Y n):

1

n
h(Y n) ≥ 1

n
h(Y n|Xn

1 ,X
n
2 ) =

1

n
h(Nn

Y ) =
1

2
log(2πe)

1

n
h(Y n) ≤ 1

2
log(2πe)(1 + P1 + P2 + 2

√

P1P2).
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Hence, there existsρ ∈ [−ρ̄, 1] such that

1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ρ

√

P1P2). (39)

Then, we have the following lower bound onI(Xn
1 ,X

n
2 ;Z

n):

I(Xn
1 ,X

n
2 ;Z

n) ≥ n

2
log(1 + g(P1 + P2 + 2ρ

√

P1P2)) (40)

from the entropy power inequality.

Now, we are ready to prove Theorem 4. First considerρ ∈ [−ρ̄, 0). Then, from (34)-(37), (39), and

(40), we haveR ≤ min(f1(0), f2(0), f3(0), f4(ρ)) − f5(ρ) + ǫn. Next, considerρ ∈ [0, 1]. Then, due

to similar reasons as in the proof of Theorem 1, we haveρ ≤ min(λa, λb). Then, from (34)-(37), (39),

and (40), we haveR ≤ min(f1(ρ), f2(ρ), f3(0), f4(ρ))− f5(ρ)+ ǫn. Now, assume thatρ further satisfies

ρ ∈ [0, ρ∗]. We chooseUi = Yi + Ṽi, whereṼi is an i.i.d. Guassian random variable with zero mean and

variance ofγ̃ =
√
P1P2(

1
ρ
− ρ)− 1. Then, by substituting (40) and similar bounds as (17)-(19)to (38),

we obtainR ≤ f3(ρ)− f5(ρ)+ ǫn. Hence, we haveR ≤ min(f1(ρ), f2(ρ), f3(ρ), f4(ρ))− f5(ρ)+ ǫn for

ρ ∈ [0, ρ∗]. This concludes the proof of Theorem 4.

D. Proof of Theorem 5

As in the proof of Theorem 2, we first assume that the channel from the relays to the legitimate

destination and the eavesdropper is a discrete memoryless channel with a conditional pmfp(y, z|x1, x2).
Fix p(x1, x2) andǫ > 0. Let

R′ = I(X1,X2;Z)− δ(ǫ). (41)

For the DF scheme, by letting the source send both the messageand the fictitious message to the relays,

an achievable secrecy rate of

min(C1 −R′, C2 −R′, I(X1,X2;Y )− I(X1,X2;Z)) (42)

is obtained from (23) by replacingC1 andC2 by C1 −R′ andC2 −R′, respectively.

Similarly, for the PDF-DF-M scheme, by letting the source send the fictitious message as well as the

partial message and the relay codeword index to relayk for k = 1, 2 in the PDF-M scheme for the first

scenario, an achievable secrecy rate of

min(C1 + I(X2;Y |X1)−R′, C2 + I(X1;Y |X2)−R′,

C1 + C2 − I(X1;X2)− 2R′, I(X1,X2;Y )− I(X1,X2;Z)) (43)
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is obtained from (33) by replacingC1 andC2 by C1 −R′ andC2 −R′, respectively.

The PDF-PDF-M scheme is described in the following.

• Codebook generation: We represent the messagew ∈ [1 : 2nR] and the fictitious messagem ∈ [1 :

2nR
′

] as a partial message pair(w1, w2) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] and a partial fictitious message

pair (m1,m2) ∈ [1 : 2nR
′

1 ]× [1 : 2nR
′

2 ], respectively, for some nonnegative ratesR1, R2, R
′
1, andR′

2

such that

R1 +R2 = R, R′
1 +R′

2 = R′. (44)

ConsiderR̃k ≥ 0 for k ∈ [1 : 2]. For eachk ∈ [1 : 2] and(wk,mk, lk) ∈ [1 : 2nRk ]× [1 : 2nR
′

k ]× [1 :

2nR̃k ], generatexnk(wk,mk, lk) independently according to
∏n

i=1 p(xk,i).

• Encoding at the source: For message(w1, w2) and fictitious message(m1,m2), the source finds an

(l1, l2) such that

(xn1 (w1,m1, l1), x
n
2 (w2,m2, l2)) ∈ T (n)

ǫ .

For k ∈ [1 : 2], the source sends(wk,mk, lk) to relayk.

• Encoding at relayk ∈ [1 : 2]: After receiving(wk,mk, lk) from the source, relayk sendsxnk(wk,mk, lk).

• Decoding at the legitimate destination: The legitimate destination finds(ŵ1, ŵ2, m̂1, m̂2, l̂1, l̂2) such

that

(xn1 (ŵ1, m̂1, l̂1), x
n
2 (ŵ2, m̂2, l̂2), y

n) ∈ T (n)
ǫ .

The legitimate destination declares(ŵ1, ŵ2) is the message.

• Error analysis: From the mutual covering lemma, the encoding error at the source averaged over the

codebooks tends to zero asn tends to infinity if

R̃1 + R̃2 > I(X1;X2) + δ(ǫ). (45)

For k ∈ [1 : 2], the transmission of(wk,mk, lk) from the source to relayk requires

Rk +R′
k + R̃k < Ck. (46)

From the standard error analysis, the decoding error at the legitimate destination averaged over the

codebooks tends to zero asn tends to infinity if

R1 +R′
1 + R̃1 < I(X1;Y |X2) + I(X1;X2)− δ(ǫ) (47)

R2 +R′
2 + R̃2 < I(X2;Y |X1) + I(X1;X2)− δ(ǫ) (48)

R1 +R2 +R′
1 +R′

2 + R̃1 + R̃2 < I(X1,X2;Y ) + I(X1;X2)− δ(ǫ). (49)
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• Secrecy analysis: We can showlimn→∞
1
n
I(W ;Zn|C) ≤ δ(ǫ)+ ǫ if (41) and the following inequal-

ities are satisfied.

R′
1 + R̃1 < I(X1;Z|X2) + I(X1;X2)− δ(ǫ) (50)

R′
2 + R̃2 < I(X2;Z|X1) + I(X1;X2)− δ(ǫ) (51)

R′
1 +R′

2 + R̃1 + R̃2 < I(X1,X2;Z) + I(X1;X2)− δ(ǫ) (52)

See Section IV-E for the detail.

Therefore, there exists a sequence of codes such thatP
(n)
e tends to zero and1

n
I(W ;Zn) ≤ δ(ǫ) + ǫ

asn tends to infinity if (41), (44)-(52) are satisfied. By performing Fourier-Mozkin elimination to (41),

(44)-(52) and by takingǫ → 0, a secrecy rate of

min(C1 + I(X2;Y |X1), C2 + I(X1;Y |X2), C1 + C2 − I(X1;X2), I(X1,X2;Y ))− I(X1,X2;Z)

(53)

subject to the constraints

C1 > I(X1;Z), C2 > I(X2;Z) (54)

is obtained. From the standard discretization procedure,R
(2)
DF(ρ), R

(2)
PDF−DF−M(ρ), andR(2)

PDF−PDF−M(ρ)

are obtained by evaluating (42), (43), (53), and (54) for thedegraded Gaussian diamond-wiretap channel

discussed in Section II and a jointly Gaussian distributionp(x1, x2) such thatxk for k ∈ [1 : 2] has zero

mean and variance ofPk and the correlation coefficient betweenX1 andX2 is ρ ∈ [−1, 1].

E. Secrecy analysis

Let C denote the random codebook. For messageW , fictitious messageM , and chosen relay codeword

indicesL = (L1, L2), we have

H(W |Zn, C) = H(W,M,L|Zn, C)−H(M,L|W,Zn, C)
(a)

≥ H(W,M,L|Zn, C) − nǫ

= H(W,M,L|C) − I(W,M,L;Zn|C)− nǫ

≥ H(W ) + nR′ − I(W,M,L,Xn
1 ,X

n
2 , C;Zn)− nǫ

= H(W ) + nR′ − I(Xn
1 ,X

n
2 ;Z

n)− nǫ

≥ H(W ) + nR′ − nI(X1,X2;Z)− nǫ

= H(W )− nδ(ǫ)− nǫ
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for sufficiently lagen, where(a) is because the eavesdropper who already knowsW andZn can decode

M andL with high probability when (30)-(32) are satisfied for the first scenario and when (50)-(52) are

satisfied for the second scenario. Hence, we havelimn→∞ 1
n
I(W ;Zn|C) ≤ δ(ǫ) + ǫ.

V. CONCLUSION

In this paper, we derived nontrivial upper and lower bounds on the secrecy capacity of the degraded

Gaussian diamond-wiretap channel under two scenarios regarding the availability of randomness.

Our upper bound was obtained by taking into account the correlation between the two relay signals and

the availability of randomness at each encoder, which generalizes both the upper bound on the capacity

of the diamond channel without secrecy constraint [3] and the upper bound on the sum secrecy capacity

of the MAC wiretap channel [4]. For the lower bound, we proposed DF scheme and partial DF scheme

incorporated with multicoding that is called PDF-M scheme for the first scenario and PDF-DF-M and

PDF-PDF-M schemes for the second scenario depending on whether the relay decodes the whole or partial

fictitious message. In the first scenario, PDF-M scheme with strictly positive correlation coefficient was

shown to outperform DF and PDF (without multicoding) schemes for some channel parameters. We also

showed that the PDF scheme is asymptotically optimal for thefirst scenario when at least one of relay

power constraint tends to infinity. For the second scenario,we presented a condition for channel parameters

where the PDF-PDF-M scheme is optimal. Furthermore, because the fictitious message has to be sent

through the BC for the second scenario, it was shown to be befinicial to consider negative correlation

in all DF, PDF-DF-M, PDF-PDF-M schemes when the BC cut becomes the bottleneck. Furthermore, we

investigated the effect of the presence of an eavesdropper on the capacity. If there is a sufficient amount

of common randomness between the source and the relays, it was shown that there is no decrease in

capacity due to an eavesdropper for some range ofC.

As a final remark, it seems to be straightforward to combine our DF scheme and partial DF scheme

incorporated with multicoding by using superposition coding, but the resultant rate expression would be

rather complicated with less useful insights.
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