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Capacity of the Energy Harvesting Channel with a
Finite Battery

Dor Shaviv, Phan-Minh Nguyen and Ayfer Özgür

Abstract—We consider an energy harvesting channel, in which
the transmitter is powered by an exogenous stochastic energy
harvesting process Et, such that 0 ≤ Et ≤ Ē, which can be
stored in a battery of finite size B̄. We provide a simple and
insightful formula for the approximate capacity of this channel
with bounded guarantee on the approximation gap independent
of system parameters. This approximate characterization of the
capacity identifies two qualitatively different operating regimes
for this channel: in the large battery regime, when B̄ ≥ Ē, the
capacity is approximately equal to that of an AWGN channel
with an average power constraint equal to the average energy
harvesting rate, i.e. it depends only on the mean of Et and is
(almost) independent of the distribution of Et and the exact value
of B̄. In particular, this suggests that a battery size B̄ ≈ Ē is
approximately sufficient to extract the infinite battery capacity
of the system. In the small battery regime, when B̄ < Ē, we
clarify the dependence of the capacity on the distribution of Et

and the value of B̄.
There are three steps to proving this result which can be of

interest in their own right: 1) we characterize the capacity of this
channel as an n-letter mutual information rate under various
assumptions on the availability of energy arrival information:
causal and noncausal knowledge of the energy arrivals at the
transmitter with and without knowledge at the receiver; 2) we
characterize the approximately optimal online power control
policy that maximizes the long-term average throughput of the
system; 3) we show that the information-theoretic capacity of this
channel is equal, within a constant gap, to its long-term average
throughput. This last result provides a connection between the
information- and communication-theoretic formulations of the
energy-harvesting communication problem that have been so far
studied in isolation.

I. INTRODUCTION

Energy-harvesting is quickly becoming a game-changing
technology for many wireless systems. The promise of self-
sustained perpetual operation opens exciting possibilities for
a wide range of applications from powering base stations in
rural areas with renewable energy sources (ex. wind or sun)
to building in-body wireless networks powered by body heat,
motion or RF energy transfer. However, energy harvesting also
brings a fundamental shift in communication system design
principles. In conventional systems, energy (or power) is a
deterministic quantity continuously available to the transmitter
and communication is typically constrained only in terms
of average power. In harvesting systems, energy may not
be generated at all times and the rate of energy generation
can be unpredictable and fluctuate significantly over time. In
such systems, energy that becomes available for information
transmission can be modeled as a stochastic rather than a
deterministic process.

Transmitter + Receiver

BatteryB̄

Et

Xt Yt

Nt ∼ N (0, 1)

Fig. 1. Energy harvesting AWGN channel model.

Communication under an average power constraint is well-
understood. Shannon’s most famous capacity formula

C = W log

(
1 +

P

N0W

)
bits/s, (1)

provides the basis for designing efficient communication sys-
tems operating under this constraint. This formula not only
quantifies exactly the performance limit of communication
over an additive white gaussian noise (AWGN) channel con-
strained to an average power of P Watts, allocated bandwidth
W Hz, and subject to white noise of power spectral density
N0/2 Watts/Hz, but perhaps even more importantly also
identifies two fundamentally different operating regimes for
this channel where the dependence of the capacity on major
system parameters is qualitatively different. In the power-
limited (or low-signal-to-noise ratio (SNR)) regime, where
SNR := P/N0W � 0 dB, the capacity is approximately
linear in the power, and the performance depends critically
on the power available but not so much on the bandwidth. In
the bandwidth-limited (or high-SNR) regime, where SNR� 0
dB, the capacity is approximately linear in the bandwidth and
the performance depends critically on the bandwidth but not so
much on the power. The regime is determined by the interplay
between the amount of power and bandwidth available. The
design of good communication schemes for wireless systems
has been primarily driven by the parameter regime one is in.

Despite significant recent effort [1]–[8], there is no anal-
ogous understanding for energy harvesting communication
systems. Fig. 1 depicts the basic model that captures this
form of communication. Here a transmitter powered by an
exogenous stochastic energy arrival process Et equipped with
a battery of size B̄ is communicating to a receiver over an
AWGN channel. The available energy for transmission at any
given time is limited by the amount of energy available in
the battery Bt, which in turn depends on the previous energy
arrivals as well as the energy consumed in the earlier time
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slots:

X2
t ≤ Bt,
Bt = min{Bt−1 −X2

t−1 + Et, B̄}. (2)

This leads to a complex power constraint on the transmitter
which has memory and is input-dependent. The problem is
further complicated by the fact that in a typical scenario the
realizations of Et are known (causally) only at the transmitter
and not at the receiver. Obtaining an insightful capacity
formula for such a transmitter has proven difficult. As a result,
even very basic questions concerning the design of energy
harvesting communication systems remain poorly understood,
such as:
• how does the system capacity (at least roughly) depend

on the energy harvesting profile Et and the battery size
B̄?

• are there different operating regimes where this depen-
dence is qualitatively different (analogous to the two
operating regimes of the classical AWGN channel)?

• what are the properties of the process Et (ex. mean,
variance etc.) that most critically determine capacity? as a
result, what are more favorable and less favorable energy
harvesting profiles?

• given an energy harvesting profile Et, how large should
we choose the size of the battery B̄ so as to extract most
of the system capacity?

Previous work [4], [8] provides an approximate formula for
the capacity of this channel when energy arrivals are i.i.d.
Bernoulli, which sheds some light on these questions in this
specific case.

A. Our Contribution

In this paper, we derive a simple and insightful formula for
the approximate capacity of this channel which holds for any
i.i.d. process Et. In particular, we show that when Et is an
i.i.d process, the capacity of this channel can be approximated
as

C ≈ 1

2
log
(
1 + E[min{Et, B̄}]

)
bits/s/Hz (3)

within 3.85 bits/s/Hz, where we assume that the noise variance
is normalized to 1.12 This characterization identifies two fun-
damentally different operating regimes for this channel where
the dependence of the capacity on Et and B̄ is qualitatively
different.

Let Et take values in the interval [0, Ē]. When B̄ ≥ Ē,
(3) becomes

C ≈ 1

2
log (1 + E[Et]) bits/s/Hz, (4)

1Different from (1), here we focus on the capacity in bits/s/Hz and assume
that the noise variance is normalized to 1 in order to highlight the dependence
of the capacity on the new channel parameters. The normalization of the noise
power to 1 is without loss of generality since the approximation result is
independent of the parameters of the problem.

2The additive capacity approximations we develop in this paper are most
relevant in the high-SNR regime. Note that this can indeed be the operating
regime of a low power wireless device if the available power is concentrated
on a very narrow frequency band. This ultra-narrow band approach is indeed
the defacto technique for some low power IoE devices that, despite being
low-power, operate at reasonably high SNRs [9], [10].

0

fE(x)

x

Ē B̄

(a) B̄ ≥ Ē

0

fE(x)

x

B̄

(b) B̄ ≤ Ē

Fig. 2. pdf of Et in the two battery regimes.

and the capacity is approximately equal to that of an AWGN
channel with an average power constraint equal to the average
energy harvesting rate. Note that the right-hand side of (4)
trivially upper bounds the capacity of the energy harvesting
channel as this would be the capacity if the transmitter were
only constrained in its average transmission power (or average
energy per channel use), which can obviously not exceed the
average rate of the incoming energy. Ozel and Ulukus in [1]
show that this upper bound can be achieved when B̄ = ∞.
Our result suggests that this large battery regime kicks in
much earlier, as soon as the battery size B̄ is large enough
to accommodate the maximal amount of energy that can be
harvested over a single channel use. This is surprising given
that the transmitter is limited by the additional constraint (2),
and at finite B̄ this can lead to part of the harvested energy
being wasted due to an overflow in the battery capacity. While
there is a very natural way to achieve the AWGN capacity in
(4) with B̄ =∞ – the transmitter can simply remain silent for
a duration of time sublinear in the blocklength to accumulate
sufficient energy in the battery and then use standard i.i.d.
Gaussian coding – achieving the AWGN capacity at finite B̄
is intricate and in particular requires an optimal online power
control strategy. Note that in this large battery regime, which
(3) identifies as the case B̄ ≥ Ē, the capacity approximation
depends only on the mean of the energy harvesting process:
two energy harvesting profiles are equivalent as long as they
provide the same energy on the average. The approximate
capacity is also independent of the exact size of B̄. In
particular, choosing B̄ ≈ Ē is almost sufficient to extract
the infinite battery capacity. More precisely, there is limited
capacity gain in making B̄ much larger than Ē.

When B̄ ≤ Ē, note that one can equivalently consider the
distribution of Et to be that in Fig. 2-(b): since every energy
arrival with value Et ≥ B̄ fully recharges the battery, this
creates a point mass at B̄ with value P (Et ≥ B̄). In this
case, (3) reveals that the capacity is approximately given by
the mean of this modified distribution. This can be interpreted
as the small battery regime of the channel. In particular, in
this regime the capacity roughly depends both on the shape of
the distribution of Et and the value of B̄. For example, while
two energy harvesting mechanisms providing the same average
energy lead to the same approximate capacity in the large
battery regime, in the small battery regime they are likely to
yield different capacity approximations. In particular, constant
energy arrivals will maximize capacity among all distributions
with the same mean. Note that while (3) suggests that choosing
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B ≈ Ē allows to almost extract the infinite battery capacity
of the channel, it also quantifies the performance loss when
B̄ < Ē. In particular, the performance loss is dictated by the
difference between the mean of the original distribution for Et
in Fig. 2-(a) and that of the modified distribution in Fig. 2-(b).
Note that when Et is unbounded but has a fast decaying tail,
choosing B̄ large but finite can be sufficient to approach the
infinite battery capacity.

There are three major steps to proving the approximation
result in (3) which can be of interest in their own right. We
first characterize the exact capacity of the energy harvesting
channel in Fig. 1 as the limit of an n-letter maximum mutual
information rate under various assumptions on the available
information regarding the energy harvesting process, such
as causal or noncausal information at the transmitter with
or without information at the receiver. Obtaining an n-letter
mutual information expression for the capacity of this channel
is nontrivial and has remained an open problem until now,
since the energy constraints on the transmitter lead to an
input-dependent random state with memory for the system. In
particular, it is not a priori clear if the channel is information-
stable or not. Earlier characterizations of the capacity [6] have
been only available in terms of the Verdú-Han framework [11].

The second step is to devise an approximately optimal
online power control policy for the energy harvesting channel
that maximizes its long-term average throughput. Optimal
power control for energy harvesting systems has been of
significant interest over the recent years in the communication
theory literature [12]–[24]. This formulation simplifies the
communication problem by assuming that there is an underly-
ing transmission scheme operating at a finer time-scale such
that allocating power P to this scheme yields an information
rate r(P ) = 1

2 log(1 + P ) bits/s and focuses on maximiz-
ing the long-term average throughput of the system subject
to energy availability constraints imposed by the harvesting
process analogous to (2). The problem has been studied in two
different settings. In the offline case, where energy arrivals
are known ahead of time, the optimal power control policy
has been characterized in [12]–[14]. The optimal strategy in
this case keeps energy consumption as constant as possible
over time while ensuring energy is never wasted due to an
overflow in the battery capacity. The more interesting online
case remains poorly understood. In this setting, the energy
arrival process is observed causally at the transmitter and only
statistical information regarding the future energy arrivals is
available. In this paper, we develop a simple online power
control policy based on [4], [8] and show that it is at most 1.8
bits/s/Hz to optimality, independent of system parameters. This
strategy waits until the battery is fully charged to B̄ and then
allocates the energy B̄ in an exponentially decaying manner
until the next time instant when the battery is fully recharged.
This near-optimal solution suggests that the optimal power
control strategy in the online case is structurally different from
the offline case, where the optimal policy rather aims to keep
power allocation as constant as possible across different time-
slots.

The third step in proving (3) is to connect the two different

formulations of the energy harvesting communication problem
discussed above: the information-theoretic formulation which
aims to characterize the fundamental capacity of the channel,
and the communication-theoretic power control problem which
aims to maximize the long-term average throughput of the
channel. We first show that the long-term average throughput
provides an upper bound on the true information-theoretic
capacity of the channel. For example, the optimal offline
throughput provides an upper bound on the information-
theoretic capacity with noncausal knowledge of the energy
arrivals at the transmitter and the receiver, while the optimal
online throughput is an upper bound on the capacity with
causal information regarding the energy arrivals. Perhaps more
surprisingly, we also show that given an optimal power control
policy there is a natural way to construct explicit schemes
which achieve a rate within a constant gap of the upper bound
(the corresponding long-term average throughput) for any i.i.d.
energy harvesting process and any value of B̄. This allows us
to conclude that the optimal solutions of these two problems,
the information-theoretic capacity and the long-term average
throughput, cannot differ from each other by a constant gap
(ex. the gap is at most 1.05 bits/s/Hz with receiver side
information). In particular, using the approximately optimal
online power control policy we develop in the previous step,
we obtain the approximation (3) for the information theoretic
capacity. To the best of our knowledge, this is the first
work that establishes an explicit relation between the two
different formulations of the energy harvesting communication
problem, so far studied separately in the respective information
and communication theory literatures.

B. Related Work

The information-theoretic capacity of the energy harvesting
channel in Fig. 1 has been of significant recent interest [1]–[8].
In particular, [1] shows that when B̄ =∞ the capacity of the
energy harvesting channel is the same as that of an AWGN
channel with average power constraint equal to the average
energy harvesting rate E[Et]. Follow-up works provide upper
and lower bounds on the capacity for the more realistic
case of finite battery and n-letter capacity expressions for
some special cases. In particular, [2] provides an expression
for the capacity in terms of the Verdú-Han framework; [6]
derives upper and lower bounds on the capacity with i.i.d.
energy arrivals in terms of limits of n-letter maximum mutual
information rates; [5] considers the special case when there
is a constant amount of energy arriving at each time slot
and provides an n-letter expression for the capacity in this
deterministic case; [3] considers the special case where the
battery is of unit size and the channel is a noiseless bit
pipe. Characterizing the capacity, even as an n-letter mutual
information rate, has remained an open problem for general
energy harvesting processes. The contribution of the current
paper with respect to this literature can be regarded as: 1)
providing n-letter expressions for the capacity under various
assumptions on the available information at the transmitter
and the receiver regarding the energy arrivals; 2) provide a
simple and insightful approximation formula for the capacity
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of this channel by proving upper and lower bounds that
differ by a constant gap. Our work is most closely related
to prior work in [4], [8] which introduces the constant gap
approximation approach and provides an approximate formula
for the capacity of the channel in Fig. 1 when the energy
arrival process is i.i.d. Bernoulli (without providing an n-letter
expression for the channel capacity). In a companion paper
[25], we focus on the special case with Bernoulli energy
recharges. For this special case, we are able to provide n-letter
expressions in simpler form, for which the maximizing input
distribution can be identified in certain cases, and we exactly
solve the corresponding online power control problem. This
leads to tighter approximations of the capacity in this special
case and allow us to deduce new insights on the usefulness
of noncausal observations of the energy arrivals and output
feedback (see also [26]).

The study of optimal power control policies for the energy
harvesting channel precedes the study of its information-
theoretic capacity. The power control problem is well under-
stood in the offline case [12]–[14]. The online power control
problem can be cast as a Markov Decision Process and the
optimal solution can be computed numerically using dynamic
programming [20]–[23]. However, the curse of dimensionality
inherent in the dynamic programming solution makes this
approach computationally intensive. More importantly, the
numerical solution provides little insight into the structure of
the optimal power control strategy, its dependence on major
system parameters, and the resultant performance. Several
works focus on establishing properties for the optimal solution,
however these properties are either very high-level, ex. [22]
establishes monotonicity of the optimal policy, [27] shows that
deterministic policies are sufficient; or still require numerical
evaluation, ex. [24] derives a system of coupled partial integro-
differential equations as necessary conditions for optimality,
which can be solved only numerically. It is easy to observe
that when the battery size is infinite, a simple power control
strategy that allocates constant power equal to the mean energy
arrival rate becomes asymptotically optimal and achieves the
AWGN capacity for any i.i.d. energy harvesting process. [15]–
[19] study the infinite battery regime in more detail. Finally,
[13] and follow-up work propose heuristics without providing
any guarantees on optimality. In contrast, in this paper we
propose an explicit online power control policy and show that
it is within a constant gap to optimality. Indeed, this policy can
achieve the AWGN capacity, which is achievable with infinite
battery size, within a constant gap with finite battery. The
structure of this approximately optimal policy is completely
different from the heuristics proposed in the literature, which
are typically inspired by the offline solution or the infinite
battery regime.

C. Organization of the Paper

The paper is organized as follows. Section II contains
our system model and Section III contains our main re-
sults. Section IV characterizes the capacity of the energy
harvesting channel as an n-letter mutual information rate.
Section V considers the online power control problem and

develops an approximately optimal power control policy. The
reader interested in the power control problem and not the
information-theoretic capacity of this channel can read this
section independently. Finally Section VI develops the connec-
tion between the information-theoretic capacity and the power
control optimization problem.

II. SYSTEM MODEL

We begin by introducing the notation used throughout the
paper. Let uppercase, lowercase, and calligraphic letters denote
random variables, specific realizations of RVs, and alphabets,
respectively. For two jointly distributed RVs (X,Y ), let PX ,
PX,Y , and PY |X , respectively denote the marginal of X , the
joint distribution of (X,Y ), and the conditional distribution of
Y given X . Let E[·] denote expectation. For m ≤ n, Xn

m =
(Xm, Xm+1, . . . , Xn−1, Xn), and Xn = Xn

1 . With abuse of
notation, when the superscript is 2 it is understood as square,
i.e. X2

t = (Xt)
2. Additionally, when the length is clear from

the context, we sometimes denote vectors by boldface letters,
e.g. x ∈ Xn. All logarithms are to base 2 (ln will denote log
to base e).

The energy harvesting channel is an AWGN channel, i.e.
the output at time t is Yt = Xt + Nt, where Nt ∼ N (0, 1)
and Xt ∈ R is the input. The transmitter has a battery with
finite capacity B̄, and the input symbol energy at each time
slot is constrained by the available energy in the battery. Let
Bt represent the available energy in the battery at time t. The
system energy constraints can be described as

X2
t ≤ Bt, (5)

Bt = min{Bt−1 −X2
t−1 + Et, B̄}. (6)

Et is the energy arrivals process which we assume to be
i.i.d. for different t. For simplicity we assume that Et is a
discrete RV over the finite alphabet E , such that Et ≥ 0
and Et > 0 with positive probability, implying E[Et] > 0.
However, our results also apply when Et is continuous or
comes from a mixed distribution by considering the continuous
distribution to be the limit of quantized discrete distributions
(see footnote 6). We assume that B0 = b, where 0 ≤ b ≤ B̄ is
a fixed quantity known to both the transmitter and the receiver
before beginning of transmission.3

In this work, we investigate three cases: Et is observed
causally at the transmitter only; Et is observed causally at
the transmitter as well as the receiver; and Et is observed
noncausally at the transmitter and the receiver. In any case,
the transmitter has (at least) causal knowledge of Et, which
implies also causal knowledge of Bt. While it is natural for
the transmitter to be aware of its own energy arrival process
in a causal fashion, the receiver may have side information
regarding the energy arrival process at the transmitter in certain
scenarios; for example, when it is itself harvesting energy from
a correlated process or when the transmitter indeed harvests
the RF energy dissipated by the receiver.

3This assumption is made to simplify the exposition. Our results hold even
if the initial battery state is unknown to both the transmitter and the receiver
and can be arbitrarily fixed or random.
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For the first case, we define an (M,n, ε) code as a set of
encoding functions f enc

t and a decoding function fdec:

f enc
t :M×Et → X , t = 1, . . . , n, (7)

fdec : Yn →M, (8)

where X = Y = R and M = {1, . . . ,M}. To transmit
message w ∈ M at time t = 1, . . . , n, the transmitter sets
Xt = f enc

t (w,Et). The battery state Bt is a deterministic
function of (Xt−1, Et), therefore also of (w,Et). The func-
tions f enc

t must satisfy the energy constraint (5):

(f enc
t (w,Et))2 ≤ Bt(w,Et).

The receiver sets Ŵ = fdec(Y n). The probability of error is

Pe =
1

M

M∑
w=1

Pr(Ŵ 6= w | w was transmitted) ≤ ε.

The rate of an (M,n, ε) code is logM
n . We say R is

ε-achievable if for every δ > 0 there exist, for all sufficiently
large n, an (M,n, ε) code with rate logM

n > R − δ. The
capacity C is the maximal rate that is ε-achievable for all
0 < ε < 1.

When Et is observed also at the receiver (either causally or
noncausally), (8) is altered to fdec : Yn×En →M. Similarly,
to account for noncausal observations of Et at the transmitter,
we change (7) to f enc : M × En → Xn, so that Xn =
f enc(w,En), where again

(f enc
t (w,En))2 ≤ Bt(w,En).

Note that Bt is again deterministic function of (Xt−1, Et),
which is now a deterministic function (w,En).

In what follows, we investigate three cases: energy arrival
process observed causally at the transmitter only; observed
causally at the transmitter as well as the receiver; and observed
noncausally at both the transmitter and the receiver. We obtain
capacities for each of these cases, denoted by Ccausal

Tx , Ccausal
TxRx ,

and Cnoncausal
TxRx , respectively.

A. Equivalent Channel Model with Causal TX Side Informa-
tion

Consider the channel defined in the previous section with
the energy arrivals observed causally at the transmitter. Follow-
ing Shannon’s approach [28] as done in [2], this channel can be
converted into an equivalent channel with no state information
at the transmitter but with a different input alphabet, using
Shannon strategies: the input to the equivalent channel at time
t is a function ut : Et → X and the input alphabet for
blocklength n is of the form

Un = {un| ut : Et → X , t = 1, . . . , n}. (9)

Note that Un is not a Cartesian product of n copies of a
single alphabet, but a set of n-tuples where each element is
defined above. At time t, given the realization of Et, Xt =
Ut(E

t) is transmitted over the original channel. The output

of the channel is the corresponding Yt ∈ Y . This implies the
following transition probabilities for this new channel:

PY n|Un(yn|un) =
∑
en

PEn(en)PY n|Xn(yn|un(en))

=
∑
en

n∏
t=1

PE(et)PY |X(yt|ut(et)). (10)

Note that there is no transmitter side information for this chan-
nel and the encoding functions (7) become f enc :M→ Un.
However, not all n-tuples in Un are admissible. The energy
constraints on our original energy harvesting channel imply
that the admissible channel inputs un should satisfy for every
en ∈ En:

(ut(e
t))2 ≤ bt, (11)

bt = min{bt−1 − (ut−1(et−1))2 + et, B̄}. (12)

It is easy to see that the capacity of this channel is equal to
that of our original channel, as coding strategies for one can
be immediately translated to the other.

When the energy arrival process is observed only at the
transmitter, we consider the equivalent channel described
above instead of the original model. When the receiver also
observes the energy arrival process, we consider the original
channel model.

III. MAIN RESULTS

The main result of this paper is the approximation of
the capacity of the energy harvesting channel under various
assumptions on the availability of energy arrival information at
the transmitter and the receiver given in the following theorem.

Theorem 1. The capacity of the energy harvesting channel in
bits/channel use is bounded by

1

2
log(1 + µ)− 3.85 ≤ Ccausal

Tx ≤ 1

2
log(1 + µ), (13)

1

2
log(1 + µ)− 2.85 ≤ Ccausal

TxRx , C
noncausal
TxRx ≤ 1

2
log(1 + µ),

(14)

where µ , E[min{Et, B̄}].

The proof of this theorem consists of three main steps, each
of which can be of interest in its own right. The first step is to
characterize the capacity of the energy harvesting channel as
an n-letter mutual information rate under various assumptions
on the availability of energy arrival information (Theorem 2).
The second step is to use this characterization to show that
the information-theoretic capacity of the energy harvesting
channel is within a constant gap of 1.05 or 2.05 (respectively
for (13) and (14)) from its power control formulation studied
in the communication theory literature (Theorem 4). The third
step is to provide an approximate solution to the online
power control problem with bounded guarantee of 1.8 on the
approximation gap (Theorem 3).
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To state the expressions for capacity, we define the set of
allowed input distributions on Un for the equivalent channel:

Pn(b) =
{
PUn s.t. a.s. for t = 1, . . . , n and ∀en ∈ En :

(Ut(e
t))2 ≤ Bt, B0 = b,

Bt = min{Bt−1 − (Ut−1(et−1))2 + et, B̄}
}
.

(15)

Note that we impose the energy constraints by assigning zero
probability to any codeword that does not satisfy (11) and (12).
Similarly, define

Fn(b) =
{
PXn|En s.t. ∀en ∈ En, a.s. for t = 1, . . . , n :

X2
t ≤ Bt, B0 = b,

Bt = min{Bt−1 −X2
t−1 + et, B̄}

}
. (16)

For the case of causal energy arrival information at both
the transmitter and the receiver, we use the notion of causal
conditioning as in [29], namely let

PXn‖En(xn‖en) ,
n∏
t=1

PXt|Xt−1,Et(xt|xt−1, et). (17)

This differs from PXn|En =
∏n
t=1 PXt|Xt−1,En(xt|xt−1, en)

in that at time t the dependence on En is replaced by only
the past and present Et. Define

Qn(b) =
{
PXn‖En : PXn|En = PXn‖En s.t.

∀en ∈ En a.s. for t = 1, . . . , n :

X2
t ≤ Bt, B0 = b,

Bt = min{Bt−1 −X2
t−1 + et, B̄}

}
.

(18)

This is similar to Fn(b), but imposes the additional constraint
that Xt must depend on Et in a causal manner, as defined
in (17). Note that Bt is a function of (Xt−1, Et), so Qn(b)
is well-defined.

Using these definitions, we state the following theorem:

Theorem 2. The capacities of the energy harvesting channel
with various levels of energy arrival information are given by

Ccausal
Tx = lim

n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n), (19)

Ccausal
TxRx = lim

n→∞

1

n
sup

PXn‖En∈Qn(b)

I(Xn;Y n|En), (20)

Cnoncausal
TxRx = lim

n→∞

1

n
sup

PXn|En∈Fn(b)

I(Xn;Y n|En), (21)

where the supremum in (20) should be interpreted as setting
the input distribution PXn|En(xn|en) = PXn‖En(xn‖en), or
in other words, the Markov chain Xt− (Xt−1, Et−1)−Ent+1

holds for every t = 1, . . . , n.

Although we focus on the AWGN channel in this paper, it
is straightforward to see that Theorem 2 generalizes to any
memoryless channel. The proof of the theorem is given in
Section IV.

The expressions in Theorem 2 depend on the initial state
of the battery B0 = b. However, in the following, we show
that the capacity does not depend on b, which implies that
the expressions (19)–(21) can be evaluated for any value of
b ∈ [0, B̄] regardless of the actual value of B0. In fact, B0

can even be a random variable or an arbitrary value in [0, B̄],
unknown to the transmitter and the receiver. By “waiting” a
period of time before starting transmission, during which the
transmitter remains silent, and which is long enough to charge
the battery from 0 to B̄, we can essentially transmit any coding
scheme designed for any value of B0.

Proposition 1. The capacity of the energy harvesting channel
does not depend on the initial battery state B0.

See Appendix A-A for the proof.
We next turn our attention to the power control problem for

an energy harvesting communication system that has been of
significant interest in the recent communication theory liter-
ature [12]–[24]. We introduce some new terms and notations
to define the problem. A power control policy for an energy
harvesting system is a sequence of mappings from energy
arrivals to a non-negative number, which will denote a level
of instantaneous power. More precisely, an online policy gn is
a sequence of mappings

gt : Et → R+ , t = 1, . . . , n, (22)

and an offline policy gn is a sequence of mappings

gt : En → R+ , t = 1, . . . , n. (23)

An admissible policy is such that satisfies the energy con-
straints. Formally, the set of all admissible policies with initial
battery level b is:

Gn(b) =
{
gn| s.t. ∀en ∈ En :

gt ≤ bt, b0 = b,

bt = min{bt−1 − gt−1 + et, B̄}
}
. (24)

We denote by Gonline
n (b) the set of all admissible online

policies, and by Goffline
n (b) the set of all admissible offline

policies.
For a given online policy of length n, we define the average

throughput to be:

T (gn) =
1

n
E

[
n∑
t=1

1

2
log(1 + gt(E

t))

]
, (25)

where the expectation is over the energy arrivals E1, . . . , En,
and similarly for an offline policy, the average throughput is:

T (gn) =
1

n
E

[
n∑
t=1

1

2
log(1 + gt(E

n))

]
. (26)

Next, we define the following optimization problems which
aim to maximize the long-term average throughput

T online = lim inf
n→∞

max
gn∈Gonline

n (b)
T (gn), (27)

T offline = lim inf
n→∞

max
gn∈Goffline

n (b)
T (gn). (28)
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Equations (27) and (28) describe the online and offline
power control optimization problems, respectively, studied
extensively in the literature.4 In both problems, we want
to maximize the long-term average throughput subject to
energy constraints as given in (24), assuming there exists a
transmission scheme for which allocating power pt at time t
yields an information rate r(pt) = 1

2 log(1 + pt). While the
optimal offline power control policy has been explicitly char-
acterized in [12]–[14], there is limited understanding regarding
the structure of the optimal online power control policy and
the resultant long-term average throughput. In the following
theorem, we characterize the long-term average throughput in
the online case within a constant gap independent of system
parameters.

Theorem 3. The solutions to the online and offline power
control problems are bounded by

1

2
log(1 + µ)− 1.80 ≤ T online ≤ T offline ≤ 1

2
log(1 + µ),

where µ , E[min{Et, B̄}].

While the proof of the upper bound follows from a simple
application of Jensen’s inequality, to establish the lower bound
on the throughput we construct an explicit online power con-
trol policy gn and show that the long-term average throughput
it achieves can be at most 1.8 bits/channel use away from the
upper bound, i.e.

lim inf
n→∞

T (gn) ≥ 1

2
log(1 + µ)− 1.80. (29)

This power control policy has a surprising structure: it waits
for the battery to be recharged completely and then allocates
power in an exponentially decaying manner. The proof of the
theorem and the corresponding approximately optimal online
power control policy are given in Section V.5

The next step is to connect the two problems discussed
so far. In particular, we show that the solution of the power
control optimization problem can be used to lower and up-
per bound the information-theoretic capacity of the channel
in Theorem 2, which involves a much harder optimization
problem.

4In the literature [12]–[14], the offline power control problem is typically
studied for an arbitrary known sequence of energy arrivals, without imposing
a distribution on the energy arrivals. Note that even with this difference, the
resultant optimization problems and the corresponding optimal offline policies
are equivalent, since the offline policy in our current case needs to maximize
the throughput achieved under any given realization of the process. Imposing
a distribution on the energy arrivals allows us to have a notion of long-term
average offline throughput.

5 In a recent publication [30], the Fixed Fraction policy is suggested, in
which gt = pBt, i.e. a fixed fraction of the battery level is allocated at each
time slot. This policy is shown to achieve the optimal throughput up to a
gap of only 0.72, by showing that Bernoulli energy arrivals yield the worst
performance for this policy. This result combined with Theorem 4, which
is stated next, can be immediately used to decrease the approximation gap
for Ccausal

TxRx and Cnoncausal
TxRx in Theorem 2 to 1.77 from 2.85. However, it

does not lead to a similar improvement for the approximation gap for Ccausal
Tx

since, as given by Theorem 4, the gap for Ccausal
Tx also depends on the entropy

per symbol of the online policy. Since the entropy per symbol of the policy
in [30] is equal to H(Et), which can be arbitrarily large, here we devise an
alternative online policy for which we can simultaneously have the guarantees
provided in Propositions 3 and 2.

Theorem 4. The capacities of the energy harvesting channel
with various levels of energy arrival information can be
bounded by

Ccausal
Tx ≥ lim inf

n→∞
max

gn∈Gonline
n (b)

{T (gn)− 1
nH(gn(En))}

− 1

2
log
(πe

2

)
, (30a)

Ccausal
Tx ≤ T online, (30b)

T online − 1

2
log
(πe

2

)
≤ Ccausal

TxRx ≤ T online, (31)

T offline − 1

2
log
(πe

2

)
≤ Cnoncausal

TxRx ≤ T offline. (32)

Note that 1
2 log

(
πe
2

)
≈ 1.05. The proof is given in Sec-

tion VI.6 Note that gn(En) in (30a) being a deterministic (and
causal) function of En can be regarded as a random process
itself and the term 1

nH(gn(En)) corresponds to the entropy
per symbol of the first n symbols of this process. Note that
we can further lower bound (30a) to obtain

T online −H(Et)−
1

2
log
(πe

2

)
≤ Ccausal

Tx ≤ T online,

since gn is a deterministic function of En and therefore
H(gn(En)) ≤ H(En). However, the original form of the
lower bound in (30a) can be significantly tighter than the form
above since the entropy of the allocated power process gn(En)
can be significantly smaller than the entropy of the energy
harvesting process En. In particular, we show in Section V
that the online power control policy we develop to achieve the
lower bound in Theorem 3 has entropy per symbol bounded
by 1 bit/channel use. This is formally stated in the following
proposition. The form of the lower bound in (30a) (and
more specifically its proof) reveal a trade-off in designing
communication strategies for channels with state information
available only at the transmitter: while the transmitter knowing
the state of the channel can follow a different strategy for each
value of the state, the need to infer the state from the received
signal can lead to a rate hit proportional to the entropy of the
state. This can make strategies that have a coarser dependence
on the state more desirable.

Proposition 2. For the online power control policy gn achiev-
ing (29), we have

1

n
H(gn(En)) ≤ 1.

In particular, this property of gn together with (29) yields

lim inf
n→∞

max
gn∈Gonline

n (b)

{
T (gn)− 1

nH(gn(En))
}

≥ 1

2
log(1 + µ)− 2.80. (33)

6 Theorems 1–4 are stated for Et that follows a discrete distribution.
However, as mentioned in Section II, these results can be extended to arbitrary
probability distributions. The exact derivation exceeds the scope of this paper,
however, we mention briefly that this can be done by considering quantized
versions of Et and applying Theorems 2 and 4. In the limit of very high
resolution, it can be shown that the throughputs T online and T offline converge
to the throughputs of the original process Et. This, along with the fact that
Theorem 3 holds for any distribution of Et, yields Theorem 1.
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It is immediate to verify this proposition, which we do in
Section V, after we introduce the policy gn.

Note that when the receiver has knowledge of the energy ar-
rival process in (31) and (32), the gap between the information-
theoretic capacity and the long-term average throughput is only
1
2 log

(
πe
2

)
which is approximately 1.05. It is indeed surprising

that the actual information-theoretic capacity achieves, within
a constant gap, the solution of the power control problem.
In Section VI we suggest one natural way to use the optimal
power control policy to construct explicit codes which achieve
the lower bounds in (30)–(32). This emphasizes the importance
of the power control problem in understanding the more
fundamental information-theoretic problem.

The additive approximations in Theorem 4 obviously be-
come irrelevant at low-SNR since the lower bounds (30)-
(32) can become negative, and thus useless. This indeed is
an artifact of our constant gap approximation approach which
bounds the worst case additive gap between the quantities of
interest (the worst case gap for all the approximation theorems
above occurs typically when µ and B̄ are very large). It should
be clear from the proofs of these approximation theorems that
as the quantities of interest become small, the additive gap
between them also tends to zero. In order to illustrate this fact,
in the following theorem we provide a multiplicative relation
between the information-theoretic capacity and the long-term
average throughput which is more relevant in the low-SNR
regime.

Theorem 5. The capacities of the energy harvesting channel
with various levels of energy arrival information can be
bounded by

Ccausal
Tx ≥ lim inf

n→∞
max

gn∈Gonline
n (b)

{η ·T (gn)− 1
nH(gn(En))},

(34a)

Ccausal
Tx ≤ T online, (34b)

η · T online ≤ Ccausal
TxRx ≤ T online, (35)

η · T offline ≤ Cnoncausal
TxRx ≤ T offline, (36)

where the parameter η ≥ 0.7473.

See Appendix E for the proof. Again, note that (34a) can
be further lower bounded to obtain

η · T online −H(Et) ≤ Ccausal
Tx ≤ T online.

Finally, note that combining (33) with the inequalities in
Theorem 4, we immediately obtain Theorem 1.

IV. CHANNEL CAPACITY: PROOF OF THEOREM 2

We begin with proof of achievability for the first case –
causal energy arrival information at the transmitter alone,
and we consider the equivalent channel model developed in
the beginning of Section II-A. We construct an achievable
scheme composed of k blocks with each block containing a
codeword of length n which is an element of Un. As such,
each codeword is a function of only the past n energy arrivals,
which means we ignore information regarding all the energy
arrivals in the previous blocks. These codewords are designed

to satisfy the energy constraints for initial battery level B0 = b,
so to accommodate this, we must ensure that the battery level
in the beginning of each block is at least b. To this matter,
we allow the battery to “recharge” after we transmit each
codeword by waiting a sufficient amount of time (` time
slots), during which the transmitter remains silent. If ` is large
enough, the probability of recharging the battery back to level
b will be high. In the case when the battery is not sufficiently
recharged at the beginning of the next block, we can simply
give up on this block and transmit the all-zero codeword. We
will explicitly show that this will have a negligible effect on
the achievable rate.

To make the probabilistic analysis simpler, it is helpful
to have the different blocks statistically independent of each
other. Note that subsequent blocks are coupled through the
battery state. More precisely, the event of whether the battery
at the beginning of each block is recharged to b or not (which,
in turn, determines whether a codeword is being sent or just
zeros) may depend on the amount of energy left in the battery
at the end of the transmission in the previous block. To
decouple one block from its sequel, we purposely deplete the
battery to zero before waiting for it to be recharged. This way,
the battery level at the beginning of the next block will depend
solely on the last ` energy arrivals. In what follows, we make
the above description precise. 7 8

Fix PUn ∈ Pn(b) and for each message w, generate k
random codewords independently vi ∼ PUn , i = 1, . . . , k.
Recall that each vi is a function on En. The chosen message
w will be transmitted over k blocks, each of size n + ` + 1,
for a total transmit time of k(n+`+1). Hence, we will define
codewords uk(n+`+1) ∈ Uk(n+`+1) using the above vi.

Each block comprises three parts: the first part, of length
n, consists of the codeword vi (or an all-zero vector of length
n if the battery level at the beginning of this block is not
sufficient to transmit codeword vi). In the second part, which
takes only one time slot, we deplete the battery to 0. The
third part consists of ` zeros, which are meant to recharge the
battery to level b.

Consider block i, 1 ≤ i ≤ k, which takes place during
times t = (i − 1)(n + ` + 1) + 1 to t = i(n + ` + 1).

7Strictly speaking, there are no energy arrivals and battery state in the
equivalent model defined in (9)-(12), but et and bt in (12) can be rather viewed
as dummy variables where et represents the input variables of the function ut

and bt is an intermediate variable used to define the input constraint. However,
we continue to refer to et as the energy arrival sequence up to time t and bt
as the battery state at time t to make the exposition easier.

8The idea of “erasing” the memory in the battery by using codewords
interleaved with silent times has first appeared in [5] which considers a
special case of the problem with constant deterministic energy arrivals. A
block i.i.d. coding scheme was proposed in [6] when the transmitter has
causal energy arrival information but b = 0, in which case one does not
need the zero-padding between the codewords to recharge the battery. Our
achievable strategy is closer to [7] which considers noncausal energy arrival
information at the transmitter in the case of B0 = B̄. However, the proof in
[7] is incomplete because it assumes that by making the zero padding between
blocks long enough, we can ensure that the battery is recharged to full each
and every time. This is not possible, because as the number of blocks k →∞,
recharging failures are inevitable and have to be explicitly taken into account.
Also, in the noncausal case, the codewords can be constructed directly on
the original channel with input alphabet X and not Un as we do here (See
Appendix B). In [25], we show that the noncausal capacity is strictly larger
and therefore different than the causal capacity.
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zi · vi
ei

√
bd,i

0

ẽi
b0,i bd,i

Fig. 3. Structure of block i in the coding scheme.

We define the following notations: b0,i , b(i−1)(n+`+1) is
the battery level before the beginning of the block, i.e. the
initial battery level before we start transmitting codeword
vi; zi , 1{b0,i≥b} is an indicator, denoting whether the
initial battery level b0,i is sufficient to transmit the codeword
vi; bd,i , b(i−1)(n+`+1)+n+1 is the battery level at time
(i − 1)(n + ` + 1) + n + 1, which will be used to deplete
the battery at this time-slot; ei , e

(i−1)(n+`+1)+n
(i−1)(n+`+1)+1 are the

energy arrivals during the transmission of the codeword vi;
and ẽi , e

i(n+`+1)
(i−1)(n+`+1)+n+2 are the energy arrivals during

the zero-padding phase at the end of each block. Denote by 0
a vector of ` zeros.

Block i of the codeword is constructed as follows: at the
beginning of block i at time t = (i − 1)(n + ` + 1) + 1,
given ut−2 for each et−1 we can compute b0,i = bt−1. If
the battery state is at least b, we send the codeword vi, i.e.
ut+n−1
t (et+n−1) = vi(ei). Otherwise, the transmitter sends

zeros for n time slots. Thus, the first part of block i can be
written as zi · vi. For the second part of the block, which is
the single time-slot t+ n, again given ut+n−1 for each et+n

the transmitter computes the battery state bd,i = bt+n, and
transmits

√
bd,i, i.e. ut+n(et+n) =

√
bd,i(et+n). This will

deplete the battery to zero. By purposely depleting the battery
before recharging it, we remove the dependence between
different blocks, and make the probability of recharge failure
an i.i.d. process. Next, the transmitter sends zeros for ` time
slots, which will recharge the battery to b with high probability.

To summarize, the transmitted block is

u
i(n+`+1)
(i−1)(n+`+1)+1

(
ei(n+`+1)

)
=
[
zi · vi(ei),

√
bd,i, 0

]
, (37)

See Fig. 3 for a graphical representation of the block struc-
ture. Note that since the battery is depleted to zero at the
second part of block i, zi+1 is a deterministic function of
ẽi. In fact, zi+1 is a deterministic function of b0,i+1, where
b0,i+1 = min{B̄,

∑i(n+`+1)
t=(i−1)(n+`+1)+n+2 et}.

uk(n+`+1)(ek(n+`+1)) defined in (37) is a well-defined
element in Uk(n+`+1). Moreover, observe that it satisfies the
energy constraint: this is trivial for un+`+1. For the subsequent
codewords, if the battery level is larger than b, we assume it is
b and ignore (waste) the remaining energy. If it is less than b,
we transmit only zeros. This will satisfy the energy constraints.

Denote the channel output during the first part of block i

by yi = y
(i−1)(n+`+1)+n
(i−1)(n+`+1)+1 . The receiver observes yk(n+`+1)

but makes use only of yk = (y1, . . . ,yk) for decoding,
by applying standard jointly typical decoding with vk. The

channel transition probability from Vk to Yk is

PYk|Vk(yk|vk)

=
∑

ek(n+`+1)

PEk(n+`+1)(ek(n+`+1))

· PY kn|Xkn

(
yk|zk(ẽk−1) · vk(ek)

)
=

∑
ek(n+`+1)

k∏
i=1

PEn(ei)PE(e(i−1)(n+`+1)+n+1)PE`(ẽi)

· PY n|Xn

(
yi|zi(ẽi−1) · vi(ei)

)
=

k∏
i=1

∑
ei,ẽi

PEn(ei)PE`(ẽi)PY n|Xn

(
yi|zi(ẽi−1) · vi(ei)

)
=

k∏
i=1

∑
ei,zi

PEn(ei)PZ(zi)PY n|Xn(yi|zi · vi(ei)).

Note that since Et is i.i.d., PEn and PZ do not depend on i,9

so this is a memoryless channel with transition probability

PY|V(y|v) =
∑
en,z

PEn(en)PZ(z)PY n|Xn

(
y|z · v(en)

)
=
∑
z

PZ(z)PY n|Un(y|z · v).

where the last step is from (10). Note that Y = Y n is the
output of the channel from Un to Y n with the input multiplied
by an independent Bernoulli RV Z.

Denote PZ(0) = α. Taking k → ∞, we get by standard
joint typicality arguments that rate I(V;Y) is achievable. The
following holds:

I(V;Y) = I(V;Y, Z)− I(V;Z|Y)

≥ I(V;Y|Z)−H(Z)

= (1− α)I(V;Y|Z = 1)−H2(α),

where H2(·) is the binary entropy function. The last step is
because I(V;Y|Z = 0) = 0.

Note that PY|V,Z(y|v, z = 1) = PY n|Un(y|v) and, by
construction, V ∼ PUn independent of Z. This implies

I(V;Y|Z = 1) = I(Un;Y n).

For ` large enough, α can be upper bounded using the law
of large numbers α = Pr{

∑`
t=1Et < b} ≤ ε`, where

lim`→∞ ε` = 0 (recall that E[Et] > 0), s.t. for every n ≥ 1
we have

Ccausal
Tx ≥ (1− ε`)I(Un;Y n)−H2(ε`)

n+ `+ 1
.

Since PUn is an arbitrary input distribution in Pn(b), we can
take the supremum to obtain

Ccausal
Tx ≥ sup

PUn∈Pn(b)

(1− ε`)I(Un;Y n)−H2(ε`)

n+ `+ 1
.

Let ` = dlog ne. Taking n→∞, we get

Ccausal
Tx ≥ lim sup

n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n). (38)

9 Z1 is an exception, since it equals 1 w.p. 1. Nevertheless, one can
artificially generate a Bernoulli RV and choose whether to transmit v1 or
zeros according to the outcome.
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For the converse part, we use Fano’s inequality as in [11].
An (M,n, ε) code for the channel defined in Section II-A
satisfies

H(W |Y n) ≤ H2(ε) + ε logM

(1− ε) logM ≤ I(W ;Y n) +H2(ε)

If R < Ccausal
Tx is achievable, then for every δ > 0,

R− δ < 1

n

1

1− ε
[I(Un;Y n) +H2(ε)],

where I(Un;Y n) is the mutual information evaluated for PUn

induced by the code. Since all codewords must satisfy the input
constraints (11) and (12), this implies PUn ∈ Pn(b) (see (15)).
Therefore

R− δ < 1

n

1

1− ε

[
sup

PUn∈Pn(b)

I(Un;Y n) +H2(ε)

]
,

which implies

R ≤ 1

1− ε
lim inf
n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n).

Taking ε→ 0 gives

Ccausal
Tx ≤ lim inf

n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n). (39)

Together with (38), this implies that the limit exists and is
given by (19).

We now turn to the case of energy arrival information
available causally at the transmitter and the receiver (eq. (20)).
We can repeat the previous steps in exactly the same manner,
and since the receiver now observes En as well, we simply
add it alongside Y n. All the arguments still hold, and we are
left with

Ccausal
TxRx = lim

n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n, En)

(i)
= lim
n→∞

1

n
sup

PUn∈Pn(b)

I(Un;Y n|En)

(ii)
= lim

n→∞

1

n
sup

PUn∈Pn(b)

I(Xn;Y n|En)

(iii)
= lim

n→∞

1

n
sup

PXn‖En∈Qn(b)

I(Xn;Y n|En).

where (i) is because Un is independent of En; (ii) is because
Xn = Un(En) and the Markov chain Un − (Xn, En)− Y n;
and (iii) is because, as will be shown below in (40), any distri-
bution PUn ∈ Pn(b) induces a distribution PXn‖En ∈ Qn(b)
on Xn, and any Xn ∼ PXn‖En ∈ Qn(b) can be represented
as a random function of En according to some distribution
PUn ∈ Pn(b). This gives (20).

To show (iii), observe that the joint distribution PXn,En,Un

can be factored as

PXn,En,Un(xn, en, un)

=

n∏
i=1

PUi|Ui−1(ui|ui−1)PE(ei)1{xi = ui(e
i)}.

Summing over xn and then over un gives

PXn−1,En,Un−1(xn−1, en, un−1)

=

n−1∏
i=1

PUi|Ui−1(ui|ui−1)PE(ei)1{xi = ui(e
i)} · PE(en).

Continuing to sum over xn−1, un−1, and then xn−2, un−2 and
so forth yields for any t:

PXt,En,Ut(xt, en, ut)

=

t∏
i=1

PUi|Ui−1(ui|ui−1)1{xi = ui(e
i)} ·

n∏
i=1

PE(ei).

Summing over ent+1 gives

PXt,Et,Ut(xt, et, ut)

=

t∏
i=1

PUi|Ui−1(ui|ui−1)PE(ei)1{xi = ui(e
i)},

hence

PXt,En,Ut(xt, en, ut) = PXt,Et,Ut(xt, et, ut) ·
n∏

i=t+1

PE(ei).

Summing over ut gives

PXt,En(xt, en) = PXt,Et(xt, et)

n∏
i=t+1

PE(ei).

This implies

PXt−1,Et(xt−1, et) = PXt−1,Et−1(xt−1, et−1)PE(et).

Using all of the above identities, we have:

PXt|Xt−1,En(xt|xt−1, en)

=
PXt,En(xt, en)

PXt−1,En(xt−1, en)

=
PXt,Et(xt, et)

∏n
i=t+1 PE(ei)

PXt−1,Et−1(xt−1, et−1)
∏n
i=t PE(ei)

=
PXt,Et(xt, et)

∏n
i=t+1 PE(ei)

PXt−1,Et(xt−1, et)
∏n
i=t+1 PE(ei)

= PXt|Xt−1,Et(xt|xt−1, et). (40)

This implies PXn|En(xn|en) = PXn‖En(xn‖en).
The proof of the remaining case (namely energy arrival

information available at the transmitter and the receiver non-
causally) follows exactly the same lines and appears in Ap-
pendix B.

V. OPTIMAL ONLINE POWER CONTROL: PROOF OF
THEOREM 3

In this section, we consider the power control problem for
the energy harvesting communication system. This problem
was formally defined in (22)-(28) in the two settings of
interest, offline and online. Here we focus on the online version
of the problem. To recall, the goal is to find an optimal online
power control policy

gt : Et → R+ , t = 1, . . . , n,
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that satisfies the energy constraints, i.e. it belongs to the set

Gonline
n (b) =

{
gn| s.t. ∀en ∈ En :

gt ≤ bt, b0 = b,

bt = min{bt−1 − gt−1 + et, B̄}
}
.

and maximizes the long-term average throughput of the system

T online = lim inf
n→∞

max
gn∈Gonline

n (b)
T (gn). (41)

We start by deriving a simple upper bound on the throughput
which serves as a benchmark for the online polices we
construct in the rest of the section.

A. Upper Bounding the Throughput

The upper bound we develop in this section not only holds
for T online, which is of main interest in this section, but
also for T offline defined in (28). First note that without loss
of generality, we can replace the random process Et with
Ẽt = min{Et, B̄} without changing the system. This is due
to the fact that whenever an energy arrival Et is larger than
B̄, it will be clipped to at most B̄. Denote µ = E[Ẽt]. For
any n and any policy gn, we have:

T (gn) =
1

n

n∑
t=1

E
[

1

2
log
(
1 + gt(Ẽ

n)
)]

(i)
≤ 1

2
log

(
1 +

1

n
E
[ n∑
t=1

gt(Ẽ
n)
])

(ii)
≤ 1

2
log

(
1 +

1

n
E
[
B̄ +

n∑
t=1

Ẽt
])

=
1

2
log

(
1 +

1

n
B̄ + µ

)
where (i) is by concavity of log; (ii) follows from the fact that
the total allocated energy up to time n, can not exceed the
total energy that arrives up to time n plus the energy initially
available in the battery,

n∑
t=1

gt ≤ B̄ +

n∑
t=1

Ẽt.

The last term tends to 1
2 log(1 + µ) as n→∞. Note that this

is true for both offline and online power control policies, and
for any energy arrival process Et. We therefore have:

T online ≤ T offline ≤ 1

2
log(1 + µ), (42)

where µ = E[min{Et, B̄}], which proves the upper bound in
Theorem 3.

B. Approximately Optimal Online Power Control Policies

We next turn to developing explicit online power control
policies that can provably approach the upper bound developed
in the previous section. While we are interested in policies that
perform well for any arbitrary i.i.d. energy harvesting process,
our development is inspired by the approximately optimal
online power control policy for i.i.d. Bernoulli energy arrivals

developed in [8]. We next overview this policy and prove its
approximate optimality in a somewhat simpler manner which
also leads to a slightly better gap (0.721 bits/channel use as
opposed to 0.973 bits/channel use in [8]). Our analysis for the
general case leverages on this derivation.

1) Bernoulli Energy Arrivals: Assume the energy arrivals
Et are i.i.d. Bernoulli RVs:

Et =

{
B̄ w.p. p
0 w.p. 1− p,

i.e. at each time t either the battery is fully charged to B̄ with
probability p or no energy is harvested at all with probability
1− p. [4] proposes the following online power control policy
for this system: Let jt(Et) be the time of the last energy
arrival, i.e.

jt(E
t) = {sup τ ≤ t : Eτ = B̄}.

The policy is defined as follows:

gt(E
t) = B̄p(1− p)t−jt .

With this policy, the amount of energy we allocate to each
time slot decreases exponentially with the time since the last
battery recharge (or equivalently energy arrival). Note that this
is clearly an admissible strategy since

∞∑
k=jt

B̄p(1− p)k−jt = B̄,

i.e. the total energy we allocate until the next battery recharge
can never exceed B̄, the amount of energy initially available in
the battery. Another way to view this strategy is that we always
use p fraction of the remaining energy in the battery at each
time. Note that the energy in the battery decays like Bt =
(1 − p)t−jtB̄. The motivation for this power control policy
can be understood as follows: for the Bernoulli arrival process
Et, the inter-arrival time is a Geometric random variable with
parameter p. We know that the Geometric random variable is
memoryless and has mean 1/p. Therefore, at each time step,
the expected number of time steps to the next energy arrival
is always 1/p. Since log(·) is a concave function, we would
ideally want to allocate the energy as uniformly as possible
over time, i.e. if the current energy level in the battery is bt
and we knew that the next recharge of the battery would be
in exactly m channel uses, we would allocate bt/m energy
to each of the next m channel uses. For the online case of
interest here, we do not know when the next energy arrival
will be. Instead, we use the expected time to the next energy
arrival: since at each time step, the expected time to the next
energy arrival is 1/p, we allocate a fraction p of the currently
available energy in the battery. Fig. 4 illustrates this power
control policy.

Before moving forward to establish the approximate op-
timality of this power control policy, we provide a few
definitions and results from renewal theory.

Definition 1. A stochastic process {Xt}∞t=1 is called a non-
delayed regenerative process if there exists a random time τ >
0 such that the process {Xτ+t}∞t=1 has the same distribution
as {Xt}∞t=1 and is independent of the past (τ,Xτ ).
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Fig. 4. The approximately optimal online power control policy for Bernoulli
energy arrivals.

Observe that a regenerative process is composed of i.i.d.
“cycles” or epochs, which have i.i.d. durations τ1, τ2, . . .. At
the beginning of each epoch, the process “regenerates” and
all memory of the past is essentially erased. The following
theorem establishes an important time-average property of
regenerative processes.

Theorem 6 (LLN for Regenerative Processes). Let {Xt}∞t=1,
Xt ∈ X , be a non-delayed regenerative process with associ-
ated epoch duration τ , and let f : X → R. If Eτ < ∞ and
E[
∑τ
t=1 |f(Xt)|] <∞ then:

lim
n→∞

1

n

n∑
t=1

f(Xt) =
1

Eτ
E

[
τ∑
t=1

f(Xt)

]
a.s.

This is an immediate consequence of Theorem 3.1 in [31,
Ch. VI] or of the renewal reward theorem [32, Prop. 7.3].

Equipped with this theorem, we now consider the process
gt(E

t) obtained by our power control policy for Bernoulli
energy arrivals. We show in Appendix A-B that the initial
battery level is irrelevant to the long-term average throughput
(similarly to Proposition 1, this follows from the fact that
we can always wait until the battery recharges to B̄ before
starting transmission, with a vanishing penalty to the average
throughput). We can therefore assume without loss of gen-
erality that B0 = B̄, which necessarily implies B1 = B̄.
Hence we can equivalently assume E1 = B̄. Denote by L
the random time between two consecutive energy arrivals.
Evidently, L ∼ Geometric(p). That is,

Pr(L = k) = p(1− p)k−1 , k = 1, 2, . . .

Observe that gt(Et) is a non-delayed regenerative process
with epoch duration L. We apply Theorem 6 with f(x) =
1
2 log(1+x). Note that EL = 1/p <∞ and E[

∑L
t=1 |

1
2 log(1+

gt(E
t)|] ≤ E[L · 1

2 log(1 + B̄)] <∞, so the conditions of the
theorem are satisfied. We obtain

lim
n→∞

1

n

n∑
t=1

1

2
log
(
1 + gt(E

t)
)

=
1

EL
E

[
L∑
t=1

1

2
log
(
1 + gt(E

t)
)]

a.s. (43)

We proceed to lower bound the average throughput obtained
by our suggested power control policy, which is itself a lower
bound to T online:

T online ≥ lim inf
n→∞

1

n

n∑
t=1

E
[

1

2
log(1 + gt(E

t))

]
(i)
≥ E

[
lim inf
n→∞

1

n

n∑
t=1

1

2
log(1 + gt(E

t))

]
(ii)
= E

[
1

EL
E

[
L∑
t=1

1

2
log(1 + gt(E

t))

]]

=
1

EL
E

[
L∑
t=1

1

2
log(1 + gt(E

t))

]
(iii)
=

1

EL
E

[
L∑
i=1

1

2
log(1 + B̄p(1− p)i−1)

]
(iv)
≥ 1

EL
E

[
L∑
i=1

[
1

2
log(1 + pB̄) + (i− 1)

1

2
log(1− p)

]]

=
1

EL
E
[
L

1

2
log(1 + pB̄) +

L(L− 1)

2

1

2
log(1− p)

]
=

1

2
log(1 + pB̄)− 1

4

(
E[L2]

EL
− 1

)
log

(
1

1− p

)
(44)

(v)
=

1

2
log(1 + pB̄)− 1

4

(
2− 3p+ p2

(1− p)p
− 1

)
log

(
1

1− p

)
=

1

2
log(1 + pB̄)− 1− p

2p
log

(
1

1− p

)
, (45)

where (i) is by Fatou’s lemma [33, Thm. 1.5.4]; (ii) is due
to (43); (iii) is by definition of the power control policy; (iv)
is due to the inequality log(1 + αx) ≥ log(1 + x) + logα for
0 < α ≤ 1; and (v) is because L ∼ Geometric(p).

The second term in the above expression achieves its max-
imum when p→ 0, in which case it is given by 1

2 ln 2 ≈ 0.72.
We conclude that for Bernoulli energy arrivals:

T online ≥ 1

2
log(1 + µ)− 1

2 ln 2
, (46)

where µ = E[min{Et, B̄}] = pB̄ is the average energy arrival
rate of the Bernoulli process.

2) General i.i.d Energy Harvesting Processes: We next
turn to developing approximately optimal online power control
policies for general i.i.d. energy harvesting processes. A simple
extension of the Bernoulli power control policy presented in
the previous section to general i.i.d. processes was proposed
in [4]. [4] also showed, via providing examples, that this
extension can achieve the long-term average throughput within
a constant gap for some i.i.d. processes, but it would fail to do
so for some others. [4] however did not explicitly characterize
the distributions for which this extension achieves the long-
term average throughput within a constant gap. Below, we
first overview the policy proposed in [4], calling it the binary
quantization policy and then show that its gap to optimality
depends on µ/B̄. In particular, the gap becomes unbounded
when µ/B̄ → 0. We then construct a new online power
control policy, which we call the generalized Bernoulli policy
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which approximately achieves the long-term average through-
put when µ/B̄ is small. Considering these two policies in the
large and small µ/B̄ regimes respectively proves Theorem 3.

The Binary Quantization Policy: Let Et be an arbitrary
i.i.d. energy arrival process. Note that as before, given a battery
size B̄ we can concentrate on the equivalent process Ẽt =
min{Et, B̄} with mean µ = E[Ẽt]. Let the complementary
cumulative distribution function (ccdf) F̄ (x) = Pr{Ẽt ≥ x},
x ∈ [0, B̄]. Consider the following policy: fix an energy
level x. Denote by q′ the probability of observing an energy
arrival at least x, i.e. q′ , F̄ (x). Then, apply the exponen-
tially decreasing strategy described above as if Ẽt is i.i.d.
Bernoulli with levels {0, x} and probability q′. Effectively,
when Ẽt ≥ x, we treat the incoming energy as a packet of
size x and ignore the remaining energy. Alternatively, when
Ẽt < x, we ignore the incoming energy completely and
assume no new energy has arrived. This of course is an
admissible policy, but may be highly suboptimal as it ignores
part of the incoming energy. Nevertheless, we will see below
that, for a certain class of energy arrival processes, it differs
from the upper bound only by a constant gap.

To begin, we apply (46) to lower bound the rate obtained by
this strategy: T online ≥ 1

2 log
(
1 + xF̄ (x)

)
− 1

2 ln 2 . The tightest
lower bound will be obtained by maximizing over x ∈ [0, B̄]:

T online ≥ 1

2
log

(
1 + max

x∈[0,B̄]
{xF̄ (x)}

)
− 1

2 ln 2
.

We will now upper bound the gap of this policy by providing
a lower bound of the form

max
x∈[0,B̄]

xF̄ (x) ≥ cµ,

for c ∈ [0, 1]. To this end, we introduce the Lambert W
function, which is defined as the solution to z = W (z)eW (z).
This function is double-valued on (−1/e, 0) – that is, for
z in this interval there are two possible solutions for the
above transcendental equation. Specifically, we are interested
in the lower branch, denoted by W−1(z), which is defined
for z ∈ [−1/e, 0). This function is strictly decreasing, and it
decreases from W−1(−e−1) = −1 to limz↗0W−1(z) = −∞.
We now show that

c∗ = c∗
( µ
B̄

)
, − 1

W−1

(
− µ
B̄
e−1
) (47)

is one such c. Note that since Ẽt is of bounded support [0, B̄],
we always have 0 ≤ µ/B̄ ≤ 1, so the above expression is
well-defined. Also note that the definition of c∗ implies

− µ
B̄
e−1 = − 1

c∗
e−1/c∗ ,

1− c∗ = c∗ ln

(
B̄

µc∗

)
. (48)

Now, suppose xF̄ (x) < c∗µ, ∀x ∈ [0, B̄]. We have:

µ =

∫ B̄

0

F̄ (x)dx

≤
∫ c∗µ

0

dx+

∫ B̄

c∗µ

F̄ (x)dx

< c∗µ+

∫ B̄

c∗µ

c∗µ

x
dx

= c∗µ+ c∗µ ln

(
B̄

c∗µ

)
This yields c∗ + c∗ ln

(
B̄
c∗µ

)
> 1, which contradicts the

definition of c∗ (48).
Finally, we obtain:

T online ≥ 1

2
log(1 + c∗µ)− 1

2 ln 2

≥ 1

2
log(1 + µ)− 1

2
log
( e
c∗

)
, (49)

where the second step is due to the inequality log(1 + αx) ≥
log(1 + x) + logα for 0 < α ≤ 1, and c∗(µ/B̄) is defined
in (47).

Note that the gap of the policy to the upper bound
1
2 log(1 + µ) depends on the parameters of the problem µ and
B̄ through c∗. One observes that c∗ → 0 as µ/B̄ → 0, making
the gap unbounded. This suggests that the binary quantization
policy does not work well for small µ/B̄. For such distri-
butions xF̄ (x) can be much smaller than µ, which implies
that a significant amount of incoming energy is discarded by
the policy. This indeed is the case for the counterexample
presented in [4, Section VI.C]. In the sequel, we will present
a more interesting generalization of the Bernoulli policy, which
achieves a finite gap for the range of small µ/B̄. Choosing the
appropriate policy out of the two, depending on the value of
µ, will provide a bounded gap for all values of µ ∈ [0, B̄].

The Generalized Bernoulli Policy: Let q , µ/B̄, where
recall that µ = E[Ẽt] and Ẽt = min{Et, B̄}. Note that
µ ∈ (0, B̄] so q ∈ (0, 1]. Consider the following energy
allocation policy:

gt = B̄q(1− q)t−st = µ(1− q)t−st ,

where

st = st(Ẽ
t, gt−1) = {sup τ ≤ t : Bτ = B̄}.

That is, st is the last time the battery was completely full. This
is clearly an admissible online power control policy, since,
as before, even if the battery never gets recharged, the total
energy used will not exceed B̄.

Notice the similarity between the scheme in the previous
section and the generalized Bernoulli policy: we transmit
using an exponentially decreasing power allocation policy,
and “restart” whenever the battery recharges completely. In
the Bernoulli case, the event of battery recharge was an
i.i.d. process depending solely on the energy arrivals. Here,
it depends both on the energy arrivals Ẽt (which have an
arbitrary distribution) and on the sequence of powers gt. See
Figure 5.

By construction, the sequence gt is a regenerative process;
on the event of battery recharge, the power control policy
“restarts”, and by the i.i.d. nature of the energy arrivals, the
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Fig. 5. The generalized Bernoulli power control policy for general i.i.d.
energy arrivals.

portions of the process between consecutive battery recharges
are independent and identically distributed. This lends to a
similar analysis as in the Bernoulli case, and we can lower
bound the average throughput following the steps in the
previous section to obtain an analog of (44):

T online ≥ 1

2
log(1 + µ)− 1

4

(
E[L2]

EL
− 1

)
log

(
1

1− q

)
where L is the time between consecutive battery recharges.
However, L is no longer geometrically distributed, but has
some distribution that depends on Ẽt and gt. Hence, to have
applied Theorem 6 in this case to obtain the above lower
bound, we need to verify that L has finite expectation; this
is done in Appendix F.

We wish to upper bound the gap from 1
2 log(1 + µ):

gap =
1

4

(
E[L2]

EL
− 1

)
log

(
1

1− q

)
.

To this matter, consider the first epoch (or cycle) of the
regenerative process gt(Ẽt). The length of the epoch L can
be defined as the first time for which BL+1 = B̄ (i.e.
the battery at the beginning of the following epoch is fully
charged). This implies that Bt < B̄ for t = 2, . . . , L (recall
B1 = B̄), therefore Bt = Bt−1 − gt−1 + Ẽt. Substituting
gt = B̄q(1− q)t−1, we obtain:

Bt = B̄(1− q)t−1 +

t∑
i=2

Ẽi.

Denote St ,
∑t+1
i=2 Ẽi. Hence, L is the first time for which

BL − gL + ẼL+1 ≥ B̄, or:

L = {inf t : St ≥ B̄[1− (1− q)t]}.

This is a stopping time adapted to Ẽt+1, so by Wald’s first
and second identities (cf. Theorems 4.1.5 and 4.1.6 in [33]):

E[SL] = EL · µ, (50)

E[(SL − µL)2] = σ2EL, (51)

where σ2 , Var(Ẽt). We obtain:

E[L2] =
1

µ2

(
σ2EL+ 2µE[LSL]− E[S2

L]
)
. (52)

Next, by definition SL−1 < B̄[1 − (1 − q)L−1], and since
Ẽt ≤ B̄,

SL = SL−1 + EL+1 < B̄[1− (1− q)L−1] + B̄ ≤ 2B̄.

Moreover,

E[S2
L]

EL
(i)
≥ (E[SL])2

EL
(ii)
= µ2 · EL

(iii)
≥ µ2,

where (i) is true for any r.v.; (ii) is due to (50); and (iii) is
because L ≥ 1. Plugging these two inequalities in (52) yields:

E[L2]

EL
=

1

µ2

(
σ2 + 2µ

E[LSL]

EL
− E[S2

L]

EL

)
≤ 1

µ2
(σ2 + 4µB̄ − µ2).

Next, observe that since 0 ≤ Ẽt ≤ B̄, then Ẽ2
t ≤ ẼtB̄, and

therefore E[Ẽ2
t ] ≤ µB̄, or σ2 ≤ µ(B̄ − µ) (This result, in a

more general form, is called the Bhatia-Davis inequality [34]).
We conclude that

E[L2]

EL
≤ 5

B̄

µ
− 2 =

5

q
− 2,

which yields

gap ≤ 5− 3q

4q
log

(
1

1− q

)
,

T online ≥ 1

2
log(1 + µ)− 5− 3q

4q
log

(
1

1− q

)
. (53)

Observe that the gap is finite for q → 0.
Finally, combining (49) and (53), we have:

1

2
log(1 + µ)− T online

≤ max
0≤q≤1

min

{
1

2
log

e

c∗(q)
,

5− 3q

4q
log

(
1

1− q

)}
≤ 1.8034,

which completes the proof of Theorem 3.

C. Entropy of the Power Control Policies

In the light of (30a) in Theorem 4, we care not only
about the long-term average throughput achieved by a cer-
tain online power control policy, but also its entropy per
symbol 1

nH(gn(En)), which determines the gap between
the information-theoretic capacity and the long-term average
throughput in the case where the receiver does not have
energy arrival information. We next show that the per-symbol
entropies of the power control policies gn we developed in
the previous section can be bounded by 1 bit/channel use,
and in this manner prove Proposition 2. This is due to the
structure of these processes and their regenerative nature. All
the randomness in the processes gn(En) is contained in the
epoch start times; knowing where the epochs begin is sufficient
to generate the corresponding gn(En) for all the policies
discussed in the previous section.

We start with the policy for Bernoulli energy arrivals
discussed in Section V-B1. Observe that

1

n
H(gn(En)) ≤ 1

n
H(En) = H(Et) = H2(p),
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which combined with (45) implies

lim inf
n→∞

max
gn∈Gonline

n (B̄)
{T (gn)− 1

nH(gn(En))}

≥ 1

2
log(1 + pB̄)− 1− p

2p
log

(
1

1− p

)
−H2(p).

The expression 1−p
2p log(1− p) +H2(p) is upper bounded by

1.5242 for all p ∈ [0, 1], hence we have

lim inf
n→∞

max
gn∈Gonline

n (B̄)
{T (gn)− 1

nH(gn(En))}

≥ 1

2
log(1 + µ)− 1.5242, (54)

where recall that µ = pB̄ for the Bernoulli process.
Next, we bound the entropy of the binary quantization

policy. Define E′t = 1{Et ≥ x} and observe that for this
policy

1
nH(gn(En)) = 1

nH(gn(E′n)) ≤ 1
nH(E′n) = H2(F̄ (x)).

Then, similarly to (54), we have:

lim inf
n→∞

max
gn∈Gonline

n (B̄)
{T (gn)− 1

nH(gn(En))}

≥ 1

2
log(1 + c∗µ)−H2(q′)− 1− q′

2q′
log

(
1

1− q′

)
≥ 1

2
log(1 + µ)− 1

2
log

1

c∗
− 1.5242, (55)

where q′ = F̄ (x) as defined in Section V-B2.
Finally, we focus on the generalized Bernoulli policy. Define

the indicator process Ft = 1(Bt = B̄). By construction, F t is
enough to determine gt(Et), hence

1
nH(gn(En)) = 1

nH(gn(Fn)) ≤ 1
nH(Fn) ≤ 1.

We therefore have from (53):

lim inf
n→∞

max
gn∈Gonline

n (B̄)

{
T (gn)− 1

nH(gn(En))
}

≥ 1

2
log(1 + µ)− 5− 3q

4q
log

(
1

1− q

)
− 1. (56)

Now, combining (55) and (56):

1

2
log(1 + µ)− lim inf

n→∞
max

gn∈Gonline
n (B̄)

{
T (gn)− 1

nH(gn(En))
}

≤ max
0≤q≤1

min

{
1

2
log

1

c∗(q)
+ 1.5242,

5− 3q

4q
log

(
1

1− q

)
+ 1

}
≤ 2.8034

which, along with (42), gives the result of Proposition 2.

VI. CONNECTION BETWEEN CAPACITY AND
THROUGHPUT: PROOF OF THEOREM 4

In this section we upper and lower bound the capacity of the
energy harvesting channel, given by the expressions in The-
orem 2, using the solution to the power control optimization
problem.

A. Upper Bounds

We start with Ccausal
TxRx . Note that since Ccausal

Tx ≤ Ccausal
TxRx , we

will obtain both (30b) and the upper bound for (31). Through
some algebraic manipulations, we show in Appendix C that
Qn(b), defined in (18), can be written as

Qn(b) =
{
PXn‖En s.t. ∀en ∈ En, a.s. for t = 1, . . . , n:
t∑
j=i

X2
j ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t,

t∑
j=1

X2
j ≤ b+

t∑
j=1

ej

}
.

Next, we define another set of probability distributions by
relaxing the a.s. constraints to hold in expectation:

Q∗n(b) =
{
PXn‖En s.t. for t = 1, . . . , n and ∀en ∈ En:
t∑
j=i

E
[
X2
j |Ej = ej

]
≤ B̄ +

t∑
j=i+1

ej

, i = 1, . . . , t,
t∑

j=1

E
[
X2
j |Ej = ej

]
≤ b+

t∑
j=1

ej

}
.

Observe that Qn(b) ⊆ Q∗n(b).
By the same arguments as before, we can write (24) for the

set of online policies as:

Gonline
n (b) =

{
gn = (g1, . . . , gn), gt : Et → R+,

s.t. ∀en ∈ En :
t∑
j=i

gj(e
j) ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t,

t∑
j=1

gj(e
j) ≤ b+

t∑
j=1

ej , t = 1, . . . , n
}
.

(57)

Next, we upper bound the mutual information in (20) as
follows:

I(Xn;Y n|En) = h(Y n|En)− h(Y n|Xn, En)

≤
n∑
t=1

[h(Yt|Et)− h(Yt|Xt, E
t)]

=

n∑
t=1

I(Xt;Yt|Et),

where the inequality is due to the memorylessness of the
channel. Applying this to (20) gives:

Ccausal
TxRx = lim

n→∞

1

n
sup

PXn‖En∈Qn(b)

I(Xn;Y n|En)

≤ lim inf
n→∞

1

n
sup

PXn‖En∈Qn(b)

n∑
t=1

I(Xt;Yt|Et)

≤ lim inf
n→∞

1

n
sup

PXn‖En∈Q∗n(b)

n∑
t=1

I(Xt;Yt|Et), (58)
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where the last inequality is because Qn(b) ⊆ Q∗n(b). Note that
we always have

I(Xt;Yt|Et = et) ≤ 1

2
log
(
1 + E

[
X2
t |Et = et

])
,

since the mutual information of the scalar AWGN channel is
always maximized by a Gaussian input distribution. Taking
expectation, we obtain:

I(Xt;Yt|Et) ≤ E
[

1

2
log
(
1 + E[X2

t |Et]
)]
.

Plugging this into (58) yields:

Ccausal
TxRx ≤ lim inf

n→∞

1

n
sup

PXn‖En∈Q∗n(b)

E

[
n∑
t=1

1

2
log
(
1 + E[X2

t |Et]
)]
.

For a fixed PXn‖En ∈ Q∗n(b) and for each en ∈ En, denote
gt(e

t) = E[X2
t |Et = et], t = 1, . . . , n. Then gn ∈ Gonline

n (b)
as given by (57). Therefore,

Ccausal
TxRx ≤ lim inf

n→∞

1

n
max

gn∈Gonline
n (b)

E

[
n∑
t=1

1

2
log(1 + gt(E

t))

]
= lim inf

n→∞
max

gn∈Gonline
n (b)

T (gn)

= T online.

This gives (30b) and the upper bound in (31). The derivation
of the upper bound in (32) is similar, and is shown in
Appendix D.

B. Lower Bounds

We derive here the lower bounds in (30) and (31). The
derivation of the lower bound in (32) is similar, and is deferred
to Appendix D.

1) Energy Arrival Information at the Transmitter and the
Receiver: We start with Ccausal

TxRx . Fix gn ∈ Gonline
n (b). gn will

determine an energy allocation policy for transmission, and at
time t = 1, . . . , n we transmit a symbol with a peak power
constraint of gt(Et). More precisely, for every S ∈ [0, B̄], fix
a distribution P [S]

X with support [−
√
S,
√
S]. We construct an

input distribution of the form

PXn‖En(xn‖en) =

n∏
t=1

PXt|Et(xt|et),

where PXt|Et(xt|et) = P
[gt(e

t)]
X (xt). Since X2

t ≤ gt(Et) and
gn is an admissible online power control policy, the energy
constraints are satisfied completely. This is clearly suboptimal,
since most likely for some t, X2

t < gt(E
t), therefore energy

will be wasted. Still, PXn‖En ∈ Qn(b), and thus we can obtain
a lower bound by computing the mutual information in (20)
for PXn‖En . Note that the Xt’s are independent given En. In
fact, we have:

PXn,Y n|En(xn, yn|en) =

n∏
t=1

PXt|Et(xt|et)PY |X(yt|xt),

therefore,

I(Xn;Y n|En) =

n∑
t=1

I(Xt;Yt|En)

=

n∑
t=1

I(Xt;Yt|Et)

=
∑
en

PEn(en)

n∑
t=1

I(Xt;Yt|Et = et).

Observe that I(Xt;Yt|Et = et) is in fact the rate obtained
for a scalar AWGN channel when the input distribution
is P [gt(e

t)]
X . We can therefore maximize over all such input

distributions to obtain the following lower bound for (20):

Ccausal
TxRx ≥ lim sup

n→∞

1

n

∑
en

PEn(en)

n∑
t=1

CSmith(gt(e
t))

= lim sup
n→∞

1

n
E

[
n∑
t=1

CSmith(gt(E
t))

]
, (59)

where
CSmith(S) , max

X2≤S
I(X;X +N),

for N ∼ N (0, 1) independent of X . This is the capacity of
the amplitude constrained scalar Gaussian channel, which was
found in [35] (hence the notation CSmith). Unfortunately it
is not tractable, however, it can be lower bounded using the
following lemma.

Lemma 1. The capacity of the amplitude constrained scalar
AWGN channel with noise variance 1 can be lower bounded
as follows:

CSmith(S) ≥ 1

2
log(1 + S)− 1

2
log
(πe

2

)
. (60)

This is the same as Lemma 1 in [8], the proof of which
relies on results from [36]. For completeness, we bring here a
simple proof using the entropy power inequality.

Proof: Let X be uniform on the interval [−
√
S,
√
S].

Then, using the entropy power inequality:

I(X;X +N) = h(X +N)− h(N)

≥ 1

2
log
(
22h(X) + 22h(N)

)
− h(N)

=
1

2
log(4S + 2πe)− 1

2
log(2πe)

=
1

2
log

(
1 +

2S

πe

)
(61)

≥ 1

2
log(1 + S)− 1

2
log
(πe

2

)
.

Plugging (60) into (59):

Ccausal
TxRx ≥ lim sup

n→∞

1

n
E

[
n∑
t=1

1

2
log(1 + gt(E

t))

]
− 1

2
log
(πe

2

)
≥ lim inf

n→∞
T (gn)− 1

2
log
(πe

2

)
. (62)

Since this is true for any gn ∈ Gonline
n (b), we can take the

maximum to obtain:

Ccausal
TxRx ≥ lim inf

n→∞
max

gn∈Gonline
n (b)

T (gn)− 1

2
log
(πe

2

)
= T online − 1

2
log
(πe

2

)
,
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which gives the lower bound in (31).
Applying similar arguments for Cnoncausal

TxRx will obtain the
LHS of (32). This is shown in Appendix D.

2) Energy Arrival Information at the Transmitter Only:
We continue to the derivation of the lower bound on Ccausal

Tx ,
namely (30a). Fix gn ∈ Gonline

n (b). We construct an input
distribution PUn ∈ Pn(b) that consists of independent strategy
letters:

PUn(un) =

n∏
t=1

PUt(ut).

Recall that each strategy letter is a function Ut : Et → X .
Therefore, it can also be viewed as a vector in X |E|t . For
each element of the vector, corresponding to each realization
of Et, we will choose the same distribution as in the previous
case, namely:

Ut(e
t) ∼ P [gt(e

t)]
X .

This will induce the same conditional distribution PXn‖En on
Xn = Un(En) that was constructed previously. Additionally,
since gn ∈ Gonline

n (b), this input distribution is admissible, i.e.
PUn ∈ Pn(b).

We can lower bound I(Un;Y n) as follows:

I(Un;Y n) = I(Un;Y n, En)− I(Un;En|Y n)
(i)
= I(Un;Y n|En)− I(Un;En|Y n)
(ii)
≥ I(Xn;Y n|En)−H(En), (63)

where (i) is because Un is independent of En; and (ii)
is because Xn = Un(En) and the Markov chain Un −
(En, Xn)−Y n. Since Xn is distributed according to the same
PXn‖En as before, we get

1

n
I(Un;Y n) ≥ T (gn)− 1

2
log
(πe

2

)
− 1

n
H(En),

which, after maximizing over gn ∈ Gonline
n (b) and taking

n→∞, gives:

Ccausal
Tx ≥ T online − 1

2
log
(πe

2

)
−H(Et).

It turns out, however, that this bound may be too loose. The
term H(Et) may become very large for different distributions
of Et, and is in fact unbounded for increasingly large alpha-
bets E . Intuitively, this gap implies that the receiver must learn
the entire sequence of energy arrivals En in order to know the
codebook from which the transmitter chose the codeword. For
example, the rate corresponding to (63) can be achieved by
communicating the sequence of realizations of En at the end
of each block which will induce a rate penalty equal to the
entropy rate of this process. However, this requirement can be
made less strict by observing that our desired input distribution
at each time depends only on gt(et) - a deterministic function
of et. By introducing special structure into gn, we can make
its entropy per symbol 1

nH(gn(En)), which is the amount of
information that needs to be sent to the receiver, much smaller
than H(Et). See Section V-C.

Fix an online power control policy gn ∈ Gonline
n (b). We

wish to construct PUt in such a manner that gt(et) alone will
determine Xt. This implies that for two different energy arrival

realizations, say et and ět, that satisfy gt(et) = gt(ě
t), we wish

to have Ut(et) = Ut(ě
t) with probability 1.

Since Ut can be thought of as a vector of size |E|t, we wish
to specify the joint distribution of this multivariate random
variable. For that matter, define the set of all possible outcomes
of the power control policy at time t:

Gt = {g ∈ R+| g = gt(e
t), et ∈ Et}.

This set defines a partition on the set Et, in the sense that
disjoint subsets of Et map to different g ∈ Gt. More precisely,
let

At(g) = {et ∈ Et| gt(et) = g}.

Then At(g) for different g’s are disjoint and Et =
∪g∈GtAt(g).

We will construct PUt
so that all the elements in each of

these subsets will be equal with probability 1, and independent
of all other elements of Ut: For any g ∈ Gt, let Zg be a random
variable such that

Ut(e
t) = Zg ,∀et ∈ At(g) w.p. 1,

Zg ∼ P [g]
X ,

and Zg’s are independent for different g’s.
Note that, by construction, knowledge of Ut and gt(E

t)
suffices to know Xt:

Xt = Ut(E
t) = Ut(gt(E

t)).

Clearly, PUn ∈ Pn(b) since gn ∈ Gonline
n (b).

We proceed to lower bound I(Un;Y n) for this distribution:

I(Un;Y n) = I(Un;Y n, gn(En))− I(Un; gn(En)|Y n)
(i)
= I(Un;Y n|gn(En))− I(Un; gn(En)|Y n)

≥ I(Un;Y n|gn(En))−H(gn(En))
(ii)
= I(Xn;Y n|gn(En))−H(gn(En))
(iii)
≥ I(Xn;Y n|En)−H(gn(En)) (64)

where (i) is because Un is independent of gn(En); (ii) is
because Xn = Un(gn(En)) and the Markov chain Un −
(gn(En), Xn)−Y n; and (iii) is due to the Markov chain En−
(gn(En), Xn) − Y n and because gn(En) is a deterministic
function of En.

Now, observe that our distribution PUn on Un induces a
distribution PXn‖En on Xn which is identical to the one
we constructed in the previous case: the joint distribution
PXn,En,Un can be factored as

PXn,En,Un(xn, en, un) =

n∏
t=1

PE(et)PUt
(ut)1{xt = ut(e

t)}.

Summing over un:

PXn,En,Un−1(xn, en, un−1)

= PXn−1,En−1,Un−1(xn−1, en−1, un−1)

×
∑
un

PE(en)PUn
(un)1{xn = un(en)}
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= PXn−1,En−1,Un−1(xn−1, en−1, un−1)

×
∑
un(en)

PE(en)PUn(en)(un(en))1{xn = un(en)}

= PXn−1,En−1,Un−1(xn−1, en−1, un−1)PE(en)P
[gn(en)]
X (xn).

Summing over un−1, then un−2, and so forth, we obtain:

PXn,En(xn, en) =

n∏
t=1

PE(et)P
[gt(e

t)]
X (xt).

We can therefore apply (62) to obtain

1

n
I(Un;Y n) ≥ T (gn)− 1

2
log
(πe

2

)
− 1

n
H(gn(En)).

Finally, since gn was arbitrary we can maximize over all
possible online policies:

1

n
I(Un;Y n) ≥ max

gn∈Gonline
n (b)

{T (gn)− 1
nH(gn(En))}

− 1

2
log
(πe

2

)
.

Taking n→∞ and substituting in (19), we get (30a).

VII. CONCLUSION

We studied the communication problem with an energy har-
vesting transmitter over the AWGN channel. We characterized
the information-theoretic capacity of this channel as an n-letter
mutual information rate under various assumptions on the
availability of energy arrival information. We also considered
the power control problem for energy harvesting communica-
tion that has been of interest in the recent communication the-
ory literature and provided an approximately optimal solution
for the online version of this problem. We then proceeded to
connecting these two different formulations of the problem and
showed that the information-theoretic capacity can be lower
and upper bounded by the long-term average throughput, i.e.
the solution of the power control problem. Putting these results
together allowed us to approximate the information-theoretic
capacity of the energy harvesting channel with a simple and
insightful formula within a constant gap independent of system
parameters.

There are many interesting research directions one can
pursue from here. One immediate question is whether the
approximation results in this paper can be significantly tight-
ened to obtain better approximations for the capacity. One
can also seek purely multiplicative approximations instead
of the additive approximations we derived in this paper.
Another interesting direction is to develop similar insights and
results for energy harvesting processes with memory or certain
correlation structure over time. Finally, the approximation
approach developed in this paper can be used to understand
the information-theoretic capacity as well as optimal online
power control for various multi-user settings.

APPENDIX A
CAPACITY AND MAXIMUM THROUGHPUT DO NOT

DEPEND ON INITIAL BATTERY STATE

A. Information-Theoretic Capacity Does Not Depend on Ini-
tial Battery State

We prove Proposition 1, namely that the capacity does not
depend on the initial state of the battery B0. Let C be the
capacity of the energy harvesting channel when B0 is some
arbitrary value in [0, B̄] unknown to the receiver, and let CB̄
be the capacity when B0 = B̄. We show that C = CB̄ .

It is immediate that CB̄ ≥ C, since any achievable scheme
for any value of B0 can be achieved when B0 = B̄ by ignoring
the remaining energy in the battery. To show CB̄ ≤ C, we
show that any achievable scheme designed for B0 = B̄ can
be achieved in a system with arbitrary B0.

We do so by transmitting a large number of zeros, therefore
recharging the battery to B̄, followed by the scheme designed
for B0 = B̄. More precisely, we transmit ` zeros followed by
an (M,n, ε/2) code for B0 = B̄. Denote by E1 the event that
the battery is not charged to B̄, and by E2 the event that the
code for B0 = B̄ will produce an error.

First, we have

Pr{E1} = Pr{B0 +
∑̀
t=1

Et < B̄}

≤ Pr{
∑̀
t=1

Et < B̄}

≤ ε`,

where lim`→∞ ε` = 0, and the last inequality follows from
the law of large numbers, using the fact that E[Et] > 0. We
can choose ` large enough so that Pr{E1} ≤ ε/2. Note that
this value of ` depends solely on B̄ and the statistics of Et,
and does not depend on the actual value of B0.

Next, from the i.i.d. nature of Et, we have Pr{E2|Ec1} ≤
ε/2. Therefore, the total probability of error for our scheme
Pr{E1 ∪E2} does not exceed ε. The transmission spans `+n
channel uses, thus we have constructed an (M,n+ `, ε) code
for the channel with arbitrary B0. By taking sufficiently large
n, we can get a rate as close to CB̄ as desired.

B. Throughput Does Not Depend on Initial Battery State

We state and prove the following proposition:

Proposition 3. The long-term average throughput does not
depend on the initial battery state, i.e. for any b1, b2 ∈ [0, B̄]:

lim inf
n→∞

max
gn∈Gn(b1)

T (gn) = lim inf
n→∞

max
gn∈Gn(b2)

T (gn),

for offline and online policies alike.

This immediately implies that we can compute the through-
put T online or T offline for any initial battery level, say B̄,
regardless of the actual battery level of interest b0.

Proof: We will give the proof for online policies, however
it transfers immediately to offline policies. Denote

T online(b) = lim inf
n→∞

max
gn∈Gonline

n (b)
T (gn).
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We will show that T online(b) = T online(B̄) for any 0 ≤ b ≤ B̄,
which will imply the desired result.

First, clearly T online(b) ≤ T online(B̄) since Gonline
n (b) ⊆

Gonline
n (B̄) for 0 ≤ b ≤ B̄. To show the other direction, let
{ĝn}∞n=1 be the sequence of maximal policies in T online(B̄),
that is:

ĝn = argmax
gn∈Gn(B̄)

T (gn) , n = 1, 2, . . .

Fix ` ≥ 1. For any n > `, consider the following online power
control policy gn for initial battery level b: Transmit zeros
(gt = 0) for the first ` time slots. This will allow the battery to
completely recharge to B̄ with high probability. Then, if B` =
B̄, transmit the policy ĝn−`. Otherwise, transmit zeros for
n− ` time slots (i.e. give up on the entire transmission). More
precisely, define the new policy as follows, for t = 1, . . . , n:

gt(e
t) =

{
0 , 1 ≤ t ≤ `
1{B`=B̄} · ĝt−`(et`+1) , `+ 1 ≤ t

where 1{·} is the indicator function. Observe that B` is a
deterministic function of e`, which is given by B` = min

{
b+∑`

t=1 et, B̄
}

. We have for any n > `:

T (gn) =
1

n

n∑
t=1

E
[

1

2
log
(
1 + gt(E

t)
)]

=
1

n

n∑
t=`+1

E
[

1

2
log
(
1 + 1{B`=B̄} · ĝt−`(Et`+1)

)]

=
1

n

n−∑̀
t=1

E
[
1{B`=B̄} ·

1

2
log
(
1 + ĝt(E

`+t
`+1)

)]
(i)
=

1

n

n−∑̀
t=1

Pr{B` = B̄} · E
[

1

2
log(1 + ĝt(E

`+t
`+1)

)]
(ii)
= Pr{B` = B̄} · 1

n

n−∑̀
t=1

E
[

1

2
log(1 + ĝt(E

t)
)]

= Pr{B` = B̄} · n− `
n

T (ĝn−`),

where (i) is because B` depends only on E`, and Et is
independent over time; and (ii) is because Et is i.i.d.

Note that gn ∈ Gonline
n (b) for any 0 ≤ b ≤ B̄. Therefore:

T online(b) ≥ lim inf
n→∞

T (gn)

= Pr{B` = B̄} · lim inf
n→∞

n− `
n

T (ĝn−`)

= Pr{B` = B̄} · T online(B̄). (65)

We can lower-bound the probability of recharging the battery
using Chebyshev’s inequality:

Pr{B` = B̄} = 1− Pr
{
b+

∑̀
t=1

Et < B̄
}

≥ 1− ` · Var(Et)
(` · E[Et]− B̄ + b)2

, 1− ε`,

where ε` → 0 as ` → ∞. Substituting this in (65) yields
T online(b) ≥ (1 − ε`) · T online(B̄). Since the LHS does not
depend on `, we can take ` → ∞ to obtain T online(b) ≥
T online(B̄), which concludes the proof.

APPENDIX B
CAPACITY WITH NONCAUSAL SIDE INFORMATION

We prove Theorem 2 for the case of energy arrival infor-
mation available noncausally at the receiver and the trans-
mitter (21). Recall the definition of Fn(b) in (16) and fix
PXn|En ∈ Fn(b). We transmit k blocks of length n + ` + 1
as in Section IV. Generate a random codebook for every
enk ∈ Enk by generating k independently drawn codewords
from PXn|En . Specifically, denoting ei = e

(i−1)(n+`+1)+n
(i−1)(n+`+1)+1 ,

we choose xi(ei) ∼ PXn|En(·|ei) and transmit

x
i(n+`+1)
(i−1)(n+`+1)+1 = [zi · xi(ei),

√
b(i−1)(n+`+1)+n+1, 0],

where zi = 1 if b(i−1)(n+`+1) ≥ b and zi = 0 otherwise,
and 0 is a length-` vector of zeros. Similarly to Section IV,
the energy constraint will be satisfied. From here on, we
repeat the arguments of Section IV. The receiver makes use of
yi = y

(i−1)(n+`+1)+n
(i−1)(n+`+1)+1 and ei, i = 1, . . . , k, for decoding. The

channel is memoryless with i.i.d. side information available
at both the receiver and the transmitter. Note that the i.i.d.
Bernoulli RV Zi is independent of the side information ei.
Therefore we obtain

Cnoncausal
TxRx ≥ lim sup

n→∞

1

n
sup

PXn|En∈Fn(b)

I(Xn;Y n|En). (66)

Conversely, from Fano’s inequality we have

Cnoncausal
TxRx ≤ lim inf

n→∞

1

n
sup

PXn|En∈Fn(b)

I(Xn;Y n|En),

which, combined with (66), gives (21).

APPENDIX C
ALTERNATIVE REPRESENTATION OF ENERGY

CONSTRAINTS

In this section, we derive the alternative representation of
the energy constraints stated in the beginning of Section VI-A.
Suppose xn and en satisfy constraints (5) and (6) for t =
1, . . . , n and B0 = b, that is

x2
t ≤ bt, (67)

bt = min{bt−1 − x2
t−1 + et, B̄}, (68)

for t = 1, . . . , n, where b0 = b. We show that this is equivalent
to satisfying

t∑
j=i

x2
j ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t (69)

t∑
j=1

x2
j ≤ b+

t∑
j=1

ej (70)

for t = 1, . . . , n.
Suppose xn, en satisfy (67) and (68). For any t = 1, . . . , n:

x2
t ≤ B̄, (71)
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x2
t ≤ bt−1 − x2

t−1 + et, (72)

where (71) gives (69) for i = t, and (72) can be further written
as

x2
t−1 + x2

t ≤ B̄ + et, (73)

x2
t−1 + x2

t ≤ bt−2 − x2
t−2 + et−1 + et. (74)

(73) gives (69) for i = t− 1, and (74) can be written as

x2
t−2 +x2

t−1 +x2
t ≤ min{bt−3−x2

t−3 + et−2, B̄}+ et−1 + et.

Continuing in this fashion gives (69) for all i ≤ t and (70).
Now, let xn, en satisfy (69) and (70) for t = 1, . . . , n.

Applying (68) for b1, . . . , bt, we can express the battery state
at time t as follows:

bt = min
{
b−

t−1∑
i=1

x2
i+

t∑
i=1

ei, min
1≤i≤t

{
B̄−

t−1∑
j=i

x2
j+

t∑
j=i+1

ej
}}
.

Hence, (67) holds if and only if:

x2
t ≤ B̄ −

t−1∑
j=i

x2
j +

t∑
j=i+1

ej , i = 1, . . . , t,

x2
t ≤ b−

t−1∑
i=1

x2
i +

t∑
i=1

ei,

for t = 1, . . . , n, which is exactly (69) and (70).

APPENDIX D
NONCAUSAL CAPACITY BOUNDS

We derive the bounds on the capacity with noncausal
observations of the energy arrivals at the transmitter and the
receiver, namely (32). We repeat the steps of Section VI, start-
ing with the upper bound. Rewrite (16) as (see Appendix C):

Fn(b) =
{
PXn|En s.t. ∀en ∈ En, a.s. for t = 1, . . . , n:
t∑
j=i

X2
j ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t,

t∑
j=1

X2
j ≤ b+

t∑
j=1

ej

}
.

Additionally, define

F∗n(b) =
{
PXn|En s.t. for t = 1, . . . , n and ∀en ∈ En:
t∑
j=i

E[X2
j |En = en] ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t,

t∑
j=1

E[X2
j |En = en] ≤ b+

t∑
j=1

ej

}
.

Observe that Fn(b) ⊆ F∗n(b).

Similarly, we can write (24) for the offline policies as

Goffline
n (b) =

{
gn = (g1, . . . , gn), gt : En → R+,

s.t. ∀en ∈ En :
t∑
j=i

gj(e
n) ≤ B̄ +

t∑
j=i+1

ej , i = 1, . . . , t,

t∑
j=1

gj(e
n) ≤ b+

t∑
j=1

ej , t = 1, . . . , n
}
.

We now upper bound the expression in (21), repeating
the steps in Section VI-A. First we upper bound the mutual
information as:

I(Xn;Y n|En) ≤
n∑
t=1

I(Xt;Yt|En).

Next, we apply this inequality to (21):

Cnoncausal
TxRx = lim

n→∞

1

n
sup

PXn|En∈Fn(b)

I(Xn;Y n|En)

≤ lim inf
n→∞

1

n
sup

PXn|En∈Fn(b)

n∑
t=1

I(Xt;Yt|En)

≤ lim inf
n→∞

1

n
sup

PXn|En∈F∗n(b)

n∑
t=1

I(Xt;Yt|En).

For each en ∈ En, we have:

I(Xt;Yt|En = en) ≤ 1

2
log
(
1 + E[X2

t |En = en]
)
,

and thus

Cnoncausal
TxRx ≤ lim inf

n→∞

1

n
sup

PXn|En∈F∗n(b)

E

[
n∑
t=1

1

2
log(1 + E[X2

t |En])

]

≤ lim inf
n→∞

1

n
max

gn∈Goffline
n (b)

E

[
n∑
t=1

1

2
log(1 + gt(E

n))

]
= T offline.

For the lower bound, fix gn ∈ Goffline
n (b). Let

PXn|En(xn|en) =

n∏
t=1

PXt|En(xt|en),

where PXt|En(xt|en) = P
[gt(e

n)]
X (xt) and P

[S]
X is a distribu-

tion with support [−
√
S,
√
S]. Clearly PXn|En ∈ Fn(b), and

I(Xn;Y n|En) =

n∑
t=1

I(Xt;Yt|En).

Then, after maximizing over all such distributions, we get
I(Xt;Yt|En = en) = CSmith(gt(e

n)), and therefore:

Cnoncausal
TxRx ≥ lim sup

n→∞

1

n
E

[
n∑
t=1

CSmith(gt(e
n))

]
(75)

≥ lim inf
n→∞

1

n
E

[
n∑
t=1

1

2
log(1 + gt(E

n))

]
− 1

2
log
(πe

2

)
,

where the second inequality is due to Lemma 1. Since this
is true for any gn ∈ Goffline

n (b), we can take the maximum to
obtain (32).
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APPENDIX E
MULTIPLICATIVE BOUNDS: PROOF OF THEOREM 5

Recall the proof of the lower bound in Section VI-B. We
will continue from equation (59). We will develop here a dif-
ferent lower bound for CSmith(S), specifically a multiplicative
lower bound. In what follows, we will show that

CSmith(S) ≥ η · 1

2
log(1 + S),

for an appropriate η and all S ≥ 0. Substituting this in (59),
(64), and (75), immediately yields equations (34)-(36).

First, one can obtain from (61) in the proof of Lemma 1
the following lower bound:

CSmith(S)
1
2 log(1 + S)

≥
1
2 log

(
1 + 2

πeS
)

1
2 log(1 + S)

≥ 2

πe
,

which implies η ≥ 2
πe = 0.2342. However, it can be observed

numerically that η is larger that this value, and it is in fact
η = 0.7473. In what follows, we show CSmith(S)

1
2 log(1+S)

≥ η via a
numerical proof. We divide R+ into five regions, and show
the inequality holds for all S in each region.

A. 0 ≤ S ≤ 0.69

Consider a binary input distribution, that is X = ±
√
S w.p.

1/2. Denote

Cbin(S) , I(X;X +N) = I(Z;
√
SZ +N),

where Z = ±1 w.p. 1/2. Then

CSmith(S)
1
2 log(1 + S)

≥ Cbin(S)
1
2 log(1 + S)

≥ Cbin(S)
1

2 ln 2S
.

By [37, Lemma 1], we have Cbin(S) = S
2 ln 2 + o(S), where

o(S)
S → 0 as S → 0. This implies R(S) , Cbin(S)

1
2 ln 2S

→ 1, and
along with CSmith(S) ≤ 1

2 log(1 + S) we conclude

CSmith(S)
1
2 log(1 + S)

→ 1 when S → 0.

In fact, this was already observed by Shannon in his 1948
paper [38].

Now, we will show that R(S) = Cbin(S)
1

2 ln 2S
is non-increasing.

By [37, Corollary 1], the function Cbin(S) is concave, implying
that the derivative C ′bin(S) is non-increasing. By the mean
value theorem, for every S > 0 there is some 0 ≤ c ≤ S
such that

C ′bin(S) ≤ C ′bin(c) =
Cbin(S)− Cbin(0)

S − 0
=
Cbin(S)

S
.

Next, we take the derivative of R(S):

R′(S) =
2 ln 2

S

(
C ′bin(S)− Cbin(S)

S

)
≤ 0,

observing that R(S) is monotonic non-increasing.
We compute R(S) for S = 0.69 numerically to obtain

R(0.69) = 0.7501. Since R(S) is non-increasing and R(0) =
1, this implies

CSmith(S)
1
2 log(1 + S)

≥ R(S) > 0.75

for 0 ≤ S ≤ 0.69.

B. 0.69 ≤ S ≤ 170

In this part, we compute CSmith(S) for a finite set of points
{Si}Ni=1 in [0.5, 170], where 0.5 = S1 < S2 < . . . < SN =
170. For every Si ≤ S ≤ Si+1, i = 1, . . . , N − 1:

CSmith(S)
1
2 log(1 + S)

≥ CSmith(Si)
1
2 log(1 + Si+1)

.

Computing this lower bound for any such set of points and
taking the minimal value will give a lower bound for all S ∈
[0.5, 170]. We compute this numerically using the algorithm
suggested in [35] and obtain

CSmith(S)
1
2 log(1 + S)

≥ 0.7473, 0.5 ≤ S ≤ 170.

C. 170 ≤ S ≤ 195

For all 170 ≤ S ≤ 195, we have

CSmith(S)
1
2 log(1 + S)

≥ CSmith(170)
1
2 log(1 + S)

≥ CSmith(170)
1
2 log(1 + 195)

= 0.7519.

D. 195 ≤ S ≤ 340

Let Cunif(S) , I(X;X + N) where X ∼ U [−
√
S,
√
S].

As before, we compute Cunif(S) numerically for a set of
points {Sj}Mj=1, where 195 = S1 < . . . < SM = 340. This
involves numerical integration of the form

∫
f(y) log f(y)dy,

where f(y) = 1
2
√
S

(Q(y −
√
S) − Q(y +

√
S)) and Q(x) ,

1√
2π

∫∞
x
e−u

2/2du. For every Sj ≤ S ≤ Sj+1, j =
1, . . . ,M − 1:

CSmith(S)
1
2 log(1 + S)

≥ Cunif(Sj)
1
2 log(1 + Sj+1)

.

Computing this lower bound numerically for the set of points
Sj = 195 + (j − 1)0.5, j = 1, . . . , 291, and taking the
minimum, gives:

CSmith(S)
1
2 log(1 + S)

≥ 0.7482, 195 ≤ S ≤ 340.

E. 340 ≤ S

For S ≥ 340, we use Lemma 1 to see that

CSmith(S)
1
2 log(1 + S)

≥
1
2 log(1 + S)− 1

2 log
(
πe
2

)
1
2 log(1 + S)

≥ 1−
log
(
πe
2

)
log(1 + 340)

= 0.7511.

Combining all the above bounds, we conclude that

CSmith(S)
1
2 log(1 + S)

≥ 0.7473,

for all S ≥ 0.
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Fig. 6. Numerical evaluation of the ratio CSmith(S)/ 1
2

log(1 + S).

APPENDIX F
UPPER BOUND ON EXPECTED EPOCH LENGTH IN

GENERALIZED BERNOULLI POLICY

As shown in Section V-B2, the epoch length in the Gener-
alized Bernoulli policy is given by

L = {inf t : St ≥ B̄[1− (1− q)t]},

where St =
∑t+1
i=2 Ẽi and Ẽi = min{Ei, B̄}. Consider the

following RV:
L̃ = {inf t : St ≥ B̄}.

Clearly L ≤ L̃, therefore:

EL ≤ EL̃

=

∞∑
`=1

Pr(L̃ ≥ `)

=

∞∑
`=1

Pr(S1 < B̄, S2 < B̄, . . . , S`−1 < B̄)

=

∞∑
`=1

Pr(S`−1 < B̄), (76)

where the last equality is due to the non-negativity of the
energy arrivals Ẽt ≥ 0. Using Chernoff bound, we upper
bound the probability in the sum, for any θ > 0:

Pr(S`−1 < B̄) ≤ E[eθ(B̄−S`−1)]

= eθB̄
(
E[e−θẼt ]

)`−1
.

Substituting the in (76), we have an infinite series of the form:

EL ≤
∞∑
l=1

eθB̄
(
E[e−θẼt ]

)`−1
.

Now, since Ẽt ≥ 0, we must have e−θẼt ≤ 1 w.p. 1. This
implies that E[e−θẼt ] = 1 if and only if Ẽt = 0 w.p. 1.
However, since Ẽt > 0 with positive probability, we must
have E[e−θẼt ] < 1. Hence the series must converge to a finite
number and EL <∞.
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