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Abstract—The problem of quickest detection of a change in the
distribution of a n × p random matrix based on a sequence of
observations having a single unknown change point is considered.
The forms of the pre- and post-change distributions of the rows
of the matrices are assumed to belong to the family of elliptically
contoured densities with sparse dispersion matrices but are
otherwise unknown. We propose a non-parametric stopping rule
that is based on a novel summary statistic related to k-nearest
neighbor correlation between columns of each observed random
matrix. In the large scale regime of p→∞ and n fixed we show
that, among all functions of the proposed summary statistic,
the proposed stopping rule is asymptotically optimal under a
minimax quickest change detection (QCD) model.

I. INTRODUCTION

In this paper we consider the problem of sequential detec-
tion of a change in the distribution of a sequence of large
scale random matrices. The random matrices have i.i.d. rows
where the pre-change and post-change distributions of the
rows are known to belong to the elliptically contoured family
but are otherwise unknown. This large scale non-parametric
sequential detection problem has applications in multivariate
time-series analysis, stochastic finance, social networks and
failure detection, among others. In multivariate time-series
analysis, it is of interest to know if the coefficients of the
time series has changed over time. In stochastic finance, it
is of interest to detect a sudden change in the correlation
between a set of stocks being monitored. In social networks,
it is of interest to detect an abrupt change in the interaction
level between a pair of agents. In failure detection, often the
dynamics of a mechanical structure can be characterized by
multi-variate data, and a change in the dynamics should be
detected as quickly as possible.

In such cases the observations can be described as a
sequence of random matrices. The rows of these random matri-
ces may correspond to approximately independent realizations
of p different variables, e.g., sampled over blocks of time or
sampled in a sequence of repeated experiments. For example,
in the case of detecting a change in the coefficients of a
Gaussian univariate time series, p successive time samples may
be acquired over n well separated blocks of time. A change
in the coefficients of the time series is reflected in a change in
the correlation matrix associated with each block. In stochastic
finance, we may have access to multiple instances of stock

values over a day or week, and a change in correlation may
occur only at the end of the day or week.

In this paper we consider the problem of quickest detection
of a change in population dispersion (or correlation) matrix
under the assumption of elliptically contoured distribution of
the rows of the sequence of n×p random matrices. The results
in this paper hold for the big data regime of p� n for which
p → ∞ and n is fixed and small. The precise mathematical
problem is stated in Section II.

If a parametric model for the data is known before and after
change, then various efficient procedures from the quickest
change detection literature (see, e.g., [1], [2], and [3]) can be
used for detection. However, in the absence of a parametric
model, a situation common in Big Data settings, no optimal
procedures are known. In this paper we propose a technique
for quickest change detection in this setting.

Specifically, we propose a novel summary statistic for
the data matrix: the minimal k-nearest neighborhood of the
columns of the random matrix under a correlation magnitude
distance. We obtain an approximate distribution for the sum-
mary statistic in the big data regime. We show that the dis-
tribution of the summary statistic belongs to a one-parameter
exponential family, with the unknown parameter a function
of the underlying distribution of the data matrix. We then
treat the sequence of summary statistics as our observation
sequence, and apply Lorden’s test [4]. This work is motivated
by the theory of correlation screening and correlation mining
[5], and specifically the theory of hub discovery in large scale
correlation graphs from [6].

II. PROBLEM DESCRIPTION

A decision-maker sequentially acquires samples from a fam-
ily of distributions of n×p random matrices over time, indexed
by m, leading to the random matrix sequence {X(m)}m≥1,
called data matrices. For each m the random matrix X(m) has
the following properties. Each of its n rows is an independent
identically distributed (i.i.d.) sample of a p-variate random
vector X(m) = [X1(m), · · · , Xp(m)]T with p× 1 mean µm
and p×p positive definite dispersion matrix Σm. The random
vector X(m) has an elliptically contoured density, also called
an elliptical density [7],

fX(m)(x) = gm((x− µm)TΣ−1m (x− µm)),
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for some nonnegative strictly decreasing function gm on R+.
If µm = 0 and Σm = Ip, where Ip is the p×p identity matrix,
then the random vector X(m) is said to have a spherical
density.

The samples {X(m)} are assumed to be statistically inde-
pendent. For some time parameter γ the samples are assumed
to have common dispersion parameter Σ0 and function g0
for m < γ and common dispersion parameter Σ1 6= Σ0

and function g1 for m ≥ γ. γ is called the change point
and the pre-change and post-change distributions of X(m) are
denoted f0X and f1X, respectively. No assumptions are made
about the mean parameter µm, and can take different values
for different m. More specifically, as the rows of X(m) are
i.i.d. realizations of the elliptically distributed random variable
X(m), this change-point model is described by:

X(m) ∼ f0X(x) = g0((x− µm)TΣ0
−1(x− µm)), m < γ

∼ f1X(x) = g1((x− µm)TΣ1
−1(x− µm)), m ≥ γ.

(1)

At each time point m the decision-maker decides to either stop
sampling, declaring that the change has occurred, i.e., m ≥ γ,
or to continue sampling. The decision to stop at time m is only
a function of (X(1), · · · ,X(m)). Thus, the time at which the
decision-maker decides to stop sampling is a stopping time for
the matrix sequence {X(m)}. The decision-maker’s objective
is to detect this change in distribution of the data matrices as
quickly as possible, subject to a constraint on the false alarm
rate.

The above detection problem is an example of the quickest
change detection (QCD) problem. See [2], [1], and [3] for
an overview of the QCD literature. In the QCD problem the
objective is to find a stopping time τ on the sequence of data
matrices {X(m)}, so as to minimize a suitable metric on the
delay (τ − γ), subject to a constraint on a suitable metric on
the event of false alarm {τ < γ}. This paper follows the QCD
formulation of Pollak [8]:

min
τ

sup
γ≥1

Eγ [τ − γ|τ ≥ γ]

subj. to E∞[τ ] ≥ β,
(2)

where Eγ is the expectation with respect to the probability
measure under which the change occurs at γ, E∞ is the
corresponding expectation when the change never occurs, and
β ≥ 1 is a user-specified constraint on the mean time to false
alarm.

If the pre- and post-change densities f0X and f1X are known
to the decision maker, and µm is constant before and after
change, then algorithms like the Cumulative Sum (CuSum)
algorithm [9], [4], [10], or the Shiryaev-Roberts (SR) family
of algorithms [11], [8], [12], can be used for efficient change
detection. Both the CuSum algorithm and the SR family of
algorithms have strong optimality properties with respect to
both the popular formulations of Lorden [4] and that of Pollak
[8], used in this paper.

If only the pre-change and post-change functions g0 and
g1 are known then (2) is a parametric QCD problem. In this

case, under the assumption that µm = µ0, m < γ, and Σ0

are known, efficient QCD algorithms can be designed, having
strong asymptotic optimality properties, based on, e.g., the
generalized likelihood ratio (GLR) technique [3], the mixture
based technique [3], or the nonanticipating estimation based
technique [13].

In many situations, however, even the pre- and post-change
functions g0 and g1 may be unknown. This is the non-
parametric QCD setting considered in this paper. While one
can use non-parametric QCD tests based on signs and ranks
[14], or based on empirical distribution estimates [15], there
are no known optimal solutions to (2) in the non-parametric
setting.

In this paper we provide an asymptotically optimal solution
to the minimax QCD problem (2) in the random matrix setting
(1) using recently developed large scale random matrix theory
[6]. The solution is optimal in the following sense. The theory
from [6] establishes that a certain summary statistic, denoted
by V (X), derived from an n × p random matrix X has a
limiting distribution as p → ∞ for fixed n, the so-called
”purely high dimensional regime” [16]. This summary statistic
is related to the empirical distribution of the vertex degree of
the correlation graph associated with the thresholded sample
correlation matrix. Below we show that the distribution of the
statistic V (X) converges to a parametric distribution in the
exponential family in this purely high dimensional regime. We
then apply the GLR based Lorden’s test [4] to the sequence of
summary statistics {V (X(m))} to detect the change efficiently.
Thus, the proposed stopping rule is asymptotically optimal
under the Lorden minimax quickest change detection (QCD)
model [4], and hence also in terms of solving (2), among
all rules that are stopping rules for the proposed summary
statistics sequence.

III. SUMMARY STATISTIC FOR THE DATA MATRIX

In this section we define a summary statistic V (X) and
then use the results from [6] to obtain its asymptotic density
in the purely high dimensional regime of p → ∞, n fixed.
This asymptotic distribution is a member of a one-parameter
exponential family.

For an elliptically distributed random data matrix X we write

X = [X1, · · · ,Xp] = [XT
(1), · · · ,X

T
(n)]

T ,

where Xi = [X1i, · · · , Xni]
T is the ith column and X(i) =

[Xi1, · · · , Xip] is the ith row. Define the sample covariance
matrix as

S =
1

n− 1

n∑
i=1

(X(i) − X̄)T (X(i) − X̄),

where X̄ is the sample mean of the n rows of X. Also define
the sample correlation matrix as

R = DS
−1/2SDS

−1/2,

where DA denotes the matrix obtained by zeroing out all but
the diagonal elements of the matrix A. Note that, under our



assumption that the dispersion matrix Σ of the rows of X is
positive definite, DS is invertible with probability one. Thus
Rij , the element in the ith row and the jth column of the
matrix R, is the sample correlation coefficient between the
ith and jth columns of X.

Define d(k)NN(i) to be the sample correlation between the i-th
column of X and its k-th nearest neighbor in the columns of
X (in terms of Euclidean distance):

d
(k)
NN(i) := kth largest order statistic of {|Rij |; j 6= i}.

Then for fixed k, define the summary statistic

Vk(X) := max
i
d
(k)
NN(i). (3)

Below we show that the distribution of the statistic Vk can be
related to the distribution of an integer valued random variable
Nδ,ρ which we define below.

For a threshold parameter ρ ∈ [0, 1] define the correlation
graph Gρ(R) associated with the correlation matrix R as an
undirected graph with p vertices, each representing a column
of the data matrix X. An edge is present between vertices i
and j if the magnitude of the sample correlation coefficient
between the ith and jth components of the random vector X
is greater than ρ, i.e., if |Rij | ≥ ρ, i 6= j. We define δi to
be the degree of vertex i in the graph Gρ(R). For a positive
integer δ ≤ p − 1 we say that a vertex i in the graph Gρ(R)
is a hub of degree δ if δi ≥ δ. We denote by Nδ,ρ the total
number of hubs in the correlation graph Gρ(R), i.e.,

Nδ,ρ = card{i : δi ≥ δ}.

The events {Vδ(X) ≥ ρ} and {Nδ,ρ > 0} are equivalent.
Hence

P(Vδ(X) ≥ ρ) = P(Nδ,ρ > 0). (4)

An asymptotic approximation to the probability P(Nδ,ρ >
0) is obtained in [6] by relating Nδ,ρ to a Poisson random
variable in the purely high dimensional limit as p→∞ and n
fixed. We summarize the approximation in the theorem below.
We say that a matrix is row sparse of degree k if there are no
more than k nonzero entries in any row. We say that a matrix is
block sparse of degree k if the matrix can be reduced to block
diagonal form having a single k × k block, via row-column
permutations.

Theorem 3.1 ( [6]): Let Σ be row sparse of degree k = o(p).
Also let p → ∞ and ρ = ρp → 1 such that p1/δ(p − 1)(1 −
ρ2)(n−2)/2 → en,δ ∈ (0,∞).

1)
P(Nδ,ρ > 0)→ 1− exp(−ΛJX/φ(δ)),

where

Λ = lim
p→∞,ρ→1

Λ(ρ) = ((en,δan)/(n− 2))δ/δ!,

with

Λ(ρ) = p

(
p− 1

δ

)
P0(ρ)δ,

P0(ρ) = an

∫ 1

ρ

(1− u2)
n−4
2 du,

an = 2B((n−2)/2, 1/2) with B(l,m) the beta function,

φ(δ) = 2 if δ = 1, φ(δ) = 1 otherwise, and JX is a
positive real number that is a function of the joint density
of X.

2) If the dispersion matrix Σ of the p-variate vector X is
block sparse of degree k, then

JX = 1 +O((k/p)δ+1).

In particular, if the dispersion matrix Σ is diagonal then
JX = 1.

Using (4) and Theorem 3.1, the large p distribution of Vk
defined in (3) can be approximated, for k = δ, by

P(Vδ(X) ≤ ρ) = exp(−Λ(ρ)JX/φ(δ)), ρ ∈ [0, 1], (5)

where Λ(ρ) is as defined in Theorem 3.1. Although the
theorem is valid for large values of ρ, numerical experiments
[6] have shown that the approximation remains accurate for
smaller values of ρ as long as n is small and p� n.

The distribution (5) is differentiable everywhere except at
ρ = 0 since P (Vδ(X) = 0) > 0 when using the finite p and
ρ < 1 approximation Λρ for Λ specified in Theorem 3.1. For
ρ > 0 and large p, Vδ has density

fV (ρ) = −Λ′(ρ)

φ(δ)
JX exp

(
−Λ(ρ)

φ(δ)
JX

)
, ρ ∈ (0, 1]. (6)

Note that fV in (6) is the density of the Lebesgue continuous
component of the distribution (5) and that it integrates to 1−
O(e−p

2

) over ρ ∈ (0, 1].
The density fV is a member of a one-parameter exponential

family with JX as the unknown parameter. This follows from
the relations below. First

Λ(ρ) = p

(
p− 1

δ

)(
an

∫ 1

ρ

(1− u2)
n−4
2 du

)δ
= C T (ρ)δ,

(7)

where
C = Cp,n,δ = p

(
p− 1

δ

)
aδn (8)

does not depend on ρ, and

T (ρ) =

∫ 1

ρ

(1− u2)
n−4
2 du. (9)

Using (7) and noting that T (ρ)′ = −(1−ρ2)
n−4
2 , we have for

ρ ∈ [0, 1], the exponential family form of the density fV with
parameter JX:

fV (ρ; JX)

=
Cδ

φ(δ)
T (ρ)δ−1(1− ρ2)

n−4
2 JX exp

(
−CT (ρ)δ

φ(δ)
JX

)
.

(10)

The constant δ in (10) is a fixed design parameter that
can be selected to maximize change detection performance



according to (2). In the sequel, we fix δ = 1. For this value of
δ, the statistic Vδ reduces to the nearest neighbor (correlation)
distance

V (X) = max
i6=j
|Rij |, (11)

and the density in (10) reduces to

fV (ρ; J) =
C

2
(1− ρ2)

n−4
2 J exp

(
−C

2
J T (ρ)

)
, ρ ∈ (0, 1],

(12)
where we have suppressed subscript X in the exponential
family parameter J on the distribution of X.

In Fig. 1 is plotted the density fV for various values of J
for n = 10, and p = 100. We note that for the chosen values
of n and p, the density is concentrated close to 1, consistent
with large values of ρ arising in the purely high dimensional
regime assumed in Theorem 3.1.

Fig. 1. Plot of density fV in (10) for various values of the parameter J for
n = 10, p = 100. This is the density of the summary statistic used to detect
the change in covariance of the random matrix sequence X.

IV. QCD FOR LARGE SCALE RANDOM MATRICES

Here we apply the asymptotic results derived in Section III
to quickest change detection of the distribution of the sum-
mary statistic V . Assume that both the pre- and post-change
dispersion matrices, Σ0 and Σ1, are row sparse with degree
k = o(p), and map the data matrix sequence to the sequence of
summary statistics {Vδ(X(m))}m≥1. For simplicity we refer
to this sequence by {V (m)}. Let J0 and J1 be the value of
parameter J before and after change, respectively. The QCD
problem on the density fX, depicted in (1), is reduced to the
QCD problem on the density fV :

V (m) ∼ fV (·; J0), m < γ

∼ fV (·; J1), m ≥ γ.
(13)

We recall from Theorem 3.1 that if the dispersion matrix
Σ0 is diagonal then J0 = 1. Thus, if the pre-change dispersion
matrix is diagonal, then the QCD problem reduces to the para-
metric QCD problem with unknown post-change parameter J :

V (m) ∼ fV (·; 1), m < γ

∼ fV (·; J), J 6= 1, m ≥ γ.
(14)

If the dispersion matrix Σ0 is only block sparse with degree
k � p, by assertion 2 of Theorem 3.1, we can use the
approximation J0 ≈ 1.

Consider the following QCD test, defined by the stopping
time τG:

τG = inf
m≥1

{
max

1≤`≤m
sup

J:|J−1|≥ε

m∑
i=`

log
fV (V (i); J)

fV (V (i); 1)
> A

}
,

(15)

where A and ε > 0 are user-defined parameters. The parameter
A is a threshold used to control the false alarm rate. The
parameter ε represents the minimum magnitude of change,
away from J = 1, that the user wishes to detect.

The stopping rule τG was shown to be asymptotically
optimal in [4] for a related QCD problem when 1) the marginal
density fV (v; ·) of the observation sequence {V (m)} is of
known form that is a member of a one-parameter exponential
family and 2) when the parameter J0 of the pre-change
density is known. Both of these properties are satisfied for
the summary statistic V = V (X) for the QCD model in (14)
defined above, since J0 = 1. Due to the results in [17], the
stopping rule τG is asymptotically optimal for the problem in
(2) as well.

The following theorem establishes strong asymptotic opti-
mality of this test.

Theorem 4.1 ( [4], [17]): Fix any ε > 0.
1) For the stopping rule τG, the supremum in (2) is achieved

at γ = 1, i.e.,

sup
γ≥1

Eγ [τG − γ|τG ≥ γ] = E1[τG − 1].

2) Setting A = log β ensures that as β →∞,

E∞[τG] ≥ β(1 + o(1)),

and for each possible true post-change parameter J , with
|J − 1| ≥ ε,

E1[τG] =
log β

I(J)
(1 + o(1))

= inf
τ :E∞[τ ]≥β

sup
γ≥1

Eγ [τ − γ|τ ≥ γ](1 + o(1)),

(16)

where I(J) is the Kullback-Leibler divergence between
the densities fV (·; J) and fV (·; 1).

Theorem 4.1 implies that the stopping rule τG is uniformly
asymptotically optimal for each post-change parameter J , as
long as |J − 1| ≥ ε. For convenience of implementation one
can also use the window limited variation of τG as suggested
in [17].

V. NUMERICAL RESULTS

Here we apply the stopping rule τG in (15) to the problem
of detecting a change in the distribution when the {X(m)}
are Gaussian distributed random matrices. In this case the
dispersion Σ is the covariance matrix of the rows of X.
The pre-change covariance is the p × p diagonal matrix
Σ0 = diag(σ2

i ), where σ2
i > 0 are arbitrary component-wise

variances. The post-change covariance matrix Σ1 is obtained
by replacing the k × k top left block of the identify matrix



Ip by a sample from the Wishart distribution. We set n = 10,
p = 100, and k = 5.

To implement τG we have chosen ε = 1.5, and we use the
the maximum likelihood estimator which, as a function of m
samples (V (1), · · · , V (m)) from fV (·, J), is given by

Ĵ(V (1), · · · , V (m)) =
1

C
2

1
m

∑m
i=1 T (V (i))

. (17)

Specifically,

arg max
J:J≥2.5

log

m∑
i=`

fV (V (i); J)

fV (V (i); 1)

= max{2.5, Ĵ(V (`), · · · , V (m))}.
(18)

In Fig. 2 we plot the delay (E1[τ ]) vs the log of mean time to
false alarm (log E∞[τ ]) for various values of the post-change
parameter J . The values in the figure are obtained by choosing
different values of the threshold A and estimating the delay
by choosing the change point γ = 1 and simulating the test
for 500 sample paths. The mean time to false alarm values
are estimated by simulating the test for 1500 sample paths.
The parameter J for the post-change distribution is estimated
using the maximum likelihood estimator (17). As predicted by

Fig. 2. The empirical mean time to detect vs mean time to false alarm (in
log scale). The mean time to detect decreases as the parameter J increases.

the theory, the delay vs log of false alarm trade-off curve is
approximately linear. For larger values of J , the Kullback-
Leibler (K-L) divergence between fV (·, J) and fV (·, 1) is
larger, resulting in smaller delays. For the chosen values of
the post-change parameters J = 1.73, 2.9, 9.45 and 16.54,
the corresponding K-L divergence values I(J) are 0.127, 0.41,
1.35 and 1.86, respectively.

In Fig. 3 we compare the delay vs false alarm trade-off
curve for the post-change parameter J = 2.9 plotted in Fig. 2,
with the values predicted by the theory: log E∞[τ ]

I(J) . We see from
Fig. 3 that the predictions are quite accurate. We have obtained
similar results when the test was simulated for different block
sizes k. Thus, the change can be efficiently detected using our
proposed methodology.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a novel summary statistic based on
correlation mining and hub discovery for performing non-
parametric quickest change detection (QCD) on a sequence

Fig. 3. Comparison of the delay vs false alarm trade-off curve for J = 2.9

from Fig.2 with the values predicted by the theory: log E∞[τ ]
I(J)

=
log E∞[τ ]

0.41
.

of large scale random matrices. The proposed QCD algorithm
is strongly optimal in the sense of Lorden [4] and Pollak [8]
among all detection algorithms that use our summary statistic.
Future work will include extensions to local summary statistics
and experiments with QCD in real applications that yield
sequences of large scale random matrix measurements.
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