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Abstract—The polarization process of polar codes over a
ternary alphabet is studied. Recently it has been shown thatthe
scaling of the blocklength of polar codes with prime alphabet size
scales polynomially with respect to the inverse of the gap between
code rate and channel capacity. However, except for the binary
case, the degree of the polynomial in the bound is extremely large.
In this work, it is shown that a much lower degree polynomial
can be computed numerically for the ternary case. Similar results
are conjectured for the general case of prime alphabet size.
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I. I NTRODUCTION

Polar codes for transmission over binary discrete memo-
ryless channels (DMCs) were introduced by Arikan [1], and
were further analyzed in [2]. These results were extended to
q-ary polarization for an arbitrary primeq in [3]–[5].

For the binary case it was shown that the blocklength
required to transmit reliably scales polynomially with respect
to the inverse of the gap between code rate and channel
capacity [6]–[8]. This result was recently extended toq-ary
channels for an arbitrary primeq [9] but in the new bound,
the degree of this polynomial is extremely large.

In this paper we obtain numerically a much better bound
for q = 3. For that purpose we obtain numerically a lower
bound on the size of a basic polarization step which is higher
than the one for the binary case. We conjecture similar results
for any prime value of the alphabet size,q.

II. PRELIMINARIES

A. General definitions and results

We follow the notations of [5, Lemma 5]. For theq-ary
channelW (y | x), we defineW (y) , (1/q)

∑q−1
x=0W (y | x)

and the vectorv(y) , [v0(y), v1(y), . . . , vq−1(y)]
T where

∀x ∈ {0, 1, . . . , q − 1} : vx(y) ,
W (y | x)
qW (y)

. (1)

Note that
∑q−1

x=0 vx(y) = 1 and the symmetric capacity is

I(W ) =
∑

y

W (y) {1−H [v(y)]} (2)

where

H [v(y)] , −
q−1
∑

x=0

vx(y) logq vx(y) . (3)

We can rewrite (2) asI(W ) =
∑

G Ŵ (G)G, where

Ŵ (G) ,
∑

y:H[v(y)]=1−G

W (y) (4)

A basic polarization transformation of a channelW forms two
channels,W− = W � W andW+ = W ⊛ W . Recall that
given two channels,Wa andWb, Wa�b

∆

=Wa �Wb is defined
by

Wa�b (y1, y2 | u) ∆

=
1

q

q−1
∑

u′=0

Wb (y2 | u′)Wa (y1 | u+ u′)

Hence Wa�b (y1, y2) = Wa (y1)Wb (y2) and [5, Proof of
Lemma 6]

va�b,u (y1, y2) =

q−1
∑

u′=0

vb,u′ (y2) va,u+u′ (y1)

which can be rewritten as

va�b (y1, y2) = vb (y2) ⋆ va (y1) (5)

where ⋆ denotes circular cross-correlation with periodq.
Defining

g (G1, G2) , 1− min
H[va(y1)]=1−G1

H[vb(y2)]=1−G2

H [vb (y2) ⋆ va (y1)] (6)

we obtain

I (Wa�b) =
∑

y1,y2

Wa�b (y1, y2) {1−H [va�b (y1, y2)]}

≤
∑

G1,G2

∑

y1:H[va(y1)]=1−G1

y2:H[vb(y2)]=1−G2

Wa (y1)Wb (y2) g (G1, G2)

=
∑

G1,G2

Ŵa (G1) Ŵb (G2) g (G1, G2)

where the first equality is an application of (2), the inequality
follows from (5), (6) andWa�b (y1, y2) = Wa (y1)Wb (y2),
and (4) yields the last equality. Ifg (G1, G2) is concave inG1

and separately, not necessarily jointly, inG2

I (Wa�b) ≤ g

[

∑

G1

Ŵa (G1)G1,
∑

G2

Ŵa (G2)G2

]

= g [I (Wa) , I (Wb)] (7)

and sinceW− = W � W , I (W−) ≤ g [I(W ), I(W )]. If
g (G1, G2) is not concave inG1 and inG2, we can replace it
with a concave upper-bound, and (7) will remain true.
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Note that by (5),va�b,u (y1, y2) = vb�a,−u (y2, y1), where
the subtraction is moduloq. Combining this with (6) yields
g (G1, G2) = g (G2, G1).

B. Proved results about the QSC channel

A q-ary symmetric channel (QSC)W (y | x) with error
probabilityp is defined by

W (y | x) =
{

1− p y = x
p/(q − 1) y 6= x .

Although the QSC channel does not maximize (6) for some
pair (G1, G2), we observed that forq = 3 it provides an
excellent approximation to the maximum, and we conjecture
that this holds true for any primeq.

Lemma 1. If Wa and Wb are QSC channels, thenWa�b

is a QSC channel as well. Furthermore,I (Wa�b) =
gQSC [I (Wa) , I (Wb)] for

gQSC (G1, G2) , 1− hq

[

h−1
q (1−G1) + h−1

q (1−G2)

− q

q − 1
h−1
q (1−G1)h

−1
q (1−G2)

]

(8)

with hq(p)
∆

= − (1 − p) logq(1 − p)− p logq

(

p
q−1

)

and h−1
q

is the inverse ofhq, that yields values in
[

0, q−1
q

]

.

The proof of this Lemma is a straightforward application
of (1) and (5).

Lemma 2. Using QSC channelsWa andWb yields an extreme
point in the Lagrangian related to(6) for G1, G2 > 0.

The proof of this Lemma is also straightforward.

III. A NALYSIS AND NUMERICAL RESULTS

Observe the similar to (6) problem

g̃ (G1, G2) , 1− min
H[va(y1)]≥1−G1

H[vb(y2)]≥1−G2

H [vb (y2) ⋆ va (y1)]

First, we prove the following.

Lemma 3. Define f (u) , minH(v)≥1−GH (u ⋆ v). Then,
f (u) is concave.

Proof: By definition,f (u0) , minH(v)≥1−GH (u0 ⋆ v)

andf (u1) , minH(v)≥1−GH (u1 ⋆ v). Then

f (αu0 + (1 − α)u1)

= min
H(v)≥1−G

H (αu0 ⋆ v + (1− α)u1 ⋆ v)

≥ min
H(v)≥1−G

[αH (u0 ⋆ v) + (1 − α)H (u1 ⋆ v)]

≥ α min
H(v)≥1−G

H (u0 ⋆ v) + (1− α) min
H(v)≥1−G

H (u1 ⋆ v)

= αf (u0) + (1 − α)f (u1)

where the first inequality follows from concavity ofH , and
the added degree of freedom to the minimization yields the
second inequality.

Since the constraints in this problem form a convex region,
and by Lemma 3 we minimize a concave function,f(u),
the result is obtained on the boundary of the convex region,
and g̃ = g. Note that Lemma 3 enables us to computeg
efficiently using known algorithms for concave minimization
over a convex region [10]. This algorithm generates linear
programs whose solutions minimize the convex envelope of the
original function over successively tighter polytopes enclosing
the feasible region. As the polytopes become more complex
and more tight, the generated solution becomes more precise.

We can now prove the following.

Lemma 4. g (G1, G2) has the following properties:

1) g (x1, y1) ≤ g (x2, y2) for x1 ≤ x2 and y1 ≤ y2.
2) g (1, G2) = G2

3) g (G1, G2) ≤ min (G1, G2).
4) limx→1

∂g(x,G2)
∂x

= 0

Proof: Since x1 ≤ x2 and y1 ≤ y2, the constraints
for g̃ (x1, y1) are tighter than the constraints for̃g (x2, y2).
Since it is a maximization problem (1 − min), the maxi-
mum for (x1, y1) would be smaller than the maximum for
(x2, y2), i.e. g̃ (x1, y1) ≤ g̃ (x2, y2). Since g̃ = g, statement
1 follows. Statement 2 follows since forG1 = 1, va (y1)
is a circular permutation of[1, 0, . . . , 0]T , so by (3) and
(5), H [va�b (y1, y2)] = H [vb (y2)] Now, g (G1, G2) ≤
g (G1, 1) = G1 and g (G1, G2) ≤ g (1, G2) = G2, which
yields statement 3. Since (6) is a maximization problem,
Lemma 2 yields thatg (x,G2) ≥ gQSC (x,G2), wheregQSC

is defined in (8). By parts 1) and 2),g(x,G2) ≤ g(1, G2) =
G2 = gQSC(1, G2). Also, straightforward calculations show
that limx→1

∂gQSC(x,G2)
∂x

= 0. Combining the above yields
statement 4.

Next, we calculateg (G1, G2) for G1, G2 ≈ 0 and
for G1, G2 ≈ 1. To simplify the notation, we will de-
note va (y1) = va = [va,0, va,1, . . . , va,q−1]

T , vb (y2) =

vb = [vb,0, vb,1, . . . , vb,q−1]
T and va�b (y1, y2) = vt =

[vt,0, vt,1, . . . , vt,q−1]
T .

Lemma 5. For sufficiently small values ofG1 and G2 and
q = 3, g (G1, G2) = ln 3 ·G1G2.

Proof: Consider (6). ForG2 sufficiently small,vb,i =
1/q + ǫi where ǫi are sufficiently small and

∑q−1
i=0 ǫi = 0.

Using Taylor’s approximation, andγ , q/(2 ln q), H [vb] =
1− γ

∑q−1
i=0 ǫ2i . We shall first solve the minimization problem

in (6) for a fixed va and G2 ≈ 0, so vt,i = 1/q +
∑q−1

k=0 ǫkva,i+k andH [vt] = 1− γ
∑q−1

i=0

(

∑q−1
k=0 ǫkva,i+k

)2

.

Hence, g (G1, G2) = γmax
∑q−1

i=0

(

∑q−1
k=0 ǫkva,i+k

)2

=

γmax ǫTAǫ s.t. ǫ
T
ǫ = G2/γ and

∑q−1
i=0 ǫi = 0. Here

ǫ = [ǫ0, . . . , ǫq−1]
T and A =

∑q−1
i=0 va,iv

T
a,i whereva,i is

a cyclic shift byi of va. Hence,

g (G1, G2) = G2 max ǫTAǫ s.t. ǫT ǫ = 1,

q−1
∑

i=0

ǫi = 0 . (9)



Note thatA is a circulant matrix, and forq = 3

ai,j =

{ ∑2
k=0 v

2
a,k i = j

∑2
k=0 va,kva,k+1 i 6= j

soA has only two eigenvalues:λ1 = 1 andλ2 =
∑2

k=0 v
2
a,k−

∑2
l=0 va,kva,k+1 < λ1. The eigenvector associated withλ1

is u1 = c[1, 1, 1]T so the linear constraint can be expressed
as ǫ

T
u1 = 0. Following [11, page 411, Th. 7], the solution

to (9) is G2λ2. The eigenvector associated withλ2 is ǫ =
c [1,−0.5,−0.5]

T , makingWb a QSC channel. Substituting it
into (9) yields

g (G1, G2) = G2

(

2
∑

i=0

v2a,i −
2
∑

i=0

va,iva,i+1

)

(10)

For G1 ≈ 0, va,i = 1/3 + δi,
∑2

i=0 δi = 0 and
∑2

i=0 v
2
a,i −

∑2
i=0 va,iva,i+1 =

∑2
i=0 δ

2
i −

∑2
i=0 δiδi+1.

Since
∑2

i=0 δi = 0,
∑2

i=0 δ
2
i = 2

(

δ21 + δ22 + δ1δ2
)

and
∑2

i=0 δiδi+1 = −
(

δ21 + δ22 + δ1δ2
)

. Therefore,
∑2

i=0 δ
2
i −

∑2
i=0 δiδi+1 = 1.5

∑2
i=0 δ

2
i = 3G1

2γ . Combining this with (10)
yields the stated result.

Lemma 6. For G1 andG2 sufficiently close to1, and q = 3,
g(G1, G2) = G1 +G2 − 1

Proof: Consider (6). ForG1 sufficiently close to1, we
can assume without loss of generality thatva,i = δi, i =
1, . . . , q − 1, where δi are small, andva,0 = 1 −∑q−1

i=1 δi.
Similarly, forG2 sufficiently close to1, we can assume without
loss of generality thatvb,i = ǫi, i = 1, . . . , q− 1, whereǫi are
small, andvb,0 = 1 −

∑q−1
i=1 ǫi. Now, 1 − G1 = H [va] =

−
∑q−1

i=1 δi logq δi and1 −G2 = H [vb] = −
∑q−1

i=1 ǫi logq ǫi.
For G1 andG2 sufficiently close to1, vt ≈ [1 − δ1 − δ2 −
ǫ1 − ǫ2, δ1 + ǫ2 + ǫ1δ2, δ2 + ǫ1 + ǫ2δ1]

T . Hence,H [vt] =
−(δ1+ǫ2+ǫ1δ2) log3(δ1+ǫ2+ǫ1δ2)−(δ2+ǫ1+ǫ2δ1) log3(δ2+
ǫ1+ ǫ2δ1). Now, our main observation is that fora, b, c small,
−(a+b+c) log(a+b+c) ≈ −a log a−b log b−c log c. Applying
this observation and−ǫδ log(ǫδ) << −ǫ log ǫ − δ log δ for
smallǫ andδ yieldsH [vt] ≈ 2−G1−G2 so thatg(G1, G2) ≈
G1 +G2 − 1.

Note that the same proof applies for a generalq.

We calculated the actual value ofg numerically. We
calculatedg (0.01n, 0.01m) for q = 3, n = 1, 2, . . . , 99 and
m = 1, 2, . . . , 99. In Figure 1 we plot the contour of this
function. This figure shows thatg (G1, G2) = g (G2, G1) as
noted above, and, as proved in Lemma 4,g (1, G2) = G2.

Plotting the numeric∂g(G1,G2)
∂G1

in Figure 2 shows that
g (G1, G2) is increasing inG1 (and by symmetry, inG2),
as proved in Lemma 4. Next, using the calculated points,
we estimate∂2g(x,G2)

∂x2 . This estimated second derivative is
shown in Figure 3, suggesting the following conjecture (since
the bottom line represents∂

2g(G1,G2)
∂G2

1

= 0, so below it
∂2g(G1,G2)

∂G2
1

> 0 and ∂2g(G1,G2)
∂G2

1

< 0 above that line):

Property 1. g (G1, G2) is concave inG1 (and by symmetry,
in G2), except for small values ofG1 andG2. In other words,
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Fig. 1. Numerically calculatedg (G1, G2) for q = 3
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Fig. 2. Numerically calculated∂g(G1,G2)
∂G1

for q = 3

for eachG2 ∈ (0, 1) there existsx∗ s.t. ∂2g(x,G2)
∂x2 is positive

for x < x∗ and negative forx > x∗.

Therefore, the convex hull ofg (G1, G2) for a givenG2 is

max
x∈[G1,1]

G1

x
g (x,G2) =

{

G1

G∗

1

g (G∗
1, G2) G1 ≤ G∗

1

g (G1, G2) G1 ≥ G∗
1

whereG∗
1 = argmaxx∈[0,1]

g(x,G2)
x

. FindingG∗
1 is equivalent

to solving ∂g(x,G2)
∂x

= g(x,G2)
x

s.t. ∂2g(x,G2)
∂x2 < 0, i.e. finding a

tangent tog (x,G2) atx s.t. ∂
2g(x,G2)
∂x2 < 0, that passes through

(0, 0).

Lemma 7. If Property 1 holds, the problemx · ∂g(x,G2)
∂x

=

g (x,G2) s.t. ∂2g(x,G2)
∂x2 < 0 has a single solution.

The proof of this Lemma follows from analysis ofx ·
∂g(x,G2)

∂x
− g (x,G2).

However, we want an upper bound ong (G1, G2) that
would be concave inG1 and G2. Similarly to the case of
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fixed G2,

g∗ (G1, G2) = max
x1∈[G1,1]
x2∈[G2,1]

G1G2

x1x2
g (x1, x2) (11)

Clearly, g∗ (G1, G2) ≥ g (G1, G2) and Figure 4 shows that
g∗ (G1, G2) is concave inG1 and inG2 (the lines at the bottom
of the figure stand for the area where∂

2g(G1,G2)
∂G2

1

= 0.

Proposition 1. There existsǫ∗l (x) s.t. I (W−) + ǫ∗l [I(W )] ≤
I(W ) ≤ I (W+)− ǫ∗l [I(W )].

Proof: Set ǫ∗l (x) = x − g∗(x, x), where g∗(x, x) was
defined in (11). Recalling thatI (W−) ≤ g∗ [I(W ), I(W )]
andI (W−) + I (W+) = 2I(W ) yields the stated result.

The minimal polarization step size isǫ∗l (x) rather than
ǫl(x) = x − g(x, x). However,ǫl(x) − ǫ∗l (x) is very small,
as seen in Figure 5, so we can useǫl(x), which is easier to
calculate. In Figure 6 we plotǫl(x) for different values of
q, and see that forq = 3, ǫl(x) is close, but not equal to
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Fig. 5. Numerically calculatedǫl(I(W ))− ǫ∗
l
(I(W )) for q = 3
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Fig. 6. The lower bound onI
(

W+
)

− I (W ), which is also a lower bound
on I (W )− I

(

W−

)

, for different values ofq, and for the QSC channel

ǫl,QSC(x) = x+hq

{

h−1
q (1− x)

[

2− q
q−1h

−1
q (1− x)

]}

−1

which is marked as “q = 3 QSC”. From Lemma 5,ǫl(x) ≈
x−ln 3·x2 for x → 0, so limx→0

∂ǫl(x)
∂x

= 1, as seen in Figure
6. Lemma 6 yieldsǫl(x) ≈ 1 − x for x → 1, as can be seen
in Figure 6. Note that forq = 2, we would obtain the same
ǫl(x) = ǫ∗l (x) = ǫl,QSC(x) as in [7].

Given some functionf0(x), defined over[0, 1] s.t.f0(x) >
0 for x ∈ (0, 1), andf0(0) = f0(1) = 0, we definefk(x) for
k = 1, 2, . . . recursively as follows,

fk(x) , sup
ǫl(x)≤ǫ≤ǫh(x)

fk−1(x+ ǫ) + fk−1(x− ǫ)

2

whereǫl(x) = x− g(x, x) andǫh(x) = min(x, 1− x).

Define Lk(x) = fk(x)
f0(x)

andLk = supz∈(0,1) Lk(z). With
the definition offk(x), k

√
Lk ≤ L1 still holds as in [8]. Simi-
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Fig. 7. A plot of 1
k
logLk(x) for k = 1 and k = 100, q = 3 and

f0(x) =
(

0.26x2 + 1
)

x0.8(1−x)0.6. The functionsLk(x) were calculated
numerically.

larly to [8, Equation (11)] we have, for an integer0 < k < n,

E [f0 (In)] ≤
(

L1

k
√
Lk

)k−1

·
(

k
√

Lk

)n

· f0 [I(W )] . (12)

Similarly to [8] we defineJn
∆

= min(In, 1 − In). Using
f0(z) =

(

0.26x2 + 1
)

x0.8(1 − x)0.6 similarly to [8, Lemma
3], we obtainP (Jn > δ) ≤ α1

2δ · 2−0.1817n. As can be seen
in Figure 7, numerical calculations yieldL1 = 2−0.161 and,
100
√
L100 = 2−0.1817. A plot of 1

k
log2 Lk as a function

of k for q = 3 and f0(z) =
(

0.26x2 + 1
)

x0.8(1 − x)0.6

shows a convex decreasing function, similar to [8, Fig. 3],
suggesting that it is reasonable to expect that for this particular
f0(z), using k = 100 is already a good choice for (12)
(i.e., we cannot improve much by using an higher value of
k). Similarly to [8, Lemma 4] we have the following. If
P [ω ∈ Ω : In(ω) 6∈ (δ, 1− δ) ∀n ≥ m0] ≥ 1 − ǫ for some
integerm0, 0 < ǫ < 1 andδ < 1/3. Then

P (ω ∈ Ω : In(ω) ≥ 1− δ ∀n ≥ m0) ≥ I(W )− ǫ

P (ω ∈ Ω : In(ω) ≤ δ ∀n ≥ m0) ≥ 1− I(W )− ǫ .

The proof is essentially the same as the proof of [8, Lemma
4], with In replacing 1 − Zn. Finally, we can obtain a
result similar to [8, Theorem 1]. We use essentially the same
proof but with the following modification. First we obtain a
result similar to [8, Equation (25)] using the same approach:
P (ω ∈ Ω : In(ω) ≥ 1− δ ∀n ≥ m0) ≥ I(W ) −

(

α1

2δ

)

·
2−ρm0

1−2−ρ . Then we combine it with [1, Equation (2)] to obtain,

P (ω ∈ Ω : Zn(ω) ≤ ζ ∀n ≥ m0) ≥ I(W ) −
(

α1

ζ2

)

· 2−ρm0

1−2−ρ

and proceed with the derivation in [8, Theorem 1]. Since
ρ = 0.1817, 1 + 1/ρ = 6.504, we claim the following result

Proposition 2. Suppose that we wish to use a polar code
with rateR and blocklengthN to transmit over a binary-input
channel,W , with block error probability at mostP 0

e . Then it
is sufficient to setN = β

(I(W )−R)6.504
(or larger) whereβ is

a constant that depends only onP 0
e .

IV. FUTURE RESEARCH

In this paper we showed numerically that for the case where
q = 3 we can obtain an improved lower bound onI(W ) −
I(W−) compared to the binary (q = 2 case). Consequently
we can predict a much better scaling law of the blocklength
with respect toI(W )−R compared to the results in [9]. It is
interesting to continue this study for other values of primeq.
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APPENDIX: SUPPLEMENTARY MATERIAL

A. Proof of Lemma 1

Assume thatWa and Wb are QSC channels with error
probabilities pa and pb, respectively. Then, for ally =
0, 1, . . . , q− 1, va (y) andva (y) are circular shifts of̃va and
ṽb, respectively, where

ṽa , [1− pa, pa/(q − 1), pa/(q − 1), . . . , pa/(q − 1)]
T

ṽb , [1− pb, pb/(q − 1), pb/(q − 1), . . . , pb/(q − 1)]
T

.

Since for the QSC case, allv(y) vectors are shifts of somẽv,
if W is a QSC channel,I(W ) = 1−H (ṽ). This means

I (Wa) = 1− hq (pa) (13)
I (Wb) = 1− hq (pb) . (14)

Using (5), we see thatva�b (y1, y2) are circular shifts
of ṽa�b , [1− pt, pt/(q − 1), pt/(q − 1), . . . , pt/(q − 1)]T ,
where

pt = pa + pb − qpapb/(q − 1) (15)

so Wa�b is a QSC channel with error probabilitypt, and
I (Wa�b) = 1 − hq (pt). Combined with (13),(14) and (15),
this means that for the QSC case, (7) becomes an equality if
g(·, ·) is defined as in (8).

B. Proof of Lemma 2

Assumeva (y1) = [va,0, va,1, . . . , va,q−1]
T andvb (y2) =

[vb,0, vb,1, . . . , vb,q−1]
T . Using (5) yields va�b (y1, y2) =

[vt,0, vt,1, . . . , vt,q−1]
T where

vt,i =

q−1
∑

j=0

va,jvb,j−i for i = 0, 1, . . . , q − 1. (16)

The Lagrangian related to solving the minimization in (6) is

L = H [va�b (y1, y2)]− λ1 {H [va (y1)]− 1 +G1}

− λ2 {H [vb (y2)]− 1 +G2} − λ3

(

q−1
∑

i=0

va,i − 1

)

− λ4

(

q−1
∑

i=0

vb,i − 1

)

= −
q−1
∑

i=0

vt,i logq vt,i + λ1

[

1 +

q−1
∑

i=0

va,i logq va,i −G1

]

+ λ2

[

1 +

q−1
∑

i=0

vb,i logq vb,i −G2

]

− λ3

[

q−1
∑

i=0

va,i − 1

]

− λ4

[

q−1
∑

i=0

vb,i − 1

]

(17)

and we want to achieve∂L/∂va,i = ∂L/∂vb,i = 0 for i =
0, 1, . . . , q − 1. By (16), ∂vt,i/ ∂va,j = vb,j−i and combining
it with (17) and

∑q−1
i=0 vb,i = 1 yields

∂L

∂va,j
= − 1

ln q
−

q−1
∑

i=0

vb,j−i logq vt,i + λ1

(

logq va,j +
1

ln q

)

− λ3 = 0 ∀j ∈ {0, 1, . . . , q − 1} . (18)

If Wa and Wb are QSC channels,va,i = pa/(q − 1) and
vb,i = pb/(q − 1) for i 6= 0, va,0 = 1− pa andvb,0 = 1− pb.
By (16), vt,i = pt/(q − 1) for i 6= 0 andvt,0 = 1− pt, where
pt is defined in (15). Forj 6= 0, (18) yields

− 1

ln q
− pb

q − 1
logq [1− pt]−

(

1− pb
q − 1

)

logq
pt

q − 1

+ λ1

(

logq
pa

q − 1
+

1

ln q

)

− λ3 = 0

and forj = 0, (18) yields

− 1

ln q
− (1− pb) logq (1− pt)− pb logq

pt
q − 1

+ λ1

[

logq (1− pa) +
1

ln q

]

− λ3 = 0 .

Now, if pa 6= q−1
q

, i.e. G1 > 0, we have two independent
equations, so we have a single possible value forλ1 andλ3.
Combining these equations yields

λ1 =

(

1− qpb
q − 1

)

· logq
pt

(q − 1) (1− pt)

/

logq
pa

(q − 1) (1− pa)

λ3 =

pb

q−1 logq (1− pt) +
(

1− pb

q−1

)

logq
pt

q−1

logq
pa

q−1 − logq (1− pa)

· logq (1− pa)

−
logq

pa

q−1

[

(1− pb) logq (1− pt) + pb logq
pt

q−1

]

logq
pa

q−1 − logq (1− pa)

+
λ1 − 1

ln q
.

Similarly, by (16),∂vt,i/ ∂vb,j = va,j+i and combining it with
(17) and

∑q−1
i=0 va,i = 1 yields

∂L

∂vb,j
= − 1

ln q
−

q−1
∑

i=0

va,j+i logq vt,i + λ2

(

logq vb,j +
1

q

)

− λ4 = 0 ∀j ∈ {0, 1, . . . , q − 1} . (19)

If Wa andWb are QSC channels forj 6= 0, (19) yields

− 1

ln q
− pa

q − 1
logq (1− pt)−

(

1− pa
q − 1

)

logq
pt

q − 1

+ λ2

(

logq
pb

q − 1
+

1

ln q

)

− λ4 = 0

and forj = 0, (19) yields

− 1

ln q
− [1− pa] logq [1− pt]− pa logq

pt
q − 1

+ λ2

[

logq (1− pb) +
1

ln q

]

− λ4 = 0 .

Now, if pb 6= q−1
q

, i.e. G2 > 0, we have two independent
equations, so we have a single possible value forλ2 andλ4.



Combining these equations yields

λ2 =

(

1− qpa
q − 1

)

· logq
pt

(q − 1) (1− pt)

/

logq
pb

(q − 1) (1− pb)

λ4 =

pa

q−1 logq (1− pt) +
(

1− pa

q−1

)

logq
pt

q−1

logq
pb

q−1 − logq (1− pb)

· logq (1− pb)

−
logq

pb

q−1

{

[1− pa] logq [1− pt] + pa logq
pt

q−1

}

logq
pb

q−1 − logq [1− pb]

+
λ2 − 1

ln q
.

Since we have foundλ1, . . . , λ4 that solve (18) and (19) for
the case ofWa andWb being QSC channels, we proved that
the QSC case yields a critical point in the Lagrangian related
to (6) for any value ofq.

C. Properties ofgQSC used in the proof of Lemma 4

By (8),

gQSC (1, G2) = 1− hq

[

h−1
q (0) + h−1

q (1−G2)

− q

q − 1
h−1
q (0)h−1

q (1−G2)

]

= 1− hq

[

h−1
q (1−G2)

]

= G2

Straightforward calculations show that

∂gQSC (G1, G2)

∂G1
=

logq
[

(q − 1)
(

1
z
− 1
)]

[

1− q
q−1v

]

logq

[

(q − 1)
(

1
y
− 1
)]

(20)
where y = h−1

q (1−G1), v = h−1
q (1−G2) and z =

y (1− v)+v
(

1− y
q−1

)

. These functions are plotted in Figure

8. By (20), limx→1
∂gQSC(x,G2)

∂x
= 0 (since in this casey = 0

andz = v).

D. A proof that(x + y) ln(x + y) ≈ x lnx + y ln y for small
positivex, y

We are going to prove that

1 ≤ x lnx+ y ln y

(x+ y) ln(x+ y)
≤ 1− ln 2

ln(x+ y)

so

lim
x,y→0

x lnx+ y ln y

(x+ y) ln(x+ y)
= 1 .

First, since−x lnx is concave,

−x lnx− y ln y

2
≤ −

(

x+ y

2

)

ln

(

x+ y

2

)

= −
(

x+ y

2

)

ln(x+ y) +

(

x+ y

2

)

ln 2
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Fig. 8.
∂gQSC(G1,G2)

∂G1
for q = 3

so, dividing both sides by−0.5(x+ y) ln(x + y) yields

x lnx+ y ln y

(x+ y) ln(x+ y)
≤ 1− ln 2

ln(x+ y)
.

For the other direction we must prove that

−x lnx− y ln y ≥ −(x+ y) ln(x+ y) .

It is equivalent to

x [ln(x+ y)− lnx] ≥ y [ln y − ln(x+ y)]

Since ln is an increasing function, the left hand side of the
inequality above is positive, and the right hand side is negative,
so it is a true statement.

Note that forq variables (instead of2) the first half of the
proof is similar, usingq instead of2, and the second half is
modified usingq − 1 induction steps, one for each sum.

E. Proof of Lemma 7

Define f(x) , x · ∂g(x,G2)
∂x

− g (x,G2). We wish to
prove thatf(x) = 0 has exactly one solution that satisfies
∂2g(x,G2)

∂x2 < 0. First, f ′(x) = x · ∂2g(x,G2)
∂x2 . Since there exists

x∗ s.t. ∂
2g(x,G2)
∂x2 is positive forx < x∗ and negative forx > x∗

(See Property 1),f(x) is increasing forx < x∗ and decreasing
for x > x∗. Combining this withf(0) = 0 yields thatf(x) > 0

for 0 < x ≤ x∗. Lemma 4 shows thatlimx→1
∂g(x,G2)

∂x
= 0

andg (1, G2) = G2, so limx→1 f(x) = −G2. Sincef (x∗) >
0, limx→1 f(x) < 0, andf(x) is decreasing forx∗ ≤ x ≤ 1,
f(x) = 0 has exactly one solution forx∗ < x ≤ 1. The
only other solution tof(x) = 0 is x = 0, and in this point
∂2g(x,G2)

∂x2 > 0.
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