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Abstract—In this paper, we provide an efficient way to

predict iterative belief propagation (BP) decoding thresholds

of randomly punctured low-density parity-check (LDPC) code

ensembles on the binary-input additive white Gaussian noise

channel (AWGNC), given only the BP threshold of the mother

code ensemble on the binary erasure channel (BEC) and the

code design rate. We show that the predictions are accurate by

comparing them with values calculated by discretized density

evolution for a variety of puncturing fractions. We find that

the strength and suitability of an LDPC code ensemble for

random puncturing over the AWGNC with respect to iterative

decoding threshold is completely determined by a single constant

✓, and this behavior is demonstrated using both LDPC block

code and spatially coupled LDPC code ensembles. Finally, we

present simulation results that confirm the excellent decoding

performance promised by the asymptotic results.

I. INTRODUCTION

It is often desirable in applications that experience changing
channel conditions to be able to employ a variety of code
rates. One method to achieve this is to puncture a low rate
mother code. In this scheme, the transmitter punctures coded
symbols, and, as a result of having fewer transmitted code
symbols, the code rate is increased. It is assumed that the
receiver knows the positions of the punctured symbols, so that
both the punctured and transmitted symbols can be estimated
during decoding. Coding schemes that use this technique are
known as rate-compatible punctured codes [1]. Since the
decoder for the mother code is used to decode the punctured
codes, a variety of code rates can be achieved using the
same decoding architecture by puncturing different numbers
of symbols. Punctured low-density parity-check (LDPC) codes
have been extensively studied in the literature (see, e.g., [2],
[3], [4], [5]).

It was shown in [6] that, over the binary erasure channel
(BEC), transmission of a randomly punctured code ensemble
can be modeled as two cascaded BECs or, equivalently, a
single BEC with a modified erasure rate. Consequently, it was
shown that, with respect to the iterative belief propagation
(BP) decoding threshold, the strength and suitability of an
LDPC code ensemble for random puncturing over the BEC
is completely determined by a single constant ✓ � 1 that
depends only on the rate and the BP threshold of the mother
code ensemble. If ✓ = 1, the punctured ensembles are capacity
achieving for all higher rates, and if ✓ is close to 1, the
punctured ensemble thresholds are close to capacity for all
higher rates up to 1/✓.

In this paper, we extend the results of [6] to the binary-
input additive white Gaussian noise channel (AWGNC) and

show that analogous results can be obtained. In particular,
we develop a relationship between the BP thresholds on
the two channels and provide an efficient way to predict
the thresholds of punctured LDPC code ensembles on the
AWGNC given only the BP threshold of the mother code
ensemble on the BEC and the code design rate. The predictions
are shown to be accurate by comparing them with values
calculated by discretized density evolution for a variety of
code ensembles and puncturing fractions. Both LDPC block
code (LDPC-BC) and spatially coupled LDPC (SC-LDPC)
code ensembles are used to demonstrate the behavior. Finally,
computer simulations are presented that confirm the robust
decoding performance promised by the asymptotic results.

II. RANDOMLY PUNCTURED LDPC CODES

In this section, we begin by describing protograph based
LDPC-BCs and SC-LDPC codes. We continue by describing
the process of randomly puncturing LDPC codes and provide
a brief summary of previous results obtained for the BEC.

A. Protograph-based LDPC-BCs

A protograph [7] with design rate R = 1�n
c

/n
v

is a small
bipartite graph that connects a set of n

v

variable nodes to a
set of n

c

check nodes by a set of edges. The protograph can
be represented by a parity-check or base biadjacency matrix
B, where B

x,y

is taken to be the number of edges connecting
variable node v

y

to check node c
x

. The parity-check matrix H
of a protograph-based LDPC-BC can be created by replacing
each non-zero entry in B by a sum of B

x,y

non-overlapping
permutation matrices of size M ⇥ M and each zero entry
by the M ⇥ M all-zero matrix. It is an important feature of
this construction that each derived code inherits the degree
distribution and graph neighborhood structure of the proto-
graph. The ensemble of protograph-based LDPC-BCs with
block length n = Mn

v

is defined by the set of matrices H
that can be derived from a given protograph using all possible
combinations of M ⇥ M permutation matrices. We denote
the (J,K)-regular LDPC-BC ensemble defined by the all-ones
base matrix B of size J ⇥K as B

J,K

.

B. Protograph-based SC-LDPC Codes

SC-LDPC codes are constructed by coupling together a
series of L disjoint, or uncoupled, Tanner graphs of an LDPC-
BC into a single coupled chain. SC-LDPC codes have been
shown to combine excellent iterative decoding thresholds
[8], [9] and good asymptotic minimum distance properties
[10]. Moreover, it has been proven analytically for general



Ensemble Component base matrices

C3,4(L) B0 =

"
1 1 0 0
0 1 1 0
0 0 1 1

#
,B1 =

"
0 0 1 1
1 0 0 1
1 1 0 0

#

C3,6(L) B0 = B1 = B2 = [ 1 1 ]
C3,6,B(L) B0 = [ 1 1 ] ,B1 = [ 2 2 ]

TABLE I: SC-LDPC code ensemble component base matrices.

memoryless binary-input symmetric-output (MBS) channels
that the BP decoding thresholds of a class of (J,K)-regular
SC-LDPC code ensembles achieve the maximum a posteriori
probability (MAP) decoding thresholds of the underlying
(J,K)-regular LDPC-BC ensembles, a phenomenon termed
threshold saturation [9].

Starting from a b
c

⇥ b
v

block base matrix B, an “edge-
spreading” construction [10] can be used to form the base
matrix of an SC-LDPC code ensemble with coupling length

L as

B[0,L�1] =

2

666666664

B0

B1 B0... B1
. . .

B
w

...
. . . B0

B
w

B1. . .
...

B
w

3

777777775

(L+w)bc⇥Lbv

, (1)

where B0+B1+ · · ·B
w

= B, w denotes the coupling width,
and the b

c

⇥ b
v

component base matrices B
i

, i = 0, 1, . . . , w,
represent the edge connections from the b

v

variable nodes at
time t to the b

c

check nodes at time t + i. An ensemble of
SC-LDPC codes can then be formed from B[0,L�1] using the
protograph construction method described above. The design
rate of the ensemble of SC-LDPC codes is

R
L

= 1� (L+ w)b
c

Lb
v

, (2)

where we note that R
L

is monotonically increasing and
approaches 1 � b

c

/b
v

as L ! 1. The ensembles and their
component base matrices that we use in this paper are given
in Table I.

C. Puncturing Linear Codes

A linear code is punctured by removing a set of p columns
from its generator matrix, which has the effect of reducing
the codeword length from n to n � p. After puncturing a
linear code with puncturing fraction ↵ = p/n, the resulting
transmission rate is

R(↵) =
R

1� ↵
, ↵ 2 [0, 1), (3)

where R(0) = R is the rate of the mother (unpunctured)
code. A code can be punctured randomly or according to a
particular pattern. It is assumed that the receiver knows the
positions of the punctured bits, and the decoder estimates both
the punctured and transmitted symbols during decoding.

D. BEC Thresholds of Punctured LDPC Code Ensembles

In [6], it was shown that the channel model for random
puncturing of an LDPC code on the BEC can be considered
as two cascaded BECs or, equivalently, a single BEC with
a modified erasure rate. Consequently, it was shown that the

BEC threshold ✏BP(↵) of a randomly punctured code ensemble
with puncturing fraction ↵ is

✏BP(↵) = 1� 1� ✏BP(0)

R
·R(↵). (4)

Remarkably, ✏BP(↵) is simply a function of the target rate
R(↵) � R, i.e., for a given puncturing fraction ↵, the function
✏BP(↵) depends only on the threshold and the rate of the
mother code ensemble. From (4), we define

✓ =
1� ✏BP(0)

R
� 1, (5)

where equality holds if and only if the threshold of the mother
code ensemble is equal to the Shannon limit which, in turn,
implies that the Shannon limit can be achieved for all rates
R(↵) � R.

The strength and suitability of an LDPC code ensemble
for random puncturing is characterized completely by ✓. For
example, the (3, 6)-regular ensemble B3,6 is better suited for
random puncturing than the (4, 8)-regular ensemble B4,8, since
the respective values of ✓ are 1.1411 and 1.2331, respectively.
Values of ✓ for a variety of LDPC and SC-LDPC code
ensembles can found in [6]. Finally, we note that the largest
possible rate obtainable by puncturing a particular ensemble
is determined by the smallest non-negative threshold ✏BP(↵),
which yields

Rmax = R(↵ = ✏BP(0)) =
1

✓
. (6)

It follows that the maximum puncturing fraction ↵ with non-
vanishing BP threshold is equal to the BEC threshold ✏BP(0) =
✏BP of the mother code ensemble.

III. THRESHOLDS OF PUNCTURED LDPC CODE
ENSEMBLES ON THE AWGNC

In this section, we investigate the BP thresholds of randomly
punctured LDPC code ensembles on the AWGNC. We begin
by calculating some numerical results for a variety of ensem-
bles and puncturing fractions. We then provide an efficient way
to accurately predict the BP thresholds of randomly punctured
LDPC code ensembles on the AWGNC, given only the BP
threshold of the mother code ensemble on the BEC. Finally,
we briefly discuss the implications of these results.

A. Numerical Results

In Fig. 1, we display calculated AWGNC BP thresholds of
the randomly punctured LDPC-BC ensembles Bpunc

3,6 (↵) and
SC-LDPC code ensembles Cpunc

3,6 (L,↵) for L = 10, 20, 100
and a variety of puncturing fractions ↵. The thresholds were
obtained using discretized density evolution for the AWGNC
and are shown in terms of noise standard deviation � (left) and
E

b

/N0 (right). We observe that random puncturing of LDPC-
BC and SC-LDPC code ensembles displays robust threshold
performance, in the sense that, as we increase the puncturing
fraction ↵, the thresholds do not significantly degrade and
roughly track the capacity curve. To be more precise, we
observe that, if the mother code ensemble has a threshold
close to capacity (e.g., the Cpunc

3,6 (100, 0) ensemble), then as
↵ is increased the gap to capacity increases slowly and the
calculated thresholds track the capacity curve closely. On the



σ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

R
at
e

0.4

0.5

0.6

0.7

0.8

0.9

1

B
punc
3,6 (α)

C
punc
3,6 (100,α)

C
punc
3,6 (20,α)

C
punc
3,6 (10,α)

Eb/N0

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Shannon
limit

Shannon
limit

Fig. 1: Numerically calculated AWGNC BP thresholds of several randomly punctured LDPC-BC and SC-LDPC code ensembles for a variety of puncturing
fractions. Thresholds are shown in terms of noise standard deviation � (left) and Eb/N0 (right).

other hand, if the mother code ensemble has a threshold further
from capacity (e.g., the Cpunc

3,6 (10, 0) ensemble), then the gap
to capacity increases faster with increasing ↵.

The analogous analytical result for the BEC follows directly
from (4), where it can be seen that the gap to capacity of
any punctured ensemble is determined by the constant ✓ from
(5), where the thresholds of the punctured ensembles lie on a
straight line for which the slope is determined by ✓ (see [6]
for further details). Finally, as ↵ increases, we find that the
maximum achievable rate, i.e., the maximum R(↵) where an
AWGNC BP threshold exists, is approximately equal to the
value computed for the BEC using (6).

B. Predicting Thresholds

Given the similarities between the threshold results for the
BEC and AWGNC, a natural question arises: is it possible to
predict the behavior of the thresholds of randomly punctured
code ensembles on the AWGNC in a similar way as for
the BEC? Recall that the capacity of a BEC with erasure
probability ✏ is CBEC(✏) = 1� ✏, so that (4) can be written as

✏BP(↵) = 1� ✓ ·R(↵) = C�1
BEC(✓ ·R(↵)) = C�1

BEC(f(R(↵))),

which converges to zero as f(R(↵)) = ✓ · R(↵) ! 1. The
thresholds shown in Fig. 1 suggest the existence of a similar
relationship for the AWGNC, i.e.,

�BP(↵) = C�1
AWGNC(f(R(↵))) (7)

for some function f(R(↵)), where CAWGNC(�) denotes the
capacity of the AWGNC and �BP(↵) is the BP threshold in
terms of the noise standard deviation �.1 Note that �Sh =
C�1

AWGNC(R(↵)) denotes the Shannon limit for a given rate
R(↵), which implies that the function f(R(↵)) characterizes
the gap between the BP threshold and the Shannon limit for
all achievable rates R(↵) � R.

1Note that CBEC(x) = C

�1
BEC(x), but CAWGNC(x) 6= C

�1
AWGNC(x).

In order to identify the shape of f(R(↵)), we consider the
AWGNC entropy of the BP thresholds, i.e., h(�BP(↵)) =
1 � CAWGNC(�BP(↵)).2 In Fig. 2, the thresholds (crosses,
triangles, circles, and squares) h(�BP(↵)) are plotted against
the rate R(↵), along with the capacity CAWGNC(�) = 1�h(�).
Interestingly, we find that, as for the BEC channel, a linear
relationship appears to exist between h(�BP(↵)) and R(↵).
To approximate the slope, one can obtain a ✓AWGNC similar to
✓BEC, but based on the AWGNC BP threshold h(�BP(0)) and
design rate R = R(0) of the mother code ensemble as

✓AWGNC =
1� h(�BP(0))

R
� 1. (8)

Numerically, we find that ✓AWGNC ⇡ ✓BEC for all of the code
ensembles considered; consequently, we use ✓BEC to obtain
predicted AWGNC thresholds in the remainder of the paper.
Using f(R(↵)) = ✓BEC ·R(↵), we obtain the expression

h(�BP(↵)) ⇡ 1� ✓BEC ·R(↵), (9)

where ✓BEC is calculated using (5). Predicted AWGNC thresh-
old values using (9) are included in Fig. 2 as solid lines. We
observe that, remarkably, the approximations are very good
even though the value is immediately obtained for any target
rate using only ✓BEC, which depends on the BEC threshold
and rate of the mother code ensemble.3 Finally, we note from
(9) that thresholds cease to exist at precisely the same Rmax
as calculated for the BEC using (6).

Assuming f(R(↵)) = ✓BEC·R(↵), we can predict thresholds
in terms of noise standard deviation as

�BP(↵) ⇡ C�1
AWGNC(✓BEC ·R(↵)). (10)

2For the BEC we have hBEC(✏) = 1� CBEC(✏) = ✏.
3We observe a slight difference in the calculated threshold when compared

to the prediction in some cases, particularly for small ↵, as can be seen in
Fig. 2. This difference could be a weakness in the prediction method and/or
simply a result of the numerical inaccuracy of performing discretized density
evolution on the AWGNC.
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Fig. 2: Numerically calculated AWGNC BP thresholds in terms of the entropy
h(�BP(↵)) of several randomly punctured LDPC-BC and SC-LDPC code
ensembles (crosses, triangles, circles, and squares) for a variety of puncturing
fractions. Also shown are the predicted thresholds (solid lines).
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Fig. 3: Numerically calculated AWGNC BP thresholds in terms of Eb/N0
of several randomly punctured LDPC-BC and SC-LDPC code ensembles
(crosses, triangles, circles, and squares) for a variety of puncturing fractions.
Also shown are the predicted thresholds (solid lines).

Fig. 3 displays some calculated AWGNC BP thresholds in
terms of E

b

/N0 of several randomly punctured LDPC-BC
and SC-LDPC code ensembles (crosses, triangles, circles, and
squares) for a variety of puncturing fractions along with the
predicted thresholds for rates up to Rmax = 1/✓BEC. Again, we
observe that the predictions are a good fit with the calculated
values obtained using discretized density evolution, and that
the mother code ensembles with thresholds closer to capacity
have curves that closely track the capacity curve.

C. Discussion

There are several important implications of the results
presented above.

• Equation (10) permits a quick and easy way to approx-
imate AWGNC thresholds for any LDPC code ensem-

ble, punctured or unpunctured, given only the BEC BP
threshold and design rate. For example, the (3, 6)-regular
ensemble B3,6 has ✓BEC = 1.1411 and a quick calculation
using (10) gives �BP = 0.881, which agrees exactly with
the known value [11]. This approximation implies that we
assume the AWGNC entropy evaluated at the threshold
is close to the entropy of the BEC in both the punctured
and unpunctured cases, i.e., h(�BP(↵)) ⇡ hBEC(✏BP(↵))
for all ↵ � 0. Future work will involve an investigation
of the accuracy of the prediction for general LDPC-BC
and SC-LDPC code ensembles.

• By extension, and using the analysis presented in [6]
for the BEC, thresholds can easily be obtained for any
randomly punctured LDPC code ensemble on the BEC
and AWGNC. We saw for both channel models that the
thresholds of randomly punctured code ensembles depend
solely on ✓BEC: a large value of ✓BEC implies that the
mother code ensemble has a threshold relatively far from
the Shannon limit and the gap to capacity grows quickly
with increasing ↵; on the other hand, for a value of ✓BEC
close to 1, the mother code ensemble has a threshold
close to the Shannon limit and the gap to capacity grows
slowly with increasing ↵.

• Ensembles with similar values of ✓BEC will perform
roughly as well for all achievable rates, even if their
design rates are different. For example, we calculate the
✓BEC values for the C3,4(100) and C3,6(100) ensembles
as 1.044 and 1.048, respectively. Consequently, their
thresholds, as observed in Fig. 3, are approximately equal
for all higher achievable rates. Note that this demonstrates
that if one punctures a lower rate ensemble with a larger
puncturing fraction than a higher rate ensemble in order
to achieve a desired rate, there is no penalty in threshold
as long as the values of ✓BEC are similar.

• If one can find a capacity approaching or capacity achiev-
ing code ensemble then it will have a ✓BEC value close
to, or equal to, 1 and it will be well suited to random
puncturing. Related statements regarding capacity achiev-
ing LDPC code ensembles on the BEC with puncturing
have been made before (see e.g., [4], [12]). We have
chosen to use SC-LDPC code ensembles in this paper to
demonstrate the effects of random puncturing since SC-
LDPC code ensembles possess a combination of good
✓BEC values and linear minimum distance growth (see
[6]). Without spatial coupling, one would have to design
an optimized (irregular) LDPC-BC ensemble to obtain a
good value of ✓BEC, or accept a poor value of ✓BEC with a
(J,K)-regular LDPC-BC ensemble. However, designing
optimized irregular mother LDPC-BC code ensembles to
obtain a good value of ✓BEC is likely to result in poor
minimum distance properties.

IV. FINITE LENGTH PERFORMANCE OF RANDOMLY
PUNCTURED LDPC CODE ENSEMBLES

The bit error rate (BER) performance of randomly punc-
tured SC-LDPC codes transmitted over the AWGNC was
also investigated via computer simulations. A mother code
with code length n = 50, 000 was drawn from the ensemble
C3,6,B(L = 50) with protograph lifting factor M = 500. This
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3,6,B(50,↵) with protograph lifting factor M =
500. Also shown for comparison are the predicted BP thresholds for the
punctured SC-LDPC code ensembles Cpunc

3,6,B(50,↵).

code has a rate of R50 = 0.49. The code rate was increased
by randomly puncturing the code with puncturing fractions
↵ = 0.01, 0.1, 0.26, 0.36, 0.44, and 0.5, yielding code rates
of R(0.01) = 0.495, R(0.1) = 0.544, R(0.26) = 0.662,
R(0.36) = 0.766, R(0.44) = 0.875, and R(0.5) = 0.98, re-
spectively. The error performance of these codes was obtained
using a sliding window decoder (WD) [8] with window size
W = 8 (corresponding to 2WM = 8000 bits) and performing
a maximum of I = 100 iterations in each window position.
The results for these codes are presented in Fig. 4 along
with the predicted thresholds obtained using (7), where we
calculated a WD threshold of ✏BP = 0.4777, and consequently
✓BEC = 1.0659.

We observe robust decoding performance from the punc-
tured SC-LDPC codes of varying rates.4 We note that it
appears that the gap between the simulated decoding per-
formance and the corresponding predicted threshold increases
slightly as the puncturing fraction ↵ increases. For example,
when ↵ is moderate, e.g., ↵ = [0, 0.36], each code displays a
gap from its respective predicted iterative decoding threshold
of approximately 0.8 to 1dB at a BER of 10�5, whereas for
↵ = 0.44 the gap increases to about 2dB. This should be
expected for a finite length protograph-based code with small
lifting factor M ; however, we expect these gaps to decrease
as M increases.

Since the capacity and threshold prediction curves are not
linear (see, e.g., Fig. 3), the closer we get to the maximum rate
Rmax, the more significant the gap to capacity, i.e., we observe
that the slope of the threshold curve flattens out (tracking
the capacity curve) for higher rate punctured ensembles. It
follows that, as the target rate increases past a certain point,
the thresholds significantly degrade and the corresponding
simulated performance moves further to the right. Moreover,

4Simulation results for randomly punctured Cpunc
3,6,B(50,↵) ensembles on

the BEC were obtained in [6], where similarly robust performance was
observed.

as the puncturing fraction becomes too large (in this case
R(↵) > Rmax = 1/✓BEC = 0.938), the threshold no longer ex-
ists and we do not observe the waterfall performance normally
associated with codes operating below their threshold. Recall
that ensembles with poor ✓BEC values are characterized by a
smaller maximum rate Rmax. For example, the B3,6 ensemble
can only be punctured up to Rmax = 0.876.

V. CONCLUDING REMARKS

In this paper, we have provided an efficient way to predict
BP thresholds of punctured LDPC code ensembles on the
binary-input AWGNC, given only the BP threshold of the
mother code ensemble on the BEC and the design rate. We
showed that the predictions were accurate by comparing them
with values calculated using discretized density evolution for a
variety of puncturing fractions. We found that, analogous to the
BEC, the strength and suitability of an LDPC code ensemble
for random puncturing over the AWGNC with respect to iter-
ative decoding threshold is completely determined by a single
constant ✓. The approach was demonstrated for both LDPC-
BC and SC-LDPC code ensembles and simulation results
were provided to confirm the excellent decoding performance
promised by the asymptotic results.
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