
ar
X

iv
:1

50
6.

04
81

2v
1 

 [c
s.

IT
]  

16
 J

un
 2

01
5

Empirical Coordination with Two-Sided State
Information and Correlated Source and State

Maël Le Treust

ETIS, UMR 8051 / ENSEA, Université Cergy-Pontoise, CNRS,
6, avenue du Ponceau,

95014 CERGY-PONTOISE CEDEX,
FRANCE

Email: mael.le-treust@ensea.fr

Abstract—The coordination of autonomous agents is a critical
issue for decentralized communication networks. Instead of trans-
mitting information, the agents interact in a coordinated manner
in order to optimize a general objective function. A target joint
probability distribution is achievable if there exists a code such
that the sequences of symbols are jointly typical. The empirical
coordination is strongly related to the joint source-channel coding
with two-sided state information and correlated source andstate.
This problem is also connected to state communication and is
open for non-causal encoder and decoder. We characterize the
optimal solutions for perfect channel, for lossless decoding, for
independent source and channel, for causal encoding and for
causal decoding.

Index Terms—Shannon Theory, State-dependent Channel,
Joint Source-Channel Coding, Empirical Coordination, Empiri-
cal Distribution of Symbols, Non-Causal Encoding and Decoding,
Causal Encoding, Causal Decoding.

I. I NTRODUCTION

The problem of the coordination of autonomous agents
is the cornerstone of decentralized communication networks.
Communication devices are considered as agents that interact
in a coordinated manner in order to achieve a common
objective, for example, the transmission of information. This
analysis is based on a two step approach [1], [2]. The first
step is the characterization of the set of achievable joint prob-
ability distributions over the symbols of source and channel.
The second step is the maximization or the minimization of
an objective function (source distortion or channel cost) by
considering the set of achievable joint probability distributions.

Empirical coordination has been investigated in [3], [4] with
a rate-distortion perspective. In the literature of game theory,
the agents coordinate their actions by implementing a coding
scheme that satisfies an information constraint [5]. Empirical
coordination was under investigation in [6] for perfect channel,
in [7] for causal encoding, in [8] with channel feedback, in
[9] for a multi-user network with an eavesdropper, in [10]
for polar codes, in [2] for causal decoding, in [11], [12] with
feedback from the source, and in [13] for lossless decoding
and correlated source and state.

The characterization of the set of achievable joint proba-
bility distributions is equivalent to the joint source-channel
coding with two-sided state information [14], [15] and corre-

lated source and state (Fig. 1). It is also related to the problem
of state communication [16]. In this paper, we investigate the
empirical coordination with non-causal encoding and decoding
and we characterize the optimal solutions for three particular
cases: perfect channel, lossless decoding and independent
source and channel. We also characterize the optimal solutions
for causal encoding and causal decoding with two-sided state
information.
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Fig. 1. Non-causal encodingf : Un × Sn → Xn and decodingg :
Yn × Zn → Vn functions for i.i.d. sourcePusz and channelTy|xs.

Channel model and definitions are presented in Sec. II. In
Sec. III, we provide achievability and converse results fornon-
causal encoding and decoding. In Sec. IV, we characterize
optimal solutions for perfect channel, for lossless decoding
and for independent source and channel. Causal encoding and
decoding are presented in Sec. V. Conclusion is in Sec. VI
and sketches of proof are provided in App. A, B, C, D, E.

II. SYSTEM MODEL

The problem under investigation is depicted in Fig. 1. Cap-
ital letterU denotes the random variable, lowercase letteru ∈
U denotes the realization andUn denotes then-time cartesian
product.Un, Sn, Zn, Xn, Y n, V n denote the sequences of
random variables of source symbolsun = (u1, . . . , un) ∈ Un,
of channel statessn ∈ Sn, of state informations at the decoder
zn ∈ Zn, of channel inputsxn ∈ Xn, of channel outputs
yn ∈ Yn and of outputs of the decodervn ∈ Vn. Sets
U , S, Z, X , Y, V are discrete.∆(X ) stands for the set of
probability distributionsP(X) over X . The total variation
distance between the probability distributionsQ and P is
denoted by||Q−P||tv = 1/2 ·

∑

x∈X |Q(x)−P(x)|. Notation
1(y|x) denotes the indicator function, that is equal to 1 if
y = x and 0 otherwise. Markov chain property is denoted
by Y −
− X −
− U and holds if for all (u, x, y) we have
P(y|x, u) = P(y|x). Information source and channel states

http://arxiv.org/abs/1506.04812v1


are correlated and i.i.d. distributed withPusz. Channel is
memoryless with transition probabilityTy|xs. Statistics ofPusz

andTy|xs are known by both encoderC and decoderD.

Definition II.1 Non-causal codec = (f, g) ∈ C(n) is defined
by: f : Un × Sn −→ Xn, (1)

g : Yn ×Zn −→ Vn. (2)

N(u|un) denotes the occurrence number of symbolu ∈ U in
the sequenceun. The empirical distributionQn ∈ ∆(U ×S×
Z × X × Y × V) of (un, sn, zn, xn, yn, vn) is defined by:

Q
n(u, s, z, x, y, v) =

N(u, s, z, x, y, v|un, sn, zn, xn, yn, vn)

n
,

∀(u, s, z, x, y, v) ∈ U × S × Z × X × Y × V. (3)

Fix a target proba. distributionQ ∈ ∆(U×S×Z×X×Y×V),
the error probability of the codec ∈ C(n) is defined by:

Pe(c) = Pc

(
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, (4)

whereQn ∈ ∆(U×S×Z×X×Y×V) is the random variable
of the empirical distribution induced by the codec ∈ C(n) and
the probability distributionsPusz, Ty|xs.

Definition II.2 Probability distributionQ ∈ ∆(U × S ×Z ×
X ×Y×V) is achievable if for allε > 0, there exists ān ∈ N

s.t. for all n ≥ n̄, there exists a codec ∈ C(n) that satisfies:

Pe(c) = Pc

(
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∣
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∣

∣

tv
≥ ε

)

≤ ε. (5)

If the error probabilityPe(c) is small, the empirical frequency
of symbols(u, s, z, x, y, v) ∈ U ×S×Z×X ×Y×V is close
to the target probability distributionQ(u, s, z, x, y, v), i.e. the
sequences(Un, Sn, Zn, Xn, Y n, V n) ∈ A⋆n

ε (Q) are jointly
typical, with large probability. In that case, the sequences of
symbols are coordinated empirically.

The performance of the coordination is evaluated by an
objective functionΦ : U × S × Z × X × Y × V 7→ R, as
stated in [2] and [13]. This approach is powerful and since the
expectationE[d(u, v)] over the set of achievable distributions,
provides directly the minimal distortion leveld(u, v). This is
valid for any function, as the channel costc(x) or the utility
Φ(u, s, z, x, y, v) of a decentralized network [5].

III. A CHIEVABILITY AND CONVERSERESULTS

We provide necessary and sufficient conditions for non-
causal encoding and decoding. This problem is open.

Theorem III.1 (Non-Causal Encoding and Decoding)
1) If the joint probability distributionQ(u, s, z, x, y, v) is

achievable, then it satisfies the marginal and Markov chains:
{

Q(u, s, z) = Pusz(u, s, z), Q(y|x, s) = T (y|x, s),

Y −
− (X,S)−
− (U,Z), Z −
− (U, S)−
− (X,Y ).
(6)

2) The joint probability distributionPusz(u, s, z)⊗Q(x|u, s)⊗
T (y|x, s)⊗Q(v|u, s, z, x, y) is achievable if:

max
Q∈Q

(

I(W1,W2;Y, Z)− I(W1,W2;U, S)

)

> 0, (7)

3) The joint probability distributionPusz(u, s, z)⊗Q(x|u, s)⊗
T (y|x, s)⊗Q(v|u, s, z, x, y) is not achievable if:

max
Q∈Q

(

I(W1;Y, Z|W2)− I(W2;U, S|W1)

)

< 0, (8)

Q is the set of distributionsQ ∈ ∆(U ×S ×Z ×W1×W2×
X × Y × V) with auxiliary random variables(W1,W2) s.t.:


























∑

(w1,w2)∈W1×W2
Q(u, s, z, w1, w2, x, y, v)

= Pusz(u, s, z)⊗Q(x|u, s)⊗ T (y|x, s)⊗Q(v|u, s, z, x, y),

Y −
− (X,S)−
− (U,Z,W1,W2),

Z −
− (U,S) −
− (X,Y,W1,W2),

V −
− (Y,Z,W1,W2)−
− (U, S,X).

The probability distributionQ ∈ Q decomposes as follows:

Pusz(u, s, z)⊗Q(x,w1, w2|u, s)⊗ T (y|x, s)⊗Q(v|y, z, w1, w2).

The supports of the auxiliary random variables(W1,W2)
are bounded bymax(|W1|, |W2|) ≤ (|B|+ 1) · (|B|+ 2) with
B = U × S × Z × X × Y × V .

Remark III.2 It is possible to send an additional message
m ∈ M with rateR corresponding to left-hand side of equa-
tion (7), while still satisfying the coordination requirement.
This remark also extends to the other results of this article.

Sketches of proof are available in App. A and B. Achiev-
ability result of Theorem III.1 is based on hybrid coding [17],
[18] and is stated in [7], with a unique auxiliary random
variableW = (W1,W2), without state informationsS and
Z. Empirical coordination is obtained by considering(U, S)
as state information at the encoder and(Y, Z) as a state
information at the decoder. This open problem is also related
to "state communication" [16] which is solved for Gaussian
channels [19], but remains open for non-causal encoding and
decoding. In the following, we connect the duality result of
[15] and the separation result of [14] to empirical coordination.

IV. OPTIMAL SOLUTIONS FORPARTICULAR CASES

In this section, we characterize the joint probability distri-
butions that are achievable for three particular cases.

A. Perfect Channel is defined byTy|xs = 1(y|x) as in Fig. 2
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Fig. 2. The perfect channel is defined byTy|xs = 1(y|x).

Theorem IV.1 (Perfect Channel)
1) If the joint probability distribution Q(u, s, z, x, v) is

achievable, then it satisfies:

Q(u, s, z) = Pusz(u, s, z), Z −
− (U, S)−
−X. (9)

2) The probability distributionPusz(u, s, z) ⊗ Q(x|u, s) ⊗
Q(v|u, s, z, x) is achievable if(10). The converse holds.

max
Q∈Qp

(

I(W2;Z|X) +H(X)− I(X,W2;U, S)

)

> 0, (10)



Qp is the set of distributionsQuszw2xv withW2 satisfying marg-
inals andZ−
−(U, S)−
−(X,W2) andV −
−(X,Z,W2)−
−(U, S).
Support satisfies|W2| ≤ |B|+ 1 andQ ∈ Qp decomposes:

Pusz(u, s, z)⊗Q(x|u, s)⊗Q(w2|u, s, x)⊗Q(v|x, z, w2).

Achievability comes from replacingY and W1 by X in
Theorem III.1 and converse is in App. C. This results extends
the coding theorem of Wyner-Ziv [20] with distortiond(u, v),
to the framework of coordination. The message of rateR
corresponds to the channel inputsXn of rate log2 |X | and
the optimal distortion levelD⋆ is obtained by taking the ex-
pectationE[d(u, v)], as in Corollary V.2. The main difference
is that the symbols(U, S, V ) are coordinated withX .

B. Lossless Decoding defined byQ(v|u, s, z, x, y) = 1(û|u)

The characterization for lossless decoding with correlated
source and state is in [13]. Achievability is also a particular
case of Theorem III.1 by replacing random variablesV
andW2 by U . Joint distributionPusz(u, s, z) ⊗ Q(x|u, s) ⊗
T (y|x, s)⊗1(û|u) is achievable if (11). The converse holds.

max
Q∈Ql

(

I(U,W1;Y, Z)− I(W1;S|U)−H(U)

)

> 0, (11)

Ql is the set of distributionsQuszw1xyû satisfying marginal
conditions and Markov chainsY −
− (X,S) −
− (U,Z,W1)
and Z −
− (U, S) −
− (X,Y,W1). This result extends the
coding theorem of Gel’fand-Pinker [21] to the framework of
coordination. The message is a sequence of source symbolsU
correlated with the states(S,Z) and channel inputsX . Duality
between equations (10) and (11) recalls the duality between
channel capacity and rate distortion, as mentioned in [15].

C. Independent source(U,Z, V ), channel(S,X, Y ), Fig. 3
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Fig. 3. The random variables of the source(U, Z, V ) are independent of
the random variables of the channel(S,X, Y ).

Theorem IV.2 (Independent Source and Channel)
1) If the product Q(u, z, v) ⊗ Q(s, x, y) of probability
distribution is achievable, then it satisfies:

Q(u, z) = Puz(u, z), Q(s) = Ps(s), Q(y|x, s) = T (y|x, s). (12)

2) Probability distributionPuz(u, z) ⊗ Q(v|u, z) ⊗ Ps(s) ⊗
Q(x|s)⊗T (y|x, s) is achievable if(13). The converse holds.

max
Q∈Qs

(

I(W1;Y ) + I(W2;Z) − I(W1;S)− I(W2;U)

)

> 0, (13)

Qs is the set of product distributionsQuzw2v ⊗ Qsxw1y with
auxiliary random variables(W1,W2) satisfying conditions:

Z −
−U −
−W2, V −
− (Z,W2)−
− U, Y −
− (X, S)−
−W1.

Supports of(W1,W2) are bounded by(|B| + 1) · (|B|+ 2).
The product distributionQ ∈ Qs decomposes as follows:

Puz(u, z)⊗Q(w2|u)⊗Q(v|z, w2)⊗ Ps(s) ⊗Q(x,w1|s)⊗ T (y|x, s).

As mentioned in [2], the independence between the prob-
ability distributions of the source and channel induces the
separation of the source coding and the channel coding. This
result is related to Theorem 1 in [14], with expected distor-
tion d(u, v) and channel costc(x) functions. By considering
(U,Z,W2, V ) independent of(S,X,W1, Y ) and introducing
three indexes(m, l, j) with rates(Rm,Rl,Rj) satisfying,

Rm + Rl ≥ I(W2;U), Rl ≤ I(W2;Z),

Rj ≥ I(W1;S), Rm + Rj ≤ I(W1;Y ),

the achievability of Theorem III.1 becomes a separated coding
scheme. The author would like to thank Pablo Piantanida,
Matthieu Bloch and Claudio Weidmann for useful discussions
about the independence of the auxiliary random variables
(W1,W2) in the converse proof of Theorem IV.2.

V. CAUSAL ENCODING AND DECODING

The encoding (resp. decoding) is causal if for alli ∈
{1, . . . , n}, we haveXi = fi(U

i, Si), (resp.Vi = gi(Y
i, Zi)).

We characterize of the set of achievable joint probability
distributions for causal encoding and for causal decoding.
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Fig. 4. Causal encoding functionfi : U i×Si → X , for all i ∈ {1, . . . , n}.

Theorem V.1 (Causal Encoding and Non-Causal Decoding)
1) If Q(u, s, z, x, y, v) is achievable, then it satisfies:
{

Q(u, s, z) = Pusz(u, s, z), Q(y|x, s) = T (y|x, s),

Y −
− (X,S)−
− (U,Z), Z −
− (U, S)−
− (X,Y ).
(14)

2) The distributionPusz(u, s, z) ⊗ Q(x|u, s) ⊗ T (y|x, s) ⊗
Q(v|u, s, z, x, y) is achievable if(15). The converse holds.

max
Q∈Qe

(

I(W1,W2;Y, Z)− I(W2;U, S|W1)

)

> 0, (15)

Qe is the set of joint distributionsQuszw1w2xyv with auxiliary
random variables(W1,W2) satisfying marginal cond. and:


















(U, S) independent ofW1, X −
− (U,S,W1)−
−W2,

Y −
− (X,S)−
− (U,Z,W1,W2),

Z −
− (U,S) −
− (X,Y,W1,W2),

V −
− (Y,Z,W1,W2)−
− (U, S,X).

Supports of(W1,W2) are bounded by(|B| + 1) · (|B|+ 2).
The probability distributionQ ∈ Qe decomposes as follows:

Pusz ⊗Qw1
⊗Qw2|usw1

⊗Qx|usw1
⊗ Ty|xs ⊗Qv|yzw1w2

.

Proofs are available in App. A and B. This result is a
particular case of Theorem 2 in [7], by considering(U, S) as
information source and(Y, Z) as channel output. Empirical
coordination is equivalent to joint source channel coding with
two-sided state information and correlated source and state.
Theorem V.1 also reduces to Theorem 3 in [16], by considering
(U, S) as channel state and(Y, Z) as channel output.



When considering strictly causal encoding instead of causal
encoding, the optimal solution is obtained by replacingW1 by
X in equation (15).

Corollary V.2 (Causal Encoding without Coordination)
Consider a distortion functiond : U ×V 7→ R. The distortion

levelD ≥ 0 is achievable if and only if:

max
Qw1

,Qw2|usw1
,Qx|usw1

,

Qv|yzw1w2
,E[d(U,V )]≤D

(

I(W1,W2;Y,Z) − I(W2;U, S|W1)

)

≥ 0,

Corollary V.2 is a direct consequence of Theorem V.1. The
distortion levelD ≥ 0 is achievable if and only if there exists
a joint distributionPusz ⊗Qw1

⊗Qw2|usw1
⊗Qx|usw1

⊗ Ty|xs ⊗
Qv|yzw1w2

that satisfies (16), such thatE[d(U, V )] ≤ D. Similar
analysis is mentioned in [2] for the proof of Theorem V.3.

Causal decoding and non-causal encoding is considered in
[2] without S and Z. Joint probability distributionPusz ⊗
Qx|us ⊗ Ty|xs ⊗Qv|uszxy is achievable if (16). Converse holds.

max
Qxw1w2|us

,

Qv|yzw2

(

I(W1;Y, Z|W2)− I(W1,W2;U, S)

)

> 0, (16)

Remark thatV depends on(Y, Z,W2) but not onW1. When
considering strictly causal decoding instead of causal decod-
ing, the optimal solution is obtained by replacingW2 by V in
equation (16). More details are provided in [2].

VI. CONCLUSION

The problem of empirical coordination is closely related
to the joint source-channel coding with two-sided state in-
formation with correlation between source and state. These
two problems are also related to state communication. We
provide achievability and converse results for the non-causal
case, that is open. We characterize the optimal solutions for
perfect channel, for lossless decoding, for independent source
and channel, for causal encoding and for causal decoding.

APPENDIX

The full versions of the proofs are stated in [22].

A. Sketch of Achievability of Theorem III.1

ConsiderQ(u, s, z, w1, w2, x, y, v) ∈ Q that achieves the
maximum in (7). There existsδ > 0 and rateR ≥ 0 such that:

R ≥ I(W1,W2;U, S) + δ, (17)

R ≤ I(W1,W2;Y, Z)− δ. (18)

• Random codebook.We generate|M| = 2nR pairs of
sequences(Wn

1 (m),Wn
2 (m)) with indexm ∈ M drawn

from the i.i.d. marginal probability distributionQ⊗n
w1w2

.
• Encoding function.Encoder finds the indexm ∈ M such

that (Un, Sn,Wn
1 (m),Wn

2 (m)) ∈ A⋆n
ε (Q) are jointly

typical. It sendsXn drawn fromQ⊗n
x|usw1w2

depending on
(Un, Sn,Wn

1 (m),Wn
2 (m)).

• Decoding function.Decoder finds the indexm ∈ M
such that (Y n, Zn,Wn

1 (m),Wn
2 (m)) ∈ A⋆n

ε (Q) are

jointly typical. Decoder returnsV n drawn fromQ⊗n
v|yzw1w2

depending on(Y n, Zn,Wn
1 (m),Wn

2 (m)).
The pair (W1,W2) can be replaced by a singleW . From
properties of typical sequences, packing and covering Lemmas
stated in [23] pp. 27, 46 and 208, equations (17), (18) imply
that the expected probability of error is bounded for alln ≥ n̄:

Ec

[

P

(

(U
n
, S

n
) /∈ A

⋆n
ε (Q)

)]

≤ ε, (19)

Ec

[

P

(

∀m ∈ M, (U
n
, S

n
,W

n
1 (m), W

n
2 (m)) /∈ A

⋆n
ε (Q)

)]

≤ ε, (20)

Ec

[

P

(

∃m
′
6= m, s.t. (Y n

, Z
n
,W

n
1 (m

′
), W

n
2 (m

′
)) ∈ A

⋆n
ε (Q)

)]

≤ ε. (21)

There exists a codec⋆ ∈ C(n) such that sequences are jointly
typical for distributionPusz⊗Qxw1w2|us⊗Ty|xs⊗Qv|yzw1w2

with
probability more than1− 3ε.

B. Sketch of Converse of Theorem III.1
Consider codec(n) ∈ C with small error probabilityPe(c).

0 ≤
n
∑

i=1

I(Un
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1;Yi, Zi|Y

i−1
, Z

i−1)

−

n
∑

i=1

I(Y
i−1

, Z
i−1

;Ui, Si|U
n
i+1, S

n
i+1, Y

n
i+1, Z

n
i+1) (22)

=

n
∑

i=1

I(W1,i;Yi, Zi|W2,i) −

n
∑

i=1

I(W2,i;Ui, Si|W1,i) (23)

≤ n · max
Q∈Q

(

I(W1; Y,Z|W2) − I(W2;U, S|W1)

)

. (24)

Eq. (22) is due to Csiszár Sum Identity and properties of MI.
Eq. (23) introduces auxiliary random variablesW1,i =
(Un

i+1, S
n
i+1, Y

n
i+1, Z

n
i+1) andW2,i = (Y i−1, Zi−1) satisfying:

Yi −
− (Xi, Si)−
− (Ui, Zi,W1,i,W2,i), (25)

Zi −
− (Ui, Si)−
− (Xi, Yi,W1,i,W2,i), (26)

Vi −
− (Yi, Zi,W1,i,W2,i)−
− (Ui, Si, Xi). (27)

This is due to memoryless channel, i.i.d. source and non-causal
decoding since(Y n, Zn) is included in(Yi, Zi,W1,i,W2,i).
Eq. (24) comes from taking the maximum over the setQ.

C. Sketch of Converse of Theorem IV.1
Consider codec(n) ∈ C with small error probabilityPe(c).

0 = H(Xn
, Z

n) − I(Xn
, Z

n;Un
, S

n) − H(Xn
, Z

n|Un
, S

n) (28)

≤
n
∑

i=1

H(Xi, Zi) −
n
∑

i=1

I(Xn
, Z

n;Ui, Si|U
n
i+1, S

n
i+1)

− H(Xn
, Z

n|Un
, S

n) (29)

=
n
∑

i=1

I(Xn
, Z

n
, U

n
i+1, S

n
i+1;Xi, Zi)

−

n
∑

i=1

I(X
n
, Z

n
, U

n
i+1, S

n
i+1;Ui, Si) − H(X

n
, Z

n
|U

n
, S

n
) (30)

≤

n
∑

i=1

I(Xn
, Z

−i
, U

n
i+1, S

n
i+1;Xi, Zi)

−
n
∑

i=1

I(Xn
, Z

−i
, U

n
i+1, S

n
i+1;Ui, Si) (31)

=

n
∑

i=1

I(Xi,W2,i ;Xi, Zi) − I(Xi,W2,i;Ui, Si) (32)

≤ n · max
Q∈Qp

(

I(X,W2;X,Z) − I(X,W2;U, S)

)

. (33)

Eq. (28), (29) are due to properties of mutual information.
Eq. (30) is due to the i.i.d. source(U, S).
Eq. (31) is due to the i.i.d. source(U, S, Z): H(Zn|Un, Sn) =



∑

H(Zi|Ui, Si) =
∑

H(Zi|X
n, Z−i, Un

i+1, S
n
i+1, Ui, Si).

Eq. (32) introduces auxiliary random variableW2,i =
(X−i, Z−i, Un

i+1, S
n
i+1) that satisfies Markov chains:Zi −
−

(Ui, Si)−
− (Xi,W2,i) andVi −
− (Xi, Zi,W2,i)−
− (Ui, Si).
This is due to i.i.d. source(U, S, Z) and non-causal decoding.
Eq. (33) comes from taking the maximum over the setQp.

D. Sketch of Achievability of Theorem V.1

ConsiderQ ∈ Qe that maximizes (15) and block-Markov
codec ∈ C(n) overB ∈ N blocs of lengthn ∈ N with:

R ≥ I(W2;U, S|W1) + δ, (34)

R ≤ I(W1;Y, Z) + I(W2;Y, Z|W1)− δ. (35)

• Random codebook.We generate|M| = 2nR sequences
Wn

1 (m) drawn fromQ⊗n
w1

with indexm ∈ M. For each
m ∈ M, we generate the same number|M| = 2nR of
sequencesWn

2 (m, m̂) with index m̂ ∈ M, drawn from
Q⊗n

w2|w1
depending onWn

1 (m).
• Encoding function.It recallsmb−1 and findsmb ∈ M s.t.

sequences(Un
b−1, S

n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)) ∈

A⋆n
ε (Q) are jointly typical in blockb − 1. It deduces

Wn
1 (mb) for block b and sendsXn

b drawn fromQ⊗n
x|usw1

depending on(Un
b , S

n
b ,W

n
1 (mb)).

• Decoding function.It recallsmb−1 and findsmb ∈ M
such that (Y n

b−1, Z
n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)) ∈

A⋆n
ε (Q) and (Y n

b , Zn
b ,W

n
1 (mb)) ∈ A⋆n

ε (Q) are jointly
typical. It returnsV n

b−1 drawn fromQ⊗n
v|yzw1w2

depending
on (Y n

b−1, Z
n
b−1,W

n
1 (mb−1),W

n
2 (mb−1,mb)).

(Un, Sn)
Wn

1

Wn
2

Xn

(Y n, Zn)
Ŵn

1

Ŵn
2

V n

b− 2 b− 1 b b+ 1

Equations (34), (35) imply for alln ≥ n̄ and for a large
number of blocksB ∈ N, the sequences are jointly typical
with large probability:

Ec

[

P

(

(U
n
, S

n
) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∀m ∈ M, (U
n
b−1 , S

n
b−1,W

n
1 (mb−1), W

n
2 (mb−1, m)) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∃m
′
6= m, s.t.

{

(Y
n
b , Z

n
b , W

n
1 (m

′
)) ∈ A

⋆n
ε (Q)

}

∩

{

(Y
n
b−1, Z

n
b−1, W

n
1 (mb−1), W

n
2 (mb−1,m

′
)) ∈ A

⋆n
ε (Q)

}

)]

≤ ε.

E. Sketch of Converse of Theorem V.1
Consider codec(n) ∈ C with small error probabilityPe(c).

0 ≤

n
∑

i=1

I(U
i−1

, S
i−1

, Y
n
i+1, Z

n
i+1;Yi, Zi)

−

n
∑

i=1

I(Y n
i+1Z

n
i+1;Ui, Si|U

i−1
, S

i−1) (36)

=
n
∑

i=1

I(W1,i,W2,i;Yi, Zi) −
n

∑

i=1

I(W2,i;Ui, Si|W1,i) (37)

≤ n · max
Q∈Qe

(

I(W1,W2;Y,Z) − I(W2;U, S|W1)

)

. (38)

Eq. (36) is due to Csiszár Sum Identity and properties of MI.
Eq. (37) introduces auxiliary random variablesW1,i =
(U i−1, Si−1) andW2,i = (Y n

i+1, Z
n
i+1) satisfying:

(Ui, Si) are independent ofW1,i, (39)

Xi −
− (Ui, Si,W1,i) −
−W2,i, (40)

Yi −
− (Xi, Si) −
− (Ui, Zi,W1,i,W2,i), (41)

Zi −
− (Ui, Si) −
− (Xi, Yi,W1,i,W2,i), (42)

Vi −
− (Yi, Zi,W1,i,W2,i) −
− (Ui, Si, Xi). (43)

Eq. (38) comes from taking the maximum over the setQe.
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