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Abstract—In multi-terminal networks, feedback increases the
capacity region and helps communication devices to coordinate.
In this article, we deepen the relationship between coordination
and feedback by considering a point-to-point scenario withan
information source and a noisy channel. Empirical coordination
is achievable if the encoder and the decoder can implement
sequences of symbols that are jointly typical for a target
probability distribution. We investigate the impact of feedback
when the encoder has strictly causal or causal observation of
the source symbols. For both cases, we characterize the optimal
information constraints and we show that feedback improves
coordination possibilities. Surprisingly, feedback alsoreduces
the number of auxiliary random variables and simplifies the
information constraints. For empirical coordination with strictly
causal encoding and feedback, the information constraint does
not involve auxiliary random variable anymore.

Index Terms—Shannon Theory, Feedback, Empirical Coordi-
nation, Joint Source-Channel Coding, Empirical Distribution of
Symbols, Strictly Causal and Causal Encoding.

I. I NTRODUCTION

Feedback does not increase the capacity of a memoryless
channel [1]. However, it has a significant impact when consid-
ering problems of empirical coordination. In this framework,
encoder and decoder are considered as autonomous agents
[2], that implement a coding scheme in order to coordinate
their sequences of actions,i.e. channel inputs and decoder
outputs, with a sequence of source symbols. The problem
of empirical coordination [3], [4], [5] consists in determining
the set of joint probability distributions, that are achievable
for empirical frequencies of symbols. Empirical coordination
provides a single-letter solution that simplifies the analysis
of optimization problems such as minimal source distortion,
minimal channel cost or maximal utility function of a decen-
tralized communication network [6]. For example, the optimal
distortion level is the minimum of the expected distortion
function, taken over the set of achievable joint probability
distributions.

In the framework of multi-terminal networks, feedback
increases the capacity region of the multiple-access channel
[7], [8] and of the broadcast channel [9], [10]. In the literature
of game theory, feedback is considered from a strategic point-
of-view. In [2], a player observes the past actions of another
player through a monitoring structure involving perfect or

imperfect feedback. In [11], the authors investigate a four-
player coordination game with imperfect feedback and provide
a subset of achievable joint probability distributions. Empirical
coordination is a first step toward a better understanding of
decentralized communication network. The set of achievable
joint distributions was characterized for strictly causaland
causal decoding in [6], with two-sided state information in[12]
and with feedback from the source in [13]. From a practical
perspective, coordination with polar codes was consideredin
[14]. Lossless decoding with correlated information source and
channel states is solved in [15]. Empirical coordination for
multi-terminal source coding is treated in [16] and in [17].

U i−1 Xi Y n V n

Y i−1
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Fig. 1. Strictly causal encoding function with feedbackfi : U i−1×Yi−1 →
X , for all i ∈ {1, . . . , n} and non-causal decoding functiong : Yn → Vn .

In this article, we consider the point-to-point scenario of
[18] with channel feedback, as represented by Fig. 1 and 2.
The encoder has perfect feedback from the channel and strictly
causal or causal observation of the symbols of source. In both
cases, we characterize the set of achievable joint probability
distributions over the symbols of source and channel. We
show that the information constraints are larger than the ones
stated in [18]. Surprisingly, feedback also reduces the number
of auxiliary random variables and simplifies the information
constraints. For empirical coordination with strictly causal
encoding and feedback, the information constraint does not
involve auxiliary random variable anymore. There is an anal-
ogy with strictly causal decoding [6], [13], since no auxiliary
random variable is needed when the decoder has feedback
from the source. Feedback allows to remove auxiliary random
variables of information constraints, for empirical coordination
problems.

System model and definitions are stated in Sec. II and
characterizations of achievable joint distributions are stated in
Sec. III. Comparison with previous works and an example are
stated in Sec. IV and V. Conclusions and sketches of proofs
are stated in Sec. VI and in Appendix A, B, C.
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II. SYSTEM MODEL

Figure 1 represents the problem under investigation. Ran-
dom variableU is denoted by capital letter, lowercase letter
u ∈ U designates the realization andUn corresponds to
the n-time cartesian product.Un, Xn, Y n, V n stands for
sequences of random variables of source symbolsun =
(u1, . . . , un) ∈ Un, inputs of the channelxn ∈ Xn, outputs
of the channelyn ∈ Yn and decoder’s outputvn ∈ Vn.
The setsU , X , Y, V are discrete. The set of probability
distributionsP(X) over X is denoted by∆(X ). Notation
||Q − P||tv = 1/2 ·

∑

x∈X |Q(x) − P(x)| stands for the
total variation distance between probability distributions Q
and P . Notation Y −
− X −
− U stands for the Markov
chain property corresponding toP(y|x, u) = P(y|x) for all
(u, x, y). Information source is i.i.d. distributed withPu and
the channel is memoryless with transition probabilityTy|x.
EncoderC and decoderD know the statisticsPu andTy|x of
the source and channel. The coding process is deterministic.

Definition II.1 A codec ∈ C(n) with strictly-causal encoder
and feedback is a tuple of functionsc = ({fi}

n
i=1, g) defined

by equations(1) and (2):

fi : U i−1 × Yi−1 −→ X , i = 1, . . . , n, (1)

g : Yn −→ Vn. (2)

The number of occurrence of symbolu ∈ U in sequenceun is
denoted byN(u|un). The empirical distributionQn ∈ ∆(U ×
X × Y × V) of sequences(un, xn, yn, vn) is defined by:

Qn(u, x, y, v) =
N(u, x, y, v|un, xn, yn, vn)

n
,

∀(u, x, y, v) ∈ U × X × Y × V . (3)

Fix a target probability distributionQ ∈ ∆(U ×X ×Y ×V),
the error probability of the codec ∈ C(n) is defined by:

Pe(c) = Pc

(
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, (4)

whereQn ∈ ∆(U ×X ×Y×V) is the random variable of the
empirical distribution induced by the probability distributions
Pu, Ty|x and the codec ∈ C(n).

Definition II.2 The probability distributionQ ∈ ∆(U ×X ×
Y ×V) is achievable if for allε > 0, there exists ān ∈ N s.t.
for all n ≥ n̄, there exists a codec ∈ C(n) that satisfies:

Pe(c) = Pc

(
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∣
Qn −Q

∣

∣
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∣

∣

tv
≥ ε

)

≤ ε. (5)

The error probability Pe(c) is small if the total vari-
ation distance between the empirical frequency of sym-
bols Qn(u, x, y, v) and the target probability distribution
Q(u, x, y, v) is small, with large probability. In that case,
the sequences of symbols(Un, Xn, Y n, V n) ∈ A⋆n

ε (Q) are
jointly typical, i.e. coordinated, for the target probability
distributionQ with large probability.

As mentioned in [6] and [15], the performance of the
coordination can be evaluated using an objective function

Φ : U × X × Y × V 7→ R. We denote byA⋆, the set of joint
probability distributionsQ ∈ A⋆ that are achievable. Based
on the expectationEQ∈A⋆

[

Φ(U,X, Y, V )
]

, it is possible to

derive the minimal channel costΦ(u, x, y, v) = c(x), the
minimal distortion levelΦ(u, x, y, v) = d(u, v) or the maximal
utility of a decentralized network [2], using a single-letter
characterization.

III. C HARACTERIZATION OF ACHIEVABLE DISTRIBUTIONS

This section presents the two main results of this article.
Theorem III.1 characterizes of the set of achievable joint prob-
ability distributions for strictly causal encoding with feedback,
represented in Fig. 1.

Theorem III.1 (Strictly causal encoding with feedback)
1) If the joint probability distribution Q(u, x, y, v) is

achievable, then it decomposes as follows:
{

Q(u) = Pu(u), Q(y|x) = T (y|x),

U independent ofX, Y −
−X −
− U.
(6)

2) Joint probability distributionPu(u) ⊗ Q(x) ⊗ T (y|x) ⊗
Q(v|u, x, y) is achievable if:

I(X ;Y )− I(U ;V |X,Y ) > 0, (7)

3) Joint probability distributionPu(u) ⊗ Q(x) ⊗ T (y|x) ⊗
Q(v|u, x, y) is not achievable if:

I(X ;Y )− I(U ;V |X,Y ) < 0, (8)

Sketch of proof of Theorem III.1 is stated in Appendix A.
Equation (7) comes from Theorem 3 in [18] by replacing
the auxiliary random variable by decoder’s outputV and the
observation of the encoder by the pair of information source
and channel feedback(U, Y ).

A causal encoding function is defined byfi : U i×Yi−1 →
X , ∀i ∈ {1, . . . , n}. Theorem III.2 characterizes of the set of
achievable joint probability distributions for causal encoding
with feedback, represented in Fig. 2.

U i Xi Y n V n

Y i−1
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Fig. 2. Causal encoding function with feedbackfi : U i ×Yi−1 → X , for
all i ∈ {1, . . . , n} and non-causal decoding functiong : Yn → Vn .

Theorem III.2 (Causal Encoding with Feedback)
1) If the joint probability distribution Q(u, x, y, v) is

achievable, then it decomposes as follows:

Q(u) = Pu(u), Q(y|x) = T (y|x), Y −
−X −
− U, (9)

2) Joint probability distributionPu(u)⊗Q(x|u)⊗ T (y|x)⊗
Q(v|u, x, y) is achievable if:

max
Q∈Q

(

I(W ;Y )− I(U ;V |W,Y )

)

> 0, (10)



3) Joint probability distributionPu(u)⊗Q(x|u)⊗ T (y|x) ⊗
Q(v|u, x, y) is not achievable if:

max
Q∈Q

(

I(W ;Y )− I(U ;V |W,Y )

)

< 0, (11)

whereQ is the set of probability distributionsQ ∈ ∆(U×W×
X ×Y×V) with auxiliary random variableW that satisfies:



























∑

w∈W Q(u,w, x, y, v)

= Pu(u)⊗Q(x|u)⊗ T (y|x)⊗Q(v|u, x, y),

U independent ofW,

Y −
−X −
− (U,W ),

V −
− (U, Y,W )−
−X.

The probability distributionQ ∈ Q decomposes as follows:

Pu(u)⊗Q(w) ⊗Q(x|u,w)⊗ T (y|x)⊗Q(v|u, y, w).

The support ofW is bounded by|W| ≤ |U ×X ×Y ×V|+2.

Sketch of proofs of Theorem III.2 are stated in Appendix B
and C. The random variableV is directly correlated with the
pair (U, Y ) of source and channel output. Feedback implies
thatV is extracted from the Markov chainY −
−X−
− (U,W )
of the memoryless channel.

IV. FEEDBACK IMPROVES EMPIRICAL COORDINATION

In this section, we investigate the impact of the feedback on
the set of achievable joint distributions stated in Theorems III.1
and III.2. Considering strictly causal encoding, we evaluate the
difference between information constraint stated in equation
(7) and the one stated in Theorem 3 in [18] without feedback.

I(X ;Y )− I(U ;V |X,Y ) (12)

− max
Q∈Qse

(

I(X ;Y )− I(U ;W2|X)

)

(13)

= min
Q∈Qse

I(U ;W2|X)− I(U ;V |X,Y ) (14)

= H(U |V,X, Y )− max
Q∈Qse

H(U |X,W2) ≥ 0. (15)

Qse is the set of probability distributionsQ ∈ ∆(U × W2 ×
X ×Y ×V) with auxiliary random variableW2 that satisfies:

Pu(u)⊗Q(x) ⊗Q(w2|u, x)⊗ T (y|x) ⊗Q(v|y, x, w2).

• Equation (15) is equal to zero if(U, V ) is independent of
(X,Y ), this corresponds to the lossy transmission without
coordination in which the feedback does not increase the
channel capacity [1].
• Equation (15) is equal to zero when the decoder output
V is empirically coordinated with(U,X) and not with the
channel outputY , because in that caseW2 = V . Since the
auxiliary random variableW2 should satisfyQ(v|y, x, u) =
∑

w2∈W2
Q(w2|u, x) · Q(v|y, x, w2), equation (12) provides

an upper bound to equation (13) that is easier to evaluate
There is a strong analogy between strictly causalencod-

ing with channel feedback and strictly causaldecodingwith
source feedback. Equation (16) corresponds to strictly causal
decoding without feedback from the source, stated in [6].

max
Q∈Qsd

(

I(W1;Y |V )− I(U ;V,W1)

)

> 0. (16)

Un Xn Y i

U i−1

Vi
Pu C T D

Fig. 3. Non-causal encodingf : Un → Xn and causal decodinggi :
Yi × U i−1 → V for all i ∈ {1, . . . , n} with feedback from the source.

Qsd is the set of probability distributionsQ ∈ ∆(U ×W1×
X × Y × V) with auxiliary random variableW1, that satisfy:

Pu(u)⊗Q(x, v|u)⊗Q(w1|u, x, v)⊗ T (y|x).

Equation (17) corresponds to strictly causal decoding with
feedback from the source, characterized in [13].

I(X ;Y |U, V )− I(U ;V ) > 0. (17)

Equation (17) can be deduced from equation (16), by replacing
the auxiliary random variableW1 by X and the observation
of the decoderY by the pair(U, Y ).

This analysis extends to causal decoding with feedback from
the source, represented by Fig. 3 and characterized by (18).

max
Q∈Qdf

(

I(X ;Y |U,W3)− I(U ;W3)

)

> 0. (18)

Qdf is the set of probability distributionsQ ∈ ∆(U ×W3 ×
X × Y × V) with auxiliary random variableW3, that satisfy:

Pu(u)⊗Q(x,w3|u)⊗ T (y|x) ⊗Q(v|y, w3).

The proof is in [19]. Theorems III.1 and III.2 also extend to
two-sided state information by replacing(U, S) by (U, S, Y )
in the results of [12], for strictly causal and causal encoding.

p
1− p

U
0
1 C

X
0
1

1− ε

1− ε
ε

Y
0
1 D

V
1
5
2
6
3
7
4
8

Fig. 4. Binary information source and binary symmetric channel with
parametersp = 1/2 andε ∈ [0, 0.5]

V. EXAMPLE : BINARY SOURCE AND CHANNEL

We consider a binary information source and a binary sym-
metric channel represented by Fig. 4. The set of symbols are

b

b

b

b

b

b

b

b

U,X, Y

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(1, 1, 0)

(0, 0, 1)

(1, 0, 1)

(0, 1, 1)

(1, 1, 1) b

b

b

b

b

b

b

b

V

1

2

3

4

5

6

7

8

1− α

α/7

α/7

α/7

α/7

α/7

α/7

α/7

Fig. 5. Conditional probability distributionQv|uxy depending on parameter
α ∈ [0, 7/8] whereQ

(

V = 1
∣

∣(U,X, Y ) = (0, 0, 0)
)

= 1−α andQ
(

V =
2
∣

∣(U,X, Y ) = (0, 0, 0)
)

= α/7. Forα = 7/8, the probability distribution is
uniform over the setV = {1, . . . , 8} and independent of the triple(U,X, Y ).
For α = 0, the outputV corresponds exactly to the triple(U,X, Y ).

given byU = X = Y = {0, 1} andV = {1, 2, 3, 4, 5, 6, 7, 8}.
We assume the parameterp ∈ [0, 1] of the information source



is equal to 1/2. The probability distribution of channel input
is uniform Q(X = 0) = Q(X = 1) = 1/2. The transition
probability of the channel depends on a noise parameter
ε ∈ [0, 0.5]. Since the input distribution is uniform and the
channel is symmetric, the output probability distributionis
also uniformQ(Y = 0) = Q(Y = 1) = 1/2. We investigate a
class of achievable conditional probability distributionsQv|uxy

described by Fig. 5.
We consider strictly causal encoding with feedback. The

information constraint (7) of Theorem III.1 writes:

I(X;Y )− I(U ;V |X,Y )

= H(Y )−H(Y |X)−H(V |X, Y ) +H(V |U,X, Y )

= 1−Hb(ε)−Hb

(

6α

7

)

− 1−
6α

7
· log

2
3 +Hb(α) + α · log

2
7

= Hb(α) −Hb(ε)−Hb

(

6α

7

)

+ α ·

(

log
2
7−

6

7
· log

2
3

)

.
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Fig. 6. Comparison between the information constraint for empirical
coordination with feedbackI(X; Y ) − I(U ; V |X,Y ) and the information
constraintI(X; Y )− I(U ; V ) for lossy transmission.

In Fig. 6, we compare the information constraint for empir-
ical coordination with feedback (7) and information constraint
for lossy transmission without coordination (19), whereα is
the distortion parameter of conditional distributionQv|u:

I(X ;Y )− I(U ;V ) = 1−Hb(ε)− 1 +Hb(α) (19)

= Hb(α)−Hb(ε). (20)

The minimal coordination parameterα⋆ ≃ 0.281 > 0.1 is
much larger for empirical coordination than for lossy com-
pression. This restriction comes from the additional correlation
requirement between the decoder outputV and the random
variables(X,Y ) of the channel. Fig. 7 provides the minimal
value of parameterα⋆ ∈ [0, 0.875] for empirical coordination,
depending on the level of noise of the channelε ∈ [0, 0.5].

VI. CONCLUSION

We investigate the relationship between coordination and
feedback by considering a point-to-point scenario with strictly
causal and causal encoder. For both cases, we characterize the
optimal solutions and we show that feedback simplifies the
information constraints by reducing the number of auxiliary
random variables. For empirical coordination with strictly

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Channel Noise: ε

M
in

im
al

 P
ar

am
et

er
: α

*
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Fig. 7. Minimal value of parameterα⋆ ∈ [0, 0.875] for the information
constraintI(X; Y ) − I(U ;V |X,Y ) > 0 to be positive, depending on the
noise of the channelε ∈ [0, 0.5]. It corresponds to the higher level of
coordination between the random variableV and the triple(U,X, Y ).

causal encoding and feedback, the information constraint does
not involve auxiliary random variable anymore.

APPENDIX

The full versions of the proofs are stated in [19].

A. Sketch of proof of Theorem III.1

Achievability proof can be obtained from the proof of
Theorem III.2 stated in Appendix B, by replacing the auxiliary
random variableW by X .

For the converse proof, we consider codec(n) ∈ C with
small error probabilityPe(c).

0 = I(Un;Y n) − I(Un;Y n
, V

n) (21)

= I(Un;Y n) −
n
∑

i=1

I(Ui;Y
n
, V

n
, U

i−1) (22)

≤

n
∑

i=1

(

I(Yi;U
n
, Xi|Y

i−1
) − I(Ui;Y

n
, V

n
, U

i−1
, Xi)

)

(23)

≤

n
∑

i=1

(

H(Yi) − H(Yi|Xi) − I(Ui;Yi, Vi, Xi)

)

(24)

≤
n
∑

i=1

(

H(Yi) + H(Ui|Yi, Vi, Xi)

)

− n

(

H(Y |X) + H(U)

)

(25)

≤ n

(

I(X;Y ) − I(U ; V |X, Y )

)

. (26)

Equation (21) comes from the non-causal decoding that in-
duces the Markov chain:Un −
− Y n −
− V n.
Equation (22) comes from the i.i.d. properties of the informa-
tion sourceU that implies:I(Ui;U

i−1) = 0.
Equation (23) comes from the channel feedback and the
strictly causal encoding function:Xi = fi(U

i−1, Y i−1).
Equations (24) and (25) are due to the properties of i.i.d.
information source and of memoryless channel.
Equation (26) comes from the concavity of the entropy func-
tion and from the hypothesis of small error probabilityPe(c).

B. Sketch of achievability proof of Theorem III.2
ConsiderQ ∈ Q that achieves the maximum in equation

(10). There exists aδ > 0 and a rateR > 0 such that:

R ≥ I(U,Y ;V |W ) + δ, (27)

R ≤ I(W ;Y ) + I(V ;Y |W )− δ = I(W,V ;Y )− δ. (28)



We define a block-Markov random codec ∈ C(n) overB ∈ N

blocks of lengthn ∈ N.

• Random codebook.We generate|M| = 2nR sequences
Wn(m) drawn fromQ⊗n

w with indexm ∈ M. For each
indexm ∈ M, we generate the same number|M| = 2nR

of sequencesV n(m, m̂) with indexm̂ ∈ M, drawn from
Q⊗n

v|w depending onWn(m).
• Encoding function.It recallsmb−1 and findsmb ∈ M s.t.

sequences(Un
b−1, Y

n
b−1,W

n(mb−1), V
n(mb−1,mb)) ∈

A⋆n
ε (Q) are jointly typical in blockb − 1. It deduces

Wn(mb) for block b and sendsXn
b drawn fromQ⊗n

x|uw

depending on(Un
b ,W

n(mb)).
• Decoding function.It recalls mb−1 and finds mb ∈

M s.t. sequences(Y n
b ,Wn(mb)) ∈ A⋆n

ε (Q) and
(Y n

b−1,W
n(mb−1), V

n(mb−1,mb)) ∈ A⋆n
ε (Q) are

jointly typical. It returnsV n(mb−1,mb) over blockb−1.
• First block at the encoder.An arbitrary indexm1 ∈

M of Wn(m1) ∈ Wn is given to encoder and
decoder. Encoder sendsXn

b1
drawn from Q⊗n

x|uw de-
pending on (Un

b1
,Wn(m1)). At the beginning of the

second blockb2, encoder finds indexm2 such that
(Un

b1
, Y n

b1
,Wn(m1), V

n(m1,m2)) ∈ A⋆n
ε (Q). It sends

Xn
b2

drawn fromQ⊗n
x|wu depending on(Un

b2
,Wn(m2)).

• First block at the decoder. At the end of
second block b2, the decoder finds the index
m2 such that (Y n

b2
,Wn(m2)) ∈ A⋆n

ε (Q) and
(Y n

b1
,Wn(m1), V

n(m1,m2)) ∈ A⋆n
ε (Q). Over the first

bloc, decoderD returnsV n(m1,m2) ∈ Vn. Sequences
(Un

b1
,Wn(m1), X

n
b1
, Y n

b1
, V n(m1,m2)) ∈ A⋆n

ε (Q) are
jointly typical over the first blockb1.

• Last bloc.Sequences are not jointly typical.
Equations (27), (28) imply for alln ≥ n̄, for a large number
of blocksB ∈ N, the sequences are jointly typical with large
probability.

Ec

[

P

(

U
n

/∈ A
⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∀m ∈ M, (U
n
b−1 , Y

n
b−1,W

n
(mb−1), V

n
(mb−1 ,m)) /∈ A

⋆n
ε (Q)

)]

≤ ε,

Ec

[

P

(

∃m
′
6= m, s.t.

{

(Y
n
b ,W

n
(m

′
)) ∈ A

⋆n
ε (Q)

}

∩

{

(Y
n
b−1, W

n
(mb−1), V

n
(mb−1,m

′
)) ∈ A

⋆n
ε (Q)

}

)]

≤ ε.

C. Sketch of Converse Proof of Theorem III.2
Consider codec(n) ∈ C with small error probabilityPe(c).

0 ≤

n
∑

i=1

I(U
i−1

, Y
i−1

, Y
n
i+1; Yi) −

n
∑

i=1

I(Y
n
i+1;Ui, Yi|U

i−1
, Y

i−1
) (29)

=

n
∑

i=1

I(U
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, Y
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; Yi) −

n
∑

i=1

I(Y
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≤

n
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I(U
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, Y
i−1

; Yi) −

n
∑

i=1

I(Vi;Ui|U
i−1

, Y
i−1

, Yi) (32)

=

n
∑

i=1

I(Wi ;Yi) −

n
∑

i=1

I(Vi;Ui|Wi, Yi). (33)

≤ n · max
Q∈Q

(

I(W ; Y ) − I(V ;U|W,Y )

)

. (34)

Eq. (29), (30) are due to Csiszár Sum Identity, prop. of MI.
Eq. (31) is due to the non-causal decoding functionV n =
g(Y n), that implies:I(Vi;Ui|U

i−1, Y i−1, Yi, Y
n
i+1) = 0.

Eq. (32) is due to the properties of the mutual information.

Eq. (33) is due to the introduction of auxiliary random
variablesWi = (U i−1, Y i−1) satisfying properties of setQ.
Eq. (34) comes from taking the maximum over the setQ.

Ui is independent ofWi, (35)

Yi −
−Xi −
− (Ui,Wi), (36)

Vi −
− (Ui, Yi,Wi)−
−Xi. (37)

• Eq. (35) is due to the i.i.d. property of the source that
impliesUi is independent ofU i−1. The causal encoding with
feedbackXi = fi(U

i, Y i−1) and the memoryless property of
the channel implies thatY i−1 is independent ofUi.
• Eq. (36) comes from the memoryless property of the
channel and the fact thatYi is not included inWi.
• Eq. (37) comes from the causal encoding with feedback
function that implies thatXi is a deterministic function of
(Ui, U

i−1, Y i−1) which is included in(Ui, Yi,Wi).
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