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Abstract—In multi-terminal networks, feedback increases the
capacity region and helps communication devices to coordate.
In this article, we deepen the relationship between coordiation
and feedback by considering a point-to-point scenario withan
information source and a noisy channel. Empirical coordindion

imperfect feedback. In_[11], the authors investigate a -four
player coordination game with imperfect feedback and hevi

a subset of achievable joint probability distributions. [irical
coordination is a first step toward a better understanding of

is achievable if the encoder and the decoder can implement decentralized communication network. The set of achievabl

sequences of symbols that are jointly typical for a target
probability distribution. We investigate the impact of feedback
when the encoder has strictly causal or causal observationfo
the source symbols. For both cases, we characterize the apil
information constraints and we show that feedback improves
coordination possibilities. Surprisingly, feedback alsoreduces
the number of auxiliary random variables and simplifies the
information constraints. For empirical coordination with strictly

joint distributions was characterized for strictly causaid
causal decoding in [6], with two-sided state informatiofilifi]
and with feedback from the source in_[13]. From a practical
perspective, coordination with polar codes was considared
[14]. Lossless decoding with correlated information seuand
channel states is solved ih |15]. Empirical coordination fo
multi-terminal source coding is treated [n [16] and[inl[17].

causal encoding and feedback, the information constraint des
not involve auxiliary random variable anymore.

Index Terms—Shannon Theory, Feedback, Empirical Coordi-
nation, Joint Source-Channel Coding, Empirical Distribution of
Symbols, Strictly Causal and Causal Encoding.
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Fig. 1. Strictly causal encoding function with feedbatk U/ ~1 x Yi—1 —

. INTRODUCTION
. . X, forall : € {1,...,n} and non-causal decoding functigrn: Y™ — V™ .
Feedback does not increase the capacity of a memoryless { } 9 on

channel[[1]. However, it has a significant impact when consid In this article, we consider the point-to-point scenario of
ering problems of empirical coordination. In this framelor [18] with channel feedback, as represented by Eig. 1[dnd 2.
encoder and decoder are considered as autonomous agéhtsencoder has perfect feedback from the channel andystrict
[2], that implement a coding scheme in order to coordinatausal or causal observation of the symbols of source. Im bot
their sequences of actionse. channel inputs and decodercases, we characterize the set of achievable joint pratyabil
outputs, with a sequence of source symbols. The problefistributions over the symbols of source and channel. We
of empirical coordination 3], [4],[15] consists in detemitig show that the information constraints are larger than theson
the set of joint probability distributions, that are actable stated in[[18]. Surprisingly, feedback also reduces thebmmim
for empirical frequencies of symbols. Empirical coordioat of auxiliary random variables and simplifies the informatio
provides a single-letter solution that simplifies the as@ly constraints. For empirical coordination with strictly sal
of optimization problems such as minimal source distortioencoding and feedback, the information constraint does not
minimal channel cost or maximal utility function of a deceninvolve auxiliary random variable anymore. There is an anal
tralized communication network][6]. For example, the ogatim ogy with strictly causal decodin@][6], T3], since no aumii
distortion level is the minimum of the expected distortiomandom variable is needed when the decoder has feedback
function, taken over the set of achievable joint probapilitfrom the source. Feedback allows to remove auxiliary random
distributions. variables of information constraints, for empirical cooation

In the framework of multi-terminal networks, feedbaclproblems.
increases the capacity region of the multiple-access @lann System model and definitions are stated in $ec. 1l and
[7], [8] and of the broadcast channg] [C], [10]. In the liten@ characterizations of achievable joint distributions degesl in
of game theory, feedback is considered from a strategidpoiSec[Ill. Comparison with previous works and an example are
of-view. In [2], a player observes the past actions of anothstated in Sed_IVv andlV. Conclusions and sketches of proofs
player through a monitoring structure involving perfect oare stated in Se€._VI and in Appendix A} B] C.
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[l. SYSTEM MODEL d:UXx X x)YxV— R, We denote byd*, the set of joint

Figure[1 represents the problem under investigation. RaHobability distributionsQ € A* that are achievable. Based
dom variableU is denoted by capital letter, lowercase lettepn the expectatiorfigc 4- [‘P(U, XY, V)}, it is possible to
u € U designates the realization ardd”® corresponds to derive the minimal channel cosk(u,z,y,v) = c(x), the
the n-time cartesian product/", X", Y™, V" stands for minimal distortion levetb(u,z,y,v) = d(u,v) or the maximal
sequences of random variables of source symhdls = utility of a decentralized network [2], using a single-éett
(u1,...,u,) € U™, inputs of the channet™ € X™, outputs characterization.
of the channely™ € Y™ and decoder’s output™ < V™.

The setsi{, X, ), V are discrete. The set of probability'”- CHARACTERIZATION OF ACHIEVABLE DISTRIBUTIONS
distributions P(X) over X is denoted byA(X). Notation  This section presents the two main results of this article.
1Q — Pl = 1/2- > ,c+12Q(z) — P(x)| stands for the TheoreniIll.l characterizes of the set of achievable joinbp
total variation distance between probability distribn8oQ  ability distributions for strictly causal encoding withefgback,
and P. Notation Y —=— X —— U stands for the Markov represented in Fid.] 1.

chain property corresponding B (y|z,u) = P(y|x) for all

(u,z,y). Information source is i.i.d. distributed witR, and Theorem 1111 (Strictly causal encoding with feedback)

the channel is memoryless with transition probabilify,. 1) If the joint probability distribution Q(u,z,y,v) is
EncoderC and decodeD know the statistics?, and 7;,‘)( of achievable, then it decomposes as follows:

the source and channel. The coding process is deterministic

Qu) = Pu(u), Qylz) = T (ylx), ©)
Definition 11.1 A codec € C(n) with strictly-causal encoder U independent of,, Y o= X -o- .
and feedback is a tuple of functions= ({f;}_,, g) defined
by equationgD) and (2): 2) Joint probability distributionP,(v) ® Q(z) @ T (y|z) ®
_ _ Q(v|u, z,y) is achievable if:
fi UTPxYTt—Xx, i=1,...,n, (1)
g R Vi (2) I(X;Y)—I(U;V|X,Y) >0, (7)

The number of occurrence of symhok ¢/ in sequence” is 3) Joint probability distribution, (u) © Q(z) © T(y|z) ®
denoted byN(u|u™). The empirical distributiorQ™ € AU x ~ 2(v|u, z,y) is not achievable if:

X x Y x V) of sequencesu”™, z™, y™, v™) is defined by: I(X;Y)— I(U;V|X,Y) <0 @)
n N(u, z,y, v[u", 2", y", v")
Q" (u,z,y,v) = - ; Sketch of proof of Theorefi 1M1 is stated in Appendix A.
V(u,z,y,0) € UXXxYx V. (3) Equation [[T) comes from Theorem 3 in_[18] by replacing

] S the auxiliary random variable by decoder’s outpatand the
Fix a target probability distribution® € AU/ x X x ¥ x V), gpservation of the encoder by the pair of information source

the error probability of the code € C(n) is defined by: and channel feedbadk/, V).
. A causal encoding function is defined y: 4/’ x Y= —
Pe(c) = Pe HQ - QHW =r ) X, Vie{l,...,n}. TheoreniII.2 characterizes of the set of

achievable joint probability distributions for causal eding

where@™ € A(U x X x Y x V) is the random variable of the with feedback, represented in FIg. 2.

empirical distribution induced by the probability disttitions

Pu, Tyix and the code: € C(n). ¥ X, yn vn
Definition 1.2 The probability distributionQ € AU x X x

X . . . i—1
Y x V) is achievable if for alls > 0, there exists @ € N s.t. Y
for all n > n, there exists a code € C(n) that satisfies: Fig. 2. Causal encoding function with feedbagk: t/* x V=1 — X, for
all i € {1,...,n} and non-causal decoding functign: Y™ — V" .

Pe(C)ZPc(HQ"—Q

> 5) <e. (5)
" Theorem IIl.2 (Causal Encoding with Feedback)
The error probability Pe(c) is small if the total vari- 1) |f the joint probability distribution O(u,x,y,v) is
ation distance between the empirical frequency of symghjevable, then it decomposes as follows:
bols Q"(u,z,y,v) and the target probability distribution
Q(u,z,y,v) is small, with large probability. In that case, Q(u)="Pu(u), Qylzr)=T(ylz), Y = X = U, (9)
the sequences of symbol&", X, Y" V") € A (Q) are
jointly typical, i.e. coordinated, for the target probability
distribution @ with large probability.

As mentioned in [[6] and[[15], the performance of the
coordination can be evaluated using an objective function %126 (I(W;Y) —I(U;V|W,Y)) >0, (10)

2) Joint probability distributionP,(u) ® Q(z|u) @ T (y|z) ®
(v|u, z,y) is achievable if:



3) Joint probability distributionP,(u) ® Q(z|u) ® T (y|z) ® @ ol C X @ Y D i

Q(v|u, z,y) is not achievable if: -1 T
I(W:Y)=I(U:VIW.Y 0 11) Fig. 3. Non-causal encoding : 4™ — X™ and causal decoding; :
13?6 ( (W3Y) U viw, )) <Y (11) Vix U=t = viorallie {1,...,n} with feedback from the source.

whereQ is the set of probability distribution® € A (U x W x Q.q is the set of probability distribution® € A(U x Wi x
X x Y x V) with auxiliary random variablgV that satisfies: X x ) x V) with auxiliary random variabléV;, that satisfy:

2wew Qu,w,2,y,0) Pu(u) @ Q(z,v|u) @ Q(wy |u, z,v) @ T (y|x).
= Pu(u) ® Q(z|u) ® T(ylz) ® Q(v|u,z,y), _ , -
U independent ofv, Equation [(IIV) corresponds to strictly causal decoding with
Y - X - (U, W), feedback from the source, characterized in [13].
Ve (UY,W)-e X I(X;Y|U,V) = I(U;V) > 0. (17)
The probability distributionQ € Q decomposes as follows: Equation[ZY) can be deduced from equation (16), by repgacin
Pu(u) @ Qw) @ Q(zlu,w) @ T (y|z) @ Q(v|u, y, w). the auxiliary random variabl&/; by X and the observation

of the decode?” by the pair(U,Y).

This analysis extends to causal decoding with feedback from
Sketch of proofs of Theoren 1.2 are stated in Apperidlx Ehe source, represented by Hif. 3 and characterized by (18).
and[C. The random variablé is directly correlated with the

The support ofV is bounded byW| < [U x X x Y x V| + 2.

pair (U,Y) of source and channel output. Feedback implies max (I(X;Y|U, Ws3) — I(U;Wg)) >0. (18)
thatV is extracted from the Markov chaifi - X - (U, W) Qe
of the memoryless channel. Quf Is the set of probability distribution® € AU x W5 x

X x)Yx with auxiliary random variabléV;, that satisfy:
IV. FEEDBACK IMPROVES EMPIRICAL COORDINATION Y xV) y 3 fy

In this section, we investigate the impact of the feedback on ~ Pu(u) ® Q(x, ws|u) @ T (y|z) ® Q(v|y, ws).
the set of achievable joint distributions stated in Thel@ifcdl ¢ proof is in [19]. TheorenS 1M1 aridIl.2 also extend to

and1IL.2. Considering strictly causal encoding, we eveuhe - cijed state information by replacin§/, S) by (U, S,Y)

difference between information constraint stated in eiquat . : :
X : i in the results of[[12], for strictly causal and causal enngdi
(@) and the one stated in Theorem 3[inl[18] without feedbacl?. [12] y g

X 1—=¢ 4 4
I(X;Y) - I(U; V|X,)Y) (12) P 0 0 ———=— 0 @ 1234
L-rl 1 = 1 5678
- éﬂaii (I(X;Y) — 1 W2|X)) (13) Fig. 4.  Binary information source and binary symmetric crelnwith
it =1/2 and 0,0.5
= min [(UsWa]X) = I(U3 VX, Y) (14) Parametery =1/zandz € (0,05
= H(I}E|V, X,Y)— nax H(U|X,W») >0. (15) V. EXAMPLE: BINARY SOURCE AND CHANNEL
e se

We consider a binary information source and a binary sym-

Qs is the set of probability distribution® € A(U/ x W2 x  metric channel represented by Fig. 4. The set of symbols are
X x Y x V) with auxiliary random variabléV, that satisfies:

=
Is
~
<

Pu(u) ® Q(x) ® Qwalu, 2) ® T(ylz) ® Q(vly, , ws). 0,0,0) ¢ y=et=2— o 1
e Equation [(I5) is equal to zero {{U, V) is independent of (1,0,0) e j\i{ﬂ\%%‘aj? 2
(X,Y), this corresponds to the lossy transmission without (0,1,0) e _\x\}%\_\oﬁ/ e 3
coordination in which the feedback does not increase the (1,1,0) o \\§ ~ \0‘;/7. 4
channel capacity [1]. (0,0,1) o NN /7 .5
e Equation [Ib) is equal to zero when the decoder output T N /7

V is empirically coordinated with(U, X) and not with the (1,0,1) » a7t 6
channel outpu®t”, because in that casé’, = V. Since the (0,1,1) o 27
auxiliary random variablé?; should satisfyQ(v|y, z,u) = (1,1,1) e —&J e 8

D ey, Qwzlu,z) - Qvly, z,w2), equation [(IR) provides N S _

an upper bound to equatiol[[lS) that is easier to evaluate Fig. 5. Conditional E:)robab||llty distributior®, |, (;ependmg on paEameter
- . _ ael0,7/8 whereQ(V =1|(U,X,Y) =(0,0,0)) =1 —aandQ(V =

_ There is a strong analogy between strictly cawsatod- ;7 vy — (0,0,0)) = a/7. Fora = 7/, the probabilty distribution is

ing with channel feedback and strictly causkdcodingwith  uniform over the sev = {1, ..., 8} and independent of the tripld/, X, V).

source feedback. Equation {16) corresponds to strictlpalauFor a = 0, the outputl” corresponds exactly to the tripl&/, X, Y’).

decoding without feedback from the source, stated in [6].

given byl =X =Y ={0,1} andV ={1,2,3,4,5,6,7,8}.

Sebn (I(Wl;YW) - I(U;V’Wl)) > 0. (18) \ye assume the parameter [0, 1] of the information source

Qe@sd



is equal to 1/2. The probability distribution of channel uhp 0o
is uniform Q(X = 0) = Q(X = 1) = 1/2. The transition x
probability of the channel depends on a noise parameter
e € [0,0.5]. Since the input distribution is uniform and the
channel is symmetric, the output probability distributitn
also uniform@Q(Y = 0) = (Y = 1) = 1/2. We investigate a
class of achievable conditional probability distribuod, |,
described by Fid.]5.

We consider strictly causal encoding with feedback. The
information constrainh?) of Theore .1 writes:
I(X;Y) = I(U; V|X,Y)
H(Y) - H(Y|X) - H(V|X,Y)+ H(V|U,X,Y) os o1 o 02 om0 0% oa om o5

08

0.7

06

05

0.4

‘I(X;Y) - 1(U;V |X,Y) >0

Minimal Parameter: a

6o 6o Channel Noise: €
= 1— Hp(e) —H;,(7) —-1- - -logy 3+ Hy(a) + - logy 7
6 Fig. 7. Minimal value of paramete* € [0,0.875] for the information
= Hy(a) — Hy(e) — Hb(7> +a- (10g2 7— - -logy 3) constraint/(X;Y) — I(U; V|X,Y) > 0 to be positive, depending on the

noise of the channet € [0,0.5]. It corresponds to the higher level of
coordination between the random variaffeand the triple(U, X,Y).

causal encoding and feedback, the information constraies d
not involve auxiliary random variable anymore.

APPENDIX
The full versions of the proofs are stated [in|[19].

A. Sketch of proof of TheordmTIl.1

Achievability proof can be obtained from the proof of
Theoreni .2 stated in AppendiX B, by replacing the auxilia

random variabléV by X.
For the converse proof, we consider cade) € C with

=6 1(X;Y) - I(U;VIX,Y)
©-1(X)Y) - I(U;V)

B s g o o1 o os 1 small error probabilityPe(c).
0 = IU™MY™)—-1U™SY™, V" (21)
Fig. 6.  Comparison between the information constraint forpiical = I(U™Y") - i: UG Y™, V™, Ui (22)
coordination with feedbacll (X;Y) — I(U; V|X,Y) and the information i1
constraint! (X;Y) — I(U; V) for lossy transmission. n v v
< Z <I(Y7:;Un,X1:\Y7'71)—I(U11§Yn7Vn,U7'71,Xi)) (23)
In Fig.[8, we compare the information constraint for empir- o
ical coordination with feedback](7) and information coastt < 3 <H(m — H(Yi|X:) — I(Us; Y3, Vi,Xi)> (24)
for lossy transmission without coordinatidn {19), wherds o
the distortion parameter of conditional distributi@y,,: < (Hm) + H(U:|Yi, w,xn) - n(H(Y\X) + H(U))(ZS)
i=1
I(X;Y)-I(U;V) = 1—Hp(e)— 1+ Hp(a) (19) < n<I(X:,Y)7I(U:,V|X.,Y)). (26)
= Hb(a) — Hb(&‘). (20)

Equation [[21) comes from the non-causal decoding that in-
The minimal coordination parameter ~ 0.281 > 0.1 is duces the Markov chail/” = Y" - V™,

much larger for empirical coordination than for lossy comgquation [ZR) comes from the i.i.d. properties of the infarm
pression. This restriction comes from the additional datien tion sourceU that implies:I(U;; U~1) = 0.

requirement between the decoder outpltand the random Equation [2B) comes from the channel feedback and the
variables(X,Y’) of the channel. Fid.17 provides the minimaktrictly causal encoding functiork; = f;(U*~,Y*~1).

value of parametes* € [0,0.875] for empirical coordination, Equations [[24) and (25) are due to the properties of i.i.d.
depending on the level of noise of the channel [0, 0.5]. information source and of memoryless channel.

Equation [2B6) comes from the concavity of the entropy func-

VI. CONCLUSION . . X
) . i . o tion and from the hypothesis of small error probabilRy(c).
We investigate the relationship between coordination and

feedback by considering a point-to-point scenario witicgyr  B- Sketch of achievability proof of Theorem I1.2

causal and causal encoder. For both cases, we characterize tConsiderQ € Q that achieves the maximum in equation
optimal solutions and we show that feedback simplifies t ). There exists & > 0 and a rateR > 0 such that:
information constraints by reducing the number of auxliar R > I(UY;VIW)+4, (27)
random variables. For empirical coordination with styictl R < IW;)Y)+I(V;YIW)—6=I(W,V;Y)—4. (28)



We define a block-Markov random code= C(n) overB € N Eq. (33) is due to the introduction of auxiliary random

blocks of lengthn € N. variablesW; = (U=, Yi~1) satisfying properties of sed.
e Random codebookle generatgM| = 2"R sequences Ed. (34) comes from taking the maximum over the @et
Wn(m) drawn from Q%™ with indexm € M. For each U, is independent ofV;, (35)

indexm € M, we generate the same numh#i| = 2"R
of sequence¥ " (m, /) with indexsh € M, drawn from Yi-o- X o (Ui, W), (36)
Q{» depending or¥™ (m). Vi o (U;,Yi, W;) o= X;. (37)

. Encodlng functionlt recallsm;_, and findsm, € M s.t. Eq. (35) is due to the i.i.d. property of the source that
se*quences(Ub 1 Yl W mp—1), Vi (me—1,mp)) € implies U; is mdependent ot/*~1. The causal encoding with
Ar™(Q) are jointly typical in blockd — 1. It deduces feedbackX; = f;(U?,Yi~1) and the memoryless property of
W (my) for block b and sendsXj" drawn from Q. the channel implies that~! is independent ot/;.
depending or(U;", W™ (m)). _ e Eq. (36) comes from the memoryless property of the

» Decoding function.It recalls m;_; and findsm, € channel and the fact thaf is not included ini;.

M st sequenced¥,", W (my)) € AZ(Q) and o gq. [37) comes from the causal encoding with feedback
(YL, Wh(mp—), V™ (mp—1,mp)) € AT"(Q) are fynction that implies that, is a deterministic function of
jointly typical. It returnsV" (my_1, ms) over blockb— 1. (U:, U=1, Y1) which is included in(U;, Y;, W;).

e First block at the encoderAn arbitrary indexm; €

M of W™(m;) € W™ is given to encoder and
decoder. Encoder send¥”™ drawn from Q®" de- [1] C. E. Shannon, “The zero error capacity of a noisy chghthieE Trans.
) b1 x|uw Inf. Theory vol. 2, no. 3, pp. 8-19, 1956
[ rLWn he beginning of the ' : Jan. “Opti i
pending on(Uy, W™ (m1)). At the beg g [2] O. Gossner, P. Hernandez, and A. Neyman, “Optimal useonfrouni-
second blockbdy, encoder finds indexn, such that cation resources,Econometricavol. 74, no. 6, pp. 1603-1636, 2006.
n n n n *1 [3] G. Kramer and S. Savari, “Communicating probability tdisutions,”
(Ubl’Y;’ W (ma), V7 (my,ma)) € A(Q). It sends IEEE Trans. on Information Thearyol. 53, no. 2, pp. 518-525, 2007.

REFERENCES

X, drawn from Q®n depending Or(Ub , W (ma)). [4] P.Cuff, H. Permuter, and T. Cover, “Coordination capgtiEEE Trans.
e First block at the decoder. At the end of on Information Theoryvol. 56, no. 9, pp. 4181-4206, 2010.
[5] P.Cuffand L. Zhao, “Coordination using implicit commioation,” IEEE

second block b, nthe decoder flnds;n the index Information Theory Workshop (ITWpp. 467-471, 2011.

mg such that (Yb ) (m )) € AE (Q) and [6] M. Le Treust, “Empirical coordination for the joint sae-channel cod-
(Yb"7 W"(ml) (ml,mz)) c A*n(Q)_ Over the first ing problem,” submitted to IEEE Transactions on Information Theory,

1 http://arxiv.org/abs/1406.40772014.
n mn ’

bloc, denCOderD retumns v’ (ml’mQ) eV 'iequences [7] N. Gaarder and J. Wolf, “The capacity region of a multipkress
(Ub1 , W™ (mq), Xb1 ) Ybl "(m1,ma)) € A (Q) are discrete memoryless channel can increase with feedoHeEE Trans-
jointly typical over the first block;. actions on Information Theorwol. 21, no. 1, pp. 100-102, Jan 1975.

i ; [8] L. Ozarow, “The capacity of the white gaussian multipeess channel
e Last bloc. Sequences are not Jomtly typlcal with feedback,” IEEE Transactions on Information Theoryol. 30,

Equatlons@%\l[(ZS) imply for alh > 7, for a large number no. 4, pp. 623629, Jul 1984.
of blocks B € N, the sequences are Jomtly typical with largeg) . bueck, “The capacity region of the two-way channel eaneed the
probability. inner bound,"Information and Contrglvol. 40, pp. 258-266, 1979.
on [10] L. Ozarow and S. Leung-Yan-Cheong, “An achievable aagand outer
Ee [7’ (Un & Ac (9))} <. bound for the gaussian broadcast channel with feedbackegm),”
IEEE Trans. on Info. Theoryol. 30, no. 4, pp. 667—671, Jul 1984.

Ec|P(Vm € M, (Up 1, Y1, W (my_1), V" (mp_1,m)) ¢ AL"(Q))| <, - . .
[ ( bt et bt bt )] [11] M. Le Treust, A. Zaidi, and S. Lasaulce, “An achievabbger region

Ee [7: (am’ #m, st {(yg", whm')) € A;"(Q)} n for the broadcast wiretap channel with asymmetric sidermédion,”
" " " , o 49th Annual Allerton Conference on Communication, Contenhd
{OBLy W mp_1), VT (my_y ") € A2 <Q>})] Se Computing pp. 6875, 2011.
[12] M. Le Treust, “Empirical coordination with two-sidedase information
C. Sketch of Converse Proof of Theofem JI1.2 and correlated source and states fBEE Internat. Sym. Info. Th2015.

Consider code(n) € C with small error probabilityP.(c). [13] B. Larrousse, S. Lasaulce, and M. Bloch, “Coordinatiordistributed
networks via coded actions with application to power cdriti®ubmitted

n i—1 Li—1 un w n im1 i1 to IEEE Trans. on Info. Theory, http://arxiv.org/abs/1503685 2014.
o= l; oY i) = ElI(YHI;Ui’Y”U Y @9 1141 M. Bloch, L. Luzzi, and J. Kliewer, “Strong coordinatiowith polar
n o1 it n " i1 i1 codes,”50th Annual Allerton Conference on Communication, Control
= 2:1 oy Yy - 1:; I UlUm 5 YY) ®0) and Computingpp. 565-571, 2012.
n ) ) n ) ) [15] M. Le Treust, “Correlation between channel state anfbrination
= YWt yThy) - Y v v vt Ty Ty @ source with empirical coordination constraintEEE Information Theory
1 ! Workshop (ITW)pp. 272-276, 2014.
< S rwitlyiThiyy - 3 rvpugotThyitlyy @2 [16] A. Bereyhi, M. Bahrami, M. Mirmohseni, and M. Aref, “Enrjzal
i=1 i=1 coordination in a triangular multiterminal networkEEE International
-y (W3 Y;) — zn: (Vi Uy Wi, Y. @3) Symposium on Information Theory (ISI'Pp. 2149-2153, 2013.
i=1 i=1 [17] Z. Goldfeld, H. H. Permuter, and G. Kramer, “The ahlsedrner
< nemax (I(W;w _ ,(V;U‘W,y))_ @4) coordination problem with one-sided encoder cooperdtion, [EEE

Internat. Symp. on Info. Th. (ISITpp. 1341-1345, July 2014.

ic74 i [18] P. Cuff and C. Schieler, “Hybrid codes needed for commtibn over the
Eq. (29), [3D) are due to Csiszar Sum Identity, prop. of MI. point-to-point channel,49th Annual Allerton Conference on Communi-

Eq. (31) is _due.to the non-causal decoding funCﬂOﬁ = cation, Control, and Computingp. 235-239, 2011.
g(Y™), that implies: 1 (V;; U; U1, Y=L Y, Y1) = [19] M. Le Treust, “Empirical coordination with feedbackiternal technical

Eq. (32) is due to the properties of the mutual mformation. report, to be submitted, 2015.


http://arxiv.org/abs/1406.4077
http://arxiv.org/abs/1501.03685

	I Introduction
	II System model
	III Characterization of achievable distributions
	IV feedback improves empirical coordination
	V Example: binary source and channel
	VI Conclusion
	Appendix
	A Sketch of proof of Theorem III.1
	B Sketch of achievability proof of Theorem III.2
	C Sketch of Converse Proof of Theorem III.2

	References

