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Subspace Polynomials and Cyclic Subspace Codes
Eli Ben-Sasson† Tuvi Etzion∗ Ariel Gabizon† Netanel Raviv∗

Abstract

Subspace codes have received an increasing interest recently due to their application in error-correction for random network

coding. In particular, cyclic subspace codes are possible candidates for large codes with efficient encoding and decoding algorithms.

In this paper we consider such cyclic codes and provide constructions of optimal codes for which their codewords do not have

full orbits. We further introduce a new way to represent subspace codes by a class of polynomials called subspace polynomials.

We present some constructions of such codes which are cyclicand analyze their parameters.

I. I NTRODUCTION

Let Fq be the finite field of sizeq, and letF∗
q , Fq \ {0}. For n ∈ N denote byFqn the field extension of degreen of Fq

which may be seen as the vector space of dimensionn overFq. By abuse of notation, we will not distinguish between these

two concepts. Given a non-negative integerk ≤ n, the set of allk-dimensional subspaces ofFqn forms aGrassmannianspace

(Grassmannian in short) overFq, which is denoted byGq (n, k). The size ofGq (n, k) is given by the well-known Gaussian

coefficient
[

n
k

]

q
. The set of all subspaces ofFqn is called theprojective spaceof ordern overFq [9] and is denoted byPq(n).

The setPq(n) is endowed with the metricd(U, V ) = dimU + dimV − 2 dim(U ∩ V ). A subspace code is a collectionC

of subspaces fromPq(n). In this paper we will be mainly interested inconstant dimensioncodes (called also Grassmannian

codes), that is,C ⊆ Gq (n, k) for somek ≤ n.

Subspace codes and constant dimension codes have attracteda lot of research in the last eight years. The motivation was

given in [13], where it was shown how subspace codes may be used in random network coding for correction of errors and

erasures. This application of subspace codes renewed the interest in a wide variety of problems related to vector spaces[1],

[7], [18], [21], particularly in constructions of large codes with error correction capability, efficient encoding algorithms for

these codes, as well as efficient decoding algorithms.

In [13] a novel construction of large subspace codes usinglinearized polynomials(a.k.a.p-polynomials [19]) is presented.

These codes were later shown [20] to be related to optimal rank-metric codes through an operation calledlifting. These two

techniques and some of their variants are the main known tools for constructing subspace codes.

It was previously suggested [5], [9], [14] thatcyclic subspace codesmay present a useful structure that can be applied

efficiently for the purpose of coding. For a subspaceV ∈ Gq (n, k) andα ∈ F∗
qn we define thecyclic shift of V asαV ,

{αv | v ∈ V }. The setαV is clearly a subspace of the same dimension asV . Two cyclic shifts are calleddistinct is they

form two different subspaces. A subspace codeC is calledcyclic if for every α ∈ F∗
qn and everyV ∈ C we haveαV ∈ C.
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In [9], [14] several examples of optimal cyclic subspace codes with small dimension were found. In [5] an optimal code

which also forms aq-analog of Steiner system was presented. This code has an automorphism group which is generated by

a cyclic shift and the Frobenius mapping (known together also as a normalizer of a Singer subgroup [5],[12, pp. 187-188]).

These codes raised the plausible conjecture that large cyclic codes may be constructed in any dimension. However, the current

approaches for construction of subspace codes fall short with handling cyclic codes. In this paper we aim at establishing new

general techniques for constructions of cyclic codes.

In [22] a thorough algebraic analysis of the structure of cyclic orbit codes is given. One class of such codes is the cyclic

codes. However, no nontrivial construction is given. In [10] a construction of cyclic codes with degenerated orbit (of size less

than qn−1
q−1 ) is given. This construction produces a subcode of some codes in our work (see Section III-B). Both [10] and [22]

raised the following conjecture:

Conjecture 1. For every positive integersn, k such thatk < n/2, there exists a cyclic code of sizeq
n−1
q−1 in Gq (n, k) and

minimum distance2k − 2.

Notice that fork > n/2+1, a minimum distance of2k− 2 is clearly not possible. The original conjecture [22] considered

k ≤ n/2. However, an exhaustive search which was used in [10] provedthat the conjecture is false forn = 8, k = 4, q = 2.

Whenk < n/2, it appears that there is enough flexibility that many such codes exist, while fork = n/2, such a code might

not exist. Its existence depends on the existence of a subspace which forms a structure similar to a difference set [5]. In

this paper it is proved that this conjecture is true for a given k and infinitely many values ofn, along with several options

for explicit constructions (see Theorem 3). In [10], [22] itwas also pointed out that it is not known how to construct cyclic

codes with multiple orbits. In the sequel we show that our techniques can be useful for this purpose (see Lemma 12 and

Construction 1).

One of the tools in our constructions is the so-called subspace polynomials, which are a special case of linearized

polynomials. Subspace polynomials form an efficient methodof representing subspaces, from which one can directly deduce

certain properties of the subspace which are not evident in some other representations. These objects were studied in the

past for various purposes, e.g., bounds on list-decoding ofReed-Solomon and rank-metric codes [23], construction of affine

dispersers [3], and finding an element of high multiplicative order in a finite field [6].

The rest of this paper is organized as follows. Section II will start with the known definition of subspace polynomials. We

continue to analyze properties of the subspaces corresponding to the subspace polynomials, in particular we examine distance

properties induced by cyclic and Frobenius shifts of these subspaces. Based on these properties, in Section III we consider

constructions of optimal cyclic codes with degenerate orbits, and cyclic codes with full orbits. The main goal in constructing

cyclic codes is to obtain as many orbits as possible in the code. This task will be left for future work. In this work we consider

first the existence of cyclic codes with one full length orbitand cyclic codes with multiple full length orbits. Conclusions are

given in Section IV.

II. SUBSPACES AND THEIRSUBSPACEPOLYNOMIALS

For the rest of this paperk andn will be positive integers such that2 < k < n, and we denote[ℓ] , qℓ. We begin by

defining linearized polynomials and subspace polynomials.
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Definition 1. A linearized polynomial was defined by Ore [19] as follows:

P (x) , ak · x
[k] + ak−1 · x

[k−1] + · · ·+ a1 · x
[1] + a0 · x

where the coefficients are in the finite fieldFqn .

Linearized polynomials have numerous applications in classic coding theory (e.g., [17, Chapter 4]). It is widely knownthat

the roots of any linearized polynomial form a subspace in some extension ofFqn (seen as a vector space overFq) and for

everyV ∈ Gq (k, n), the polynomial
∏

v∈V (x− v) is a linearized polynomial [17, p. 118]. We will be particulary interested

in linearized polynomials that have simple roots with respect to some fieldFqn .

Definition 2. [3], [4], [6], [23] A monic linearized polynomialP with coefficients inFqn is called a subspace polynomial

with respect toFqn if the following equivalent conditions hold:

1) P dividesx[n] − x.

2) P splits completely overFqn and all its roots have multiplicity 1.

From now on, we shall omit the notation ofFqn whenever it is clear from context. The first two lemmas are trivial and

well known. The simplicity of the roots of a subspace polynomial (and in particular, the simplicity of 0) gives rise to the

following lemma.

Lemma 1. In any subspace polynomial, the coefficient ofx is non-zero. Conversely, every linearized polynomial withnon-zero

coefficient ofx is a subspace polynomial in its splitting field.

Proof: It is readily verified that 0 is a root of multiplicity 1 if and only if the coefficient ofx is non-zero. Therefore,

if P is a subspace polynomial, all of his roots are of multiplicity 1 (see Definition 2), including 0. On the other hand, if

Q is a linearized polynomial with a non-zero coefficient ofx, then by [15, Theorem 3.50, p. 108], all the roots ofQ have

multiplicity 1.

It also follows from Definition 2 that for a givenV ∈ Gq (n, k) the polynomial
∏

v∈V (x − v) is the unique subspace

polynomial whose set of roots isV , which leads to the following lemma.

Lemma 2. Two subspaces are equal if and only if their corresponding subspace polynomials are equal.

Lemma 2 allows us to denote byPV the unique subspace polynomial corresponding to a given subspaceV .

Example 1. Let t be a positive integer such thatt|n. It is known thatFqt is a subfield (in particular, a subspace) ofFqn .

The subspace polynomial ofFqt is PFqt
(x) = x[t] − x.

The connection between linearized polynomials and subspace polynomial is given by the following two claims.

Theorem 1. [15, Theorem 3.50, p. 108] IfP is a linearized polynomial whose splitting field isFqn , then each root ofP

in Fqn has the same multiplicity, which is a non-negative power ofq, and the roots form a linear subspace ofFqn .

Lemma 3. If P (x) is a linearized polynomial with a leading coefficient∗ α 6= 0 and the splitting field ofP (x) is Fqn , then

P (x) = αPV (x)
[t] for some subspaceV in Fqn and somet ∈ N.

∗The leading coefficient of a polynomial is the coefficient of the monomial with the highest degree.
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Proof: According to Theorem 1, all the roots ofP are of the same multiplicityqt for somet ∈ N, and these roots form

a subspaceV of Fqn . Hence,

P (x) = α
∏

v∈V

(x− v)[t] = α

(

∏

v∈V

(x − v)

)[t]

= αPV (x)
[t].

In the sequel, we show several connections between the coefficients of subspace polynomials and properties of the respective

subspaces. One of the main tools in our analysis is the difference between the indices of the two topmost non-zero coefficients:

Definition 3. For V ∈ Gq (n, k) andPV (x) = x[k] +
∑i

j=0 αjx
[j], whereαi 6= 0, let gap(V ) , k − i.

As the following lemma illustrates, the gap of two subspace induces a lower bound on their related distance.

Lemma 4. If V ∈ Gq (n, k1) andU ∈ Gq (n, k2) are two distinct subspaces such thatk1 ≤ k2 and

PV (x) = x[k1] +

t
∑

j=0

αjx
[j]

PU (x) = x[k2] +

s
∑

j=0

βjx
[j],

such thatαt 6= 0 andβs 6= 0, thendim (U ∩ V ) ≤ max(s, t+ k2 − k1).

Proof: According to the properties ofFqn , for all α, β ∈ Fqn and for alli ∈ N we have that(α+ β)[i] = α[i] + β[i], and

therefore

PV (x)
[k2−k1] = x[k2] +

t
∑

j=0

α
[k2−k1]
j x[j+k2−k1].

Since the polynomialsPV , P
[k2−k1]
V have the same set of roots, and since the roots ofPU are simple, it follows that†gcd(PV , PU ) =

gcd(P
[k2−k1]
V , PU ). Hence, ifQ(x) , PU (x) − PV (x)

[k2−k1] then

gcd(PV , PU ) = gcd(P
[k2−k1]
V , PU )

= gcd(P
[k2−k1]
V , PU (mod P

[k2−k1]
V ))

= gcd(P
[k2−k1]
V , Q(mod P

[k2−k1]
V )).

SincedegQ ≤ max([s], [t+ k2 − k1]), it follows that

logq deg gcd(P
[k2−k1]
V , Q(mod P

[k2−k1]
V )) ≤ max(s, t+ k2 − k1),

and hencedim(U ∩ V ) ≤ max(s, t+ k2 − k1).

A special case of Lemma 4, where the subspacesU and V are of the same dimensionk, provides the following useful

corollaries.

Corollary 1. If U, V ∈ Gq (n, k) thendim(U ∩ V ) ≤ k −min(gap(U), gap(V )).

Corollary 2. If U, V ∈ Gq (n, k) thend(U, V ) ≥ 2min(gap(U), gap(V )).

†gcd(s, t) stands for the greatest common denominator of the elementss, t.
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Remark 1. Corollary 2 is not tight, i.e., there exists subspacesU, V ∈ Gq (n, k) wheregap(V ) = gap(U) = 1 andd(U, V ) =

2k − 2. For example, letγ be a root ofx7 + x + 1 = 0, and use this primitive polynomial to generateF27 . The following

polynomials are subspace polynomials ofU, V ∈ G2 (7, 3) for which gap(U) = gap(V ) = 1 and d(U, V ) = 2 · 3− 2 · 1 = 4.

In particular, U andV are cyclic shifts of each other.

PU (x) = x[3] + x[2] + (γ6 + γ4 + γ3 + γ + 1)x[1] + (γ3 + γ2 + γ + 1)x

PV (x) = x[3] + (γ2 + 1)x[2] + (γ6 + γ4 + γ + 1)x[1] + (γ5 + γ4 + γ)x

Aside from cyclic shifts we will also use the well knownFrobenius mappingF i as a method to increase the size of the

codes. For an elementα ∈ Fqn andi ∈ {0, . . . , n− 1}, theFq-mappingF i is defined asF i(α) = α[i] (see [15, p. 75]). For a

subspaceV andi ∈ {0, . . . , n−1} the ith Frobenius shiftof V is defined asF i(V ) , {v[i] | v ∈ V }. Since the functionF i is

an automorphism, it follows that the setF i(V ) is a subspace of the same dimension asV . We now characterize the subspace

polynomials of the subspaces resulting from these mappings.

Lemma 5. If V ∈ Gq (n, k) and α ∈ F∗
qn thenPαV (x) = α[k] · PV (α

−1x). That is, ifPV (x) = x[k] +
∑i

j=0 αjx
[j] then

PαV (x) = x[k] +
∑i

j=0 α
[k]−[j]αjx

[j].

Proof: By definition,

PαV (x) =
∏

u∈αV

(x− u)

=
∏

v∈V

(x− αv)

= α[k]
∏

v∈V

(α−1x− v)

= α[k] · PV (α
−1x)

= x[k] +

i
∑

j=0

α[k]−[j]αjx
[j].

Lemma 6. If V ∈ Gq (n, k) and PV (x) = x[k] +
∑i

j=0 αjx
[j] then for all s ∈ {0, . . . , n − 1}, PF s(V )(x) = x[k] +

∑i
j=0 F

s(αj)x
[j].

Proof: If s ∈ {0, . . . , n− 1} andu ∈ F s(V ) thenu = F s(v) for somev ∈ V . SinceF s is an automorphism, it follows

that

u[k] +

i
∑

j=0

F s(αj)u
[j] = F s(v)[k] +

i
∑

j=0

F s(αj)F
s(v)[j]

= F s(v[k]) +

i
∑

j=0

F s(αjv
[j]) = F s



v[k] +

i
∑

j=0

αjv
[j]





= F s (PV (v)) = F s

(

∏

w∈V

(v − w)

)

= F s(0) = 0.

Therefore all elements ofF s(V ) are roots ofx[k] +
∑i

j=0 F
s(αj)x

[j]. Since the degree of this polynomial is[k], the claim

follows.
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The next lemma shows a connection between the coefficients ofthe subspace polynomial of a given subspaceV ∈ Gq (n, k)

and the number of its distinct cyclic shifts. To formulate our claim, we need the following equivalence relation.

Definition 4. For α, β ∈ F∗
qn and an integert which dividesn, the equivalence relation∼t is defined as follows

α ∼t β ⇐⇒
α

β
∈ Fqt .

Clearly, ifα ∼t β thenα ∈ βF∗
qt∩αF

∗
qt , and since all the cyclic shifts ofF∗

qt in F∗
qn are disjoint, it follows thatβF∗

qt = αF∗
qt .

Hence, the equivalence classes under this relation are all the cyclic shifts ofF∗
qt in F∗

qn . Therefore, there are exactlyq
n−1
qt−1

equivalence classes of∼t , each of which is of sizeqt − 1.

Lemma 7. Let V ∈ Gq (n, k) and PV (x) = x[k] +
∑i

j=0 αjx
[j]. If αs 6= 0 for somes ∈ {1, . . . , i} and gcd(s, n) = t then

αV 6= βV for all α, β ∈ F∗
qn such thatα ≁t β.

Proof: Assume for contradiction thatαV = βV for someα, β ∈ F∗
qn , whereα ≁t β. By Lemma 5

PαV (x) = x[k] +

i
∑

j=0

αj · α
[k]−[j]x[j]

PβV (x) = x[k] +
i
∑

j=0

αj · β
[k]−[j]x[j].

The equalityαV = βV , together with Lemma 2, imply that










αsα
[k]−[s] = αsβ

[k]−[s]

α0α
[k]−1 = α0β

[k]−1

,

and sinceα0 6= 0 by Lemma 1, it follows that










(

α
β

)[k]−[s]

= 1
(

α
β

)[k]−1

= 1

.

By dividing the second equation by the first equation, we get
(

α
β

)[s]−1

= 1. Hence,ord(αβ )| gcd(q
n − 1, qs − 1). It is well

known that inZqn−1, gcd(qn − 1, qs − 1) = qgcd(n,s) − 1 (e.g., [11, p. 147, s. 38]). Therefore,ord(αβ )|q
gcd(n,s) − 1, which

implies thatαβ ∈ Fqt sincet = gcd(n, s), and henceα ∼t β, a contradiction.

Corollary 3. Let V ∈ Gq (n, k) and PV (x) = x[k] +
∑i

j=0 αjx
[j]. If αs 6= 0 for somes ∈ {1, . . . , i} with gcd(s, n) = t

thenV has at leastq
n−1
qt−1 distinct cyclic shifts.

To construct codes with more than one orbit using the Frobenius automorphism, one would like to find a sufficient condition

that a certain Frobenius shift is not a cyclic shift. Such a condition can be derived for the special case, where the subspace

polynomial is a certain trinomial. The proof of the following lemma is deferred to Appendix A.

Lemma 8. If V ∈ Gq (n, k) andPV (x) = x[k] + α1x
[1] + α0x, whereα1 6= 0, then there existsα ∈ F∗

qn , i ∈ {0, . . . , n− 1}

such thatF i(V ) = αV if and only if




α
qk−q
q−1

0

α
qk−1
q−1

1





qi−1

= 1 .
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III. C YCLIC SUBSPACECODES

In this section some constructions of cyclic subspace codesare provided. We distinguish between two cases. In Subsec-

tion III-A we discuss codes whose codewords have a full length orbit. In Subsection III-B codes whose codewords do not

have a full length orbit are discussed.

Definition 5. Given a subspaceV ∈ Gq (n, k), the set{αV |α ∈ F∗
qn} is called the orbit ofV . The subspaceV has a full

length orbitif |{αV |α ∈ F∗
qn}| =

qn−1
q−1 . If V does not have a full length orbit then it has adegenerate orbit.

Note, that a cyclic code with a full length orbit cannot have aminimum distance2k. This is a simple observation from the

fact that each elementα ∈ F∗
qn appears in exactlyq

k−1
q−1 codewords.

We will give several simple related results on subspaces andthe size of their orbits. The first claim may be extracted from

[10, Corollary 3.13]. For completeness we include a shorterself-contained proof.

Lemma 9. If V ∈ Gq (n, k) then |{αV | α ∈ F∗
qn}| =

qn−1
qt−1 for somet which dividesn.

Proof: Let γ be a primitive element inFqn and letℓ ∈ N be the smallest integer such thatγℓV = V . Clearly,ℓ|qn−1 and

it is readily extracted that eachi ∈ N and each0 ≤ s < ℓ satisfyγsV = γiℓ+sV . Furthermore, for everys1, s2 ∈ {0, . . . , ℓ−1}

the setsAsj , {γiℓ+sj | i ∈ N} satisfy |As1 | = |As2 |. Let γi1·ℓ, γi2·ℓ ∈ A0 for somei1, i2 ∈ N. SinceA0 = {γiℓ | i ∈ N} it

follows that
(

γi1·ℓ + γi2·ℓ
)

V ⊆ γi1·ℓV + γi2·ℓV = V + V = V,

and henceγi1·ℓ + γi2·ℓ ∈ A0, that is,A0 is closed under addition. SinceA0 is also closed under multiplication, it follows

thatA0 is the multiplicative group of some subfieldFqt of Fqn . Therefore,|{αV | α ∈ F∗
qn}| = ℓ = qn−1

qt−1 .

An immediate consequence of Lemma 9 is that the largest possible size of an orbit isq
n−1
q−1 , which justifies Definition 5.

As will be shown in the sequel (see Section III-B), the parameter t from Lemma 9 must also dividek. A formula for the

number of orbits of each possible size is given in [8]. Most ofthe k-dimensional subspaces ofFqn have full length orbits.

The main goal in constructing cyclic codes is to obtain as many orbits as possible in the code. This task will be left for future

work. In this work we consider first the existence of cyclic codes with one full length orbit and cyclic codes with multiple

full length orbits. Later, we consider the largest cyclic codes for which all the orbits are degenerate.

A. Codes with Full Length Orbits

Lemma 10. [17, p. 107, Theorem 10] The polynomialQ(x) , x[n] − x is the product of all monic irreducible polynomials

overFq with degree dividingn.

Theorem 2. If qk−1 dividesn andx[k]−1+x[1]−1+1 is irreducible overFq then the polynomialx[k]+x[1]+x is a subspace

polynomial with respect toFqn .

Proof: Assume thatx[k]−1 + x[1]−1 +1 is irreducible overFq and its degree dividesn. By Lemma 10x[k]−1 + x[1]−1 +

1|Q(x), and hencex[k] + x[1] + x|Q(x). Therefore,xqk + xq + x is a subspace polynomial (see Definition 2), i.e.,PV (x) =

x[k] + x[1] + x for some subspaceV .

Corollary 4. If qk−1 dividesn, x[k]−1+x[1]−1+1 is irreducible overFq, andV ∈ Gq (n, k) is the subspace whose subspace

polynomial isx[k] + x[1] + x, thenC ,
{

αV | α ∈ F∗
qn
}

is a cyclic subspace code of sizeq
n−1
q−1 and minimum distance at
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least2k − 2.

Proof: According to Corollary 3, since the coefficient ofxq in PV is nonzero, there areq
n−1
q−1 distinct cyclic shifts inC.

By Lemma 5 and Corollary 2, the minimum distance ofC is at least2k − 2.

Although there exists an extensive research on irreducibletrinomials over finite fields (e.g., [24]), no explicit construction

of irreducible trinomials of the above form is known. However, the following examples were easily found using a computer

search.

Example 2. Since the polynomialsx2k−1 + x + 1 are irreducible overF2 for all k ∈ {2, 3, 4, 6, 7, 15}, it follows that the

polynomialx2k + x2 + x is a subspace polynomial of a subspaceV ∈ G2

(

(2k − 1)t, k
)

for all t ∈ N. Therefore, the code

C , {αV | α ∈ F
∗

q(2k−1)t
} is cyclic code of size2t·(2

k−1) − 1 and minimum distance2k − 2 in G2

(

(2k − 1)t, k
)

.

By using a similar approach we have that for anyk and q, cyclic codes inGq (n, k) can be explicitly constructed for

infinitely many values ofn. The construction will make use of the following lemma.

Lemma 11. If f(x) =
∏t

i=1 p
αi

i (x) is a polynomial overFq andp1(x), . . . , pt(x) are its irreducible factors inFq thenf(x)

splits completely inFqn for n = lcm{deg pi(x)}
t
i=1.‡

Proof: According to [15, Corollary 2.15, p. 52], the splitting fieldof an irreducible polynomial of degreem overFq is

Fqm . Therefore, for eachi = 1, . . . , t, the splitting field ofpi is Fqni , whereni , deg pi. For anyi, the only finite fields that

containFqni are of the formFqr for r such thatni|r. Hence, the smallest field that containsFqni for all i is Fqn .

Theorem 3. For anyk and q we may explicitly construct a cyclic subspace code of sizeqn−1
q−1 and minimum distance2k− 2

in Gq (n, k) for infinitely many values ofn.

Proof: By factoringT (x) , x[k] + x[1] + x and computing the least common multiplier of the degrees of its factors we

find the degree of the splitting field ofT (x) (see Lemma 11). The subspaceV , whose corresponding subspace polynomial is

T (x) may be easily found by finding the kernel of the linear transformation defined byT . If C ,
{

αV | α ∈ F∗
qn
}

then by

Corollary 3 there areq
n−1
q−1 distinct cyclic shifts inC. By Lemma 5 and Corollary 2, the minimum distance ofC is at least

2k − 2. Infinitely many values ofn will are by considering the cyclic shifts ofV in all the field extensions of the splitting

field.

Remark 2. Theorem 3 proves Conjecture 1 for infinitely many values ofn.

Remark 3. The codes implied by Theorems 2 and Theorem 3 cannot be enlarged using the Frobenius isomorphism due to

Lemma 8, since for anyi ∈ {0, . . . , n− 1} we have that theith Frobenius shift is also a cyclic shift.

Let N = t ·n and letγ be a primitive element inFqN . Note, that the set{0}∪{γi(qN−1)/(qn−1)}q
n−2

i=0 is the unique subfield

Fqn of FqN . Let V be a subspace ofFqn . SinceFqn ⊆ FqN we can view the subspaceV as a subspace ofFqN overFq.

Now, we present a general method for constructing cyclic codes inGq (N, k), whereN = t · n for some primen, which

have more than one full length orbit. We do so by using the Frobenius automorphism.

‡lcm{si}
t

i=1
stands for the least common multiplier of the integerss1, . . . , st.
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Lemma 12. Letn be a prime,n|N , V ∈ Gq (N, k) andPV (x) = x[k]+α1x
[1]+α0x, whereα0, α1 ∈ F∗

qn . If α
qk−1
q−1

1 ≁1 α
qk−q
q−1

0

(see Definition 4) then the codeC ⊆ Gq (N, k) defined by

C ,

n−1
⋃

i=0

{

α · F i(V ) | α ∈ F
∗
qN

}

(1)

is of sizen · qN−1
q−1 and minimum distance2k − 2.

Proof: The codeC is obviously cyclic. By Lemmas 4, 5, and 6, the dimension of the intersection between any two

distinct subspaces inC is at most 1, and hence the minimum distance ofC is 2k − 2.

To show that|C| = n · q
N−1
q−1 , fix i and notice that by Lemma 6 we have that the coefficient ofx[1] in PF i(V )(x) is non-zero.

Therefore, Lemma 7 implies that the set{α · F i(V ) | α ∈ F∗
qN } consists ofq

N−1
q−1 distinct subspaces.

To complete the proof, we have to show that all the sets in the union in (1) are disjoint. Leti, j ∈ {0, . . . , n− 1}, i 6= j,

and assume for contradiction that there existsβ, γ ∈ F∗
qN such thatβF i(V ) = γF j(V ). W.l.o.g assume thatj > i, and denote

U , F i(V ). Notice that by Lemma 6 we have

PU (x) = PF i(V )(x) = x[k] + F i(α1) · x
[1] + F i(α0) · x = x[k] + α

[i]
1 · x[1] + α

[i]
0 · x.

SinceF j−i(U) = β
γ · U , we may apply Lemma 8 to get









(

αqi

0

)
qk−q
q−1

(

αqi

1

)
qk−1
q−1









qj−i−1

= 1. (2)

Denotez ,
α

qk−q
q−1

0

α
qk−1
q−1

1

and notice that

A1. Equation (2) implieszq
i(qj−i−1) = 1.

A2. The conditionα
qk−1
q−1

1 ≁1 α
qk−q
q−1

0 implies z /∈ Fq.

A3. Sinceα0, α1 ∈ F∗
qn it follows that z ∈ F∗

qn .

By A1 and A3 we have thatord(z) divides bothqi(qj−i − 1) andqn − 1, thereforeord(z)|gcd(qi(qj−i − 1), qn − 1). Since

qn − 1 is not a power ofq, it follows thatgcd(qn − 1, qi) = 1, and hence,

gcd(qi(qj−i − 1), qn − 1) = gcd(qj−i − 1, qn − 1).

It is well known that in any fieldgcd(xr − 1, xs − 1) = xgcd(r,s) − 1 (e.g., [11, p. 147, s. 38]). Therefore, the primality ofn

implies thatgcd(qj−i − 1, qn − 1) = qgcd(j−i,n) − 1 = q− 1, and henceord(z)|q− 1. The only elements ofFqN whose order

dividesq − 1 are the elements ofFq, and hencez ∈ Fq, a contradiction to A2.

Lemma 13 which follows, whose proof is deferred to Appendix A, shows that coefficientsα0, α1 from Lemma 12 may be

easily found inFqn .

Lemma 13. Let n be prime and letγ be a primitive element inFqn . If α0 , γ andα1 , γq thenα
qk−1
q−1

1 ≁1 α
qk−q
q−1

0 .

As a consequence of Lemma 12 and Lemma 13 we have the followingtheorem.
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Theorem 4. Let n be prime,γ a primitive element ofFqn , and defineα0 , γ andα1 , γq. If FqN is the splitting field of

the polynomialx[k] + α1x
[1] + α0x andV ∈ Gq (N, k) its corresponding subspace, then

C ,

n−1
⋃

i=0

{

α · F i(V ) | α ∈ F
∗
qN

}

is a cyclic code of sizen · qN−1
q−1 and minimum distance2k − 2.

Note that the construction in Theorem 4 improves the construction of Theorem 3. In Theorem 3 we construct a code with

one full length orbit, where in Theorem 4 we add multiple orbits without compromising the minimum distance.

B. Codes with degenerate orbits

In this subsection it is shown that subspaces ofGq (n, k) that may be considered as subspaces over a subfield ofFqn which

is larger thanFq, form a cyclic code with a unique subspace polynomial structure. The cyclic property and the minimum

distance of this code are an immediate consequence of this unique structure.

Lemma 14. If n, k ∈ N, k < n and d ∈ N dividesgcd(n, k), then there exists anFqd -homomorphism fromGqd (n/d, k/d) to

Gq (n, k).

Proof: Let Fn/d

qd
be the vector space of dimensionn/d over qd. It is widely known that there exists an isomorphismf

from F
n/d

qd
to F(qd)n/d . Notice that by our abuse of notation, bothFn/d

qd
andF(qd)n/d can be considered as vector spaces over

Fqd . Since there is a unique field withqn elements,Fqn may also be considered as a vector space overFqd . Therefore, there

exists an isomorphismg : F
n/d

qd
→ Fqn such thatg , h ◦ f , whereh is some isomorphism fromF(qd)n/d to Fqn .

Notice that for allu, v ∈ F
n/d

qd
and α, β ∈ Fqd , we haveg(αv + βu) = αg(v) + βg(u). For V ∈ Gqd (n/d, k/d) let

G(V ) , {g(v)|v ∈ V }. The setG(V ) is clearly a subspace of dimensionk over Fq in Fqn . Furthermore, the function

G : Gqd (n/d, k/d) → Gq (n, k) is injective sinceg is injective.

Lemma 14 allows us to define the following set of subspaces.

Construction 1. For n, k ∈ N and d ∈ N such thatd| gcd(n, k), let Cd be the code

{G(V )|V ∈ Gqd (n/d, k/d)},

whereG was defined in the proof of Lemma 14.

SinceCd is the image of an injective function fromGqd (n/d, k/d) to Gq (n, k), we have the following.

Corollary 5. |Cd| =
[

n/d
k/d

]

qd
.

Remark 4. The codeCd from construction 1 may be alternatively defined as

Cd ,







k/d
∑

i=1

αiFqd

∣

∣

∣ α1, . . . , αk/d ∈ Fqn are linearly independent overFqd







.

The proof of the equivalence of this alternative definition appears in Appendix B. The codeCd may also be defined as the set

of all subspaces ofGq (n, k) that are also subspaces overFqd .

The subspaces inCd admit a unique subspace polynomial structure, from which the useful properties ofCd are apparent.
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Lemma 15. If V ∈ Gq (n, k) thenV ∈ Cd if and only ifPV (x) =
∑k/d

i=0 cix
[di] for someci’s in Fqn .

Proof: Let V ∈ Cd, and letU ∈ Gqd (n/d, k/d) be such thatF (U) = V (see Construction 1). By Definition 2 it follows

thatPU |x
(qd)n/d

−x. Sincex(qd)n/d

−x = x[n]−x, it follows thatPU is a subspace polynomial of a subspaceW ∈ Gq (n, k).

The roots ofPU are precisely the set{g(u)|u ∈ U}, whereg is the isomorphism betweenFn/d

qd
andFqn mentioned in the

proof of Lemma 14, and hence,W = V . SincePU is a subspace polynomial of a subspace inGqd (n/d, k/d), its subspace

polynomial is of the formPU (x) =
∑k/d

i=0 cix
(qd)i . SincePV = PU , the claim follows.

Conversely, letV ∈ Gq (n, k) with PV (x) =
∑k/d

i=0 cix
[di]. By Definition 2, it follows thatPV |x

[n] − x, and thus

PV |x
(qd)n/d

− x. ThereforePV is a subspace polynomial of someU ∈ Gqd (n/d, k/d), and henceV ∈ Cd.

Corollary 6. Cd ⊆ Gq (n, k) is a cyclic subspace code.

Proof: Let V ∈ Cd andα ∈ F∗
qn . By Lemma 15 the subspace polynomial ofV is of the formPV (x) =

∑k/d
i=0 cix

[di]

for someci ∈ Fqn . By Lemma 5 the subspace polynomial ofαV is PV (x) =
∑k/d

i=0 ciα
[k]−[di]x[di]. Again by Lemma 15, it

follows thatαV ∈ Cd.

Since forV ∈ Cd we have thatgap(V ) ≥ d, and the following result is a consequence of Corollary 2 andDefinition 3.

Corollary 7. The minimum distance ofCd is 2d.

The structure of the subspace polynomials of the codewords of Cd allows us to construct a codeC which is a union of

Cdi for distinct di’s which dividegcd(n, k). We now analyze the size and distance of the resulting code.

Lemma 16. Let k, n ∈ N, k < n. If d1, . . . , dt divide bothn and k and d = lcm(d1, . . . , dt) then
⋂t

i=1 Cdi = Cd.

Proof: According to Lemma 15 ifV ∈ Cd then PV (x) =
∑k/d

i=0 cix
[id]. Sincedj |d for eachj, we may also write

PV (x) =
∑k/dj

i=0 c′ix
[idj ], where all additional coefficients are 0, and thusV ∈ Cdj for eachj.

On the other hand, ifV ∈
⋂t

i=1 Cdi , again by Lemma 15 it follows that all nonzero coefficients ofPV correspond tox[ℓ]

such thatdj |ℓ for eachj. Thus,d|ℓ andV ∈ Cd.

Construction 2. Let k, n ∈ N, k < n. If d1, . . . , dt divide bothn and k then letC ,
⋃t

i=1 Cdi .

Lemma 17. C is a cyclic code of with codewords of dimensionk and minimum distance2min{di}
t
i=1. The size ofC is given

by

|C| =

t
∑

i=1

[

n/di
k/di

]

qdi

−
∑

i<j

[

n/ lcm(di, dj)

k/ lcm(di, dj)

]

qlcm(di,dj)

+
∑

i<j<ℓ

[

n/ lcm(di, dj , dℓ)

k/ lcm(di, dj , dℓ)

]

qlcm(di,dj,dℓ)

− · · · .

Proof: By Corollary 7 we have thatgap(V ) ≥ min{di}
t
i=1 for eachV ∈ C, and hence the minimum distance ofC is

at least2min{di}
t
i=1 by Corollary 2. By Corollary 5 we have that|Cdi | =

[

n/di

k/di

]

qdi
for eachi. Furthermore, by Lemma 16

the size of the intersection ofCdi1
, . . . ,Cdiℓ

is
[n/d
k/d

]

qd
whered = lcm(di1 , . . . , diℓ). These facts allow us to obtain the exact

size ofC using the inclusion-exclusion principle [16, Chapter 10].

Using similar techniques, we show that a cyclic code over a large field may be embedded in a Grassmannian over a smaller

field, while preserving cyclicity and multiplying the minimal distance by some factor. Note that Construction 1 is a special

case of this technique, where the embedded code isGqd (n/d, k/d).

Theorem 5. Let d be an integer such thatd| gcd(n, k). If C ⊆ Gqd (n/d, k/d) is a cyclic code with minimum distance
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2 · (k/d)− 2δ then there exists a cyclic codeC′ ⊆ Gq (n, k) of size|C| and minimum distance2k − 2dδ.

Proof: Let g : F
n/d

qd
→ Fqn andG : Gqd (n/d, k/d) → Gq (n, k) be the embeddings defined in the proof of Lemma 14.

If C′ , {G(V )|V ∈ C} then |C′| = |C|, sinceG is injective. The cyclic property ofC′ follows from the fact thatPV (x) =

PG(V )(x) for all V ∈ C, as shown in the proof of Lemma 15. To bound the minimum distance ofC′ it suffices to show that

if U1, U2 ∈ C then

dim (G(U1) ∩G(U2)) = d · dim(U1, U2).

Indeed, ifw , dim(U1 ∩U2), then sinceg is an isomorphism of subspaces overFqd , it follows that the setZ , {g(z)|z ∈

U1∩U2} is a subspace ofFqn overFq. By a simple counting argument,dimZ = dw, and hence,dim (F (U1) ∩ F (U2)) ≥ dw.

Assuming for contradiction thatdim (F (U1) ∩ F (U2)) > dw clearly implies thatdim(U1 ∩ U2) > w, a contradiction.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have considered constructions of cyclic subspace codes. We have proved the existence of a cyclic code in

Gq (n, k) for any givenk and infinitely many values ofn. The constructed codes have minimum subspace distance2k−2, the

normalizer of a Singer subgroup is their automorphism groupif n is a prime, and they have full length orbits for all values

of n. We have also constructed large codes when all the orbits aredegenerated. We have shown how the representation of

subspaces by their subspace polynomials can be used in constructing subspace codes.

For future research, the main problems are to construct cyclic codes of large size, to explore the structure and properties of

our codes, and to examine possible decoding algorithms for them. It is easily verified that the vast majority of subspaceshave

full length orbits. Therefore, it seems reasonable to conjecture that full length orbits with minimum distance2k − 2 exist for

any value ofn, k, q (see Conjecture 1). Although the codes presented in SectionIII-A are the first known explicit construction

of such codes, they are most likely the tip of the iceberg, andcodes of these parameters are abound.

Although the gap of two polynomials provides significant information about the intersection of their respective subspaces,

Remark 1 shows that the gap might not be the most efficient toolfor this purpose. Therefore, another open problem is finding

a better measure for the intersection of two subspaces, and in particular, two subspaces from the same orbit.

A prominent part of the study of subspace polynomials relieson understanding the connection between the coefficients of

a polynomial and the size of the respective splitting field. Hence, any progress in this direction may provide an improvement

of our results.
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APPENDIX A

Proof: (of Lemma 8) AssumeF i(V ) = αV for someα. By Lemmas 5 and 6,

PαV (x) = x[k] + α[k]−[1] · α1x
[1] + α[k]−1 · α0x

PF i(V )(x) = x[k] + F i(α1)x
[1] + F i(α0)x.

By Lemma 2,











α[k]−[1] · α1 = F i(α1)

α[k]−1 · α0 = F i(α0)











α[k]−[1] · α1 = α
[i]
1

α[k]−1 · α0 = α
[i]
0
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Sinceα0 6= 0 (by Lemma 1) andα1 6= 0, α[1]−1 =
(

α0

α1

)qi−1

. Using some algebraic manipulations we have,

α[k]−[1] = α
[i]−1
1

α
(q−1)

(

qk−q
q−1

)

= αqi−1
1

(

α0

α1

)(qi−1)
(

qk−q
q−1

)

= αqi−1
1

α
qk−q
q−1 ·(qi−1)

0

α
qk−q
q−1 ·(qi−1)+(qi−1)

1

= 1

α
qk−q
q−1 ·(qi−1)

0

α
qk−1
q−1 ·(qi−1)

1

= 1





α
qk−q
q−1

0

α
qk−1
q−1

1





qi−1

= 1,

which concludes the proof of one direction of the lemma. Now assume





α
qk−q
q−1

0

α
qk−1
q−1

1





qi−1

= 1.

Defineα ,

(

α0

α1

)
qi−1
q−1

. We get





α
qk−q
q−1

0

α
qk−1
q−1

1





qi−1

= 1





α
qk−q
q−1

0

α
qk−q
q−1

1 · α1





qi−1

= 1





α
qi−1
q−1

0

α
qi−1
q−1

1





qk−q

= αqi−1
1

αqk−q = αqi−1
1 .

In addition, we haveαqk−1 = αqk−qαq−1 =
(

αqi−1
1

)

·

(

αqi−1
0

αqi−1
1

)

= αqi−1
0 . Therefore:











αqk−q = αqi−1
1

αqk−1 = αqi−1
0











αqk−q · α1 = αqi

1

αqk−1 · α0 = αqi

0

,

which implies thatF i(V ) = αV due to equality between the coefficients of the corresponding subspace polynomials.

Proof: (of Lemma 13) Assume for contradiction that

α
qk−q
q−1

0 ∼1 α
qk−1
q−1

1 ,
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i.e., there existsα ∈ F
∗
q such that

α · γ
qk−q
q−1 = (γq)

qk−1
q−1 . (3)

Raising both sides of (3) by the(q − 1)th power yields

γqk−q = γqk+1−q

γqk(q−1) = 1. (4)

Sinceq ∈ Z∗
qn−1, it follows that q has a multiplicative inversew moduloqn − 1. By raising both sides of (4) by thewkth

power we get thatγq−1 = 1, and hence,γ ∈ Fq, a contradiction.

APPENDIX B

In this appendix we prove the equivalence of an alternative definition to Construction 1 (see Remark 4). The following

lemma is required for the proof of equivalence.

Lemma 18. If V ∈ Gq (n, k) may be written asV =
⋃ℓ

i=1 αiFqd , whered| gcd(n, k), thenV may be written as a direct sum

V =
∑k/d

j=1 βjFqd .

Proof: We show that for everyJ ⊆ {1, . . . , ℓ}, every αiFqd is either contained or mutually disjoint withAJ ,
∑

j∈J αjFqd . Assume for contradiction that there existsαiFqd , i /∈ J that is neither contained nor mutually disjoint withAJ .

That is, there existsu1, u2 ∈ F∗
qd such thatαiu1 ∈ AJ andαiu2 /∈ AJ . Sinceαiu1 ∈ AJ it follows that there existssj ∈ Fqd

for eachj ∈ J such thatαiu1 =
∑

j∈J αjsj . Hence,αi = u−1
1

∑

j∈J αjsj and thereforeαiu2 = u−1
1

∑

j∈J αjsj · u2.

However, sinceu2/u1 ∈ F∗
qd and sj ∈ Fqd for all j, it follows that αiu2 =

∑

j∈J αj(sju2/u1) ∈ AJ , a contradiction.

Therefore, by takingα1Fqd and iteratively expanding it by adding disjoint cyclic shifts of Fqd , the required direct sum may

be achieved.

Theorem 6. Let d ∈ N such thatd| gcd(n, k). For a subspaceV ∈ Gq (n, k), V ∈ Cd (see Construction 1) if and only ifV

may be written as a direct sum of cyclic shifts ofFqd .

Proof: If V ∈ Cd then by Lemma 15,PV (x) =
∑k/d

i=0 cix
[id]. Since for allγ ∈ Fqd we haveγ[d]−1 = 1, it follows that

if PV (v) = 0 for v ∈ Fqn , thenPV (γv) =
∑k/d

i=0 ci(γv)
[id] = PV (v) = 0. Therefore,V is a union of cyclic shifts ofFqd ,

and according to Lemma 18 may be written as a direct sum of cyclic shifts of Fqd .

On the other hand, ifV =
∑k/d

i=1 αiFqd such thatαi ∈ Fqn , let βi ∈ F
n/d

qd
, i ∈ {1, . . . , k/d} such thatβi , g−1(αi), where

g is the isomorphism betweenFn/d

qd
andFqn mentioned in the proof of Lemma 14. LetU be the linear span of{βi}

k/d
i=1 in

F
n/d

qd
overFqd . We show thatU is a k

d -subspace. Assume for contradiction that the elements of{βi}
k/d
i=1 are linearly dependent,

i.e., there existsγi ∈ Fqd such that
∑

γiβi = 0. Hence,0 = g(0) = g(
∑

γiβi) =
∑

γiαi and therefore, the element0 ∈ Fqn

has two distinct representations as an element ofV . This implies that|V | < qk, a contradiction. Now observe that,

G(U) = {g(u) | u ∈ U}

=
{

g
(

∑

γiβi

)

| ∀i, γi ∈ Fqd

}

=
{

∑

γiαi | ∀i, γi ∈ Fqd

}

=
∑

αiFqd = V,

and henceV ∈ Cd.
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