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Subspace Polynomials and Cyclic Subspace Codes
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Abstract

Subspace codes have received an increasing interestlyedaatto their application in error-correction for randomtwork
coding. In particular, cyclic subspace codes are possibididates for large codes with efficient encoding and decpaligorithms.
In this paper we consider such cyclic codes and provide omti&ins of optimal codes for which their codewords do noteha
full orbits. We further introduce a new way to represent pales codes by a class of polynomials called subspace poigtsom
We present some constructions of such codes which are @mticanalyze their parameters.

|. INTRODUCTION

Let IF, be the finite field of sizg, and letF; £ F, \ {0}. Forn € N denote by, the field extension of degree of F,
which may be seen as the vector space of dimensionerF,. By abuse of notation, we will not distinguish between these
two concepts. Given a non-negative integer n, the set of allk-dimensional subspaces Bj~ forms aGrassmanniarspace
(Grassmannian in short) ovél,, which is denoted by, (n, k). The size ofG, (n, k) is given by the well-known Gaussian
coefficient[’,ﬂq. The set of all subspaces Bf~ is called theprojective spacef ordern overF, [9] and is denoted b, (n).

The setP,(n) is endowed with the metrid(U,V) = dim U + dim V' — 2dim(U N V). A subspace code is a collectidh
of subspaces fror?,(n). In this paper we will be mainly interested aonstant dimensionodes (called also Grassmannian
codes), that isC C G, (n, k) for somek < n.

Subspace codes and constant dimension codes have attaalciedf research in the last eight years. The motivation was
given in [13], where it was shown how subspace codes may he inseandom network coding for correction of errors and
erasures. This application of subspace codes renewedtdreshin a wide variety of problems related to vector sp§tks
[7], [A8], [21], particularly in constructions of large cesl with error correction capability, efficient encodingaithms for
these codes, as well as efficient decoding algorithms.

In [L3] a novel construction of large subspace codes ukiregrized polynomialga.k.a.p-polynomials [19]) is presented.
These codes were later shovin][20] to be related to optim#t-nagtric codes through an operation calléting. These two
techniques and some of their variants are the main knows foolconstructing subspace codes.

It was previously suggested][5].][9]. [14] thayclic subspace codemay present a useful structure that can be applied
efficiently for the purpose of coding. For a subspaces G, (n, k) anda € F;. we define thecyclic shiftof V asal’ =
{av | v € V}}. The setaV is clearly a subspace of the same dimensioVagwo cyclic shifts are calledlistinctis they

form two different subspaces. A subspace c@Uis calledcyclic if for every a € F.. and everyV € C we haveaV € C.
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In [Q], [14] several examples of optimal cyclic subspaceasodith small dimension were found. In| [5] an optimal code
which also forms aj-analog of Steiner system was presented. This code has amawthism group which is generated by
a cyclic shift and the Frobenius mapping (known togethes aks a normalizer of a Singer subgrolp [5]1[12, pp. 187-188])
These codes raised the plausible conjecture that large @ades may be constructed in any dimension. However, thrermu
approaches for construction of subspace codes fall shtitheindling cyclic codes. In this paper we aim at establigmew
general techniques for constructions of cyclic codes.

In [22] a thorough algebraic analysis of the structure oflicyarbit codes is given. One class of such codes is the cyclic

codes. However, no nontrivial construction is given.[In][&CGonstruction of cyclic codes with degenerated orbit (o€ dess

q"—1
qg—1

raised the following conjecture:

than ) is given. This construction produces a subcode of somescimdeur work (see Sectidn [I[IB). Both [10] and 22]

Conjecture 1. For every positive integers, k& such thatk < n/2, there exists a cyclic code of si£§:—11 in G, (n,k) and

minimum distanc&k — 2.

Notice that fork > n/2+ 1, a minimum distance otk — 2 is clearly not possible. The original conjecturel[22] cadiesed
k < n/2. However, an exhaustive search which was usedih [10] prthadthe conjecture is false for = 8,k = 4,q¢ = 2.
Whenk < n/2, it appears that there is enough flexibility that many suotlescexist, while fork = n/2, such a code might
not exist. Its existence depends on the existence of a scdsphich forms a structure similar to a difference set [5]. In
this paper it is proved that this conjecture is true for a giteand infinitely many values ofi, along with several options
for explicit constructions (see Theordih 3). In1[10]][22}nias also pointed out that it is not known how to constructicycl
codes with multiple orbits. In the sequel we show that ouhmégques can be useful for this purpose (see Lerhma 12 and
Constructiori 11).

One of the tools in our constructions is the so-called sutespazolynomials, which are a special case of linearized
polynomials. Subspace polynomials form an efficient methbepresenting subspaces, from which one can directly cedu
certain properties of the subspace which are not evidenbinesother representations. These objects were studiecein th
past for various purposes, e.g., bounds on list-decodingegd-Solomon and rank-metric codgsl[23], constructionffofea
dispersers([3], and finding an element of high multiplicaterder in a finite field[6].

The rest of this paper is organized as follows. Section Il stért with the known definition of subspace polynomials. We
continue to analyze properties of the subspaces corresmptalthe subspace polynomials, in particular we examistadce
properties induced by cyclic and Frobenius shifts of thaggsgaces. Based on these properties, in Sektfibn Il we demnsi
constructions of optimal cyclic codes with degeneratetsylaind cyclic codes with full orbits. The main goal in consting
cyclic codes is to obtain as many orbits as possible in the.cdhis task will be left for future work. In this work we codsir
first the existence of cyclic codes with one full length ornitd cyclic codes with multiple full length orbits. Concloss are

given in Sectio 1V.

Il. SUBSPACES AND THEIRSUBSPACEPOLYNOMIALS

For the rest of this papér andn will be positive integers such that < k£ < n, and we denoté/] = ¢*. We begin by

defining linearized polynomials and subspace polynomials.



Definition 1. A linearized polynomial was defined by Ore[19] as follows:
P(x) é ag * x[k] +ak71 . I[kil] + P +a1 . x[l] _|_ ag -
where the coefficients are in the finite fiélg. .

Linearized polynomials have numerous applications insitasoding theory (e.g.L [17, Chapter 4]). It is widely knottnat
the roots of any linearized polynomial form a subspace inesextension off,» (seen as a vector space oW&y) and for
everyV € G, (k,n), the polynomial[], ., (z — v) is a linearized polynomial[17, p. 118]. We will be particrjlanterested

in linearized polynomials that have simple roots with resge some fieldf,..

Definition 2. [B], [4], [6]] [Z3]IA monic linearized polynomial P with coefficients inF,. is called a subspace polynomial
with respect tdF,. if the following equivalent conditions hold:
1) P dividesz!™ — .

2) P splits completely oveF,~ and all its roots have multiplicity 1.

From now on, we shall omit the notation &f whenever it is clear from context. The first two lemmas aréétiand
well known. The simplicity of the roots of a subspace polymanfand in particular, the simplicity of 0) gives rise to the

following lemma.

Lemma 1. In any subspace polynomial, the coefficient:a§ non-zero. Conversely, every linearized polynomial with-zero

coefficient ofr is a subspace polynomial in its splitting field.

Proof: It is readily verified that O is a root of multiplicity 1 if andndy if the coefficient ofx is non-zero. Therefore,
if P is a subspace polynomial, all of his roots are of multipjicit (see Definitiof ), including 0. On the other hand, if
Q is a linearized polynomial with a non-zero coefficientagfthen by [15, Theorem 3.50, p. 108], all the roots(®fhave
multiplicity 1. |

It also follows from Definition[P that for a give? € G, (n,k) the polynomial[], ., (z — v) is the unique subspace

polynomial whose set of roots 18, which leads to the following lemma.
Lemma 2. Two subspaces are equal if and only if their correspondingspace polynomials are equal.
Lemmal2 allows us to denote y, the unique subspace polynomial corresponding to a givespsudel .

Example 1. Let¢ be a positive integer such thafn. It is known thatlF,. is a subfield (in particular, a subspace) Bf;».

The subspace polynomial &f; is Pr , (z) = 2l — .
The connection between linearized polynomials and sulespatynomial is given by the following two claims.

Theorem 1. [15] Theorem 3.50, p. 108] IP is a linearized polynomial whose splitting field %, then each root ofP

in F,» has the same multiplicity, which is a non-negative poweg,and the roots form a linear subspace&f- .

Lemma 3. If P(z) is a linearized polynomial with a leading coeﬁicgm # 0 and the splitting field ofP(z) is F,», then

P(x) = aPy(z)!" for some subspac¥ in F,. and some € N.

*The leading coefficient of a polynomial is the coefficient o€ tmonomial with the highest degree.



Proof: According to Theorerill, all the roots &f are of the same multiplicity’ for somet € N, and these roots form

a subspacé” of F;». Hence,

[ |
In the sequel, we show several connections between theaentf of subspace polynomials and properties of the réspec

subspaces. One of the main tools in our analysis is the diffar between the indices of the two topmost non-zero cosftii
Definition 3. For V € G, (n,k) and Py (z) = 2l + ' a2, wherea; # 0, let gap(V) £ k — .
As the following lemma illustrates, the gap of two subspamhices a lower bound on their related distance.

Lemma 4. If V € G, (n, k1) andU € G, (n, k2) are two distinct subspaces such that< k, and

t
Pv(x) = x[kl] + Z ajx[j]
j=0

Py(z) = zlkl4 Zﬁjxm’
j=0
such thata; # 0 and 85 # 0, thendim (U N V) < max(s, t + ka — k1).

Proof: According to the properties &, for all o, 3 € F,» and for alli € N we have tha{a + 3)[! = ol + g7, and

therefore

t
Py (z)lk2 =kl = glka) 4 Za.[jkz—kl]x[j-l-kz—kl].
j=0

Since the polynomial®,, P‘[,kz_’“] have the same set of roots, and since the roofg,adire simple, it follows thggcd(PV, Py) =
ged(PF 1 py). Hence, ifQ(x) £ Py(x) — Py (z)l2~M! then

ged(Py, Py) = ged(PP>~M py)
= ged(PY* M Py (mod P THIY)
= ged(P* M, Q(mod P,
Sincedeg Q < max([s], [t + k2 — k1]), it follows that
log,, deg gcd(P‘[/krkl],Q(mod P‘[,krkl])) < max(s,t+ ko — k1),

and hencelim(U NV) < max(s,t + ko — k1). [ |
A special case of Lemniad 4, where the subspdéesnd V' are of the same dimensidn provides the following useful

corollaries.
Corollary 1. If U,V € G, (n, k) thendim(U N'V) < k — min(gap(U), gap(V)).

Corollary 2. If U,V € G, (n, k) thend(U, V') > 2min(gap(U), gap(V)).

tged(s,t) stands for the greatest common denominator of the elements



Remark 1. Corollary[2 is not tight, i.e., there exists subspa€ed” € G, (n, k) wheregap(V) = gap(U) = 1 andd(U,V) =
2k — 2. For example, lety be a root ofz” + 2 + 1 = 0, and use this primitive polynomial to generate-. The following
polynomials are subspace polynomialslafl” € G (7, 3) for which gap(U) = gap(V) =1 andd(U,V)=2-3—-2-1=4.
In particular, U and V' are cyclic shifts of each other.

Pyx) = all+alPl+ S+ +% +y+ 02l + (P +2 +y+ 1)z

2B+ (P + D)2l + (P4t +y+ Dl + (P 4 + )2

3
=
I

Aside from cyclic shifts we will also use the well knowfiobenius mapping™® as a method to increase the size of the
codes. For an element< F,. andi € {0,...,n — 1}, theF,-mappingF’ is defined ag"(a) = ol! (see[15, p. 75]). For a
subspacé” andi € {0,...,n— 1} theith Frobenius shifof V is defined ag (V) £ {v[!! | v € V}. Since the functio” is
an automorphism, it follows that the sBt(V) is a subspace of the same dimensiori/adVe now characterize the subspace

polynomials of the subspaces resulting from these mappings

Lemma 5. If V € G, (n,k) and o € F;.. then P,y (z) = al¥ . Py(a~'z). Thatis, if Py (z) = 2[¥ + Z;:o ozl then
Poy(z) =2 + 3% alf=Ula .

Proof: By definition,

Pav@) = ] @-w

ueaV

= H(x—av)

veV

= oM H (a™lz —wv)
veV
= o Py(a )
= g4 Z o=l 2],
j=0

Lemma 6. If V € G, (n,k) and Py(z) = 2l + 3! a,zl then for all s € {0,....n — 1}, Preyy(a) = 2l +
Zj‘:o Fs(aj)x[j]-

Proof: If s € {0,...,n— 1} andu € F*(V) thenu = F*(v) for somev € V. SinceF* is an automorphism, it follows
that
43Pl = )+ Y P ag) ()]
=0 =0

Fo (vl + ZFS(aij]) A T Zajv[j]
=0 =0

= F*(Py(v))=F® <H (v— w)> = F*(0) = 0.
weV
Therefore all elements af*(V) are roots ofzl*l + 37'_ F*(a;)zl). Since the degree of this polynomial [ig], the claim

follows. [ |



The next lemma shows a connection between the coefficieriteecfubspace polynomial of a given subsplce G, (n, k)

and the number of its distinct cyclic shifts. To formulate @alaim, we need the following equivalence relation.
Definition 4. For «, 8 € F;. and an integert which dividesn, the equivalence relation, is defined as follows
«
an~y = B S th.

Clearly, if a« ~; 8 thena € [C1uapled Qe and since all the cyclic shifts dﬂ;;t in .. are disjoint, it follows thaBIF;t = offy..
Hence, the equivalence classes under this relation ar@ealtyclic shifts ofF;t in F7... Therefore, there are exact%z_;l1

equivalence classes of; , each of which is of sizg’ — 1.

Lemma 7. Let V € G, (n, k) and Py (z) = a8 + 3% a;al0. If o, # 0 for somes € {1,...,i} and ged(s,n) = ¢ then
aV # BV for all a, 8 € Fy. such thata = 3.

Proof: Assume for contradiction thatV' = BV for someq, 3 € F}., wherea ~; 3. By Lemmab

Pay(e) = o +3 a; - al-Ull
j=0

Pay(z) = a4+ ;. R0
J=0

The equalityaV = BV, together with Lemmal2, imply that
aaM-ls = o, 8-l
aoa[k]_l = aoﬂ[k]_l

and sinceng # 0 by Lemmal, it follows that

(%)[k]*[S] _

[k]—1
(%)
[s]-1
By dividing the second equation by the first equation, we (g%ﬁ =1. Hence,ord(%)| ged(g™ —1,¢° — 1). It is well

known that inZg» 1, ged(¢" — 1,¢° — 1) = ¢&*»*) — 1 (e.g., [I1, p. 147, s. 38]). Therefored(%)|¢=!("™*) — 1, which

implies that3 € F,: sincet = ged(n, s), and hencex ~; 3, a contradiction. [ |

1

Corollary 3. LetV € G, (n,k) and Py (z) = «¥ + 3% a;2ll. If a, # 0 for somes € {1,...,i} with ged(s,n) = ¢
thenV has at Ieast‘éfjl1 distinct cyclic shifts.

To construct codes with more than one orbit using the Fralsemutomorphism, one would like to find a sufficient condition

that a certain Frobenius shift is not a cyclic shift. Such adition can be derived for the special case, where the sabspa

polynomial is a certain trinomial. The proof of the followilemma is deferred fo AppendiX A.

Lemma 8. If V € G, (n, k) and Py (z) = z¥ + a1zl + apz, whereay # 0, then there exists: € Fin, i € {0,...,n — 1}
such thatF* (V) = oV if and only if




IIl. CycLic SUBSPACECODES

In this section some constructions of cyclic subspace cadegrovided. We distinguish between two cases. In Subsec-
tion [IzAlwe discuss codes whose codewords have a full leragbit. In Subsection III-B codes whose codewords do not

have a full length orbit are discussed.

Definition 5. Given a subspac&” € G, (n, k), the set{aV|a € F;.} is calledthe orbit of V. The subspac&” has afull

length orbitif [{aV]a € F}. }| = % If V' does not have a full length orbit then it hasdagenerate orbit

Note, that a cyclic code with a full length orbit cannot havenimimum distancek. This is a simple observation from the
fact that each element € F. appears in exactl)fi;;ll codewords.
We will give several simple related results on subspacestamdize of their orbits. The first claim may be extracted from

[10, Corollary 3.13]. For completeness we include a shastdi-contained proof.

n

Lemma 9. If V € G, (n,k) then[{aV | a € F}. }| = ?f—11 for somet which dividesn.

Proof: Let y be a primitive element iff,» and let/ € N be the smallest integer such thgl” = V. Clearly,¢|¢" —1 and
it is readily extracted that eadhc N and each) < s < ¢ satisfyy*V = ~¥+*V, Furthermore, for every,, s, € {0,...,0—1}
the setsd,, £ {7¥**+% | i € N} satisfy|A,, | = |A,,|. Lety* ~y72¢ € A, for someiy, iz € N. Sincedy = {7* | i € N} it
follows that
(,yil-l + 71'2%) vV C ,yiyEV + 7i2-lV ViV =V,

and hencey’** + ~2'¢ ¢ Ay, that is, A, is closed under addition. Sincé, is also closed under multiplication, it follows
that Ay is the multiplicative group of some subfielt): of Fy». Therefore[{aV | a € F}. }| ={ = % [ |
An immediate consequence of Lemfrda 9 is that the largestlgessize of an orbit is‘{;_—_ll, which justifies Definitior 5.
As will be shown in the sequel (see SectlonTlI-B), the par@mefrom Lemmal® must also dividé. A formula for the
number of orbits of each possible size is givenlih [8]. Mosth# k-dimensional subspaces Bf. have full length orbits.
The main goal in constructing cyclic codes is to obtain asyvabits as possible in the code. This task will be left foufet
work. In this work we consider first the existence of cycliades with one full length orbit and cyclic codes with multiple

full length orbits. Later, we consider the largest cycliaes for which all the orbits are degenerate.

A. Codes with Full Length Orbits

Lemma 10. [17, p. 107, Theorem 10] The polynomi@i(z) £ zI"! — z is the product of all monic irreducible polynomials

over[F, with degree dividing..

Theorem 2. If ¢* — 1 dividesn and ¥ +z[11-1 1 1 is irreducible overF, then the polynomiat!®! 4z 42 is a subspace

polynomial with respect t& .

Proof: Assume that:!*/=1 4 z[11=1 41 is irreducible oveif, and its degree divides. By Lemma10sF—1 4 -1 4
1|Q(x), and hencer!® + 21 + 2|Q(x). Thereforez¢" + 27 + z is a subspace polynomial (see Definitdn 2), iBy(z) =

x® 200 4+ 2 for some subspack. ]

Corollary 4. If ¢* —1 dividesn, 2F=1 4-2[1=1 1 is irreducible overF,, andV € G, (n, k) is the subspace whose subspace

polynomial isz!*l + 21l + z, thenC £ {aV | a € F}. } is a cyclic subspace code of siég:le and minimum distance at



least2k — 2.

Proof: According to CorollaryB, since the coefficient of in P, is nonzero, there aré::—ll distinct cyclic shifts inC.

By Lemmal® and Corollarfy]2, the minimum distance@fs at least2k — 2. [ |

Although there exists an extensive research on irredutillemials over finite fields (e.g.[_[24]), no explicit consttion
of irreducible trinomials of the above form is known. Howewviae following examples were easily found using a computer

search.

Example 2. Since the polynomialst*1 + 2 + 1 are irreducible overF, for all k € {2,3,4,6,7,15}, it follows that the
polynomialz2" + 22 + z is a subspace polynomial of a subspdces G- (2" —1)t,k) for all t € N. Therefore, the code

C&{aV |acF* } is cyclic code of size® ("~ — 1 and minimum distancek — 2 in G, ((2F — 1)t, k).

q(2k71)t

By using a similar approach we have that for anyand ¢, cyclic codes inG, (n, k) can be explicitly constructed for

infinitely many values of.. The construction will make use of the following lemma.

Lemma 11. If f(z) = H‘;:lpf‘i (x) is a polynomial ovelf', and pi(z), ..., p:(x) are its irreducible factors irF, then f(x)

splits completely irff,» for n = lem{degp;(z)}i_,

Proof: According to [15, Corollary 2.15, p. 52], the splitting fietd an irreducible polynomial of degree overF, is
F,~. Therefore, for each = 1,...,¢, the splitting field ofp; is F ., wheren; £ deg p;. For anyi, the only finite fields that

containF», are of the formF,- for » such that,;|r. Hence, the smallest field that contaifis.; for all i is Fyx. [ |

Theorem 3. For any k£ and ¢ we may explicitly construct a cyclic subspace code of %qgé and minimum distancek — 2

in Gq (n, k) for infinitely many values of.

Proof: By factoringT'(x) £ z[* + z[!l + 2 and computing the least common multiplier of the degreessofactors we
find the degree of the splitting field df(z) (see Lemméa-1). The subspake whose corresponding subspace polynomial is
T(x) may be easily found by finding the kernel of the linear transfation defined by". If C £ {aV | a € F}. } then by
Corollary[3 there are% distinct cyclic shifts inC. By Lemma[b and Corollary]2, the minimum distance(fs at least
2k — 2. Infinitely many values of. will are by considering the cyclic shifts df in all the field extensions of the splitting

field. [
Remark 2. Theoren{B proves Conjecturé 1 for infinitely many values.of

Remark 3. The codes implied by Theorefls 2 and Thedrém 3 cannot be edlaging the Frobenius isomorphism due to

Lemmd8, since for anye {0,...,n — 1} we have that théth Frobenius shift is also a cyclic shift.

Let N = ¢-n and lety be a primitive element i ~ . Note, that the sef0} U {»yi(qul)/(q"fl)}zqi(;Q is the unique subfield
Fgn of F,~. Let V be a subspace df,.. SinceF,» C F,~ we can view the subspadé as a subspace df v overF,.
Now, we present a general method for constructing cyclicesad G, (N, k), where N = ¢ - n for some primen, which

have more than one full length orbit. We do so by using the &naks automorphism.

J;lcm{si}gz1 stands for the least common multiplier of the integers. . ., s¢.



k_4 ok =
<1 ao"’

Lemma 12. Letn be a primen|N, V € G, (N, k) and Py (z) = z¥1 +- oy 2" + gz, whereag, ay € F.. If a:"f
(see Definitiori 4) then the code C G, (N, k) defined by

n—1
ce o F)laery
=0
is of sizen - ‘1:_

—1 and minimum distancek — 2.

)
Proof: The codeC is obviously cyclic. By Lemmakl4.]5, anid 6, the dimension & thtersection between any two
distinct subspaces it is at most 1, and hence the minimum distance&Cab 2k — 2.
To show thaiC| = n-

N_1

q
q—1

, fix 7 and notice that by Lemnid 6 we have that the coefficient!Bfin Privy(x) is non-zero.
Therefore, Lemm@&l7 implies that the et - F*(V) | a € I’ } consists of

N —

q711 distinct subspaces.

To complete the proof, we have to show that all the sets in thenuin (1) are disjoint. Let,j € {0,...,n — 1},i # j,
and assume for contradiction that there exists € F;y such that3F*(V) = vF7 (V). W...o.g assume that > i, and denote
U = F(V). Notice that by Lemm@l6 we have

Since F7=4(U)

Py(z) = Ppiyy(z) = 2 + Fi(a) - 2l + Fi(ap) - 2 = 2" + ol gl 4 ol g
= % -U, we may apply Lemmgl8 to get

i—i_
. o ~1 q 1
q =
(o8)

k

—— =1
i —1
(o)
qkflq
-
Denotez £ %o

gk —1

and notice that
a1 B

)
Al. Equation[() implies? (¢’ '~1) = 1.
k k

a~-1
A2. The conditiona,~

a"_—q
~1 " impliesz ¢ F,.
A3. Sinceay,a; € Fon it follows thatz € Fon.

By Al and A3 we have thatrd(z) divides bothg’(¢?~* — 1) and¢™ — 1, thereforeord(z)|gcd(q*(¢"~* — 1),¢"™ — 1). Since
q™ — 1 is not a power ofy, it follows thatgcd(¢" — 1,4*) = 1, and hence,

ged(q' (@~ = 1),¢" = 1) = ged(¢’ " = 1,¢" = 1).

It is well known that in any fieldjed(z” — 1, 2° — 1) = 29¢4™*) — 1 (e.g., [11, p. 147, s. 38]). Therefore, the primalitysof

implies thatged(¢/ " — 1,¢" — 1) = ¢54U=%") —1 = g — 1, and hencerd(z)|q — 1. The only elements df .~ whose order
dividesq — 1 are the elements df,, and hence: € F,, a contradiction to A2.
easily found inF .

]
Lemma[IB which follows, whose proof is deferred to Appendjxshows that coefficientsy, a; from Lemma1R may be

qk*q

oy o'

a -2
Lemma 13. Let n be prime and lety be a primitive element iff;». If ag =~ and a; £ 49 thena,”~

k_1
As a consequence of Lemral 12 and Lenimia 13 we have the follaveagem.
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Theorem 4. Letn be prime,y a primitive element oF ., and defineng £ v and a; £ 9. If F,~ is the splitting field of

the polynomiaks!®! + oy 2" + agz and V € G, (N, k) its corresponding subspace, then

ca U {a CFUV) | ae F;N}
1=0

V-1

is a cyclic code of size - p, and minimum distancek — 2.

Note that the construction in Theoréh 4 improves the coositni of Theoreni 3. In Theorefd 3 we construct a code with

one full length orbit, where in Theoreih 4 we add multiple tghiithout compromising the minimum distance.

B. Codes with degenerate orbits

In this subsection it is shown that subspacegpfn, k) that may be considered as subspaces over a subfidighofrhich
is larger thanF,, form a cyclic code with a unique subspace polynomial stmectThe cyclic property and the minimum

distance of this code are an immediate consequence of tigseistructure.

Lemma 14.1f n,k € N,k < n andd € N dividesgcd(n, k), then there exists ali,.-homomorphism frong . (n/d, k/d) to
Gq (n, k).

Proof: Let de/d be the vector space of dimensiarid over ¢?. It is widely known that there exists an isomorphigm
n/d

from qu

to F(gaynsa. Notice that by our abuse of notation, bdffqﬁd/d andIF(qd)n/d can be considered as vector spaces over

[F,qa. Since there is a unique field wigt elementsF,» may also be considered as a vector space Byer Therefore, there
n/d
qd

Notice that for allu,v € IFZd/d and o, 8 € Fua, we haveg(av + fu) = ag(v) + Bg(u). For V € G, (n/d,k/d) let

exists an isomorphism : "/ — F,. such thaty = h o f, whereh is some isomorphism from (gayn/a t0 Fyn.

G(V) £ {g(v)|lv € V}. The setG(V) is clearly a subspace of dimensidnover F, in F,.. Furthermore, the function
G : Gy (n/d, k/d) — G4 (n, k) is injective sincey is injective. [ ]

Lemma[I# allows us to define the following set of subspaces.

Construction 1. For n,k € N andd € N such thatd| ged(n, k), let C4 be the code
{GV)IV € Ggu (n/d, k/d)},
where G was defined in the proof of Lemrhal 14.
SinceC, is the image of an injective function frof,« (n/d, k/d) to G, (n, k), we have the following.

Corollary 5. |Cy| = [1/] gt

Remark 4. The codeC, from constructioi Il may be alternatively defined as

k/d
(Cd é Z O[Z'qu
i=1

The proof of the equivalence of this alternative definitippears i Appendix|B. The codg may also be defined as the set

ai,...,ay/q € Fgn are linearly independent over .

of all subspaces ofj, (n, k) that are also subspaces ovEfa.

The subspaces i@@; admit a unique subspace polynomial structure, from whiehuseful properties of; are apparent.
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Lemma 15. If V € G, (n, k) thenV € C, if and only if Py (z) = 324 ¢,2[%] for somec;’s in Fyn.

%

Proof: Let V € Cq4, and letU € G, (n/d, k/d) be such tha#(U) = V (see Construction] 1). By Definitidd 2 it follows
that Py|2(?)""" - z. Sincez(®)""* — 2 = zI" — z, it follows that P,; is a subspace polynomial of a subspates G, (n., k).
The roots of Py are precisely the sefg(u)|u € U}, whereg is the isomorphism betwedhzﬁ{d andF,» mentioned in the
proof of Lemma&IK, and henc&/ = V. Since Py is a subspace polynomial of a subspace&jn (n/d, k/d), its subspace
polynomial is of the formPy (z) = Y-¥¢ ¢,2(4")" . Since Py, = Py, the claim follows.

Conversely, letV € G, (n,k) with Py(z) = S:¥% ¢zl By Definition 2, it follows that Py |zI") — z, and thus

Py|a@)""" — 2. ThereforePy is a subspace polynomial of somee G« (n/d, k/d), and hence/ € C,. [
Corollary 6. C4 C G, (n, k) is a cyclic subspace code.

Proof: Let V' € C4 anda € F;.. By LemmalIb the subspace polynomialWfis of the form Py (z) = Zfi‘é izl
for somec; € Fy. By Lemmalb the subspace polynomial@¥ is Py (z) = S-¥/¢ ;oM -1dilzldi) Again by Lemmd 15, it
follows thataV € C,. [ |

Since forV € C, we have thagap(V') > d, and the following result is a consequence of Corolldry 2 Befinition[3.
Corollary 7. The minimum distance @, is 2d.

The structure of the subspace polynomials of the codewdird3;callows us to construct a codé which is a union of

Cg, for distinctd;’s which divideged(n, k). We now analyze the size and distance of the resulting code.
Lemma 16. Letk,n € N,k < n. If dy,...,d; divide bothn and & andd = lem(dy, ..., d;) then ﬂle Cq4, = Cq.

Proof: According to LemmdZ5 ift” € C4 then Py (z) = Zfé‘é cizl. Sinced;|d for eachj, we may also write
Py (z) = Zfﬁf c,zl"] where all additional coefficients are 0, and tHis Cy, for eachj.
On the other hand, it € ﬂﬁzl Cy,, again by Lemma&1s5 it follows that all nonzero coefficientsiyf correspond taz!’)
such thatd;|¢ for eachj. Thus,d|¢ andV € C,. [ |

Construction 2. Letk,n € N,k < n. If dy,...,d, divide bothn and k then letC £ UE:l Caq,.

Lemma 17. C is a cyclic code of with codewords of dimensioand minimum distanc2min{d, }!_,. The size of is given

by
t
o n/dl n/ lcm(di,dj,dg)
|C| - Z [k/di Z {k’/ lcm(di, dj, dg) qlcm(di,dj,dg)

=1

n/lem(d;, d;)
] 0 Z Lﬂ/ lem(d;, d;) | temcd;.a;) +
T B A R A

Proof: By Corollary[Z we have thagap(V) > min{d;}!_, for eachV € C, and hence the minimum distance ©fis

at least2 min{d, }!_, by Corollary[2. By Corollary 5 we have tht,, | = [Z;g] ,. for eachi. Furthermore, by Lemmiall6
i gas
the size of the intersection @, ,...,Cq,, is [Zﬁ] , Whered = lem(d;, , ..., d;,). These facts allow us to obtain the exact
q
size of C using the inclusion-exclusion principle [16, Chapter 10]. [ |

Using similar techniques, we show that a cyclic code overgeléield may be embedded in a Grassmannian over a smaller
field, while preserving cyclicity and multiplying the minahdistance by some factor. Note that Construcfibn 1 is aiapec

case of this technique, where the embedded codkg.i$n/d, k/d).

Theorem 5. Let d be an integer such thai|gcd(n, k). If C C G,a (n/d,k/d) is a cyclic code with minimum distance
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2. (k/d) — 26 then there exists a cyclic cod& C G, (n, k) of size|C| and minimum distancek — 2dJ.

Proof: Let g : IFZd/d — Fgn andG : Ga (n/d, k/d) — G, (n, k) be the embeddings defined in the proof of Lenimh 14.
If C' £ {G(V)|V € C} then|C’| = |C|, sinceG is injective. The cyclic property of’ follows from the fact thatPy (z) =
Pevy(z) forall V € C, as shown in the proof of LemmB_]15. To bound the minimum distasf C’ it suffices to show that
if Uy,Us € C then
dim (G(Uy) N G(Uz)) = d - dim(Uy, Us).

Indeed, ifw £ dim(U; NU>), then sincey is an isomorphism of subspaces oW, it follows that the setZ £ {g(z)|z €
UiNU} is a subspace d,~ overF,. By a simple counting argumentim Z = dw, and hencedim (F(U;) N F(Us)) > dw.

Assuming for contradiction thatim (F'(Uy) N F'(Usz)) > dw clearly implies thadim(U; N Usz) > w, a contradiction.  H

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have considered constructions of cyclicgabe codes. We have proved the existence of a cyclic code in
G, (n, k) for any givenk and infinitely many values of. The constructed codes have minimum subspace dis@inee, the
normalizer of a Singer subgroup is their automorphism gribupis a prime, and they have full length orbits for all values
of n. We have also constructed large codes when all the orbitslegenerated. We have shown how the representation of
subspaces by their subspace polynomials can be used irrectitg subspace codes.

For future research, the main problems are to construciccyotles of large size, to explore the structure and pregseai
our codes, and to examine possible decoding algorithmdémt It is easily verified that the vast majority of subspatase
full length orbits. Therefore, it seems reasonable to adnje that full length orbits with minimum distan@é — 2 exist for
any value ofn, k, ¢ (see Conjecturiel 1). Although the codes presented in Sdidiiddare the first known explicit construction
of such codes, they are most likely the tip of the iceberg, @dks of these parameters are abound.

Although the gap of two polynomials provides significantimhation about the intersection of their respective sutspa
Remark1 shows that the gap might not be the most efficientftwdhis purpose. Therefore, another open problem is finding
a better measure for the intersection of two subspaces,mpdrticular, two subspaces from the same orbit.

A prominent part of the study of subspace polynomials radiesinderstanding the connection between the coefficients of
a polynomial and the size of the respective splitting fielénkk, any progress in this direction may provide an impra@rém

of our results.
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APPENDIXA
Proof: (of Lemmal8) Assumé (V) = aV for somew. By Lemmagb anfl6,
Pov(z) = i Bl U B B R e

Prigvy() = a4+ F'(an)al + Fi(ag)a.

By Lemmal2,



Sinceag # 0 (by Lemmal) andy; # 0, all-1

a1
lkl=01 a[li]fl
a(q_l)(qj:lq) = a?ifl

oo (D (=) -
()" -

k

@ 9. (¢ —1)

OéO o 1
k_ . . -
L5 (g' =D +(g 1)

1
k .
4 771q '(ql_l)

«a q
0 —

g = 1
qq71 '(qlfl)

ay
qkflq 7 -1
q—

OLO - 1
gk —1 - 9
q—1

@

which concludes the proof of one direction

Definea £ (a—g) 7 We get

[e3

k q'—1

k q'—1

[
=

" k k i "1 i_
In addition, we havey? ~ = o4~ ! = (0/11 1) - (%. ) = ol . Therefore:
«

which implies thatF" (V) = oV due to equality between the coefficients of the correspansitbspace polynomials.

k
ad 9o =al

k
q -1, —
« oy =

Proof: (of Lemmal1B) Assume for contradiction that

a*—q gk -1
1

q—1 q—
Oéo ~1 Oél )

14
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i.e., there existsx € ]F; such that

- /y q—1 = (’yq) q—1 . (3)
Raising both sides of13) by thg — 1)th power yields
qu*q N

N AU (4)

Sinceq € Z%. 4, it follows thatq has a multiplicative inverse» modulo¢™ — 1. By raising both sides of14) by the*th

power we get that’~! = 1, and hencey € F,, a contradiction. ]

APPENDIXB

In this appendix we prove the equivalence of an alternatefinidion to Constructiof]l (see Remdrk 4). The following

lemma is required for the proof of equivalence.

Lemma 18. If V € G, (n, k) may be written ag” = Ule a;IF ja, whered| ged(n, k), thenV may be written as a direct sum
k/d
V= Zjil BjFga.

Proof: We show that for every/ C {1,...,/}, every o;F . is either contained or mutually disjoint withl ; =

Zje] a;F ... Assume for contradiction that there existgF ., ¢ .J that is neither contained nor mutually disjoint withy.
That is, there existg, us € de such thato;u; € Ay andogup ¢ Ajy. Sincea;uy € A it follows that there exists; € Fa
for eachj € J such thato;u; = ZJEJ ajs;. Hence,a; = ufl ZjeJ ajs; and thereforenus = ufl ZjeJ Q;js; - us.
However, sinceus/u; € de ands; € F,a for all j, it follows that c;us = Zje] a;(sjuz/ur) € Ay, a contradiction.

Therefore, by takingy; F,. and iteratively expanding it by adding disjoint cyclic ghibf IF ., the required direct sum may

be achieved. [ |

Theorem 6. Let d € N such thatd| gcd(n, k). For a subspacd” € G, (n,k), V € C4 (see Constructiofl1) if and only If

may be written as a direct sum of cyclic shiftslfi.

Proof: If V € C,4 then by Lemmd& 15Py (z) = Zfé‘é c;zl. Since for ally € F,« we haveyd—1 =1, it follows that
if Py(v) =0 for v € Fyn, then Py(yv) = S-¥ ¢;(y0)lidl = Py (v) = 0. Therefore,V is a union of cyclic shifts of .,
and according to Lemn{all8 may be written as a direct sum ofccgbifts of Fa.

On the other hand, iV = Zfﬁ «;F 2 such that; € Fgn, let §; € IFZd/d,i € {1,...,k/d} such that3; £ g~ '(o;), where
g is the isomorphism betwee[ﬁ;i/d andF,» mentioned in the proof of Lemniall4. Lét be the linear span o{ﬂi}fﬁ in
IFZd/d overF . We show thalU is ag-subspace. Assume for contradiction that the elemen{m}f:/‘f are linearly dependent,
i.e., there exists; € F . such thaty v;8; = 0. Hence,0 = g(0) = g(>_7:i8:) = >_ i and therefore, the elemedtc Fyn

has two distinct representations as an elemerit oThis implies thatV'| < ¢*, a contradiction. Now observe that,
GU) = {g(u)|uelU}

{g (Z %ﬂi) | Vi, i € qu}

(S i | Vi € Fpaf =Y aiFpa =V,

and hencd’ € Cg. [ |
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