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Rover-to-Orbiter Communication in Mars:
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Abstract—In this paper, we study the communication problem
from rovers on Mars’ surface to Mars-orbiting satellites. We first
justify that, to a good extent, the rover-to-orbiter communication
problem can be modelled as communication over a 2 × 2 X-
channel with the network topology varying over time. For such
a fading X-channel where transmitters are only aware of the
time-varying topology but not the time-varying channel state
(i.e., no CSIT), we propose coding strategies that code across
topologies, and develop upper bounds on the sum degrees-of-
freedom (DoF) that is shown to be tight under certain pattern
of the topology variation. Furthermore we demonstrate that
the proposed scheme approximately achieves the ergodic sum-
capacity of the network. Using the proposed coding scheme, we
numerically evaluate the ergodic rate gain over a time-division-
multiple-access (TDMA) scheme for Rayleigh and Rice fading
channels. We also numerically demonstrate that with practical
orbital parameters, a 9.6% DoF gain, as well as more than
11.6% throughput gain can be achieved for a rover-to-orbiter
communication network.

Index Terms—Mars, Rover-to-Orbiter Communication, X-
channel, Varying Topologies, Coding Across Topologies.

I. INTRODUCTION

As an increasing amount of science and engineering data
are collected by rovers on Mars’ surface and sent back to
Earth, efficient rover-to-Earth communication is of primary
importance. Originally, each Mars exploration rover commu-
nicated to the deep space network (DSN) on Earth directly
in a point-to-point fashion. However, the data rate suffered
from limited rover transmission power, large path loss and
occlusion in line-of-sight. Currently, much more data is sent to
Earth via the relaying of Mars orbiting satellites (orbiters). For
example, each of the 2004 Mars Exploration Rovers (MER)
returned well over 150 Mbits of data to Earth per Mars solar
day (sol), 92% of which were relayed by two Mars orbiters.
That was 5 times of the communication rate of the 1996 Mars
Pathfinder lander, which was only capable of direct-to-earth
(DTE) communication [1]. The dramatic data rate increase
enabled more frequent usage of the data-rich applications like
continuous sensing and monitoring, video recording and high-
resolution, three-color panoramas.
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Current Mars orbiters employ the decode-and-forward (DF)
relaying strategies such that they decode the messages from
rovers and re-encode them to send to Earth. On the rover-to-
orbiter proximity link, time-division-multiple-access (TDMA)
that allows one rover to talk to one orbiter at a time has
been used to avoid interference. Although TDMA requires
low communication overhead and little coordination between
communication entities, it severely limits the overall commu-
nication rate. In this paper, we are interested in within the
DF framework (although other joint-decoding schemes [2]–[4]
may achieve higher data rate), how can we increase the rover-
to-orbiter communication rate without significantly increasing
the system complexity and communication overhead?

To answer this question, we first note that the existence of
a line-of-sight (LOS) communication link from a rover to an
orbiter varies over time. For example, the Mars Reconnais-
sance Orbiter (MRO) appears in the line-of-sight of a rover
located close to the Mars north pole 12 times per sol, for
a duration of 8 minutes each time [5]. Consequently, for a
system comprised of multiple rovers and orbiters, the topology
of the communication network, determined by which rovers
can see which orbiters, varies over time. We also note that
communicating topological information to the rovers requires
little communication overhead (one bit of feedback per rover-
orbiter pair at each time), and is more practical than providing
the rovers with full channel state information.

Even with only knowledge of network topology at transmit-
ters, recent results [6]–[11] have demonstrated the potential
communication rate gains by coding across topologies (CAT)
for the interference channel, X-channel, and broadcast channel
with varying topologies. Given the time-varying property of
the rover-to-orbiter network topology, our goal in this paper
is to understand the fundamental impact of coding across
topologies on the performance of the rover-to-orbiter com-
munication network. As a first step, we justify that a 2-rover,
4-orbiter communication problem can be modelled as a 2× 2
X-channel with varying topologies. We also assume that, due
to practical constraints (e.g., limited coordination), no channel
state information is available at transmitters other than the
network topology (i.e., no CSIT).

For a 2 × 2 Gaussian X-channel with varying topologies
and no CSIT besides the network topology, we identify two
coding opportunities where we may exploit the time varying
topologies by coding across them, and we characterize the
sum-DoF. The key idea of the achievable scheme is to ex-
haustively create coding opportunities in a way that maximizes
the DoF gain. Conversely, we develop upper bounds on the
sum-DoF that is tight under certain pattern of the topology
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variation. In addition to the DoF results, we also demonstrate
that our coding scheme achieves the ergodic sum-capacity to
within a constant gap for uniform-phase, Rayleigh and Rice
fading X-channels with varying topologies.

Finally, we numerically demonstrate the rate gains of our
proposed scheme over the rate achieved by TDMA in Rayleigh
and Rice fading channels with varying topologies. We also
demonstrate that for a 2-rover, 4-orbiter communication net-
work, applying the proposed coding scheme can increase the
DoF by 9.6%, and the throughput by at least 11.6%.

II. PROBLEM SETTING AND STATEMENT OF MAIN RESULTS

To study the rover-to-orbiter communication problem, we
begin by justifying that we may model the problem as com-
munication over a 2 × 2 Gaussian X-channel with varying
topologies.

Currently, the Mars landing rovers (e.g., Mars Science Lab-
oratory (MSL) Curiosity rover [12]) send exploration data to
Earth by relaying through two Mars orbiters: MRO and Mars
Odyssey Orbiter [13]. However, additional orbiters, including
the Mars Express spacecraft and the recently launched Mars
Atmosphere and Volatile Evolution (MAVEN) Orbiter, are also
capable of relaying. We assume, according to [5], that a rover
is able to establish a communication link to an orbiter if and
only if the orbiter is within the line-of-sight of the rover, which
is defined as:

Definition 1 (line-of-sight). An orbiter is said to be within
the line-of-sight (LOS) of a rover if the orbiter forms at least
a 10° elevation angle from the surface tangent plane of the
rover. �

We then simulated a system comprised of 2 rovers and 4
orbiters over one sol (approximately 24 hours), and recorded
the instantaneous network topologies determined by the active
links.

TABLE I
NORMALIZED TIME FRACTIONS OF SOME TOPOLOGIES WITH THREE OR

MORE LOS LINKS OVER A SOL

3.16% 3.16% 1.05% 1.58% 6.84%

7.89% 4.21% 1.05% 1.05% 10.5%

Our simulation indicates that, interestingly, 40% (sum of the
time fractions of the topologies listed in Table I) of the time
when any communication is possible, the network topology
is made up of three or more rover-to-orbiter LOS links. In
all of these “complicated” topologies (listed in Table I), only
2 rovers and 2 orbiters are relevant. Furthermore, because all
orbiters serve as relays to forward decoded messages to Earth,
a rover’s message will reach Earth as long as any single orbiter
can decode the message. Since 1) the topology rarely includes

more than two orbiters, 2) the identity of the rover is irrelevant,
and 3) we wish to maximize the data rate, it is sufficient to
study the sum-capacity of the 2 × 2 X-channel, where each
rover communicates messages to each of the two orbiters.

Additionally, we emphasize that the network topology varies
over time in a non-trivial manner. This is evidenced by
observing that, during one sol, a good fraction of time (ranging
from 1% to 11%) is spent in each of the topologies listed in
Table I. Moreover, the time spent in each topology in Table I is
comparable to the time spent in other topologies with only one
or two LOS communication links. Therefore, to capture the
time-varying properties of the topology of the aforementioned
2×2 X-channel, all non-degenerate topologies should be incor-
porated into the problem formulation as possible scenarios. To
this end, a 2×2 Gaussian X-channel with the topology varying
among all possibilities (except for the case where no LOS
link exists) becomes the natural choice to model the rover-to-
orbiter communication problem.

A. Problem Formulation and Definitions

A 2×2 Gaussian X-channel with varying topologies consists
of two transmitters and two receivers, where each transmitter
has an independent message to send to each of the two
receivers. The network topology is defined by a binary vector
c = (c11, c12, c21, c22)

T , where cij , i, j ∈ {1, 2}, is equal
to 1 if and only if there is a LOS (defined in Definition 1)
communication link from Transmitter j to Receiver i, cij = 0
otherwise. We index all considered topologies in Fig. 1, and
let A = {s1, s2, s3, s4,m1,m2, b1, b2, z1, z2, z3, z4, i1, i2, f}
denote the set of all topology indices. We assume that over
the course of communication (consisting of N time slots),
the network topology changes randomly with an arbitrary
distribution over the possibilities in Fig. 1, and we denote
the fraction of time spent in Topology a as λa, for all a ∈ A.
Because we focus only on time instances where at least one
communication link exists,

∑
a∈A

λa = 1.

Given the varying topology, the output signal at Receiver j
in time slot n is, for i, j ∈ {1, 2}:

Yj(n) =
∑

i:cji(n)=1

hji(n)Xi(n) + Zj(n),

where c(n) is the topology in time slot n, globally known at
all transmitters and receivers, Xi(n) ∈ C is the input symbol
of Transmitter i, hji(n) ∈ C is the channel coefficient from
Transmitter i to Receiver j, and Zj(n) ∼ N (0, 1) is the com-
plex additive white Gaussian noise at Receiver j. We assume
that the channel coefficients, hji(n), are drawn identically and
independently across indices i, j from a bounded, continuous
distribution. Each transmitter is subject to the same power
constraint P , i.e., E{|Xi(n)|2} ≤ P , i = 1, 2.

We denote the collection of channel coefficients over N
time slots as hN = {h11(n), h12(n), h21(n), h22(n)}Nn=1, and
we assume that the transmitters are not aware of the values of
hN , while the receivers know the values of hN perfectly. Note
that this assumption of no CSIT but network topology was
also referred as minimal CSIT in the topological interference
management (TIM) problem defined in [14], .
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Single-link

Multiple-access Broadcast

Z-channel

Interference-free Fully-connected

Fig. 1. Possible topologies for a 2 × 2 X-channel. Each topology diagram
consists of 4 nodes with 2 transmitter nodes on the left and 2 receiver nodes
on the right. A directed edge from a transmitter node to a receiver node exists
if and only if there is a LOS communication link from the transmitter to the
receiver.

Over N time slots, message Wji ∈ {1, . . . , 2NRji}, i, j =
1, 2, is communicated from Transmitter i to Receiver j at rate
Rji. The rate tuple (R11, R12, R21, R22) is achievable if the
probability of decoding error for every message vanishes as
N →∞. The capacity region C is the union of all achievable
rate vectors, and the sum-capacity is defined as

CΣ
∆
= max

(R11,R12,R21,R22)∈C
R11 +R12 +R21 +R22.

We also define the sum degrees-of-freedom (DoF) as dΣ
∆
=

lim
P→∞

CΣ

logP
.

B. Main Results

Our first result characterizes the sum-DoF of the 2 × 2
Gaussian X-channel with the topology varying symmetrically
as defined below:

Definition 2. A 2× 2 Gaussian X-channel with the topology
varying across the ones in Fig. 1, is said to have symmetric
topology variation if λz1 + λz4 = λz2 + λz3 . �

Remark 1. Notice that the property of a “symmetric topology
variation” is a property the fractions of the time the system
stays in different topologies should satisfy, but not a property
of the individual topologies. �

Theorem 1. The sum-DoF of the 2× 2 Gaussian X-channel,
with symmetric topology variation
dΣ =1 + λi1 + λi2

+min
{
λz1 + λz4 , λz1 + λz3 + λf , λz2 + λz4 + λf

}
. (1)

Remark 2. Other than the two interference-free topologies i1
and i2 (which achieves a sum-DoF of 2), all of the topologies
are individually limited to a sum-DoF of 1 without CSIT [15].

Hence when coding within each topology separately, the
maximal achievable sum-DoF is 1+λi1+λi2 , and the last term
in (1) represents the DoF gain by coding across topologies. �

Remark 3. A similar problem is solved in [7] with 4 admissible
topologies z1, z3, i1 and f . Incorporating more topologies into
the problem creates new opportunities for the system to benefit
from coding across topologies (see Section III). �

Without the symmetric constraint on the topology variation,
we have the following lower and upper bounds on the sum-
DoF:

Theorem 2. The sum-DoF of a 2×2 Gaussian X-channel, with
the network topology varying over time across the topologies
listed in Fig. 1, dΣ is bounded as

dΣ ≥1 + λi1 + λi2 +min{λz1 + λz4 , λz2 + λz3 ,

λz1 + λz3 + λf , λz2 + λz4 + λf}, (2)

dΣ ≤1 + λi1 + λi2 +min{λz1 + λz2 + λz3 + λz4
2

,

λz1 + λz3 + λf , λz2 + λz4 + λf}. (3)

Remark 4. In general, the lower and upper bounds in
Theorem 2 do not match. However, as demonstrated in
Table II below, the average gap between the lower and
the upper bounds, evaluated over 10000 randomly cho-
sen {λz1 , λz2 , λz3 , λz4 , λf}, is rather small compared to the
achieved sum-DoF in (2). �

TABLE II
GAPS BETWEEN LOWER AND UPPER BOUNDS OF THE SUM-DOF OF AN

X-CHANNEL WITH VARYING TOPOLOGIES

λz1+λz2+λz3+λz4+λf Maximum Gap Average Gap
0.2 0.0887 0.0174
0.5 0.2164 0.0436
0.8 0.3515 0.0702

Remark 5. Using the proposed coding scheme in Theorem 2
(described in Section III and Appendix II) on the simulated
system whose topology variation is specified in Table I
achieves a DoF gain of 9.47% over the TDMA scheme. To
see this:

1) We apply the proposed coding scheme respectively to the
X-channel containing the 5 topologies at the top of Table I
and another X-channel containing the 5 topologies at the
bottom of Table I.

2) Then we use the normalized time fractions in Table I to
calculate the DoF gains over TDMA (i.e., the last term
in (2)) in each of the X-channels. That is 4.21% for the
top X-channel and 5.26% for the bottom X-channel.

3) We sum up these two DoF gains and compare with the
DoF achieved by the TDMA scheme (=1 because λi1 +
λi2 = 0 for both X-channels in the simulation results) to
obtain an overall DoF gain of 9.47%. �

When channel coefficients are also i.i.d. varying over
time, the following result characterizes the ergodic sum-rate
achieved by our proposed coding scheme:

Theorem 3. For the 2 × 2 Gaussian X-channel with sym-
metric topology variation (defined in Definition 2) and i.i.d.
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(across space and time) channel coefficients, we define
φ

∆
= min{|λz1−λz2 |, λf}, and an ergodic sum-rate RΣ is

achievable if

RΣ ≤A

[
4∑
k=1

λsk + 2(λi1 + λi2) + λb1 + λb2

]
+B

[
λm1

+λm2
+|λz1−λz2 |+|λz3−λz4 |+λf − 3φ

]
+C [min{λz1 , λz2}+ min{λz3 , λz4}] +Dφ, (4)

where
A=E

{
log(1 + |h11|2P )

}
,

B=E
{
log(1 + |h11|2P + |h12|2P )

}
,

C=E
{
log
(∣∣I+ PVVH

∣∣)}
+ E

{
log

(
1 +

|h21(2)|2P
1 + |h22(2)|2/|h22(1)|2

)}
,

D=2E

log

∣∣∣∣∣
[
1 0
0 1 + |h12(3)|2/|h12(1)|2

]
+PUUH

∣∣∣∣∣
1 + |h12(3)|2/|h12(1)|2


 ,

V=

[
h11(1) h12(1)

0 h12(2)

]
, U=

[
h12(2) h11(2)

0 h11(3)

]
,

with all expectations taken over random channel coefficients.

Furthermore, we demonstrate via the following corollary of
Theorem 3 that our coding scheme approximately achieves the
ergodic sum-capacity of the 2 × 2 Gaussian X-channel with
symmetric topology variation, for uniform-phase, Rayleigh
and Rice fading channel coefficients.

Corollary 1. The ergodic sum-capacity of the 2×2 Gaussian
X-channel with symmetric topology variation and i.i.d. (across
space and time) channel coefficients is achievable to within a
constant gap for one of the following channel distributions if
λz1 = λz2 or λf ≤ |λz1 − λz2 |:
• hik = ejθik , and θik is uniformly distributed over [0, 2π),
i, k = 1, 2,

• Rayleigh fading with E{hik} = 0 and E{|hik|2} = 1,
i, k = 1, 2,

• Rice fading with Rice factor Kr = 1.

We present the achievable scheme of Theorem 1 in Sec-
tion III and demonstrate that the proposed scheme is indeed
optimal by proving the converse of Theorem 1 in Section IV
and Appendix I. In Appendix II we provide a sketch of the
proof of Theorem 2, which extends the results of Theorem 1
to the general asymmetric topology variation setting. Finally,
Theorem 3 and Corollary 1 are proved in Section V to
demonstrate the rate performance of the proposed scheme for
fading channels.

III. ACHIEVABILITY OF THEOREM 1

A coding opportunity is a combination of topologies, coding
across which achieves a DoF gain over coding in each topol-
ogy separately. In this section, we first identify two coding
opportunities for the 2×2 X-channel with varying topologies,
and then state our achievable scheme, which optimally creates

and exploits the two coding opportunities to achieve the sum-
DoF of Theorem 1. For ease of exposition, we will ignore
noise terms in the DoF analysis. We also note that, by assump-
tion, all channel coefficients are non-zero with probability 1
at any time.

A. Coding Opportunity 1: {z1, z2}, {z3, z4}
We illustrate in Fig. 2 a two-phase transmission strategy

for the topology combination {z1, z2} to achieve a sum-DoF
of 3

2 , and note that the same scheme can be applied to
topology combination {z3, z4} by relabelling the transmitters
and receivers.

Phase I Phase II

Fig. 2. Illustration of a 3
2

-DoF coding scheme for topology combina-
tion {z1, z2}. Receiver 1 decodes X1(1) and X2(1) from two linearly
independent combinations (L1, L′

1) of (X1(1), X2(1)), and Receiver 2
decodes X1(2) from two linearly independent combinations (L2, L′

2) of
(X1(2), X2(1)).

Receiver 1 uses (L1, L
′
1) to decode X1(1) and X2(1)

(always decodable because all channel gains are almost surely
non-zero); Receiver 2 uses L2 to cancel X2(1) from L′2, and
then decodes X1(2). In total, 3 symbols are decoded in 2 time
slots, achieving a sum-DoF of 3

2 .

B. Coding Opportunity 2: {z2, z4, f}, {z1, z3, f}
Next, we illustrate in Fig. 3 a three-phase transmission strat-

egy for the topology combination {z2, z4, f} (and {z1, z3, f}
by relabelling the receivers) to achieve a sum-DoF of 4

3 .
Receiver 1 uses L1 to cancel X2(1) from L′′1 , obtaining

a residual signal L̃′′1 , and decodes X1(2) and X2(2) using
L′1 and L̃′′1 . Receiver 2 uses L′2 to cancel X1(2) from L′′2 ,
obtaining a residual signal L̃′′2 , and decodes X1(1) and X2(1)
using L2 and L̃′′2 . Overall, 4 symbols are decoded in 3 time
slots, achieving a sum-DoF of 4

3 .

Phase I Phase II Phase III

Fig. 3. Illustration of a 4
3

-DoF coding scheme for topology combination
{z2, z4, f}. Receiver 1 decodes X1(2) and X2(2) from 3 linearly indepen-
dent combinations (L1, L′

1, L
′′
1 ) of (X2(1), X1(2), X2(2)), and Receiver

2 decodes X1(1) and X2(1) from 3 linearly independent combinations
(L2, L′

2, L
′′
2 ) of (X1(1), X2(1), X1(2)).

Remark 6. The scheme for this coding opportunity was intro-
duced for a binary fading interference channel, in which the
channel links are either “on” or “off” [6]. The same concept
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was used in [7] to improve the sum-DoF of the two-user
interference channel and X-channel with alternating topology.
Finally in [8], the authors demonstrated that for the two-
hop interference channel, the best vector-linear strategy at the
intermediate relays is to vary relaying coefficients over time,
creating end-to-end topologies equivalent to the three used in
coding opportunity 2. �

C. Coding Scheme for 2× 2 X-channel with Varying Topolo-
gies

Equipped with the transmission strategies for the two coding
opportunities, we proceed to present our achievable scheme
that focuses on the symmetric topology variation as defined
in Definition 2. The general idea of the achievable scheme is
to create and utilize the two coding opportunities in a greedy
manner to maximize the overall sum-DoF.

First, we code in all instances of interference-free topologies
i1 and i2 separately at DoF 2, delivering a total of 2(λi1 +
λi2)N symbols. Then we split the description of the rest of
the coding scheme into the following two cases:
Case 1: λz1 ≤ λz2 and λz3 ≤ λz4

i. We pair each z1(z3) instance with a z2(z4) instance until
z1(z3) is exhausted, obtaining (λz1 + λz3)N instances
of coding opportunity 1. For each paired {z1, z2}, we
perform the 3

2 -DoF scheme in Section III-A, delivering
3λ1N symbols. Similarly, another 3λz3N symbols are
delivered by performing coding opportunity 1 scheme on
all {z3, z4} pairs.

ii. We pair one of (λz2 − λz1)N surplus z2 instances with
one of (λz4 − λz3)N surplus z4 instances, and one
of λfN f instances until one of them is exhausted,
obtaining θN instances of coding opportunity 2, where
θ

∆
= min{λz2 − λz1 , λz4 − λz3 , λf}. Applying the 4

3 -
DoF scheme in Section III-B to each coding opportunity
2 instance, we deliver 4θN symbols.

iii. Lastly, for each of (λz2−λz1− θ)N surplus z2 instances,
(λz4−λz3−θ)N surplus z4 instances, (λf−θ)N surplus
f instances, and all the remaining topology instances, we
code them separately, delivering 1 symbol in each of them.

Thus we achieve the overall sum-DoF:
3(λz1+λz3)+4θ+(λz2−λz1−θ)+(λz4−λz3−θ)+(λf−θ)

+

4∑
k=1

λsk+

2∑
k=1

(λmk
+λbk+2λik)

=1 + λi1 + λi2 + min{λz2 + λz3 , λz1 + λz3 + λf}. (5)

Fig. 4. Coding scheme applied to an example realization of time-varying
network topologies for Case 1. Coding opportunity 1 is colored red for
{z1, z2}, and yellow for {z3, z4}; Coding opportunity 2 is colored green,
and all topologies coded separately are left blank. Notice that in this example,
no more future topology instance has Topology z1 or z3.

Case 2: λz1 > λz2 and λz3 > λz4 The achievable scheme is
similar to the first case, whereas topology instances of z1 and

z3 are surplus from Step i. and the instances of combination
{z1, z3, f} are exhaustively consumed using the scheme for
coding opportunity 2. The achieved sum-DoF in this case is
1+λi1+λi2+min{λz1 + λz4 , λz2 + λz4 + λf}.

Therefore in general, the achieved sum-DoF when the
topology varies symmetrically (λz1 + λz4 = λz2 + λz3 ), dΣ is
1+λi1+λi2

+min
{
λz1+λz4 ,min{λz1, λz2}+min{λz3, λz4}+λf

}
=1+λi1+λi2+min

{
λz1+λz4 , λz1+λz3+λf , λz2+λz4+λf

}
.

(6)
Remark 7. As mentioned in Remark 2, when the variation
of the topology is symmetric, the overall DoF gain by coding
across topologies is min

{
λz1+λz4 , λz1+λz3+λf , λz2+λz4+λf

}
.

From the above performance analysis of our proposed scheme,
we find that the DoF gain due to coding opportunity 1 is
min{λz1 , λz2}+min{λz3 , λz4} = min{λz1 +λz3 , λz2 +λz4},
and the DoF gain due to coding opportunity 2 is min{|λz1 −
λz2 |, |λz3 − λz4 |, λf}. �

IV. CONVERSE OF THEOREM 1

To prove the optimality of the achieved sum-DoF in (6), we
will show in this section that the sum-DoF dΣ is bounded as

dΣ ≤ 1 + λi1 + λi2 + λz1 + λz4 , (7)
dΣ ≤ 1 + λi1 + λi2 + λz1 + λz3 + λf , (8)
dΣ ≤ 1 + λi1 + λi2 + λz2 + λz4 + λf . (9)

We point out that taking the minimum of these three bounds
results in the expression in (6), therefore proving these three
bounds proves the converse. We will present the proof of (7) in
this section and defer the proofs for (8) and (9) to Appendix I.

We define the length-N output vector at Receiver j
as Y Nj , j = 1, 2, and the sub-vector of Y Nj received
when the network is in Topology a as Y Nj,a. The received
vector at Receiver 1 may thus be expressed as Y N1 =(
{Y N1,sk}

4
k=1, Y

N
1,m1

, Y N1,m2
, Y N1,b1 , Y

N
1,b2

, {Y N1,zk}
4
k=1, Y

N
1,i1

,

Y N1,i2 , Y
N
1,f

)
.

Further, for any subset of topology indices, S ⊆ A, Y Nj,S
∆
=

{Y Nj,a : a ∈ S}. In particular, we define the set of topologies

B ⊆ A as B ∆
= A\{s1, s2, s3, s4,m1,m2}.

Before beginning proofs of the individual bounds, we
make one last general observation that in the two broadcast
topologies b1, b2 and the fully-connected topology f , because
the transmitters only know the network topology, and the
channel coefficients are i.i.d. across space, Y N1,a and Y N2,a, are
statistically equivalent for a ∈ E , {b1, b2, f}. Hence, if a
receiver can decode the desired messages using the signals of
Y N2,E , it can also do so using Y N1,E . That is, without any rate loss,
Receiver 2 should be able to decode (W21,W22) using Y N2 =(
{Y N2,sk}

4
k=1, Y

N
2,m1

, Y N2,m2
, {Y N2,zk}

4
k=1, Y

N
2,i1

, Y N2,i2 , Y
N
1,E
)
.

We start the proof of the bound in (7) with the following
two steps:
1. Channel Enhancements: We enhance the system without
any rate loss by allowing the two transmitters to cooperate at
infinite rate. As a result, the system is converted into a two-
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user MISO broadcast channel with message Wj (with rate Rj)
intended for Receiver j, j = 1, 2.
2. Virtual Receivers: We introduce two virtual receivers,
labeled 1̃ and 2̃, which are statistically indistinguishable from
Receiver 1 and 2 respectively.

Specifically at Receiver 1̃, Y1̃,a = Y1,a when a 6= z1, z4.
When the topology at time n is z1 or z4,

Y1(n) = h11(n)X1(n) + h12(n)X2(n) + Z1(n),

Y1̃(n) = h1̃1(n)X1(n) + h1̃2(n)X2(n) + Z1̃(n).
(10)

At Receiver 2̃, Y2̃,a = Y2,a when a 6= z2, z3. When the
topology at time n is z2 or z3,

Y2(n) = h21(n)X1(n) + h22(n)X2(n) + Z2(n),

Y2̃(n) = h2̃1(n)X1(n) + h2̃2(n)X2(n) + Z2̃(n).
(11)

In (10) and (11), for j ∈ {1, 2}, (hj̃1(n), hj̃2(n)) is
identically distributed and independent of (hj1(n), hj2(n)),
and Zj(n) and Zj̃(n) are i.i.d. Gaussian with zero mean and
unit variance.

We denote the collection of channel coefficients over N
time slots (including the channel coefficients at the virtual
receivers) as h̃N

∆
=
{
hji(n) : j ∈ {1, 2, 1̃, 2̃}, i ∈ {1, 2}

}N
n=1

,
and recall the assumption that the values of h̃N are not
known at the transmitters, but are perfectly known at Receiver
j, j = 1, 2, 1̃, 2̃. We also note that due to the statistical
equivalence of Y Nj and Y N

j̃
, if Rj is achievable at Receiver

j, then Receiver j̃ can also decode Wj .

Lemma 1. In Topologies z1 and z4 (z2 and z3), given the
signals at Receivers 1 and 1̃ (2 and 2̃) and the channel
coefficients, the signals at Receiver 2 (1) can be approximately
reconstructed:

h(Y N2,a|Y N1,a, Y N1̃,a, h̃
N ) ≤ No(logP ), a = z1, z4, (12)

h(Y N1,a|Y N2,a, Y N2̃,a, h̃
N ) ≤ No(logP ), a = z2, z3. (13)

Proof: We prove the case when the topology is z1 (a = z1

in (12)). The proofs for the other 3 cases follow similarly, and
are omitted here.

We recall that if the topology at time n is z1, then by (10),
Y1(n) and Y1̃(n) almost surely provide two noisy linearly
independent equations of X1(n) and X2(n). More specifically,Y1(n)

Y1̃(n)
Y2(n)

 =

h11(n) h12(n)
h1̃1(n) h1̃2(n)

0 h22(n)

[X1(n)
X2(n)

]
+

Z1(n)
Z1̃(n)
Z2(n)

 ,
where

[
h11(n) h12(n)
h1̃1(n) h1̃2(n)

]
is invertible almost surely.

h(Y2(n)|Y1(n), Y1̃(n), h̃
N)

=h

(
Y2(n)−

[
0 h22(n)

][h11(n) h12(n)
h1̃1(n) h1̃2(n)

]−1[
Y1(n)
Y1̃(n)

]∣∣∣∣∣
Y1(n),Y1̃(n), h̃

N

)
≤h
(
Z2(n)−

[
0 h22(n)

][h11(n) h12(n)
h1̃1(n) h1̃2(n)

]−1[
Z1(n)
Z1̃(n)

]∣∣∣∣∣h̃N
)

=o(logP ),

and thus
h(Y N2,z1 |Y

N
1,z1 , Y

N
1̃,z1

, h̃N)≤
∑

n∈ time slots
in Topology z1

h(Y2(n)|Y1(n), Y1̃(n), h̃
N)

≤ No(logP ).

In the rest of the proof, we first derive two upper bounds
on R1 at Receiver 1 and 1̃ respectively, then combine the two
bounds and use Lemma 1 to establish an upper bound on 2R1.
We then repeat the same steps at Receiver 2 and 2̃ to obtain
an upper bound on 2R2. Lastly, we sum up the upper bounds
for 2R1 and 2R2 to arrive at an upper bound for the sum-rate,
yielding (7) as an upper bound for the sum-DoF.

At Receiver 1, we apply Fano’s inequality while treating
h̃N as a part of the output signals:

NR1

(a)

≤ I(W1;Y
N
1 |h̃N ) +NεN

=I(W1;Y
N
1,B|h̃N )

+I(W1; {Y N1,sk}
4
k=1, Y

N
1,m1

, Y N1,m2
|Y N1,B, h̃N )+NεN

=I(W1;Y
N
1,B|h̃N )+h({Y N1,sk}

4
k=1, Y

N
1,m1

, Y N1,m2
|Y N1,B, h̃N )

−h({Y N1,sk}
4
k=1, Y

N
1,m1

, Y N1,m2
|W1, Y

N
1,B, h̃

N )+NεN (14)

(b)

≤I(W1;Y
N
1,B|h̃N )+

4∑
k=1

h(Y N1,sk |h̃
N )

+h(Y N1,m1
|h̃N )+h(Y N1,m2

|h̃N )+NεN (15)

≤I(W1;Y
N
1,B|h̃N )

+N(λs1 + λs4 + λm1
)(logP + o(logP )) +NεN , (16)

where (a) holds since h̃N is independent of W1, and (b) is
because that given that

(
XN

1 , X
N
2

)
is a function of (W1,W2)

h({Y N1,sk}
4
k=1, Y

N
1,m1

, Y N1,m2
|W1, Y

N
1,B, h̃

N )

≥h({Y N1,sk}
4
k=1, Y

N
1,m1

, Y N1,m2
|W1,W2, Y

N
1,B, h̃

N )

=h({Y N1,sk}
4
k=1, Y

N
1,m1

, Y N1,m2
|W1,W2, X

N
1 , X

N
2 , Y

N
1,B, h̃

N )

=N

(
4∑
k=1

λsk + λm1
+ λm2

)
log(πe) ≥ 0.

Similarly at Receiver 1̃,
NR1 ≤I(W1;Y

N
1̃,B|h̃

N )

+N(λs1 + λs4 + λm1)(logP + o(logP )) +NεN .
(17)

Combining (16) and (17), we have
2NR1 ≤I(W1;Y

N
1,B|h̃N )+I(W1;Y

N
1̃,B|h̃

N )

+2N(λs1+λs4+λm1
)(logP+o(logP ))+NεN .

(18)

We can further bound the terms I(W1;Y
N
1,B|h̃N ) and

I(W1;Y
N
1̃,B|h̃

N ) in (18) as follows:

I(W1;Y
N
1,B|h̃N )

=I(W1; {Y N1,zk}
4
k=1,Y

N
1,E |h̃N )

+I(W1;Y
N
1,i1 ,Y

N
1,i2 |{Y

N
1,zk
}4k=1,Y

N
1,E , h̃

N )

≤I(W1; {Y N1,zk}
4
k=1, Y

N
1,E |h̃N )

+ h(Y N1,i1 ,Y
N
1,i2 |{Y

N
1,zk
}4k=1,Y

N
1,E , h̃

N ) (19)
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≤I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N)+N(λi1+λi2)(logP+o(logP ))

+ I(W1;Y
N
1,z1 ,Y

N
1,z4 |Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N ) (20)

≤I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N)+N(λi1+λi2)(logP+o(logP ))

+ h(Y N1,z1 ,Y
N
1,z4 |Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N )

−h(Y N1,z1 ,Y
N
1,z4 |W1,Y

N
1,z2, Y

N
1,z3, Y

N
1,E , h̃

N ) (21)

≤N(λi1+λi2+λz1+λz4)(logP+o(logP ))

+ I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− h(Y N1,z1 , Y
N
1,z4 |W1, Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N ), (22)

and similarly,
I(W1;Y

N
1̃,B|h̃

N )

≤N(λi1+λi2+λz1+λz4)(logP+o(logP ))

+I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− h(Y N
1̃,z1

, Y N
1̃,z4
|W1, Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N ). (23)

Summing up the two bounds in (22) and (23), we find
I(W1;Y

N
1,B|h̃N ) + I(W1;Y

N
1̃,B|h̃

N )

≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4
|W1, Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N )

(24)
≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N )

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1, h̃
N ) (25)

(a)

≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N )

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1, h̃
N )

+ h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1,W2, h̃
N )

− h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1,W2, h̃

N ) (26)

=2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ I(W2;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W1, h̃

N )

− I(W2;Y
N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1, h̃
N ) (27)

=2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ I(W1,W2;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− I(W2;Y
N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1, h̃
N ) (28)

≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |h̃N ) + I(W1;Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− I(W2;Y
N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1, h̃
N ) (29)

≤N
[
2(λi1+λi2+λz1+λz4)+λz2+λz3+λb1+λb2+λf

]
(logP + o(logP )) + I

(
W1;Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E
∣∣ h̃N )

−I(W2;Y
N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N2,z1 , Y
N
2,z4 , Y

N
1,E |W1, h̃

N )

+I(W2;Y
N
2,z1 , Y

N
2,z4 |W1, Y

N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E , h̃
N)︸ ︷︷ ︸

≤h
(
Y N
2,z1
|Y N

1,z1
,Y N

1̃,z1
,h̃N

)
+h
(
Y N
2,z4
|Y N

1,z4
,Y N

1̃,z4
,h̃N

)
,

(30)
where Step (a) results from the observations:

h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,E |W1,W2, h̃
N )

=N [2(λz1 + λz4) + λb1 + λb2 + λf ] log(πe),

h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1,W2, h̃

N )

=N [λz2 + λz3 + λb1 + λb2 + λf ] log(πe),

and λz1 + λz4 = λz2 + λz3 , due to symmetry of the topology
variation.

Then by virtue of Lemma 1, (30) becomes
I(W1;Y

N
1,B|h̃N ) + I(W1;Y

N
1̃,B|h̃

N )

≤N [2(λi1+λi2+λz1+λz4)+λz2+λz3+λb1+λb2+λf ]

(logP + o(logP )) + I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− I(W2;Y
N
2,z1 , Y

N
2,z4 , Y

N
1,E |W1, h̃

N ) +No(logP )

(b)

≤N [2(λi1 + λi2) + 3(λz1 + λz4) + λb1 + λb2 + λf ]

(logP + o(logP )) + I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W2, h̃

N )

− I(W2;Y
N
2,z1 , Y

N
2,z4 , Y

N
1,E |W1, h̃

N ) +No(logP ), (31)
where Step (b) is due to the symmetric topology variation, and
that W1 and W2 are independent. Similarly for Receivers 2
and 2̃, we have
2NR2 ≤I(W2;Y

N
1,E , Y

N
2,B\E |h̃

N ) + I(W2;Y
N
1,E , Y

N
2̃,B\E |h̃

N )

+2N(λs2 + λs3 + λm2
)(logP + o(logP ))+NεN ,

(32)
where
I(W2;Y

N
1,E , Y

N
2,B\E |h̃

N ) + I(W2;Y
N
1,E , Y

N
2̃,B\E |h̃

N )

≤N [2(λi1 + λi2) + 3(λz1 + λz4) + λb1 + λb2 + λf ]

(logP + o(logP )) + I(W2;Y
N
2,z1 , Y

N
2,z4 , Y

N
1,E |W1, h̃

N )

− I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W2, h̃

N ) +No(logP ). (33)
Adding both sides of (18) and (32), and by (31) and (33),

we arrive at
2N(R1 +R2)

≤2N
[
2(λi1 + λi2) + 3(λz1 + λz4) + λb1 + λb2 + λf

]
(logP + o(logP ))+No(logP )+NεN

+ 2N

(
4∑
k=1

λsk + λm1
+ λm2

)
(logP + o(logP ))

=2N (1 + λi1 + λi2 + λz1 + λz4) (logP + o(logP ))

+No(logP ) +NεN . (34)
The last equality is a result of evaluating the total probability

of topological states:
4∑
k=1

λsk+
2∑
k=1

(λmk
+λbk+λik)+2(λz1+

λz4) + λf = 1. Dividing both sides of (34) by 2N logP and
let both N and P go to infinity, we obtain the sum-DoF upper
bound in (7).
Remark 8. In [11] and [16], similar techniques were utilized to
upper bound the DoF in the context of fading MISO broadcast
channel with alternating (varying) CSIT. �
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V. ERGODIC SUM-CAPACITY OF 2× 2 GAUSSIAN
X-CHANNEL WITH SYMMETRIC TOPOLOGY VARIATION

In this section, we explore the performance of our CAT-
based scheme at finite SNR. We start with the proof of
Theorem 3, by establishing an ergodically achievable sum-rate
for the 2 × 2 Gaussian X-channel with symmetric topology
variation. We then demonstrate the approximate optimality of
our coding scheme by proving Corollary 1.

A. Achievability (Proof of Theorem 3)
The achievable scheme follows the approach described in

Section III, which maximizes the sum-DoF. Before proceed-
ing to present the ergodic sum-rate achieved by individual
topologies and coding opportunities, we recall the assumption
that channel coefficients are i.i.d. across space and time,
transmitters know the network topology but not the actual
values of the channel coefficients, and the receivers know both
topology and all of the channel coefficients perfectly. The rate
expressions A, B, C, D are as defined in the statement of
Theorem 3.

1) Topologies that jointly achieve A: Across all instances
of Topologies s1, s4, b1, b2, s2 and s3, using point-to-point
codes, one of the two transmitters communicates to Receiver 1
in s1, s4, b1 and b2, and to Receiver 2 in s2 and s3, achieving
an ergodic rate equal to A. In all instances of Topologies i1 and
i2, each transmitter communicates with the receiver towards
which it has a communication link, achieving an ergodic sum-
rate 2A.

2) Topologies that jointly achieve B: Across all instances
of Topologies m1 and z1 (or z4), and/or f that were surplus
from creating coding opportunity 1 or 2, transmitters use
Gaussian codebooks with rates dictated by the ergodic sum-
capacity of the fading multiple access channel from the two
transmitters to Receiver 1, achieving a sum-rate B. Similarly,
B can be achieved across instances of Topology m2 and
surplus z2 (or z3).

3) Coding Opportunity 1 achieves C: Over instances of
combination {z1, z2} (same for {z3, z4}), we encode 3 sub-
messages, each using a Gaussian codebook, and employ the
two-phase scheme described in Section III-A.

The received signals in the first time slot are:
Y1(1) = h11(1)X1(1) + h12(1)X2(1) + Z1(1),

Y2(1) = h22(1)X2(1) + Z2(1).
(35)

The received signals in the second time slot are:
Y1(2) =h12(2)X2(1)+Z1(2),

Y2(2) =h21(2)X1(2)+h22(2)X2(1)+Z2(2).
(36)

With many instances of [Y1(1) Y1(2)]
T , Receiver 1 uses

MIMO decoding of the codewords associated with X1(1) and
X2(1) to achieve a sum-rate of E

{
log
(∣∣I+ PVVH

∣∣)}.
On the other hand, in each instance of coding

opportunity 1, Receiver 2 uses Y2(1) to cancel
X2(1) from Y2(2), resulting in the residual signal

h21(2)X1(2)+Z2(2)−
h22(2)

h22(1)
Z2(1). Using the residual

signals, Receiver 2 can decode the sub-message associated

with X1(2) at rate E
{
log

(
1 +

|h21(2)|2P
1 + |h22(2)|2/|h22(1)|2

)}
.

Adding up achieved rates at two receivers, we obtain the
sum-rate of C bits per instance of coding opportunity 1, as
desired.

4) Coding Opportunity 2 achieves D: Over the instances
of topology combination {z2, z4, f} (same for {z1, z3, f}), we
create random Gaussian codebooks for 4 sub-messages, and
apply the three-phase scheme in Section III-B.

The received signals in the first time slot are:
Y1(1) = h12(1)X2(1)+Z1(1),

Y2(1) = h21(1)X1(1)+h22(1)X2(1)+Z2(1).
(37)

The received signals in the second time slot are:
Y1(2) =h11(2)X1(2)+h12(2)X2(2)+Z1(2),

Y2(2) =h21(2)X1(2)+Z2(2).
(38)

The received signals in the third time slot are:
Y1(3) =h11(3)X1(2)+h12(3)X2(1)+Z1(3),

Y2(3) =h21(3)X1(2)+h22(3)X2(1)+Z2(3).
(39)

In each instance of coding opportunity 2, Receiver 1 uses
Y1(1) to completely cancel X2(1) from Y1(3), yielding a
residual signal Ỹ1(3) = h11(3)X1(2) + Z1(3)− h12(3)

h12(1)Z1(1).
Performing MIMO decoding on many instances of[
Y1(2) Ỹ1(3)

]T
, Receiver 1 can decode the sub-

messages associated with X1(2) and X2(2) at rate

r=E

log

∣∣∣∣∣
1 0
0 1 + |h12(3)|2/|h12(1)|2

+PUUH

∣∣∣∣∣
1+|h12(3)|2/|h12(1)|2


.

Receiver 2 uses Y2(2) to completely cancel X1(2) from
Y2(3), and decodes the sub-messages associated with X1(1)
and X2(1) with the same ergodic rate at Receiver 1.

Therefore, an ergodic sum-rate 2r = D bits per coding
opportunity 2 instance is achieved.

Overall Ergodic Sum-Rate: In N time slots, our proposed
coding scheme creates min{λz1 , λz2}N+min{λz3 , λz4}N in-
stances of coding opportunity 1, and min{|λz1−λz2 |, λf}N in-
stances of coding opportunity 2. Let φ ∆

= min{|λz1−λz2 |, λf},
we also have (|λz1 − λz2 | − φ)N instances of Topology z1

(or z2), (|λz3 − λz4 | − φ)N instances of Topology z3 (or z4),
and (λf −φ)N instances of Topology f surplus from creating
the two coding opportunities. Therefore, applying the coding
scheme described above, we achieve the ergodic sum-rate RΣ:

RΣ =A

[
4∑
k=1

λsk + 2(λi1 + λi2) + λb1 + λb2

]
+B [λm1

+λm2
+|λz1−λz2 |+|λz3−λz4 |+λf − 3φ]

+C [min{λz1 , λz2}+ min{λz3 , λz4}] +Dφ, (40)

B. Proof of Corollary 1

The proof proceeds in three steps. First, we develop 3 upper
bounds on the ergodic sum-capacity. Second, we compare the
upper bounds with the achievable rate RΣ in (40) to identify
the gaps between them. Lastly, we evaluate the gaps with
uniform-phase, Rayleigh and Rice faded channel coefficients
respectively.
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1) Upper Bounds: We begin by proving 3 upper bounds
U1, U2 and U3 on the ergodic sum-capacity CΣ such that
CΣ ≤ min{U1, U2, U3}. The derivations of U1, U2 and U3 are
carried out along the same line of reasoning as in the proofs
of (7), (8) and (9) respectively in the converse for Theorem 1.
The key difference is that we carefully evaluate or bound all
o(logP ) terms, and then take expectation over random channel
coefficients to arrive at:

U1 =A

[
4∑
k=1

λsk + 2(λi1 + λi2) + λb1 + λb2 + λz1 + λz4

]

+B

[
λm1

+ λm2
+

4∑
k=1

λzk + λf

]
+ E(λz1 + λz4)

+ log(πe)

[
4∑
k=1

λsk + λm1
+ λm2

+2(λi1 + λi2) + 2(λz1 + λz4)

]
, (41)

U2 =A

[
4∑
k=1

λsk + 2(λi1 + λi2) + λb1 + λb2 + λz1 + λz3

]

+B

[
λm1

+ λm2
+

4∑
k=1

λzk + 2λf

]
+ F (λz2 + λz4)

+ log(πe) [1 + λi1+λi2+2(λz1+λz4)+λf ] , (42)

U3 =A

[
4∑
k=1

λsk + 2(λi1 + λi2) + λb1 + λb2 + λz2 + λz4

]

+B

[
λm1 + λm2 +

4∑
k=1

λzk + 2λf

]
+ F (λz1 + λz3)

+ log(πe) [1 + λi1 + λi2 + 2(λz1+λz4)+λf ] , (43)
where

E=E

{
log

(
1+

|h22h1̃1|2+|h11h22|2

|h11h1̃2|2+|h12h1̃1|2−2Re(h11h∗1̃1
h1̃2h

∗
12)

)}
,

F=E
{
log

(
1 +
|h12|2

|h22|2

)}
,

(h1̃1, h1̃2) is identically distributed and independent of
(h11, h12).

2) Gaps Between RΣ and Upper Bounds: Next, we com-
pare U1, U2 and U3, with RΣ under the assumption that
the topology variation is symmetric (λz1 + λz4 = λz2 +
λz3 ). Particularly, we consider two cases 1) λz1 = λz2 ,
2) λf ≤ |λz1 − λz2 |.

Case 1): When λz1 = λz2 , and thus λz3 = λz4 ,
CΣ−RΣ ≤ U1−RΣ

=(A+2B−C+ E)(λz1+λz4)+log(πe)

[
4∑
k=1

λsk

+ λm1 + λm2 + 2(λi1 + λi2) + 2(λz1 + λz4)

]
. (44)

Case 2): U2 and U3 are compared with RΣ respectively in
each of following sub-cases:

i. When λz1 < λz2 , λz3 < λz4 , and λf ≤ λz2 − λz1 ,
CΣ−RΣ ≤ U2 −RΣ

=(A+ 2B − C) (λz1 + λz3) + (4B −D)λf +F (λz2+λz4)

+log(πe) [1+λi1+λi2+2(λz1+λz4)+λf ] . (45)

ii. When λz1 > λz2 , λz3 > λz4 , and λf ≤ λz1 − λz2 ,
CΣ−RΣ ≤ U3 −RΣ

=(A+ 2B − C) (λz2 + λz4) + (4B −D)λf +F (λz1+λz3)

+ log(πe) [1+λi1+λi2+2(λz1+λz4)+λf ] . (46)

3) Gap Evaluation: In the last step, we evaluate the ob-
tained gaps of CΣ − RΣ with the uniform-phase fading,
Rayleigh fading and Rice fading respectively.
Uniform-Phase Fading

Because |hji|2 = 1 for all j, i, F = 1. We also have

A+ 2B − C = log(1+P )−log
(
1+

P

2

)
+2 log(1 + 2P )

−log(P 2+3P+1)

= log
2P + 2

P + 2
+ log

4P 2 + 4P + 1

P 2 + 3P + 1
≤ 3, (47)

and

4B −D =2

[
2 log(2P + 1)− log

(
P 2

2
+

5P

2
+ 1

)]
=2 log

8P 2 + 8P + 2

P 2 + 5P + 2
≤ 6, (48)

As we notice that (h11h
∗
1̃1
h1̃2h

∗
12) has magnitude 1, and its

phase, mod 2π, also admits a uniform distribution over [0, 2π),

therefore we have E =
1

2π

∫ 2π

0
log

(
1 +

1

1− cos θ

)
dθ =

1.9.
When λz1 = λz2 , λz3 = λz4 , by (44) and (47),

CΣ−RΣ ≤(3 + 1.9)(λz1+λz4)+log(πe)

[
4∑
k=1

λsk

+ λm1
+ λm2

+ 2(λi1 + λi2) + 2(λz1 + λz4)

]
≤4.9(λz1 + λz4) + log(πe) + log(πe)(λi1 + λi2)

= log(πe) +
4.9

2
[λi1 + λi2 + 2(λz1 + λz4)]

+

(
log(πe)− 4.9

2

)
(λi1 + λi2)

≤ 2 log(πe) ≤ 6.2. (49)

When λf ≤ |λz1−λz2 |, we can assume WLOG, that λz1 >
λz2 , then by (46), (47) and (48),
CΣ −RΣ ≤3(λz2+λz4) + 6λf + λz1 + λz3 + 2 log(πe)

≤4(λz1 + λz3) + 6.2 ≤ 10.2. (50)

Rayleigh Fading
For i.i.d. Rayleigh fading, i.e., hik are identically and

independently Rayleigh distributed with E{hik} = 0,
E{|hik|2} = 1, for all i ∈ {1, 1̃, 2} and k ∈ {1, 2},
we numerically evaluate the expectation of the expression

log

(
1+

|h22h1̃1|2+|h11h22|2

|h11h1̃2|2+|h12h1̃1|2−2Re(h11h∗1̃1
h1̃2h

∗
12)

)
to ob-

tain an upper bound on E: E ≤ 1.457. Similarly, we
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numerically evaluate the expectation of log

(
1 +
|h12|2

|h22|2

)
to

obtain an upper bound on F :

F =

∫ ∞
0

∫ ∞
0

4xy e−(x2+y2) log

(
1 +

x2

y2

)
dxdy ≤ 1.443.

We also numerically find that for arbitrary value of P , A +
2B−C ≤ 4.35, and 4B−D ≤ 8.71. From these, we calculate
bounds on the gap in the same way as for the uniform-phase
fading, and we have

CΣ −RΣ ≤

{
6.2 bits/sec/Hz, λz1 = λz2
12 bits/sec/Hz, λf ≤ |λz1 − λz2 |

. (51)

Rice Fading
For i.i.d. Rice fading with Rice factor Kr, the channel

coefficient hik, for all i ∈ {1, 1̃, 2} and k ∈ {1, 2},
can be written as hik = hRe + jhIm where j2 = −1,
hRe ∼ N (

√
Kr,

1
2 ) and hIm ∼ N (0, 1

2 ). For Kr = 1,
we numerically evaluate the terms A + 2B − C,
4B − D, E and F , and find that for arbitrary value
of P , A + 2B − C and 4B − D are upper bounded
by 4.18 and 8.4 respectively. Also we have that E =

E

{
log

(
1+

|h22h1̃1|2+|h11h22|2

|h11h1̃2|2+|h12h1̃1|2−2Re(h11h∗1̃1
h1̃2h

∗
12)

)}
≤

1.67, and F = E
{
log

(
1 +
|h12|2

|h22|2

)}
≤ 1.39. Applying

these upper bounds to the derived gaps in (44), (45) and (46),
we have for i.i.d. Rice fading with Rice factor Kr = 1,

CΣ −RΣ ≤

{
6.2 bits/sec/Hz, λz1 = λz2
11.77 bits/sec/Hz, λf ≤ |λz1 − λz2 |

. (52)

We emphasize here that our scheme is particularly well-
suited to the high SNR regime since the gap becomes neg-
ligible with respect to the rate (i.e., ergodic capacity � 10
bits/sec/Hz).

VI. NUMERICAL RESULTS

Having identified two coding opportunities where coding
across topologies provide DoF gains, i.e., 50% for coding
opportunity 1 and 33.3% for coding opportunity 2, compared
with the TDMA scheme, we ask the question that how much
rate gains can we actually get from each of the coding opportu-
nities? In the first part of this section, we numerically evaluate
the ergodic rate gains for Rayleigh and Rice fading channels in
each of the coding opportunities. In the second part, we return
to the rover-to-orbiter communication problem, and evaluate
the DoF/throughput gains by coding across topologies for a
2-rover, 4-orbiter communication network.

A. Ergodic Rate Gains of Coding Opportunities

We numerically evaluate the ergodic rate gains over TDMA
(one transmitter communicates with one receiver in each time
slot) in both coding opportunities for the following i.i.d. fading
channels: i. Rayleigh fading: E{hij} = 0, E{|hij |2} = 1. ii.
Rice fading: E{hij} =

√
Kr, E{|hij |2} = Kr +1, where Kr

denotes the Rice factor.
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(a) Coding opportunity 1.
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(b) Coding opportunity 2.

Fig. 5. Ergodic rate gain by coding across topologies over TDMA.

1) Coding Opportunity 1: We assume that half of the
topology instances are z1, and the other half are z2. We apply
the proposed CAT scheme in Section III-A to all {z1, z2}
combinations to numerically evaluate the ergodic sum-rate in
(40), for the case λz1 = λz2 = 1

2 .

We see from Fig. 5(a) that a substantial rate gain of at
least 40% can be achieved by the proposed CAT scheme
over TDMA, for all channel distributions and transmit power
constraints. As P increases, the ergodic rate gain converges to
the DoF gain of 50%.

2) Coding Opportunity 2: We assume that one third of the
topology instances are z2, another one third are z4 and the
remaining one third are f . We apply the proposed CAT scheme
in Section III-B to all {z2, z4, f} combinations to numerically
evaluate the ergodic sum-rate in (40), for the case λz2 = λz4 =
λf = 1

3 .

We see from Fig. 5(b) that a rate gain of at least 22% can
be achieved by the proposed CAT scheme over TDMA, for
all channel distributions and transmit power constraints. As P
increases, the ergodic rate gain converges to the DoF gain of
33.3%.

Furthermore, we find that for both coding opportunities,
when the transmit power constraint P is small (e.g., less than
8 dB for coding opportunity 1 and less than 10 dB for coding
opportunity 2), coding across topologies is more beneficial for
the channels with many reflection/scattering multipath signal
components. However, as P increases, the rate gain by coding
across topologies is more significant for the channels with a
dominant signal component.
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B. Performance Evaluation of a 2-rover, 4-orbiter System

For a 2-rover, 4-orbiter communication network, we numer-
ically evaluate the DoFs and throughputs achieved by TDMA
and our proposed scheme, to see how much performance gain
our scheme can provide in practical settings.

System Settings: We use the satellite orbital parameters
drawn from MRO and Odyssey. We assume that the four
ascending nodes, which specify the longitudes of the orbits
of the four orbiters, are uniformly spaced, and the two rovers
are placed at the same latitude.

We assume 500 K system temperature and 800 kHz system
bandwidth. We employ the free space propagation model
for the rover-to-orbiter communication link with path loss
exponent 2. Each rover has transmit power of 10 W.
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(b) Throughput gain.

Fig. 6. Performance gains by applying coding across topologies to a 2-rover,
4-orbiter communication network.

We find that, as shown in Fig. 6(a), the DoF gain achieved
by coding across topologies varies around 9% across rover
distances ranging from 400 km to 800 km, indicating that
approximately 20% of the topology instances participate in
one of the coding opportunities.

Fig. 6(b) indicates that the proposed CAT scheme achieves
at lease 11.6% throughput gain over TDMA for all rover
distances. We notice that the throughput gain consists of two
parts: 1) the multiple-access rate gain by allowing two rovers
to communicate to one orbiter simultaneously, 2) the rate gain
by coding across topologies. When the rover distance increases
from 400 km to around 650 km, while the DoF gain increases
by 1%, the throughput gain monotonically decreases. This
is because the multiple-access rate gain drops more quickly
within this distance range. After 650 km, the rate gain by
coding across topologies starts to dominate, boosting up the

overall throughput gain while the multiple-access rate gain
keeps decreasing.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we modeled the communication problem from
Mars rovers to Mars satellites as an X-channel with varying
topologies, and conducted a theoretic analysis of the impact of
coding across topologies on the DoF and the communication
rate. For a 2 × 2 X-channel with varying topologies, we
characterize the exact sum-DoF when the topology varies
symmetrically and derive lower and upper bounds on the
sum-DoF for the general asymmetric setting. Further, we
numerically demonstrated the DoF/throughput gain in data rate
provided by our proposed coding scheme over the baseline
TDMA scheme that is currently in use. A natural extension
of this work is to investigate methods/techniques (by either
designing better coding schemes or proving a tighter upper
bound) to characterize the exact sum-DoF without the sym-
metric constraint on the topology variation. Another interesting
future direction is to explore the scenario with more than 4
orbiters (which is likely to happen in the future) to identify
the potential new coding opportunities to further increase the
DoF/throughput.

APPENDIX I
PROOF OF UPPER BOUNDS IN (8) AND (9)

Recall that the output signals at Receiver 2 in
Topology a ∈ E = {b1, b2, f}, Y N2,a, is statistically
equivalent to those received at Receiver 1, i.e.,
Y N1,a, and Receiver 2 decodes (W21,W22) using
Y N2 =

(
{Y N2,sk}

4
k=1, Y

N
2,m1

, Y N2,m2
, {Y N2,zk}

4
k=1, Y

N
2,i1

, Y N2,i2 , Y
N
1,E
)
.

To prove that (8) is an upper bound for the sum-DoF, we first
use Fano’s inequality at Receiver 2 and Receiver 1 respectively
to establish upper bounds on (R21 + R22) and (R11 + R12).
Then we simply add up these two bounds to obtain (8) as an
upper bound on the sum-DoF.

At Receiver 2, by Fano’s inequality and that W11 is inde-
pendent of (W21,W22),

N(R21 +R22) ≤ I(W21,W22;Y
N
2 |W11,h

N ) +NεN

=h(Y N2 |W11,h
N )−h(Y N2 |W21,W22,W11,h

N )+NεN (53)

≤h(Y N2 |W11,h
N )−h(Y N1,b2 |W21,W22,W11,h

N )

−h(Y N2,z2 |W21,W22,W11, Y
N
1,b2 ,h

N )+NεN (54)
(a)
=h(Y N2 |W11,h

N )− h(Y N1,b2 |W22,h
N )

− h(Y N2,z2 |W21,W22,W11, X
N
1,z2 , Y

N
1,b2 ,h

N )+NεN (55)
(b)
=h(Y N2 |W11,h

N )− h(Y N1,b2 |W22,h
N )

− h
(
(h22X2+Z2)

N
z2 |W22, Y

N
1,b2 ,h

N
)
+NεN (56)

(c)

≤h(Y N2 |W11,h
N )− h(Y N1,b2 |W22,h

N ) +No(logP )

− h(Y N1,z2 |W22, Y
N
1,b2 ,h

N ) +NεN (57)

≤h(Y N2,s2 |h
N )+h(Y N2,s3 |h

N )+h(Y N2,m2
|hN )+h(Y N1,f |hN )

+

2∑
k=1

h(Y N2,ik |h
N )+h(Y N1,b2 |h

N )+
∑
k 6=4

h(Y N2,zk |h
N )
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+h(Y N1,b1 |W11,h
N)+h(Y N2,z4 |W11, Y

N
1,b1 ,h

N )+No(logP )

− h(Y N1,b2 |W22,h
N )−h(Y N1,z2 |W22, Y

N
1,b2 ,h

N )+NεN ,
(58)

Recall that Y N2,z2 is the sub-vector of Y N2 in Topology z2,
and here (h22X2+Z2)

N
z2 denotes the sub-vector of the vector{

h22(n)X2(n)+Z2(n)
}N
n=1

in Topology z2. Steps (a) and (b)
result because XN

2 is independent of (W21,W11), and XN
1 is

a function of (W21,W11).
Step (c) holds because given (h22X2+Z2)

N
z2 ,

h
(
Y N1,z2 |(h22X2+Z2)

N
z2 ,h

N
)

≤
∑

n∈time slots
in Topology z2

h

(
Y1(n)−

h12(n) (h22(n)X2(n)+Z2(n))

h22(n)

∣∣∣∣
h22(n)X2(n)+Z2(n),h

N

)
≤

∑
n∈time slots

in Topology z2

E

{
log

[
πe

(
1 +

∣∣∣∣h12(n)

h22(n)

∣∣∣∣2
)]}

=No(logP ),

(59)
and hence,

−h
(
(h22X2+Z2)

N
z2 |W22, Y

N
1,b2 ,h

N
)

=h
(
Y N1,z2 |(h22X2+Z2)

N
z2 ,W22, Y

N
1,b2 ,h

N
)

− h
(
(h22X2+Z2)

N
z2 , Y

N
1,z2 |W22, Y

N
1,b2 ,h

N
)

≤No(logP )−h
(
Y1,z2 |W22, Y

N
1,b2 ,h

N
)
. (60)

Similarly at Receiver 1,
N(R11 +R12)

≤h(Y N1 |W22,h
N )−h(Y N1,b1 |W11,W12,W22,h

N )

−h(Y N1,z4 |W11,W12,W22, Y
N
1,b1 ,h

N )+NεN (61)

≤h(Y N1,s1 |h
N )+h(Y N1,s4 |h

N )+h(Y N1,m1
|hN )+h(Y N1,f |hN )

+

2∑
k=1

h(Y N1,ik |h
N )+h(Y N1,b1 |h

N ) +
∑
k 6=2

h(Y N1,zk |h
N )

+h(Y N1,b2 |W22,h
N )+h(Y N1,z2 |W22, Y

N
1,b2 ,h

N )+No(logP )

− h(Y N1,b1 |W11,h
N)−h(Y N2,z4 |W11, Y

N
1,b1 ,h

N )+NεN .
(62)

Summing up (58) and (62), we have
N(R21 +R22 +R11 +R12)

≤N
[ 4∑
k=1

(λsk+λzk)+

2∑
k=1

(λbk+λmk
+2λik)+λz1+λz3+2λf

]
(logP+o(logP ))+No(logP )+NεN

=N(1 + λi1 + λi2 + λz1 + λz3 + λf )(logP + o(logP ))

+No(logP )+NεN . (63)

Normalizing both sides of (63) by N log(P ), and letting
both P and N go to infinity, we obtain (8).

Replacing W11 with W12, Y N1,b2 with Y N1,b1 , and Y N2,z2 with
Y N2,z3 in (54), we obtain another bound for N(R21 + R22).
Replacing W22 with W21, Y N1,b1 with Y N1,b2 , and Y N1,z4 with
Y N1,z1 in (61), we have another bound for N(R11 + R12).
Adding these two new upper bounds yields the sum-DoF upper
bound in (9).

APPENDIX II
SKETCH OF THE PROOF OF THEOREM 2

Achievability

The achievable scheme of Theorem 2 for the general 2× 2
X-channel with varying topologies (not necessarily symmetric)
further extends the scheme of the symmetric setting presented
in Section III-C to include the following 2 additional cases:

• Case 3: λz1 ≤ λz2 and λz3 > λz4 ,
• Case 4: λz1 > λz2 and λz3 ≤ λz4 .

Employing the same coding scheme as in Section III-C to
exhaustively utilize the instances of coding opportunity 1 then
the instances of coding opportunity 2 for Case 1 and 2, we can
achieve the following sum-DoFs for the general asymmetric
setting:

• Case 1: λz1 ≤ λz2 and λz3 ≤ λz4
dΣ ≥1 + λi1 + λi2

+min{λz1 + λz4 , λz2 + λz3 , λz1 + λz3 + λf},
(64)

• Case 2: λz1 > λz2 and λz3 > λz4
dΣ ≥1 + λi1 + λi2

+min{λz1 + λz4 , λz2 + λz3 , λz2 + λz4 + λf},
(65)

For Case 3 and 4, after all possible instances of coding
opportunity 1 are utilized (as in Step i of the scheme in Section
III-C), delivering 3min{λz1 , λz2}N+3min{λz3 , λz4}N sym-
bols, there is no coding opportunity 2 to take advantage of and
all the remaining topologies are coded separately to deliver one
symbol at each channel use. Therefore, the achieved sum-DoF
is 1+λi1+λi2+λz1+λz4 for Case 3 and 1+λi1+λi2+λz2+λz3
for Case 4.

Overall, the achieved sum-DoF without the symmetric con-
straint is:
1 + λi1 + λi2

+min{λz1+λz4 , λz2+λz3 , λz1+λz3+λf , λz2+λz4+λf}.
(66)

Upper Bound

The converse of Theorem 2 includes the following 3 upper
bounds on the sum-DoF of the general asymmetric setting:

dΣ ≤ 1 + λi1 + λi2 +
λz1 + λz2 + λz3 + λz4

2
, (67)

dΣ ≤ 1 + λi1 + λi2 + λz1 + λz3 + λf , (68)
dΣ ≤ 1 + λi1 + λi2 + λz1 + λz3 + λf , (69)

where (68) and (69) are the same as (8) and (9) respectively
and hold no matter if the topology variation is symmetric or
not (see proofs in Appendix I). Here we demonstrate how the
upper bound (67) is derived.

Following the same steps as proving the upper bound (7)
for the symmetric setting until (23), we have for Receivers 1
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and 1̃:
I(W1;Y

N
1,B|h̃N ) + I(W1;Y

N
1̃,B|h̃

N )

≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4
|W1, Y

N
1,z2 , Y

N
1,z3 , Y

N
1,E , h̃

N )

(70)
=2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N)

+ h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N)

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N )

(71)
≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N )

− h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N )

+ h(Y N1,z1 , Y
N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1,W2, h̃

N )

− h(Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1,W2, h̃

N )

=2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ 2I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ I(W2;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W1, h̃

N )

−I(W2;Y
N
1,z1 , Y

N
1,z4 , Y

N
1̃,z1

, Y N
1̃,z4

, Y N1,z2 , Y
N
1,z3 , Y

N
1,E |W1, h̃

N)

≤2N(λi1 + λi2 + λz1 + λz4)(logP + o(logP ))

+ I(W1,W2;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |h̃N )

+ I(W1;Y
N
1,z2 , Y

N
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N
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N
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N
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1̃,z4
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N ) (72)

(a)

≤N [2(λi1+λi2+λz1+λz4)+λz2+λz3+λb1+λb2+λf ]

(logP + o(logP )) + I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W2, h̃

N )

− I(W2;Y
N
2,z1 , Y

N
2,z4 , Y

N
1,E |W1, h̃

N ) +No(logP ), (73)
where (a) holds following the same derivation from (28) to
(31) in Section IV except that no symmetric constraint is
imposed on the topology variation.

Similarly for Receivers 2 and 2̃, we have
I(W2;Y

N
1,E , Y

N
2,B\E |h̃

N ) + I(W2;Y
N
1,E , Y

N
2̃,B\E |h̃

N )

≤N [2(λi1+λi2+λz2+λz3)+λz1+λz4+λb1+λb2+λf ]

(logP + o(logP )) + I(W2;Y
N
2,z1 , Y

N
2,z4 , Y

N
1,E |W1, h̃

N )

− I(W1;Y
N
1,z2 , Y

N
1,z3 , Y

N
1,E |W2, h̃

N ) +No(logP ). (74)

Adding both sides of (18) and (32) in Section IV, and by
(73) and (74), we arrive at
2N(R1 +R2)

≤N

[
2

(
2λi1 + 2λi2 +

4∑
k=1

λzk + λb1 + λb2 + λf

)
+

4∑
k=1

λzk

]
(logP + o(logP ))+No(logP )+NεN

+ 2N

(
4∑
k=1

λsk + λm1 + λm2

)
(logP + o(logP ))

=N

[
2 (1 + λi1 + λi2) +

4∑
k=1

λzk

]
(logP + o(logP ))

+No(logP )+NεN . (75)
Dividing both sides of (75) by 2N logP and let both N

and P go to infinity, we obtain the sum-DoF upper bound in
(67).
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