
Algorithms and Throughput Analysis for
MDS-Coded Switches

Rami Cohen and Yuval Cassuto
Department of Electrical Engineering

Technion - Israel Institute of Technology
Technion City, Haifa 3200003, Israel

Email: rc@tx.technion.ac.il, ycassuto@ee.technion.ac.il

Abstract—Network switches and routers need to serve packet
writes and reads at rates that challenge the most advanced
memory technologies. As a result, scaling the switching rates is
commonly done by parallelizing the packet I/Os using multiple
memory units. For improved read rates, packets can be coded
with an [n,k] MDS code, thus giving more flexibility at read
time to achieve higher utilization of the memory units. In the
paper, we study the usage of [n,k] MDS codes in a switching
environment. In particular, we study the algorithmic problem
of maximizing the instantaneous read rate given a set of packet
requests and the current layout of the coded packets in memory.
The most interesting results from practical standpoint show how
the complexity of reaching optimal read rate depends strongly
on the writing policy of the coded packets.

I. INTRODUCTION

Ever increasing demand for network bandwidth pressures
switch and router vendors to scale their products at a fast
pace. The most crucial component for throughput scaling is
the memory sub-system that comprises the switching fabric.
As it becomes extremely difficult or prohibitively costly to
scale the read and write rates of memory units (MUs), an
alternative solution of choice is to deploy multiple such
units in parallel. Memory contention in switches occurs when
multiple packets requested for read at a given instant happen
to reside in the same memory unit. Because every memory
unit can deliver a single chunk of data per time instant, this
contention will result in a loss of switching throughput (while
at the same time a different memory unit will be idle). Our
ability to avoid such contention by clever packet placement
is limited by the fact that the reading schedule of packets is
not known upon arrival of the packets to the switch.

This issue has driven switch vendors to seek methods to
reduce memory contention and thus increase the switching
throughput. One particularly promising technique is to intro-
duce redundancy to the packet-write path, such that upon read
the switch controller will enjoy greater flexibility to read the
requested packets from memory units not contended by other
read requests. This redundancy is introduced in the form of
coding, whereby additional coded chunks are calculated from
the incoming packet and written along with it in the switch
memory. The simplest scheme of coding applied to packets
is replication, where the additional chunks written with the
packet are simply copies of the same packet. The advantage of
this scheme is in its simplicity, requiring only trivial encoding
and decoding. A more advanced packet-coding scheme uses
[n, k] maximum distance separable (MDS) codes [1]. This
coding scheme takes an input of k packet chunks and encodes
them into a codeword of n chunks (k ≤ n), where any

k chunks taken from the n code chunks can be used for
the recovery of the original k packet chunks. This maximal
flexibility in retrieving the packet makes MDS codes very
well suited to use in switch memories. Latency comparison
between replication and MDS codes was pioneered by Huang
et al. [2]. It was shown that for k = 2, the average latency
for serving a packet decreases significantly when a certain
scheduling model is used. This analysis was later extended by
Shah et al. in [3], [4], where bounds on latency performance
under multiple scheduling policies were investigated.

In this paper, we provide a model of a coded switch that
considers the number of memory units in use and the code
parameters. Then we put our focus on maximizing and ana-
lyzing the throughput of the switch. The notion of throughput
we pursue here is the active MUs serving packets out of the
MUs in the switch. Increasing the number of packets in the
system (i.e., the load) gives more choice to the reader, and is
thus expected to improve the throughput. For the probabilistic
analysis of throughput we use a static distribution on the
requested-packets’ locations (governed by the write policy),
and assume that the switch observes this static distribution in
steady state. The problem of achieving maximal throughput is
formulated in two equivalent ways as problems in set theory
and in graph theory. These formulations allow us later to
obtain insights, algorithms, and bounds for the problem.

This paper is structured as follows. In Section II, we
provide complexity analysis of the throughput maximization
problem, where in Section III we discuss suboptimal algo-
rithms and bounds on the optimal solution. We then provide
a structured version of the problem in Section IV and show
that it admits a polynomial-time solution. Finally, conclusions
are given in Section V.

II. PROBLEM FORMULATION AND COMPLEXITY

Consider a scenario in which multiple packets are stored in
MUs, to be later forwarded by a switch. Let us assume that
each packet consists of k chunks, which are MDS-encoded
into n chunks. The n chunks are then stored in n MUs out of
N available ones (k ≤ n ≤ N), where overlapping is allowed
(i.e., two or more packets may share one or more MUs). Out
of many packets currently stored in the switch memory, a
request arrives for L packets, with the objective to read as
many out of these packets in a single time instant. Recall
that k chunks out of the n encoded ones are sufficient for
recovering a packet. We know in which MUs these L packets
are stored, and wish to find methods for reading as many
packets as possible simultaneously, with the constraint that

ar
X

iv
:1

50
4.

04
80

3v
2

 [
cs

.I
T

]
 2

4
A

pr
 2

01
5

Fig. 1: Illustration of nkMTP. The patterned rectangles rep-
resent encoded data chunks (n = 3).

each MU can be accessed only once in the reading process.
Let us denote by L∗ the maximal number of packets that can
be read. We consider the following notion of throughput as
a performance measure.

Definition 1: (Throughput)
The throughput ρ of the system is defined as:

ρ =
L∗k

N
. (1)

We name the problem of maximizing the throughput ρ as the
[n, k]-maximal throughput problem, or nkMTP. An instance
of the problem is illustrated in Figure 1, where data chunks
of multiple packets are shown on top of MUs storing them.

The motivation for using MDS codes in this setting rather
than simple replication is demonstrated in Figure 2. Here we
compare the use of a [4,2] MDS code for encoding 2 chunks
of a packet to 2 uses of a [2,1] repetition code (i.e., 2-way
replication), one use for each chunk. To read a packet when
the repetition code is used, the reader needs to read one chunk
from a specific subset of 2 MUs out of the 4 MUs storing
the packet, and an additional chunk from the other subset of
2 MUs. On the other hand, when a [4,2] MDS code is used,
the reader can recover the packet by reading two chunks from
any 2 MUs out of the 4 MUs storing the packet chunks.
The resulting curves in Figure 2 show that on average the
[4,2] MDS code allows reading more simultaneous packets
than the [2,1] repetition code. Note that both schemes write 4
chunks per packet, and hence this advantage comes without
increasing the write load.

Evidently, the way packets are stored dictates how they
should be read for optimal results. In particular, each
write/read scheme combination may result in different num-
ber of packets that can be read. In this work, we will consider
two write schemes that are easy to implement, and their
optimally matched read schemes. For analysis purposes, we
provide in the rest of this section two equivalent formulations
of nkMTP. Consider the N available MUs as the elements of
the set S = {1, 2, ..., N}. Each packet i = 1, 2, ..., L is stored
in MUs indexed by a subset Si of S, where |Si| = n and the
subsets may overlap. The set theory formulation of nkMTP
is as follows.

Problem 1: (nkMTP, set theory formulation)
Input: Set S = {1, 2, ..., N} and L subsets of S, Si ⊆ S,

such that |Si| = n.

Fig. 2: Comparison between a [4, 2] MDS code and two uses
of the [2, 1] repetition code (N = 16).

Output: Subsets S′i ⊆ Si, |S′i| = k, S′i ∩ S′j = ∅ (i 6= j),
such that the number of subsets is maximal.

Example 1:
N = 5, L = 3, n = 3. The packets are stored in the MUs

indexed by the sets S1 = {1, 2, 3} , S2 = {2, 4, 5} , S3 =
{3, 4, 5}. If k = n = 3, we have that L∗ = 1 and the
recovered packet can be either 1, 2 or 3 since Si ∩ Sj 6= ∅
for all i, j = 1, 2, 3. If k = 2, a possible solution is
S′1 = {1, 2} , S′2 = {4, 5} with L∗ = 2. Note that no more
than 2 packets can be read in this case, since L∗ ≤ bN/kc =
2. Finally, if k = 1 all the packets can be read, and one
possible solution is S′1 = {1} , S′2 = {2} , S′3 = {3}.

In addition to the set theory formulation, nkMTP can
be formulated equivalently on a graph. Consider a bipartite
graph G = (VG, EG), where VG denotes the vertices of G
and EG denotes the edges of G. In addition, let us denote by
deg(v) the degree of a vertex v ∈ VG. Since G is bipartite,
VG can be partitioned into two disjoint sets of vertices, let us
denote them by XG and YG. Thinking of XG as packets, and
of YG as MUs, vertex i in XG will be connected to vertex j in
YG if one of the encoded chunks of packet i is stored in MU j.
The resulting graph has the following properties: deg(x) = n
(∀x ∈ XG), |XG| = L, |YG| = N , and |EG| = nL. nkMTP
can be now formulated as follows.

Problem 2: (nkMTP, graph theory formulation)
Input: Graph representation G of nkMTP.
Output: Subsets XH ⊆ XG, YH ⊆ YG, EH ⊆ EG with

the properties deg(x) = k, deg(y) ∈ {0, 1} (∀x ∈ XH , y ∈
YH), such that |XH | is maximal.

For instance, Example 1 is represented as the graph in
Figure 3. The output of Problem 2 is essentially a subgraph
H of G, providing a solution to nkMTP with throughput
ρ = |XH | k/N .

A. Complexity

In this subsection, we analyze the computational complex-
ity of nkMTP. Clearly, a simple approach for solving nkMTP
is to consider all possible assignments of MUs to packets, and
to choose the assignment leading to the maximal number of
packets that can be read. However, this approach is clearly

Fig. 3: nkMTP from Example 1 formulated on a graph.

inefficient since its complexity scales exponentially in L. In
fact, nkMTP can be solved in polynomial time if k = 1, n ≥ 1
(i.e., each packet consists of one chunk and the repetition code
is used) or k = n = 2. On the other hand, nkMTP is NP-hard
for 3 ≤ k ≤ n.

Theorem 1: For k = 1, n ≥ 1 or k = n = 2, nkMTP is
solvable in polynomial time.

Proof When k = 1, n ≥ 1, nkMTP is equivalent to finding a
subgraph H of G (a graph representation of nkMTP) that
is a maximum bipartite matching [5], i.e., containing the
largest number of matched pairs (x, y), x ∈ XG, y ∈ YG,
such that each pair is connected by an edge and the edges
are pair-wise non-adjacent. When k = n = 2, consider the
N MUs as the vertices of a (uni-partite) graph, where an
edge in this graph connects two MUs shared by the same
packet. A maximum matching in this graph will provide the
largest number of disjoint pairs of MUs, each pair serving a
packet, corresponding to an optimal solution of the nkMTP
instance. Efficient algorithms are known for finding maximum
matching in both cases [5].

Theorem 2: nkMTP is NP-hard for 3 ≤ k ≤ n.
To prove Theorem 2, we reduce the l-set packing (l-SP)
problem [6], known to be NP-hard, to nkMTP. In l-SP, there
are L sets, each of size l, and the problem is to find the
maximal number of pair-wise disjoint sets. The details of
the reduction are provided in Appendix A. The consequence
of the hardness result of Theorem 2 is that no efficient
algorithms are expected to be found for solving nkMTP when
3 ≤ k ≤ n. However, in the next sections we provide
algorithmic and analytic results that help solving the nkMTP
problem in practical settings. We will also see variants of
nkMTP for which we do find polynomial-time algorithms.

III. PROBABILISTIC ANALYSIS AND BOUNDS

The fact that nkMTP turns out to be NP-hard for interesting
coding parameters is important theoretically, but should not
discourage one from seeking high-throughput coded switch-
ing. In this section we provide tools that will help find good
coded-switching solutions in a practical setup.

A. Lower bounding the maximal solution

In this sub-section, we provide a lower bound on the num-
ber of packets that can be read, for a given nkMTP instance.
Consider the following randomized algorithm, applied to a
graph formulation of nkMTP (Problem 2):

Algorithm 1:
1) Calculate the degree of each MU.

2) Assign each MU independently at random to one of its
connected packets with probability 1/d, where d is the
MU degree.

3) Return the set of packets having at least k connected
MUs.

The packets in the set returned by Algorithm 1 can be read,
since at least k chunks are available for each packet. We
now turn to calculate the expected size of the set returned
by Algorithm 1, which will be shown to serve as a lower
bound on L∗. Denote by li an indicator random variable that
equals 1 if packet i was assigned at least k MUs, and equals
0 otherwise. In addition, define auxiliary indicator random
variables li,j , which equals 1 if MU j from the set of MUs
connected to packet i (i.e., j ∈ Si, where Si are defined in
Section II) ends up connected to packet i. Thus:

Pr (li = 1) = Pr

∑
j∈Si

li,j ≥ k

 . (2)

Denote by di,j the degree of MU j connected to packet
i. li,j are Bernoulli random variables whose success proba-
bilities are 1/di,j . These random variables are independent
for the same i and different j, but not identically distributed
(since the MU degrees may vary). The distribution of these
random variables is called Poisson binomial distribution [7].
A closed-form expression for the right-hand side of Equation
(2), denoted Q(i), is obtained using [7]:

Q (i) = 1−
n∑
s=0

{[
k−1∑
t=0

e−j2πst/(n+1)

]
(3)

·
∏
j∈Si

[
(1/di,j) · ej2πs/(n+1) + (1− 1/di,j)

] / (n+ 1) .

We are now ready to provide a lower bound on L∗.
Theorem 3: For a given nkMTP instance, the number of

packets that can be read is lower-bounded as follows:

L∗ ≥
L∑
i=1

Q (i). (4)

Proof Denote by I the cardinality of the set returned by
Algorithm 1. I is a random variable and its expected value
(over realizations of sets provided by Algorithm 1) is:

E [I] = E

[
L∑
i=1

li

]
=

L∑
i=1

E [li] =

L∑
i=1

Pr (li = 1) (5)

=

L∑
i=1

Q (i).

Since E [I] is an expected value, there must exist a valid so-
lution to nkMTP with cardinality at least E [I]. The existence
of such set leads to the lower bound (5).

Example 2:
Consider the nkMTP instance of Figure 3. The MU degrees

are d1,1 = 1, d1,2 = 2, d1,3 = 2 and so on. The lower bounds
on L∗, obtained using (4), are 2.75, 1.75 and 0.5 for k = 1,
k = 2 and k = 3, respectively, where the corresponding L∗

values are 3, 2 and 1.

B. Expected performance of nkMTP ensembles

In this sub-section, we analyze the nkMTP in a random
setting, where we consider random ensembles of nkMTP
instances with fixed parameters k, n,N and L. Assuming a
graph formulation (Problem 2), an instance taken from an
ensemble consists of a graph G with L packets and N MUs,
where the n chunks of each packet are stored independently
and uniformly at random at n MUs. For each ensemble, we
would like to estimate the probability of maximum through-
put, i.e. the existence of a solution in form of a subgraph H
such that XH = XG. The method is to identify a condition for
the existence of such a solution, derived from the following
extension of Hall’s theorem.

Theorem 4: (Extended Hall’s Theorem [8]) Consider a bi-
partite graph G = (XG, YG, EG). Then, G satisfies deg(x) =
k and deg(y) ∈ {0, 1} for all x ∈ XG and all y ∈ YG, if and
only if for every subset W of XG,

|T (W)| ≥ k |W | , (6)

where T (W) is the set of vertices (in YG) adjacent to the
vertices in W .
That is, the extended Hall’s theorem provides a necessary
and sufficient condition to determine whether MUs in YG can
be assigned to packets in XG, such that the degree of each
vertex in XG will be k. This is equivalent to the existence of
a maximum throughput solution in G (i.e., each packet can
be served). In the sequel we say that Hall’s condition holds
for a given subset W of XG if the condition (6) of Theorem
4 holds.

Denote by um = um (|W |, n;N) the probability that the
union of |W | sets, each containing n elements taken indepen-
dently and uniformly at random from the set {1, 2, ..., N},
results in a set of size m (m = 1, 2, ..., N). An expression
for um was derived in a previous work by us [9], based
on a Markov model that is an extension of the balls-and-
bins model [10]. For a given subset W of XG, denote by
PW the probability that the number of neighbours of W is
greater than or equal to k |W | (meaning that Hall’s condition
holds for W). Since each vertex in W is of degree n, PW
is equivalent to the probability that the random union of |W |
sets of size n (the number of MUs that store each packet)
results in a set of size that is greater than or equal to k|W |.
Thus,

PW =

N∑
m=k|W |

um (|W | ;n,N) . (7)

Note that PW from (7) is independent of the particular choice
of W . Instead, it depends on the size of W , i.e., PW = P|W |.

Calculating the probability that all subsets W ⊆ XG

satisfy Hall’s condition is a difficult task, due to dependencies
between the subsets. However, a necessary condition for
an instance to contain a maximum throughput solution is
that the set XG satisfies Hall’s condition, which happens
with probability P|XG|. Therefore, an upper bound on the
probability that an instance contains a maximum throughput
solution is simply P|XG|. As P|XG| is obtained by raising a
Markov matrix to power |XG|, its calculation is efficient. In
Figure 4, we first calculate the probability that a random graph
G contains a maximum throughput solution, by averaging

Fig. 4: The probability that all |XG| packets of a random
nkMTP instance can be served, as a function of k and n
(N = 16).

over the optimal solution sizes of 10, 000 instances for k = 2
and varying values of n. We then compare this empirical
average to the upper bound obtained using P|XG|. The results
show that the upper bound provided by P|XG| is tight and
captures the behaviour of the empirical average. The bound
is tighter as n becomes larger compared to k, meaning that
in such cases the probability that Hall’s condition is satisfied
for all XG subsets is dominated by the probability that
the set XG satisfies Hall’s condition. As expected, better
average performance is achieved as n increases (i.e., when
redundancy increases). It is also demonstrated that P|XG| = 0
for |XG| > bN/kc, since the maximal number of packets that
can be served is upper bounded by bN/kc.

Hall’s condition provides a convenient way for estimating
expected performance of an ensemble, when concentrating on
maximum throughput solution. This way, instead of estimat-
ing the probability of maximum throughput empirically by
averaging over the optimal solution sizes of many nkMTP in-
stances (whose solution is hard in general, see Section II-A),
we may resort to calculate P|XG| instead. This is especially
useful for large values of n and L, for which a direct solution
of nkMTP (e.g., by considering all possible assignments of
MUs to packets), may be prohibitively complex. In addition,
we obtained an efficient way for choosing parameters k and
n and load L such that good performance is expected.

IV. POLYNOMIAL-TIME SOLUTION FOR A STRUCTURED
VARIANT OF NKMTP

Motivated by the hardness of the nkMTP problem proved
above, we now turn to consider variants of the problem that
can be solved efficiently. Our approach to make the problem
easier to solve is by changing the packet writing policy upon
packet arrival. We show in this section that, by a moderate
restriction on the MUs chosen to store the n chunks of a
packet, we turn the maximal-throughput read problem to a
tractable one.

To the nkMTP problem discussed above we add the
constraint that the n encoded chunks of each packet are
stored in n consecutive MUs. We will refer to this scheme as

CnkMTP, for which we show that polynomial-time solution
exists. We first sort the sets Si in a non-decreasing order of
the maximal index of the MUs they contain, and w.l.o.g. we
consider instances of CnkMTP in which the packets are sorted
accordingly. We begin with an empty set of packets, denoted
Λ, and an empty set of MUs, denoted Ω. The following
algorithm solves CnkMTP for k ≤ n.

Algorithm 2:
1) Initialize S′i = Si for i = 1, . . . , L.
2) Set i := 1.
3) If |S′i| ≥ k, add i to Λ, and add the k lowest elements

of S′i to Ω.
4) Remove all the elements added to Ω from all the sets

S′j , for j > i.
5) Set i := i+ 1. If i > L, stop. Otherwise, go to step 3.
Theorem 5: The set of packets Λ and their corresponding

MUs in Ω found by Algorithm 2 are an optimal solution to
CnkMTP.

Proof The proof starts by observing that w.l.o.g the k MUs
assigned to a read packet are consecutive. If not, we can
always exchange MUs between packet j and packets j′ > j
to make the assignment consecutive.

Now we prove that if |S′i| ≥ k in step 3, then i appears
in the optimal solution. We prove by induction on i. Assume
all packets 1, . . . , i− 1 can be chosen optimally according to
Algorithm 2. Then we show that the i-th packet can be chosen
in the same way. We assume by contradiction that |S′i| ≥ k
and there is no optimal solution that contains packet i. Then
we look at the smallest j > i for which packet j appears in
the optimal solution. Then from the fact that its k assigned
MUs are consecutive it is possible to shift the assignment to
the first MU index in S′i, and replace j by i in the optimal
solution without affecting the selection of any j′ > j. This
is a contradiction.

The operations required in Algorithm 2 are simple shifting,
in addition to the sorting of the packets. Hence its running
time is clearly polynomial. We also consider a special case
of CnkMTP, in which the N MUs are partitioned into N/n
blocks of size n (assuming that n is a divisor of N), where
the encoded chunks of each packet are restricted to one of
those blocks. We term this scheme as CnkMTP on blocks. A
comparison between nkMTP and CnkMTP is given in Figure
5 for k = 3, n = 4 and N = 16. This figure reveals a very
interesting tradeoff between throughput and computational
complexity. Adding structure to the write policy in CnkMTP
results in some loss of throughput compared with the un-
restricted nkMTP. However, this throughput can be attained
efficiently, where for nkMTP it is intractable to reach the
throughput efficiently for large problem instances. It is also
shown that CnkMTP gives better throughput compared with
an even more structured writing policy, CnkMTP on blocks.

V. CONCLUSION

In this paper, we anaylzed the fundamental limits of using
MDS codes in a switching environment. We proved that in
its most general form, the problem of obtaining maximum
throughput for a set of requested packets is a hard problem.
Therefore, we provided bounds and algorithmic tools to aid

Fig. 5: Scheme comparison.

its solution in practice. By a simple modification of the
writing policy used by the switch, we have shown how the
problem can be solved efficiently. Our work leaves many
interesting problems for future research, most immediately
how to tailor the switch and code parameters to match real-
life network workloads. From a practical point of view, we
currently investigate the performance of certain MDS codes in
a switching environment, taking encoding/decoding overhead
into account.

VI. ACKNOWLEDGEMENT

The authors would like to thank A. Nekrasov and S. Shulga
for their contribution to performance evaluation simulations.
This work was partly conducted under a joint ISF-UGC grant.
In addition, it was supported by a Marie Curie CIG grant and
by the Israel Ministry of Science and Technology.

REFERENCES

[1] W. Huffman and V. Pless, Fundamentals of Error-Correcting Codes.
Cambridge University Press, 2003.

[2] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can
reduce queueing delay in data centers,” 2012 IEEE International
Symposium on Information Theory Proceedings (ISIT), pp. 2766–2770,
July 2012.

[3] N. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” in 2013 51st Annual Allerton Conference on Commu-
nication, Control, and Computing, Oct 2013, pp. 731–738.

[4] ——, “The MDS queue: Analysing the latency performance of erasure
codes,” in 2014 IEEE International Symposium on Information Theory
(ISIT), June 2014, pp. 861–865.

[5] A. Bondy and U. Murty, Graph theory. Springer, 2008.
[6] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of approx-

imating k-set packing,” Comput. Complex., vol. 15, no. 1, pp. 20–39,
May 2006.

[7] M. Fernandez and S. Williams, “Closed-form expression for the
poisson-binomial probability density function,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 46, no. 2, pp. 803–817, April
2010.

[8] M. Viderman, “LP decoding of codes with expansion parameter above
2/3,” Information Processing Letters, vol. 113, no. 7, pp. 225 – 228,
2013.

[9] R. Cohen and Y. Cassuto, “LDPC codes for partial-erasure channels
in multi-level memories,” 2014 IEEE International Symposium on
Information Theory (ISIT), pp. 2087–2091, July 2014.

[10] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

APPENDIX A
DETAILED PROOF OF THEOREM 2

To show hardness of nkMTP when 3 ≤ k ≤ n, we first
define the decision-problem version of nkMTP, which we
name M -nkMTP. In the rest of this appendix, we assume
that 3 ≤ k ≤ n.

Problem 3: (M -nkMTP)
Input: Set theory formulation (Problem 1) of nkMTP and

a positive integer M .
Output: ”Yes” if there are M subsets S′i ⊆ Si with the

properties |S′i| = k, S′i ∩ S′j = ∅ (i 6= j).
For showing that nkMTP is NP-hard we can equivalently
show that M -nkMTP is NP-complete. Note that M -nkMTP
is in NP, since once we are given a collection of M subsets
S′i ⊆ Si claimed to be pair-wise disjoint, this can validated in
polynomial time. It remains to reduce a known NP-complete
problem to M -nkMTP, meaning that we have to show that an
efficient solution to M -nkMTP implies an efficient solution to
this NP-complete problem. We will reduce the l-set packing
problem (l-SP), known to be NP-complete for l ≥ 3 [6], to
our problem. l-SP is defined as follows.

Problem 4: (l-SP)
Input: Collection of sets over a certain domain, each of

them of size l, and a positive integer M .
Output: ”Yes” if there are M pair-wise disjoint sets.

Proof First, M -nkMTP is NP-complete for 3 ≤ k = n, since
in this case M -nkMTP and l-SP, for l = k = n, are essentially
the same. Therefore, it remains to reduce l-SP (l ≥ 3) to M -
nkMTP for 3 ≤ k < n. Let us begin with reducing l-SP to
M -nkMTP with k = l, n = k + 1.

Consider an instance of l-SP with l = k, with M de-
noting the number of pair-wise disjoint subsets required in
the solution. Assume that the input to l-SP are L sets Ai
(i = 1, 2, ..., L), where the elements contained in Ai are⋃
i

Ai = {a1, a2, ..., as}. For building an instance of M -

nkMTP with k = l, n = k + 1, do the following:

• Build sets Bi, each of size k, from s new elements
{b1, b2, ..., bs}, such that a one-to-one correspondence
between the elements in Ai and the elements in Bi
exists: aj ∈ Ai ⇔ bj ∈ Bi.

• Add a new element, say θ, which does not appear in the
sets Ai or Bi, to each of the sets Ai and Bi. Denote the
new sets by Ãi and B̃i.

The input to M -nkMTP with n = k+1 will be the sets Ãi
and B̃i, where we will ask whether there exist 2M subsets
of size k each that are pair-wise disjoint. If l-SP provides
a solution of size M for the sets Ai, then clearly the sets
Ai ⊆ Ãi, Bi ⊆ B̃i serve as solution of size 2M to M -
nkMTP with n = k + 1. On the other hand, if there exists
a solution of size 2M in the M -nkMTP problem, we have
three cases:

1) M subsets A′i ⊆ Ãi and M subsets B′i ⊆ B̃i appear
in the solution. The element θ can appear in only one
of the subsets, since they must be pair-wise disjoint.
If θ belongs to some A′i, then we have M subsets B′i
that provide a solution to l-SP (after transforming the
elements in B′i to the their corresponding elements in

A′i). On the other hand, if θ belongs to some B′i, then
the solution is the sets A′i.

2) M1 subsets A′i ⊆ Ãi and M2 subsets B′i ⊆ B̃i appear
in the solution, where M1 < M2 and M1 + M2 =
2M . θ can appear in at most one of the subsets B′i. In
addition, M < M2, and therefore choosing the subsets
B′i that do not contain θ leads to a solution of l-SP
with at least M subsets (again, transformation to the
elements of Ai is required).

3) M1 subsets B′i ⊆ B̃i and M2 subsets A′i ⊆ Ãi appear
in the solution, where M1 < M2 and M1 +M2 = 2M .
A solution of size at least M to l-SP is obtained in a
similar way to the previous case.

The transformation Ai → Ãi, B̃i is clearly polynomial in
L, since it merely requires to build L sets of size k and to
add one element to each of the resulting 2L sets. Thus, the
reduction described above is a polynomial time reduction.
Therefore, M -nkMTP is NP-complete for k ≥ 3, n = k + 1,
and it remains to show that M -nkMTP is NP-complete for
k ≥ 3, n > k + 1.

Consider M -nkMTP with k ≥ 3, n = k+2. We can reduce
M -nkMTP with k ≥ 3, n = k + 1 (which we proved to be
NP-complete) to M -nkMTP with k ≥ 3, n = k+2, similarly
to the reduction of l-SP to M -nkMTP with k = l, n = k+ 1
that was described earlier. Continuing in the same fashion, we
are able to reduce M -nkMTP with n = k+ j (k ≥ 3, j ≥ 1)
to M -nkMTP with n = k+j+1. Finally, we deduce that M -
nkMTP is NP-complete for 3 ≤ k ≤ n, meaning that nkMTP
(the optimization version of M -nkMTP) is NP-hard.

	I Introduction
	II Problem Formulation and Complexity
	II-A Complexity

	III Probabilistic Analysis and Bounds
	III-A Lower bounding the maximal solution
	III-B Expected performance of nkMTP ensembles

	IV Polynomial-Time Solution for a Structured Variant of nkMTP
	V Conclusion
	VI Acknowledgement
	References
	Appendix A: Detailed proof of Theorem ??

