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Abstract

We consider asymptotic hypothesis testing (or state digodtion with asymmetric treatment of errors) between
an arbitrary fixed bipartite pure staf&) and the white noise state (the completely mixed state) underway
LOCC (local operations and classical communications)-way LOCC, and separable POVMs. As a result, we
derive the Hoeffding bounds under two-way LOCC POVMs andaeigle POVMs. Further, we derive a Stein’s
lemma type of optimal error exponents under one-way LOC@-way LOCC, and separable POVMs up to
the third order, which clarifies the difference between wmg- and two-way LOCC POVM. Our results clarify
the relationship between the entanglement of Renyi entaopgy the hypothesis testing under LOCC, since the
entanglement of Renyi entropy appears in the formula of bla¢hHoeffding bounds and the Stein’s lemma type
of error exponents. Our study gives a very rare example irchvtiie optimal performance under the infinite-round
two-way LOCC is also equal to that under separable operatiod can be attained with two-round communication,
but not with the one-way LOCC.

. INTRODUCTION

When a quantum system consists of two distinct parties,eAdind Bob, it is natural to restrict their
operations to local operation and classical communicdti@CC) [1] because it is not so easy to realize a
guantum operation across both of the distant parties. LO@ations can be classified by the direction of
classical communication. When the direction of classicahmunication is restricted to only one direction,
the LOCC operation is called a one-way LOCC. Otherwise, daibed a two-way LOCC. Such constraint
for our measurement is called a locality restriction. Irstbaper, we focus on the effect for distinguishing
guantum states. Such a state discrimination problem has $iadied very actively by many researchers
[2], [3], [4], [3] [6], [7], [8], [9], [1Q], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30].

In this paper, we concentrate on the detection of a givenngled state from the completely mixed
state, which is often called the white noise state becausasiino biased noise. Since this problem deals
with two states as candidates for the true state in an asymenvedy, it is usually referred to as the
binary simple hypothesis testing. Since we impose the itycadstriction, we call it the local hypothesis
testing. Since, as was pointed out from a Shannon thedrgtmapoint [31], [32], [33], [34], [35], [36],
[37], [39], [38], [40], [41], [42], hypothesis testing isleded to so many information theoretic problems,
guantum hypothesis testing with the asymptotic and asymensttting has attracted much attention in
guantum information theory [30], [42], [45], [47], [48], 4, [43], [49], [53], [50], [51], [52], [46]. In
order to discuss the relation between the locality constrand these information theoretic problems, it
is natural to deeply investigate quantum hypothesis tgstiith locality restriction.
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One might consider that hypothesis testing with the whitsengtate is too specialized. However, as
known in classical information theory, this type of hypdtisaesting is directly related to data compression
[32], [36], uniform random generation [32], channel codimigh additive noise [31], and resolvability of
distribution [41]. Thus, this problem can be regarded aditeestep for extending these topics to the case
with the locality constraint. Indeed, based on a similarivation, a recent paper [50] treats the hypothesis
testing of quantum channel with a special case as a quanttensean of a special case of the paper
[54]. Further, hypothesis testing even with the white naisge is highly non-trivial when we impose any
locality restriction, although it is trivial without one.dtice, this problem represents the difficulty caused
by the locality restriction in the simplest way, and it cande@sidered as one of the most important types
of local hypothesis testing. Therefore, to characterizedtcessible information under locality condition,
we tackle the local hypothesis testing with the white noisgesin this paper.

On the other hand, since this problem can be described irstefthe entangled pure state to be detected,
this problem is closely related to the amount of entangldroéthe entangled pure state. Hence, it has a
great significance as a study of entanglement. In fact, abeatanglement measures have been proposed
even for pure entangled states. One is the entanglementroipgr{55], and its relation with hypothesis
testing with the white noise state has been clarified [56].08sr measures, the geometric measure of
entanglement [57] and the robustness of entanglement [g8kraown. However, their relations with this
problem have only been partially resolved [56]. To discuees relation between entanglement measures
and hypothesis testing, we employ the entanglement of iR&riyopy [59], i.e., the Rényi entropy of the
reduced density matrix of a pure entangled state, whichagamithe entanglement of entropy, the geometric
measure of entanglement, and the logarithmic robustnesstahglement as special cases. Since Rényi
entropy is also closely related to the asymptotic perforreanf quantum information protocols, we may
predict that the entanglement of Renyi entropy is also ¢yossdated to the asymptotic performance of
guantum information processing under the locality conditiin this paper, we show that this prediction
is correct. That is, we clarify the relation between our Hjesis testing problem and the entanglement
of Rényi entropy.

Before discussing the history of the local hypothesisngstive focus on the quantum hypothesis testing
without a locality condition, in which a general asymptdtieory can be established even for the quantum
case where multiple copies of unknown states are avail&igtly, Hiai et al. [43] and Ogawa et al. [44]
derived the quantum version of Stein’s bound [60], i.e., dpeimal exponent of the type-2 error under
the constant constraint for the type-1 error. Audenaert.€f6d] and Nussbaum et al. [62] derived the
guantum version of the Chernoff bound [60], i.e., the optiexponent of the sum of type-1 and type-2
errors. Other papers [37], [47] derived the quantum versiahe Hoeffding bound [63], [65], [64], which
is the optimal exponent of the type-2 error under the expoaeconstraint for the type-1 error and can
be considered to be a generalization of the Chernoff boumdveder, when we impose the one-way or
two-way LOCC constraint on our measurement, these problmusme very difficult, and they have not
been solved completely. In particular, it is quite diffictdt solve these problems for an arbitrary fixed
pair of quantum states. In the following, we mainly addréssHoeffding bound and will hardly mention
the Chernoff bound. This treatment does not lose genetadibause our results for the Hoeffding bound
include the results for the Chernoff bound as special cases.

Before proceeding to the detailed discussion of the locablhesis testing between a pure entangled
state|¥) and the white noise state, we prepare a detailed classificafi two-way LOCC operation.
whereas a one-way LOCC operation requires only one-roussbiclal communication, a two-way LOCC
operation requires multiple-round classical communacatin this case, a two-way LOCC protocol with
k-round classical communication has+ 1 steps. For example, in the case of two-round classical
communication, the total protocol is given as follows whba initial operation is done by Alice: Alice
performs her operation with her measurement and sends teamoe to Bob. Bob receives Alice’s outcome,
performs his operation with his measurement, and sendsutt®me to Alice. Alice then receives Bob’s
outcome and performs her measurement. Therefore, we facukeo difference among these locality
restrictions. under the local hypothesis testing betwepnra entangled state and the white noise state.



In the non-asymptotic setting, our previous paper [15] edgsied the problem under the constraint that
|W) is detected with probability. Our more recent paper [66] addressed it in a more genetiigein
particular, that paper [66] proposed concrete two-rouadsital communication two-way LOCC protocols
that are not reduced to one-way LOCC. Then, we extended thtelgmn to the case when the entangled
state is given as the-copy state of a certain entangled state [56]. As asymptesialts, we showed that
there is no difference between one-way and two-way LOCC fein$ bound, i.e., the optimal exponent of
the type-2 error under the constant constraint for the tiyperor. To make an upper bound of the optimal
performance of the two-way LOCC case, our papers [15], [f3] also considered the performance
for separable operations, which can be easily treated beocafutheir mathematically simple forms. The
class of separable operations includes LOCC, but ther¢ ssgmrable operations that are not LOCC [3].
Unfortunately, our previous paper [56] could not derive theeffding bound for two-way LOCC, i.e.,
the optimal exponent of the type-2 error under the expoakotinstraint for the type-1 error, while it
derived it for one-way LOCC. Further, even under the coristanstraint for the type-1 error, the paper
did not consider the higher order of the decreasing rateefythe-2 error. Indeed, in information theory,
Strassen [67] derived the decreasing rate of the type-2 apdo the third-ordetogn under the same
constraint in the classical setting whenis the number of available copies. Tomamichel et al. [42] and
Li [48] extended this result up to the second-orget.

In this paper, we derive the Hoeffding bound for two-way LO@i the optimal decreasing rate of the
type-2 error under the constant constraint for the typerdrerp to the third-ordelogn for one-way and
two-way LOCC. We also derive them for separable measurean&he obtained results are summarized
as follows.

(1) There is a difference in the Hoeffding bound between the-way and two-way LOCC con-

straints unless the entangled state is maximally entangled.

(2) There is no difference in the Hoeffding bound betweenitvay LOCC and separable constraints.

(3) The optimal decreasing rate of the type-2 error undectrestant constraint for the type-1 error
has no difference between the one-way and two-way LOCC nt up to the second-order
Vn.

(4) The optimal decreasing rate of the type-2 error undectmstant constraint for the type-1 error
is different between the one-way and two-way LOCC constsaim the third-ordetog n unless
the entangled statel) is maximally entangled.

(5) The optimal decreasing rate of the type-2 error undectmstant constraint for the type-1 error
is not different between the two-way LOCC and separabletcainss up to the third-orddnbg n.

(6) The three-step two-way LOCC protocol proposed in [66] aeahieve the Hoeffding bound for
two-way LOCC.

(7)  The three-step two-way LOCC protocol proposed in [66) eahieve the optimal decreasing
rate of the type-2 error under the constant constraint fertyipe-1 error up to the third-order
log n for two-way LOCC.

(8) The entanglement of Renyi entropy appears in the forsnafathe Hoeffding bounds and the
optimal decreasing rate of the type-2 error under the cahstanstraint for the type-1 error for
all the one-way LOCC, the two-way LOCC, and separable caimgs.

Finally, we discuss our result from the mathematical pofntiew. The difficulty of the above results
can be classified into two parts. One is the asymptotic etialuaf optimal performance of separable
operations. The other is the asymptotic evaluation of ogitperformance of the three-step two-way LOCC
protocol proposed in [66]. To evaluate the exponential esing rates in the latter case, we employ the
type method [69], the saddle point approximation [70], [71]

The evaluation of the former case, we need complicated stksons. Firstly, as mentioned in [66], we
convert our local hypothesis testing with separable opmratinto a specific composite hypothesis testing.
Then, we evaluate the exponential decreasing rates ofgwbabilities in the converted specific composite
hypothesis testing. Usually, to evaluate the exponen&atehsing rate, we employ large deviation theory,
e.g., Cramér Theorem. However, for our analysis, we neetkrdetailed analysis. Hence, we employ



the strong large deviation initiated by Bhadur-Rao [68]jakhenables us to analyze the tail probability
up to the constant order of exponentially small probabili§ee Proposition 38 in Appendix C.) Indeed,
although Bhadur-Rao [68] obtained such detailed evalodio the tail probability in 1960, they were
rarely applied to information theoretical topics. Thatasy analysis is a good application of the strong
large deviation. Based on this analysis for the specific asitp hypothesis testing, we derive our analysis
for the former case.

Indeed, after the first submission of this paper, the recapep[82] discussed the composite hypothesis
testing with the large deviation formalism. Our convertemposite hypothesis testing is different from
the discussion in [82] in the following point. The paper [82es the number of possible states in
the hypothesis, which does not increase dependently ofuh#arn of tensor product. However, in our
composite hypothesis testing, the number of possiblessiatbe hypothesis increases double exponentially
with respect to the number of tensor product. Due to the double exponential incredsentethod in the
paper [82] cannot be applied to our problem, which requirepexial treatment as explained the above.

This paper is organized as follows: In Section II, we sumg®atine known results for simple hypothesis
testing and explain the main results by preparing the maditiead descriptions of our hypothesis testing
problem. Then, we derive the analytical expressions of fiteral error exponents under one-way LOCC
POVMs in Section Ill. Next, in Section IV, we derive the artadgl expressions of the optimal error
exponents under separable LOCC POVMs. For this derivatvendiscuss a specific composite hypothesis
testing by using the strong large deviation [68]. In Sectigrwe analyze a special class of two-round
classical communication LOCC (thus, two-way LOCC) for tluisal hypothesis testing problem by using
the type method [69] and the saddle point approximation,[fd]. Finally, we summarize the results
of our paper in Section VI. Our notation is the same as in oewripus paper [56]. It therefore might
be helpful for readers to refer to the list of notations giverthe appendix of [56]. In Appendix A,
we summarize the formulation and results of [66] needed ibs8bsection IV-B1. In Appendix C, we
summarize the basic knowledge for the strong large devid68].

[I. PRELIMINARY AND MAIN RESULTS
A. Preliminary |: General quantum hypothesis testing

This paper mainly treats hypothesis testing in a bipartitanjum system and its-copies extension.
For this purpose, we firstly discuss hypothesis testing iremegal quantum systefid and itsn-copies
extension. In quantum hypothesis testing, we consider typotheses, the null hypothesis and the
alternative hypothesis. When a hypothesis consists of teraent, it is called simple. Otherwise, it is
called composite. This paper mainly addresses simple hgpes, but it discusses a composite hypothesis
partially. Here, we assume that the null hypothesis is & gtaind the alternative hypothesis is statdn
the n-copies setting, the quantum system is giver§¥*. Then, the null and alternative hypotheses are
the statee®” ando®". Our decision is given by a two-valued POVM consisting of tROVM elements
T,, andI™ —T,,, whereI" is the identity operator o&®™ andT,, is an positive-semi definite operator on
H®"™. When the measurement outcome corresponds, tave judge an unknown state a§™, and when
the measurement outcome/i$ — T,,, we judge it asp®".

Thus, type-1 error is written as

def

(079 (Tn> = TTP®nTn> (1)

and type-2 error is written as
def

ﬁn<Tn> =

The optimal type-2 error under the condition that the typerdbr is no more than a constamt> 0 is
written as

Tro®" (I" - Tp,) . 2)

Bulalpllo)  min {5,(T) | an(T,) < @, 1" > T, > 0}. 3)



Now, we give the asymptotic properties 6f(«|p|lc). For this purpose, we introduce the cumulative
distribution functlon (CDF) of the standard normal distrtion &z def f e / dy, the quantum relative

entropy D(p||o) « Trp(logp log o), and the quantltley(p||a) o Trp(logp logo — D(pl||o))?, and

»(s|pllo) ' Jog Trp'~*o*. Then, whenV (p|lc) > 0, we have the asymptotic expansions [63], [64],
[65], [67]

log Bu(elpllo) = —nD(pllo) — vn/V (pllo) @~ (€) + O(logn) 4)
8 (e pllr) = —n sup LATIZ o ®

Expansions (4) and (5) are called the Stein-Strassen anddb#ding expansions, respectively.
Whenp ando commute each other, we have the more detailed expansion

log Bu(elpllo) = —nD(pllo) — vny/V(pllo) @~ (e) — —logn +0(1). (6)

B. Preliminary I1: Known results of local hypothesis testing

Now, we proceed to the hypothesis testing on a bipartite tguarsystem and it&-copies extension,
def

which is the main topic of this paper. A single copy of a blparHllbert space is written a%{ 5 =
Hi®Hp, and its local dimensions are erttencé,s e dim Ha anddB 1 dim H . We use notations like
Ia, Ig, Lag, 1%, I%, and %, for identity operations ofi 4, Hg, Hag, HS", HE", andH%, respectively.
When it is easy to identify the domain of an identity operatee abbreviate them té hereafter.

In this paper, we defind as

d ¥ min(da, dp), (7)

and consider asymptotic hypothesis testing betwe@opies of an arbitrary known pure-bipartite state
|W) with the Schmidt decomposition as

d
) =Y V) @ i), 8)
=1

andn-copies of the white noise state (the completely mixed state

det Lap
p Tods %)

under the various restrictions on available POVMs: glob@VRIs, separable POVMs, one-way LOCC
POVMs, and two-way LOCC POVMs [1], [72]. We choose the whitgse state (the completely mixed
state)p2” as a null hypothesis and the stafe)®" as an alternative hypothesis.

As variants of5, (a|p||o), the optimal type-2 error under the condition that the typerror is no more
than a constant: > 0 is written as

Bnc(alpllo) © mm {571( ) | oan(Th) <o {T,, I" = T,} € C}, (10)

where C' is either —, <, Sep, andg corresponding to classes of one-way LOCC, two-way LOCC,
separable and global POVMs, respectively. Here, we noteallizough—, Sep, andg are compact sets,
+ is not compact by its original definition [73]. Further, wendée the class of two-way LOCCs with
k-round classical communication by, k. In this notation,«<», 1 is equivalent to—. In this case, the
opposite one way LOCG- can be obtained by swapping systefdg and . So, we do not discuss
the opposite one way LOCE-.



Hence, in this paper, the class is defined as a closure of the set of all two-way LOCC POVMs,
which involves infinite-step LOCC protocols as well [3], [2674], [75], [76]. This definition of the class
<> justifies the use ofnin in EQ.(10) forC' =<«. In the global POVMg, since

log By.4(€|¥|| pmiz) = —nlog dadp + log(1l — €), (11)
as is shown in [56], we have
5"79(€|pmix||‘ll) =0 (12)
B (67 | pmia | T) = 0 with 7 € [0, log dads] (13)
Brg (€| pmiz||¥) = 1 with r € (logdadp, +0), (14)

and the following expansions

log By.q(e7"" | V|| pniz) = —nlog dadp + log(l —e™"")
= —nlogdadg — e ™ + o(e™"). (15)

To discuss the remaining cases, we introduce the Rényomnfi;, (V) of the reduced density of the

entangled stat@l) and its derivative as follows.
1—s
Hy () 2 OB g gy Ly g, (16)
S do

Here, H,(V) is defined as the limitim,_,o H,_s(\V). By the Rényi entropyH,_,(V), the entropy of the
entanglement (|I)), the Schmidt rank?s(|0)) [72], [1], and the logarithmic robustness of entanglement
LR(|W)) [77], [78], [79] are characterized as

E(|9)) = Hi(¥), log Rs(|W)) = Ho(V), LR(|W)) = Hy/(V). (17)

In the following, for the unified treatment, we only use thetation H; (V). Also, we abbreviate
V(|| pmiz) 1o V(). That is, we have/ () = Y. \;(log \; + Hy (7))
Then, our previous paper [56] shows the following proposii The Stein bounds are given as follows.

Proposition 1: [56, Theorem 2] Given a real numbere (0,1) and a pure entangled statg), there
exists a sufficiently large numbéy such that

ﬁn,—> (€|pmzr||\ll) = ﬁn,H (€|pmer\Il> = 5n,sep (dpmsz\P) =0 (18)
for n > N. Further, for a giverr > 0, we have the following expansion.
10g B, (€| ¥ pmia) = — n(log dadp — H1(¥)) + o(n), (19)
IOg 6n,<—> (€|\Ij||pmz:c) = 1Og 5n,sep (€|\I]||pmz:c) + O(?’L)
= —n(logdadg — H1(V)) + o(n). (20)
0

The Hoeffding bounds are characterized as follows.
Proposition 2: [56, (40) and (110)] Given a real number> 0 and a pure entangled stait&), we
have the following relation.

def .. 1 -
H_, (r|\11||pmz:c) = nh—{glo _E IOg 571,—) (6 |\Ij||pmz:c)

= sup r— Hy (V) +logdadg. (21)
o<s<1 1 —8
This relation implies the following equation for> r_, o —H|(V):

H_ (r|¥|| pmiz) = logdadp — Ho(V). (22)



Further, when > log dadp — Hy/2(¥), we have

€ 1 —nr
sep( |‘II||pmwc) d_f hm - IOg Bn ,SEP ( |\Ij||pmzx) - log dAdB - H1/2(\Ij) (23)

C. Main results

In this subsection, we give a short description of the masulte of this paper. As a refinement of
Proposition 1, we obtain the followmg theorem for SteimaSsen bounds. Here, remember that we have
defined the functiord(z) & . dy

Theorem 3: When the Schmld oefﬁuer))t1 in (8) is not uniform, we have the following expansions
for a givene > 0.

log Bn,—> (€|\Ialmzm)
= —n(logdadp — Hi(¥)) — /n/V ()0 ——logn+0( ), (24)

10g By, <52 (€| V| pmiz) = logﬁn,e( \\PHpmm) +O( )
=10g Bn,sep (€| || pmiz) + O(1)
= —n(logdadp — Hi(V)) — /n/V (¥)®*(e) —logn + O(1). (25)
O

Relations (24) and (25) show that the difference betweerd, _, (¢|¥| pmi:) andlog B, « (€|¥|| pmix)
exists only on the order dbg n. However, there is no difference with the uniform Schmidefficient as

follows.
Theorem 4: When the Schmidt coefficieny; in (8) is uniform, we have the following expansions for

a givene > 0.
B (€[]l pmic) = Bu,os (€| pmiz) = Bu,sep (€] V|| pmia) = max{0, 1 — d"e}, (26)
whered := max(d4, dp). O
Theorem 5: For the Hoeffding bounds of two-way LOCC and separable ¢age®btain the following

relations.

1 —nr : 1 —nr
lim —— IOg 571 2 ( |\Ij||pmz:c) = lim —— IOg Bn,<—> ( |\Ij||pmz:c)

n n—oo N

n—o0

1 —nr
_nh—>nolo_g logﬁn sep ( |\Ialmzm)
-2
= sup 2 — Hueo(0) + log dadp. (27)
0<s<1 1l — S8 2

O
This theorem concludes that the Chernoff bound for the tag-kOCC case equals that for the separable
case, which was an open problem in the previous paper [56].
SinceH1+s (V) monotonlcally decreases for the supremumsup,_, ., 7= — Hug (V) +logdadp is

realized W|ths — 0 whenr > r,, & 1H’/ (). In this case, the Hoeffdlng bounds for two-way LOCC
and separable cases coincide with the right hand side of &8%e the convexity ofH, (V) implies
that




this argument can be regarded as an extension of (23) in Sitmpo2.
The right hand sides of (21) and (27) are numerically catedlaas shown in Figs. 1 and 2 when the
pure entangled state) is given as a pure statd(\)):

[T(N)) = VA <i |n‘>) + /1= (d—1)\|dd), (28)

where \ satisfies) < A < 1/+/d. The graphs in Figs. 1 and 2 show the typical pointsandr., on the
horizontal line andogdadg — Ho(¥), logdadp — Hy/2(¥), andlogdadp — H; (V) on the vertical line.
Note that|W(0)) is a product state andl(1/+/d)) is a maximally entangled state. The results in Figs. 1
and 2 show that two-way LOCC improves the Hoeffding bound whés large.

1.4 - - - -~ _ _ T T _ I ]

1.3 : ~— T~ " Global

1.2 : — Two-way LOCC |+
: One—-way LOCC

Hoeffding bounds

Fig. 1. Comparison of Hoeffding bounds in one-way LOCC and-tway LOCC whend = 2 and A = 0.1. In this case, we have
r— = 0.511, ro, = 0.092, log dadp — Ho(¥) = 0.693, logdads — Hy/2(¥) = 0.916, andlog dads — H1(¥) = 1.061.

28 L ]

2.9 § ~ '~ -Global l

2. 4F : One-way LOCC |
: Two-way LOCC

Hoeffding bounds

Fig. 2. Comparison of Hoeffding bounds in one-way LOCC and-tvay LOCC whend = 4 and A = 0.05. In this case, we have
ro =0911, rp =0.212, logdads — Ho(¥) = 1.386, logdads — Hy/2(¥) = 1.841, andlog dadp — H1(¥) = 2.185.



IIl. HYPOTHESIS TESTING UNDER ONEBWNAY LOCC POVMs

In this section, to show the relations for the one-way LOCG/RIS in Proposition 2 and Theorems 3
and 4 ((21), (24), ang,._, (¢|¥|| pmiz) = max{0, 1—d"¢}), we consider’ =—, that is, the local hypothesis
testing under one-way LOCC POVMs. In this case, it turns bat bur results can be formulated in terms
of the following state

o—q,d—cfZM )il @ [i)( (29)

where {|i) ® |j>} is the Schmidt basis ofl’) [see Eq.(8)]. Then, our hypothesis testing is reduced to
that with statesm, and p,.;.. That is, the last paper [56] showed the following lemma:
Proposition 6: Lemma 1 of [56] For all > 0, we have

B~ (| V| prmiz) = Bu(ct|ow || pmiz), (30)
where the optimal type-2 error probability, _, (a|p||c) is defined by Eq. (10). OJ

Proofs of (24) and (21): Since

D (¥ pmia) = logdadp — Hi(¥),  V(¥|pmiz) = V(¥), (31)
$(8]pmia|| V) = (1 = 5)(Hs(V) — log dadp), (32)

by applying (6) to the commutative states= p,,;, ando = oy, Proposition 6 yields (24). Similarly,
applying (5), Proposition 6 reproduces the existing redi). Therefore, we obtain the results for the
one-way LOCC case. [ |

Proof of 3, _, (€|¥]|pmiz) = max{0,1—d"¢}: For the two hypotheses, andp,,;., the optimal test’
has the support in the- tensor product space of the subspace spannediby L , whene < i In this
case, whefr(I"—T,)p2} = ¢, we havelr(I"—T,)o5" = d"e. So, we obtains, _, (e |‘I’||pmm) =1—d"e

[ |

pmzx

IV. HYPOTHESIS TESTING UNDER SEPARABLEPOVM
A. Uniform case: Proof of Theorem 4
First, we consider the most simple case when the Schmidficieet is uniform, i.e., din because
d = min(d 4, dg). Then, for any separable POVN,,, I" — T, }, we have[10]

TeT, | W) (V| < 1 — T, = d"TxT pmie- (33)

Hence, when the first kind of error probablllty is restrictedIr7,|¥)(¥| = ¢, the second kind of error
probability is evaluated a$r(/™ — T},)pmiz > 1 — de. Hence, we have

BMS@P (€|\Ialmzm) Z maX{O7 1 - JE} (34)
Since this lower bound can be attained by one-way LOCC, adiom&d in Section Ill, we obtain (26).

B. Hypothesis testing with a composite hypothesis: Proof of Theorem 5
In this subsection, in order to consider hypothesis testimger separable POVM for a pure state with

the Schmidt decompositio}jjf:1 VPili) ® |i), we consider a pure state) = = EZ L V/Pili) € C*and a
specific composite hypothesis testing @f')*" by employing the results in [66]. Here, we assume that

D1 =>DP2 > ... 2 D
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1) Sngle-shot setting: Although our problem is based anfold setting, it is quite hard to find the
relation between our problem and the results in [66]. To cedte difficulty, we firstly discuss this relation
with the single-shot setting. That is, in this subsubseg¢tiee consider this specific composite hypothesis
testing with the single-shot setting. Here, we assume thatdistributionp = (p;) is not uniform due
to the assumption of Theorem 3. The following type of comigokypothesis testing plays a key role in
our analysis of our hypothesis testing in the bipartite eystThe null hypothesis is given as the pure
state|p) in the systenC?. To give the alternative hypothesis, we introduce a natatio the quantum
systemC¢, the basis is written alg) by usingj € {1, ...,d}. Hence, the quantum systei{ is spanned

by {|j)};ep, whereD o {L,....d}. Then, the alternative hypothes§ is the set of state$|¢.)}; 4,
where|¢;) € C? is defined as

|¢L> déf \/gz<_1>Lj|j>v L e ng (35)

j€D

whereL; € Z, is thejth entry of L € Z4. That is, an element of the alternative hypothesis is chariaed
by an element ofZ¢. Hence, the cardinality of the alternative hypothesig‘is
For a two-valued POVM S, I — S} on C¢, the type-1 error(S) and type-2 erro3(S) are defined as

def

a(S) < TrS|g) (¢l (36)
B(S) E max Tx(y — S)p, (37)

where I,; is an identity operator of£?. The optimal type-2 error under the restriction on the ctiodi
that the type-1 error is no more than> 0 can be written as

Blalp) = min {5(5)[a(s) < a}. (38)
Similarly, we definea(5|y) as
a(Ble) € min {a(S)|5(S) < 5}. (39)

In the rest of this subsection, we often abbrevidte|y) as g («).

Now, we define the subsét R) o {j € D|logp; > R} of D. We also employ the following notations:

P(R)= Y (p;) for s =0,1/2,1, (40)
JES(R)
def Pl/z(R)2 3
(%) _< dP,(R) ) ' (41)
When
1> D) (42)
Py(R)Pi(R)
we define

a(R, R)
af, Pijs(R)Pya(R) C Pp(R? b, PR N\
—1-A®) <P1(R)%P1(R)§P0(R) - (1 P1(}\3)P0(R)) <1 PI(R)PO(R>) ) . (*3)

Then, we have the following lemma. R
Lemma 7: When the inequality(R) > ¢(R) holds, the condition (42) holds. O
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Py 5(R)?

PR which implies the condition (42)m

Proof: Since Schwarz inequality implies th&y(R) >
Lemma 35 in Appendix B yields the following lemma. R R
Lemma 8: Any two distinct elements? and R of {logp;}; with R > R satisfy the inequality(R) >

e(R). O
So, we have the following lemma.
Lemma 9: We fix R € {logp;};. Then, we have the following items.

(1)  When a real numbeR(e {logp;};) < R satisfies

(PI(R)PO(R) _ 1)é
1 _

JoR) s diEls T (44)
Pryp(R) (w _ 1)5
Py /5(R)?
we have
Py o(R)? -
N ERTCICON B I ) (45)
dPl(R)

(2)  We assume that there exists an elem@ntin {log p;}; satisfying the inequality (44) anft, <
R. We denote all of distinct elements d@fogp;}; by Ry, < Rr1 < ... < Ry < R;. We
also assume that an elemeRg in {logp;}; satisfying the following condition; Any element

R;(< Rg) € {logp;}; satisfies

=

- ) (Pl(RjH)lfo(RHl) N 1) 2
' Py /5(R;j)?

— 2 e3 <1 ——— - (46)
Pyja(R;) (H(R)POA(R» _ 1) 2
Py /o(R)?
Then, the real numberg and Ry satisfy the inequality
P, 5(R)? 3
o [ B2 o | >a(Rs R). (47)
dP,(R)
0]

Proof of Lemma 8: Here, we employ notations summarized in Appendix A. Thats,define the

real vectorsy, andv, onR! asu; & (vP1,-++ . v/mi) andy o (1,---,1) /+/d for an integerl satisfying

1 <1 < d. We consider only the case when

~

~ A ~ Uz - V7 P1/2<R>2
l:=|S(R)| = Py(R), [:=Py(R), € :=¢R)?=(--1)2= . (48)

’ ’ e dPi(R)
Since R and R are two distinct elements dflogp;}; and R > R, we have the inequality < /. Due to
the above final relation, Lemma 35 in Appendix B directly ilmplLemma 8. [ ]

Proof of Lemma 9: We prove Lemma 9 by using the notations in the above proof ofirha 8. For
this purpose, we employ results in [66], which are summdrireAppendix A. Due to (48), we have
. Pl/Q(R) P()(R)

wev=—r=s ol ===, llul® = P(R). (49)

SinceR < R, we havel > [.
ltem (1):  Firstly, we show Item (1) by using the propertiesiofu;, v;, €) given in Proposition 31. That

~

is, we show (45) by assuming (44). Sinée< R, Lemma 8 guarantees thﬁﬁ = €(R) > €(R) = ¢,
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which implies (42) by using Lemma 7. Hence, the vectdfu,, v, €) defined in (240) of Proposition 31
in Appendix A is written as

x* (ug, vy, €)
1

VlulPllol? —

(ul-vz)2< 0|2 — uy
6VHuzII lell? = (ur - v0)? = i - vy ”“l||2_€2w)- (50)

||vz||2

Due to Lemma 36 in Appendix B, all entries of (u;, v;, €) are non-negative if and only if

d1/2||v ||2 W -1

l IR

e : 51
M S o _ 4 (51)

€2

which is equivalent to (44), due to the relations (48) and).(&b, all entries ofc*(u;, v, €) are non-
negative. Thus, for any. € Z¢, we find that

<$*(Ulavl>€)|¢L>2(j<)< (ur, vy, € )ZIH D (2" (w1, ¢ )|Ul>2(262, (52)

where (a), (b), and(c) follow from the non-negativity of all entries of*(u;, v;, €), the equations (50),
and the property ofe*(u;, v, €) given in Proposition 31, respectively. Thus, sifge = uy, using (50)
and (52), we have

)
l_a( 2‘90) 90|x (ulvvla ))2
@ (- vie + /([ull* — ) (ol lul? — (w - v)?))

o]
2
Pyj3(R)  Pyja(R) Py(R) Py;5(R)2\ , Po(R)P1(R) Py/o(R)?
()( d/1/2 d1/21§1(}%)1/2 +\/( d d1/31(R) ) d - /d )>
- Po(R)?
d2
R . 2

BB Y LS T Y R 7ELCL RS U 59

P(R)zP,(R)2 Py(R) Pi(R)Py(R) Pi(R)Py(R) ’

where (a), (b), and(c) follow from (52), (50) with|y) = ug4, and (49), respectively. So, we obtain the
inequality (45).

Item (2): Sep 1:) Next, we proceed to the proof of Iltem (2) by combining Proposs 31 and 33.
That is, we will show (47) by assuming (46). Now, we outllne terivation of (47). For the preparation,
we choosd := [S(Rg)| = Fo(Rp), | := [S(R)| = Po(R), la = [S(Ra)| = Po(Ra), € := e(R) = 14,
andn := n., wheren, is defined in Appendix A. In Step 2.), we show the inequality> . In Step é:),
we show

vy + /0T = @0 PP~ (0,7

1—0(((—:2‘@):(

54
ol | &Y
and
max{ (u,]6)?]|6) € R”, 6] = 1, (v, |6) < ¢}
2
(et oy 2 = ) Py 2 — G, - 1,)8) o5

v I
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In Step 4:), combining these relations, we show the inetuédi7).
Sep 2:) Firstly, we show that the condition Al), A2), nor A3) in Apgir A does not hold for any
integer! satisfyingl > l3. Due to Lemma 34, A2) does not hold becauge < logp;. Sincels > I,
Lemma 35 guarantees that A1) does not hold for any integetisfyingl > 5.

Now, to show the inequality; > n, we show that A3) does not hold for any intedesatisfyingl > /5.
We choose); := |S(R;)| = Py(R,). For a given integet > I3, we choosej such thatl;,; > | > [,
which |mpI|es the relatlons

< pps vl < llull < v s lTwdl < g, I v, v S o< v (56)
Then, we have
12 2 \/ P TPy AR
1210112 (a) d'/?||v;. b (up v )2 (©) oo — L
@L o™ p;,.in UNCN P A < |1 YVt . (57)
up - vy 7o g, lloz, 1% 1 M 1
2 €

€

where (b) follows from the condition (46), an@z) and (c) follow from (56). This inequality shows that
the condition (250) in Lemma 36 does not hold. Since LemmauzBantees th% is strictly monotone

increasing forl, we havelt > 2% ~ Ui — ¢ becausds > [. By using these two statements, Lemma

Tl = Tuigh = Tl —

36 guarantees that tHeth entry O?x *(u, vy, €) is negative for the integel So, A3) does not hold for
any integerl satisfyingl > l3. Thus, the assumption of Item (2) implies that neither A1}).Anor A3)
does not hold for any integérsatisfyingl > 5. Hence, we have the desired inequality> 7.

Sep 3:) SinceR, < R, Lemma 8 implies than = ¢(R,) > €(R) = e. Item (1) guarantees that

satisfies Condition A3). Sa; > [,,. Thus, Lemma 35 yields th ”’7 > “ﬁa ”l”a > ¢. Hence, B1) does not

hold. SinceR, < R implies R, < logp,, we havelogp, < R, < logp1 So, B2) does not hold due to
Lemma 34. Thus, B3) holds. So, Proposition 33 guarantegs §dl the maximum — « (€?| ) in (54)
is attained by the vector* (u,, v,, €).

Then, we apply Proposition 31 to the case wjth- v;, and z = v;,. Since the condition D3), i.e., the
relationy/||y|| # z/||z|| andy - z > €||y|| holds, we obtain (55).
Step 4:) We show the inequality (47). Since the inequalify> n implies the equatiorv;, |2* (u,, v, €)) =
(vp|z* (uy, vy, €)), we find that the vector*(u,, v,, €) also satisfies the condition for the real vectoy
in the maximum in the LHS of (55). So, we have

mase{ (u1,6)?]16) € R, ] = 1, {u1,]) < e}
2
(0 v + /Toa = )T T E = (a2 )
> .

> (58)
[[on[*
Combining (54), (55), and (58), we have
11—« (62‘ go)
(v, o, oty 2 = )l [, [ = e, -0, 2))
< ; . (59)
[ |
Hence, combining the same discussion as (53), we obtaimtuiality (47) [ |

Note that it is quite difficult to derive the tight evaluatioh « ( ;{fi’; ‘go) because our choice d@f

is limited to! = |S(R)| = Py(R). We obtain lower and upper bounds as (45).
Using Pf(R) ey P(R), we have the following lemma.
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Lemma 10: When R < R, the numbem(R, R) is bounded as follows.

P{(R) < a(R, R) < P{(R). (60)

Proof: To show Lemma 10, we will show the following.
P (R)<1—a(R,R) < P(R). (61)
First, we show the second inequality of (61). Since
pm(z%){ Pyj5(R)? . ( Pl/gufz){  Pip(R)? );
Py(R)Pi(R)  Po(R)Pi(R) Py(R)Pi(R) Fo(R)Pi(R)
., Pip(R)Pys(R)
Py(R)Py(R)2 Pi(R)*

Y

we have

Therefore,

Pi(R) Pyjo(R) Py (R
S\ R(R)PI(R)3 P

Pia(R)? N3 Pua(R)? N3
+<1_p0<12>)131<1%)> (-7 (/) (R))>

op (R)< Pia(R)Py o) Pys(B)Py(R) )2
- Po(R)P(R):Pi(R):  Ro(R)Pu(R) Pr(R)?

=~
N—
[N

=Pi(R).

Then, we obtain the second inequality of (61).

To show the first inequality of (61), we employ the notationegi in Appendix A, and choose the
integersl := |S(R)| = Fy(R) and !l := [S( R)| = Py(R) in the same way as the proof of Lemma 9. So,
the conditionR < R implies that! < L. Hence, we havgu;|* = gy, We apply Proposition 31 to the
case wherny = u;, z = v;, ande = Hl K Then, we find that = T ’” satisfies the condition i/ (u,, vy, €)
given in (238).

Now, we show that

2
gl < (u e + /[Tl = @Yl m”)
l — .

o2

(62)
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When! = [, the RHS of (62) equaltu;||?. So, we show (62) wheh> [ as follows. In this case, Lemma

35 implies that’ﬁl ”ﬁ > ” ” = ¢. Proposition 31 with Case D3 guarantees that
. . 2 _ 22 2 2 _ . 2
[Jugll = w - Y ve+/(Jul® — € )(||2“lH | |* = (g - 1) )’ 63)
[ ol
which implies (62).
Therefore,
2
: g - o€+ /([Jonl]* — €) (o[l |* — (ur - v)?)
Py(R) = [Jul|* < ( v ull?

1

() P1/2(R)P1/2(f3) B P1/2(R)2 1l Pi;2(R)* N3
_PI(R)<P1(E>%P1(R>%PO(R>+<1 Pl(R)Po(R)> <1 Pl(R>Po(R>>

where (a) follows from (53). Then, we obtain the first inequality of §61 [ |
2) n-foldi.i.d. setting: In this subsection, we rewrite the results in the previousssation inn-fold i.i.d.
setting. In this setting, The null hypothesis is given aspghee statgo®") in the n-tensor product system
(CH=", To give the alternative hypothesis, we introduce a natatio the quantum systeC%)", the
basis|i;) ® - - - ® |i,) is simplified to|J) by usingJ € {1,...,d}". Hence, the quantum systef@¢)*"
is spanned by{|J)}jepr = {|i1) ® - @ |in) biyoins whereD” o {1,...,d}". Then, the alternative

.....

hypothesisS, , is the set of state$\¢L>}L€Zdn, where|4}) € (C?)™" is deflned as

|67 def\/;z =7y, Lezd (65)

JeDn

2
) =1—a(R,R), (64)

where L; € Z, is the Jth entry of L € Z4". That is, an element of the alternative hypothesis is
characterized by an element @f". Hence, the cardinality of the alternative hypothesi24s which
is double exponential with respect to the number
For a two-valued POVMS,,, I} — S,,} on (Cd) , the type-1 errow,,(S,,) and type-2 erro,(S,)
are defined as

0 (Sn) & TS, ) (0] (66)
Ba(Sn) & max Tr([} = S,)p, (67)

where[? is an identity operator ofiC%)®". The optimal type-2 error under the restriction on the ctodli
that the type-1 error is no more than> 0 can be written as

Snlale) = amin, {5n(Su)lan(Sn) < a}. (68)
Similarly, we definea,,(5|¢) a
an(Ble) = | i {an(S5)|5n(S0) < B (69)

In the rest of this subsection, we often abbreviétén|p) as s, («).

def def

Now, we define the subsef,(R) = {J € D"|logp > nR} of D", wherep}, = p;, ---p;, for
J = (i1,...,i,). We employ the following notations:
Pod(R)E N (o) for s =0,1/2,1,
JESL(R)
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When

Pn71/2(R)2 (70)
- Poo(R)P,1(R)
we define
a,(R, R)
N A~ 1 1 2
défl _ P 1(R) Pn:1/2(R>Pn,1/2(R> —I— (1 _ Pn’}/2(R)2 )5 (1 _ Pn,1/2(R)2 )5 . (71)
’ P,1(R)2P,1(R)2P,(R) Poi(R)Poo(R) Poi(R)Poo(R)
Then, Lemmas 9 apd 10 are rewritten as follows.
Lemma 11: We fix R € {+logp7j} ep-. Then, we have the following items.
(1)  When a real numbeR(€ {1 logp}epn) < R satisfies
P7L 1(R)P7L O(R) %
i S L |
Pl e, ) (72)
Poa2(R) (PnJ(R)PnA,o(R) B 1) 2
Py1/2(R)?
we have
Po1j2(R)? -
Prya (B ¢ | < an(R.R). (73)
d"P,1(R)

(2) We assume that there exists an elen@ntn { log p4} jepn satlsfylng the mequallty (72) and
R, < R. We denote all of distinct elements {)i log p't } jepn by R, < Ry_1<...< Ry <R.
We also assume that an eleméty in { long}JeDn satisfying the following condltlon Any
elementR; (< Rg) € {1 logp"}jepn satisfies
- i (Pnﬁl(}?jﬂ)P@o(RHl) . 1>%
P (R —+1 )e% _'_ n 1/2( )2
Poyja(Ry) (BatiEeat) 1>5
P7L,1/2(R)2

< 1. (74)

Then, the real number& and Rj satisfy the inequality

Pn,1/2(R)2
"\ dP, 1 (R)

¢> > a,(Rg, R). (75)

Lemma 12: When R < R, the numbem,, (R, R) is evaluated as
Py 1(R) < an(R, R) < P7y(R), (76)

def

where P; (R) = 1 — P, 1(R). O
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3) Constant constraint for type-1 error: Under a constant constraint for type-1 error, we have the
following theorem.
Theorem 13: We have

log B, (elp) =n(H(p) —logd) — Vn\/V(p)®~'(€) — logn + O(1), (77)

where H (p) & — > pilogp; andV (p) o > pi(H(p) + log pi)*. O
For a preparation of the proof of Theorem 13, we introduceeidvnotations. First, we choose
ECNATE p)®~1(¢). Remember tha® is the cumulative distribution function of the standard &sian

dlstrlbutlon We ledS to be the lattice span of the random variabléog p; when the index is subject

to the distributionp. Hence, the Se{%logp’}}Jeva has the lattice structure with the spéﬁﬁ. For the
precise definition ofig, see Appendix C. Then, we define the functignsg., andgs as

d - 10g2 if ds =0 78
9(ds) = log1 < zdss if dg >0, (78)
) ——log27r+%+2log2 if dg =0 79)
s) = ds i
log 2T + 3y + log m if dg >0,
(ds) = _1%?HJ%2+?@ " itano (80)
3 108 2T + 50y T 108 1 If dg > 0.

Then, we have the following lemma, which will be shown aftee proof of Theorem 13.

Lemma 14: For real numbersB; with i = 1,2,3,4,5, we defineR,;, & —H(p) + % + £ with
1=1,2,3,4,5.
Po1/2(Ru1)Pruij2(Ry 1 Bs+ B

log 12(Fn) Posya(B2) = —Zlogn+ By — — 2+ g2(ds) —log(1 — €) + o(1). (81)

Pn,l(Rn,?))% n,l(Rn,4)% n,O(Rn,S) 2
The convergences of the differences between the LHSs and RHScompact uniform foB;.

Assume thatR, := —H(p) + 4z + 22, R, = —H(p) + 4= + 2, and R, = —H (p) + 4= + 2=
When B,, and B,, are bounded, anE — B! converges, we have
Pn 1/2<Rn)2
loge,(R,) =log ———"—
A2
=n(H(p) — logd) — v/nA. —logn — B,, — W;) +2g3(ds) — log(1 — €) + o(1), (82)
. Poo(R,) om _ B,-B,
lim log Poija(R) 2 = g1(0) + Jim — (83)
an (R, B,) = €+ o(1), (84)
gL 1>%
P, Rn 2B7LfB;’L*B7L
12 (0) _ = L o(1). (85)
(Pn,l(Rn)P?;L,O(Rn) _ 1) 2
Py 1/2(Rn)?
When B,, — —co, B, is bounded, and3, — B! converges,
. Pn O(R/ ) 7LR7L . Bn - B/
lim log ———"2¢ < g1(0 lim ———= 86
novso Pi2(Ry ) a0+ I (89)
<P7L,1(R:L>Pn,o<R;> B 1>%
2
lim ~Try2(fn) —0. (87)

N 1
n—oo (Pn,l(Rn)Prf,O(Rn) _ 1) 2
Pn,l/Q(Rn)2
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Proof of Theorem 13:
Non-lattice case: ~ Step 1:) For simplicity, we first consider the case whén= 0, i.e., the non-lattice
case. We fixB. Due to the non-lattice property (Lemma 37), we can chooseamechoosd3,, such that
lim,_, B, = B and R, := —H(p) + f + B” € {Llog 7} jepn. Then, we will show

Po1j2(Ry)?
lim a, <£ go) =€ (88)
(R

n—roo ann,l(Rn>
Smce% is characterized by (82), (88) implies the desired argumérgnds = 0. Now, we outline
the derivation of (88). To show (88), we find upper and loweuaruts of (88) whose limit ig. For this
purpose, in Step 2:), we find its upper bound by using Item {l)emnma 11, and in Step 3:), we find
its lower bound by using Item (2) of Lemma 11. In Step 4:), ghkdting both bounds, we show (88).
Sep 2:) Assume thatim,,,,, B, converges. We choosk, := —H(p) + f + Bz, Using (85) and (83),
we have

(Peafaotrs) _ 1>%
FnolFn) B Py 1/2(Rn)?

Poay2(Ry) (M _ 1>%
Pn,l/Q(Rn)2

Givend > 0, due to the non-lattice property (See Lemma 37 in Appendixwe) can chosés,, ,, such

= 4 o(1). (89)

Bn
— 691(0) _|_ e 2

that R, := —H(p) + f + P pelongs to{ L log p?| L logp < R, }sepn and
lim B,, = B+ 2log(1 —e"©) 4+ 4. (90)
n—00
Then,
limn—s 00 Ba nfé
O f e 7 =m0 4 (1-— €g1(0))€5 > 1. (91)

With sufficiently largen, R, , satisfies

Pn,l(Ra,7L)Pn,O(Ra,7L) _ 1 2
Pn,0<Ra,n> EM < Py 1/2(Ran)?

2 4 — > 1 (92)
Pn,l/Q(Ra,n) <Pn,1(Rn)Pn,O(Ra,n) _ 1) 2
P7L,1/2(R7L)2
Ron < Ry (93)
Thus, we can apply Item (1) of Lemma 11 to this case. Hence, ht@iro
Po12(Ry)? A
PrajolBa)] < an(Ron, By). (94)
d"P,1(Ry)

Sep 3:) We chooseB,, asR,, = —H(p) + f/‘% + Z=_Then, we choosér,, as the maximum element in

{Llogps|Llogp} < R,}sepn. SO, the non-lattice property (See Lemma 37 in Appendix Gyrautees
lim, . n(R, — R))) = 0. WhenB,, — —oc0, (87) and (86) imply that

P (R’) (Pn 1(Ry) ;%0( n) _ 1)
lim —r0\tn) =g |\ Frya(Rn) S <en® <, (95)
n—00 n,1/2<Rn) (Pn 1(Rn) Pro(Ra) _ 1)
7L 1/2(R7L)
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When B,, is bounded, the combination of (85) and (83) implies that

1
Poa(Ry)Po(Ry) 4?2
PRy e | (PR )

— 1O 4 PP 1), (96)
P, 1/2(Ry) (Pn,l(Rn)P,},o(Rn) B 1)%
P7L,1/2(Rn)2
Then, due to the non-lattice property, we can chBse, such thatRg,, ;== —H(p) + 4 g+ B‘” belongs
to {1 logp7|+logp} < R,}sepn and
lim Bg, = B+ 2log(1 — ") — 4. (97)
n—o0
So, whenB,, < Bg,,, with sufficiently largen, we have
O 4 B < O 4 (] = 0)e0 < 1. (98)
In this case, with sufficiently large, we have
1
Pnl(R)nO(R) 2
Poo(R.)  nma <— mEa 1)
LrolBa) ot |\ Poaalr) C< (99)
P 1/2(Ry) <Pn,1(Rn)Prf,o(Rn) B 1)5
Pn,l/Q(Rn)2

Thus, R, satisfies the conditions fak; in Item (2) of Lemma 11 with? = R,,. Due to (92) and (93),
we can apply Item (2) of Lemma 11 to the case with= R,,, R, = R, ,, and Rz = Rz,. Hence, we
obtain

Pn,1/2(1f{n>2
d"P,(R,)

@) > an(Rpn, Rn). (100)

Sep 4:) (90) and (97) show that the sequendgs, and Bg,, converge to constants as well Bs. Thus,
(84) implies that
lim an(Ran,R ) = lim an(Rgn,fB ) =¢€. (101)

n—o0 n—oo

Combining (94) and (100), we obtain (88).

Lattice case:  Next, we proceed to the lattice case with > 0. The different points from the non-
lattice case are the following. Firstly, we cannot necel:ysahooseB such that the limitiim,, ... B,
exists. However, we can choo$®, such thatB, is bounded, i.e.]3, behaves within an interval with
width dg. The above proof works even with such a bounded case. Thengquoint is the relation
lim,, o n(R, — R,,) = ds > 0, which appears only in Steps 2:) and 3:). In these steps, ee twereplace
91(0) by g1(dg). In Step 2:), the relations (89) and (90) are replaced by

bR (M _1>2
2
,0( L) e Pr,1/2(Bn) i — poi(ds)+% 4+ 5T +ds+o(1) (102)
Erijo(Bn) (M _ 1) :
Pn,1/2(R")2

on = B — 2dg + 2log(1 — en@)+F) 45, (103)
Ban = B —2dg + 21 91(ds)+
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In Step 3:), the relations (95), (96), and (97) are replaced b

1

P (R <Pn,1(R;)Pn,()(2l%;) _ 1)5
lim n,O( n) 6% + Pn1/2(Bn) _ < edrlds)+ds 1, (104)
n—o00 n,1/2<Rn) <Pn’1(Rn)P»,}7o(Rn) . 1) 2
P, 1/2(R7L)
) (Pnl ' Pno(R 1) )
PH,O(Rn) 6% + Pp,1/2(Rn)? 691 (ds)+ds + 6 s —5 1 dg + 0(1)’ (105)
Pnyl/z(Rn) (Pnl Rn P, O(Rn 1)
P, 1/2(RTL
By = B — 2dg + 2log(1 — e (ds)dsy _ (106)

Hence, the sequendB;,, is bounded as well a®, and B, . Thus, we obtain (101). Combining (94)
and (100), we obtain (88) even in the lattice cdse> 0. [ |

Proof of Lemma 14:
Proofs of (81), (82), and (83): We show the desired relations by applying Proposi88rnn Appendix
C. When the distributiop in Proposition 38 is the measu{ei}i and X is log p;, we denote the functions
given in Proposition 38 by adding superscriptike xJ, xi, 7*(s), etc. Similarly, when the distribution
in Proposition 38 is the measu{e/@} (the counting measure) and is log p;. We denote them by adding

superscript (0), like Xo X1,7'2( ), (% X9, 7°(s)) etc. We also employ the functiafy,(s) < logz it
Then, we have

THs) = pls+1—1), 7' (R) =4} (R)+1—t (107)
fort =0, 2,1 Hence,
t/ 1
n(R)=———— (108)
Gy (R))
X6(R) = —R(y, " (R) + 1 —1) + ¢(¢}, ' (R)) (109)
X' (R) = = (R) — 1+ (110)
7 —1
" 1/2" ¢ 1
Yo" (R) = x¢/* (R) = R)=———r—— (111)
Lo —alog2m —log(vy T (R) + 1= 1) + gty if ds =0
B =9 1ge0ny 1 s if dg > 0 (112)
2 08T T 3y, TR 08 [ masw Tmrin s =Y
Generally, Proposition 38 implies that
- 1 ,— 1 :
log P1/2(R) =n(=R(4," (R) + 5) + (e (R)) — Slogn +xi(R) +o(l)  (113)

log Pro(R) =n(~ Ry (B) + 1)+ Uy} (R) = S logn +xY(R) +o(1).  (114)
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Using A, = /), ™' (—H (p) + J= +2) = {5 +o(1), for any real numbe3, we have

V(p)
2
(0, H ) + T+ ) = 902 + 05 + o)
A, A? 1
~(H) + G2+ 0 H ) + 5+ D) = H)ZE = Adr +0(:)
A, A? 1
Thus, we have
A B, A. B 1 A. B, A 1
—(—H(p) + \/ﬁ + g)% (—H(p) + \/ﬁ + E) + %Wp (—H(p) + \/ﬁ + E)) _2V(p)n O(g)
(115)
Applying (115) to (113) and (114), we have
AE 2 1
log Pasa(—H(p) + £ + ) =L (nH(p) — VA~ B) — S logn - Sy X HE) + (1)
(116)
log Poo(—H(p) + jﬁ + % ~(nH(p) — VnA. — B) - ; logn — 2§gp) +X3(—H(p)) + o<1>&117)

Here, the LHS minus the RHS approach to zero, whose conweggencompact uniform for the choice
of B.
Also, the central limit theorem yields

lim P, (—H(p) + T - g) =1 & v(p)) =1-e (118)
Since
2012 (—H(p)) — 3(~H(p)) = g2(ds) (119)
2x1*(—H(p)) = 293(ds) (120)
(—H(p)) — xi*(—~H(p)) = g:1(ds), (121)

combining (116), (117), and (118), we obtain (81), (82), &@®). Indeed, whileB depends om in (82)
and (83), since the convergence is compact uniform for tleécehof B, the relations (82) and (83) hold.
Proof of (84): Due to (81), we find that

Poaj2(Bna)Poij2(Ry
,1/25 71) ,1/21( ,2) 0 (122)
Pn,l(Rn,Z)§ n,l(Rn,l)§ n,O(Rn,l)
Pn 1/2(Rn 2)2
’ ’ — 0 123
Pn,l(Rn,2)Pn,0<Rn 1) ( )
Pn 1/2(Rn 1)2
: : — 0. 124
Pn,l(Rn,l)Pn,O(Rn 1) ( )

Since (118) implies
Pn,l(Rn,l) —1 - €, (125)
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we obtain (84). The compact uniformness of these conveegeare guaranteed by the compact uniform-
ness of the convergences in Proposition 38.
Proof of (85): WhenB,, and B,, are bounded, an#,, — B/, converges, using the relation (81), we have

P, (R’)PHO(R’) 1

log o) 5 logn — (B), = Ba) — 62(0) — log(1 — ) + o(1), (126)
log Pt ( Ry) TO(R") = 1logn — (Bn — B) — g2(0) — log(1 — €) + o(1). (127)
n 1/2(Rn 2 2

Therefore, we obtain (85).
Proof of (86): The relations (113) and (114) show that

log — 0 "n/ = O(R) — 2 1
og Pn71/2(Rn)6 2 + X1 (Rn) X1 (Rn) + O( )
B’ — B, , 1
= S xR, = xE (Ra) + o(1). (128)
When B,, —+ —oo and B,, — B!, converges, sincg!(R) X%(R) is monotone increasing fak, we have
1 A, 1 A,
X1(Ry) = X1 (Ra) < X4( H(p)+ﬁ) —xi (=H(p) + \/ﬁ)

= XY (=H(p)) = xi (—H(p)) + o(1) = g1(ds) + o(1) (129)

So, combinig (128) and (129), we obtain (86).
Proof of (87):  Assume thatB, — —oo, B, is bounded, and3, — B! converges toC. We fix a
sufficiently large number > 0. We haveR,, < R,, — A for sufficiently largen becauseB,, — —oco. So,

Poi(Ry) > P, 1 (Ry). (130)

Since
Pn,l(lfgn)Pn,O(Rn> Z Pn,1/2(Rn)27 (131)

with sufficiently largen, we have

Pn,l(Rn)PrAL,O(Rn) _ Pn,l(Rn)PtLO(R ) . Pn,O(En) Z Pn,O(Rin) Z Pn,O(RnA_ A) (i; eA (132)
Pn,1/2(Rn)2 Pn,1/2(Rn)2 Pn,O(Rn) Pn,O(Rn) Pn,O(Rn)
where(a) follows from (117). So,
. 4 .
Pn,l(Rn)PtL,O(Rn) _ 1 2 (& . 1 Pn 1(RN)P7ALO(R7L) (133)
Pn,1/2<Rn)2 € Pn,1/2<Rn)2
Using (116) and (117), we have
P, o(R,) 1
log ————"— = ——logn — ¢2(0) 4+ o(1), (134)
Praja(Ry)? 2
i.e.,
P .
Pooln) ) (135)
Pn 1/2(R )
Using (114), we have
P,o(R .
log o) _ (Bn — BL) (W, (Ry) + 1) + o(1). (136)

B o(£n)
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With sufficiently largen, we have
<Pn,1(R;)Pn,o(R;> _ 1)% <Pn,1(R;>Pn,o(R;)>% A (Pn,l(R;)Pn,o(Rmf
P7L,1/2(R7L)2 P7L,1/2(R7L)2 @ € P7L,1/2(R7L)2

(Pn,l(Rn)P,},o(Rn) B 1)% - (Pn,l(Rn)P,},o(Rn) B 1)% —ed 1 (Pn’l(Rn)P,},o(Rn)>%
P,.1/2(Rn)? P, 1/2(Rn)? Py .1/2(Rn)?

eA (Pn,l(R;)PH,O(R;)PM/Q(RH)Z)%
-1 P 1/2(R )an I(Rn>Pn,0<Rn>

(2) ( nl R/ nO Rl) n,O(I:{n)Pn,l(Rn>>%
N -1 n1/2 ) nl(Rn)Pn,O(Rn)
(Pnl ) P O(Rn))% Pn,O(R;L))l
—1 n 1/2( n)2 Pn,O(Rn>
- -1 Pn ,1/2 Rn)z Pn,O(Rn)
d e Pn (](Rn) 2 Pn O(R/> % (i;
< — e 137
_eA_l(Pn 1/2(Rn)2) <Pn,0(Rn)) - (137)
where (a), (b), (¢), (d), and(e) follow from (133), (131),P,1(R,) < 1, (130), and the combination of
(135) and (136), respectively. So, we obtain (87). [ |
4) Exponential constraint:
Theorem 15:
1
log B,(e7"|¢) = n(2 012121(1 —7 + 2H1+s( p)) —logd) —logn + O(1). (138)
O
For the following discussion, given we defineR(r) ands, < 0 such that
—-r= X(l)(—R(’I“)), ¢;(ST) = —R(’I“). (139)

This definition is equivalent with
—r = —wé(sr)sr +,(s.), —R(r)= 15;(57«)- (140)

Since);, is strictly monotone increasingi(r) > H(p).
We prepare the following lemmas.
Lemma 16: We have the relations

(504 )R + y(sr) = i (T + 3H0-(0) (4D
sy R(r) + ¥p(s,) = —r. (142)

O

Lemma 17: There exist three functions,(r, ds) (i = 1, 2, 3) satisfying the following conditions. Given
real numbersB; with ¢ = 1,2, 3,4, 5, we defineR,,; := —R(r) + % with i = 1,2,3,4,5. Then,

Poj2(Rn)Prij(Ry 1 Bs+ B

log ’1/25 1) ’1/21( 2) — —nr — =logn+ Bs — = Rl

Pn,l(Rn,B)§ n,l(Rn,4)§ n,O(Rn,S) 2 2

The convergences of the differences between the LHSs and RHScompact uniform foB;.

+ ho(r,dg) +o(1).  (143)
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Assume thatR, := —R(r) + % R, = —R(r)+ £, and R, = —R(r) + %. When B, and B, are
bounded, and3,, — B/, converges, we have

P, 1/2(Rn)2
o8 &n(F) =log Gp "R
. S 1 1
:n<2 0218121 (1 - ST + 5}1142rS (p)) — log d) —logn + Q(Sr + §)Bn + 2h3(7“, dS) + 0(1)7 (144)
PNO(R/) _nRp Bn — B/
log — 0"/ 2 = h d — = 1 145
08 Pn,1/2<Rn)e 1(r ds) + > o(L) o
log CLn(Rna R;’L) =-—nr+ 0<1)’ (146)
<M _ 1)%
n 2Bn7B47,73n
P7L’A1/2(R ) _ = e 3 + 0(1) (147)
(BealBulbuolB) _ q)*
P7L,1/2(R7L)2
When B,, — —o0, B, is bounded, and3, — B/, converge,
L el Y < —_—
lim log Bl - ha(r, ds) + lim —— (149
(M _ 1)é
2
lim ~— /20 L= (149)
n=eo (M _ 1)§
P7L,1/2(R7L)2

The concrete construction &f will be given in the proof of Lemma 17.

Proof of Theorem 15:
Non-lattice case:  Step 1:) For simplicity, we first consider the case whén= 0, i.e., the non-lattice
case. We fixB. Due to the non-lattice property (Lemma 37), we can chd@send R, := —R(r)+ 2= €
{Llogp?} sepn such thatB, — B. Then, we will show

—1 P, 1/5(Ry,)?
lim — log a,, Poja(Fn)” o) =r (150)
n—oo N ann,l(Rn)
Since5;‘*113/271((11’f)2 is characterized by (144), (150) implies the desired argunahends = 0. Now, we
outline the derivation of (150). To show (150), we find uppad dower bounds of (150) whose limit

behaves as~"". For this purpose, in Step 2:), we find its upper bound by uteim (1) of Lemma 11,
and in Step 3:), we find its lower bound by using Item (2) of Leanfri. In Step 4:), calculating both
bounds, we show (150).

Sep 2:) Assume thatim,,_,., B, converges. We choosk, := —R(r) + %. Using (145) and (147), we
have

Bn

+e 4 o). (151)

<P7L,1(Rn)Pn,0(Rn) _ 1) %
P, o(Ry) e@ n P 1/2(Bn)? 1 (r0)

Pn71/2(Rn) <P7L,1(Rn)Pn,0(Rn) _ 1) % -
Pn,1/2(RTL)2

B(X,’!L
n

Givend > 0, due to the non-lattice property (Lemma 37), we ch&gg, such thatR, , := —R(r) +
belongs to{ X log p}|+ log p} < R,,} jep» and

lim B,, = B+ 2log(1 — M) 44, (152)

n—oo
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Then, in the same way as Step 2:) of the proof of Theorem 13,ameshow that®,, ,, satisfies (94).
Step 3:) We chooseB, as R, = —R(r) + £=. Then, we choose?, as the maximum element in
{ log p’j| - Llogp? < R, }jepn. So the non- Iattlce property guaranteleﬁn_m n(R, — R],) = 0. When
B — —00, (149) and (148) imply that

) (Bamrom) _1)°
lim n,0 n 6% + P 1/2(Rn) T @ 6h1(r70) < 1. (153)
n—o0 By 1/2(Ry) <M _ 1) 2
Pn,l/Q(Rn)2

where (a) follows from /(. 0) = \2(R(r)) — x2 (R(r)) = log 2 / 1((1;((r))))+2 <o

When B,, is bounded, the comblnatlon of (145) and (147) |mpI|es that

(M_1>

Pn ! niin n n 2 n—_ 5
Lro(Bn) o | 7 Fosjal) L= M0 4 P (1), (154)
Pn,1/2(Rn) (Pn,1(Rn)Pn,O(Rn) o 1) 2
Pn.,l/2(Rn)2
Then, due to the non-lattice property (Lemma 37), we canelids, such thatRs,, := —R(r) + %
belongs tof = log p}| = log p} < Ry} jep» and
lim Bg, = B+ 2log(1 — em™0) — g, (155)

n—oo

In the same way as Step 3:) of the proof of Theorem 13, we caw ¢t s, satisfies (100).
Sep 4:) (152) and (155) show that the sequenégs, and B, converge to constants as well &%.
Thus, (146) implies that

-1 -1
lim —logan(Ran,R ) = lim —logan(RBn,Rn) =r. (156)

n—oo N n—oo N

Combining (94) and (100), we obtain (150).
Lattice case: The lattice caseds > 0) can be shown in the same way as the proof of Theorem 13 by
replacing—H (p) + 5 andgi(ds) by —R(r) andh,(r, ds).

Next, we proceed to the lattice case with > 0. Similar to the proof of Theorem 13, the different
points from the non-lattice case are theAfoIIowing. Fjr,svbye notice that the limitim,,_,, B,, does not
necessarily exist. However, we can chodggesuch thatB,, is bounded. The above proof works even with
such a bounded case. The second point is the relstion, . n(R, — R)) = ds > 0, which appears only
in Steps 2:) and 3:). In these steps, we need to replate0) by hi(r,ds). In Step 2:), the relations
(151) and (152) are replaced by

<Pn A(Bn)Pro(Rn) _ 1>%
Pn’0<Rn) 6% + Py, 1/2(Rn _ = 6h1(7’,ds)+d75 + eBn; (1) (157)
Pn,1/2(Rn> <Pn 1(Rn Pr,0(Rn) 1)5

Py, 1/2(R’L

Bun = B — 2dg + 2log(1 — emds)+ 5y 4 5 (158)
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In Step 3:), the relations (153), (154), and (155) are regulday

1

P (R (Pn,l(R%)Pn,O(R%) _ 1)5

2
lim Menﬂ% + Pn,1/2(Rn) . S 6h1(7“7ds)+ds < 1’ (159)
n—oo n,1/2<Rn) (PnJ(Rn)P?’O(Rn) . 1)§

P, 1/2(}%’”)2

/ < 7L1(R)7LO(R)_1>%
LPoolFy) o 7 Pl _ = lrds)itds | BarBads o), (160)
Pi2(Ry) <Pn,1(Rn>Pn,o(Rn) B 1) 2
Pn,1/2(RTL)2

By = B — 2dg + 2log(1 — eMrds)tdsy _ g, (161)

Hence, the sequendg;,, is bounded as well a®, and B, . Thus, we obtain (156). Combining (94)
and (100), we obtain (150) even in the lattice cdgse> 0. [ |

Proof of Lemma 16: From Sincey;, is monotone decreasing and(0) = —H (p), R(r)
Relation (109), Condition (139), and Proposition 38, weehav

—r = x3(—R(r)) = R(r)¢) " (=R(r)) + p((¥), T (=R(r))) = R(r)s, + ¥p(s,).
Thus,
—r= _37‘1%(37‘) + p(sr), (162)

which implies thatd 2=1r — 20|, — (. We also havel (— 2651y — 210y — 210 ;ﬁ;(t)ﬂ. The derivative
of denominator is—ty;(t) > 0 for t < 1. So, the derlvatlv&(—ﬁr wgg )) is non-negative if and
only if t > s,. So, the minimumnin,<, — 2t;trlr Wt) is realized whert = s,.. Hence,
1/2 1 1 -1 R(r)
x> (=R(r) = R(r) (7 (=R() + ) + (7 (=R(m) = == =7

B 2s, + 1 . wp<57") _ min—2t + 1’/“ . %(t)

B 25, " 25, t<0 2t 2t
. 2t + 1 H1+t(p> . . S 1
T Ty T 2 —0§S£11_8T+§H%(p),
wheret = —1=5, -

Proof of Lemma 17: Step 1:) Similar to the proof of Lemma 14, we show the desired relatibg
applying Proposition 38 in Appendix C. In Step 1:), we prepseveral relations and give the form of the
function ;. We reuse (113) and (114) in the proof of Lemma 14. Using Rsitipo 38, forR < —H (p),
we have the following relation.

log P (R) =n(—Ruy ™ (R) + (™ () — 5logn + xA(R) +o(1). (163)

Using s, = ¢, (= R(r)) and A & ny, " (= R(r) + 2) — s,, for any real numbe, we have

Uyl (<BE) + D)) = () 8 (50) > + o) (164
RO+ D) RO + D) = RO+ ) — s o), (165)
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Since(s,) = —R(r), we have

(- R+ g)zp,g‘l( ~ R(r) + g) + (v (- ROY+ g)) — R(r)s, +y(s,) + gsr + 0(%).
(166)

Applying (166) to (113), (114), and (163), we have
log P, (—R(r) + 2) =n(s, B(r) + y(s,)) — 1 logn — 5,8 + x}(~R(r)) + o(1) (167)
108 Pas o~ B(r) ) =n((s; + 5)R() + yls,)) — 3 ogn — (5, + 1) B + X} (~R(r) +o(1) (169
log P, o(—R(r) + g) =n((s, + 1)R(r) + ¥,(s,)) — %logn — (8, + 1)B+ XY (—R(r)) +o(1). (169)

Now, we choose

ha(r,ds) == O(R(r)) — X} (R(r)) (170)
ha(r, ds) == 2x3 (R(r)) — X} (R(r)) (171)
hs(r,ds) == x7 (R(r)). (172)

Sep 2:) Proofs of (143)- (146): Combining (167), (168), (169), and (142) of Lemma W@, obtain
(143). Here, the compact uniformness of these convergengearanteed by the compact uniformness of
the convergences in Proposition 38. Combining (168) andl)(@#Lemma 16, we obtain (144). Combining
(168) and (169), we obtain (145). Using (143), we obtain J12P23), and (124) in the same way as the
proof of Lemma 14. Thus, combining (167), we obtain (146).

Proof of (147): WhenB, and B,, are bounded, an®, — B, converges, using the relation (143), we
have

P, P 1
log Lot ) Pnollie) _ 1y iogn (B~ B,) + hatr.ds) + o(1), (173)
n 1/2(Rn) 2
log P n)PiLo(Rn) e+ S logn — (Bn — B) + ho(r, ds) + o(1). (174)
n 1/2(Rn)2 2

Therefore, we obtain (147).
Proof of (148): The relation (128) of the proof1 of (86) holds even i tburrent situation. When

B, — —oco and B,, — B!, converges, sincg!(R) — xi(R) is monotone increasing fak, we have

NO(R,) = X2 (Ra) < X2(=R(r)) = X (—R(r)) = ha(r, ds). (175)

Combinig (128) and (175), we obtain (148).
Proof of (149): (149) can be shown as the same way as (87). The diffpnt is (135), which is
replaced as follows. Using (113) and (114), we have

Poo(Ry) 1
og ————— =nr + —logn + hy(r,ds) + o(1). (176)
Pn,l/2(Rn)2 2

Here, (136) holds even in the curret situation. Hence, uiegsame discussion as (137), we obtain (149).
[
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C. Application to hypothesis testing under separable POVMs

Now, we choose the dimensiah™ min(d, dzs) and the pure state = S Vi) € C? by using
the Schmidt coefficienf);}¢_, of |¥). Then, we have the following proposition.
Proposition 18 ([66, Theorem 5]):

Brssep(@| V| pmia) = d™" By () , (177)

whered is defined as o
d'= max (da, dp) . (178)
O

Combining (177) and Theorem 13, we find thi#it,., (¢|¥| pmiz) can be given by (25) becausey d +
10g dpmax = log dadp. Similarly, combining (177) and Theorem 15, we find that.., (e |¥|| pimiz) CaN
be given by (27).

V. HYPOTHESIS TESTING UNDER TWeWAY LOCC POVM
A. Construction of two-round classical communication protocol

In this section, we consid&r =<, that is, the local hypothesis testing under two-way LOCG/NIG.

The previous paper [66] proposed a specific class of twodalassical communication two-way LOCC
protocols that are not reduced to one-way LOCC. In this suitzse we review their construction. Then,
in the latter subsections, we show that they can achieve tedfting bound and Stein-Strassen bound
for the classC' = sep by the following protocol.

For the entangled stafd) < > sex VAs|z)®|2) and the white noise state (the completely mixed state)
Pmiz, FOr a given sefl, a collection{m, },cq of non-negative measures o is called asubnormalized
measure collection on X when_ _,m.(z) <1 for anyz € X. Here,w € Q is an index indicating the
measuren,,. For a measuren,, on X', we denote the support of,, and its cardinality byX,, and |m,,|

and define the operator
M, =3 my()|2) (x]. (179)

rzeX
Then, for a collection{m,, },cn Of non-negative measures or, we define the operator

def

Me=T->"M,. (180)
weN

Then, we can define the POV < {M,,} U{M*°}. Using the collection{m,, }..cq, We give a tree-step

LOCC protocol to distinguish the two stateB> and p,,,;, as follows:

1) Alice measures her state with a POVM. When Alice’s measurement outcome corresponds to
Me, Alice and Bob stop the protocol and conclude the unknowte dtabep,,;.. Otherwise, they
continue the protocol.

2) At the second step, Bob measures his state with a PG})Z)(ZWI}"”“’| depending on Alice’s measure-
ment outcomev. Forj € {1,...,|m,|}, N¥ is defined asVy = |£¥) (£, where{|§“>}‘mw' is a mu-
tually unbiased basis of the subspagen{|h) }.cx,. Then, Ny is defined asVy L - E‘mw' NY.
When Bob observes the measurement outcgme), Alice and Bob stop the protocol and conclude
the unknown state to bg,,;.. Otherwise, they continue the protocol.

3) At the third step, Alice measures her states with a twoe@lPOVM{O“/, I, — O“’}. Here, the
POVM elementO“’ is chosen as Alice’s state after Bob’s measurement whenitke gtate ig ).

Hence,O“’ is defined as
VLo (1g)er))” VLo

ovi & :
(&5 | Muoal€s)

(181)
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where oy & Trp| W) (], |af). When Alice’s
measurement result is 0, Alice and Bob conclude the unknown state to |Be; otherwise, they
conclude the unknown state to bg;..
Here, the above two-round classical communication prdtdepends only on the subnormalized measure
collection {m, },cq on X. Hence, we denote the test given abovelym, }.cq]. Then, we have the
following proposition.
Proposition 19 ([66, Lemma 4]): The first and type-2 error probabilities of the tds{m,, }.cq] are

evaluated as
B(T{mu}ueal) =TT [{m }weol pmic = 3 ‘WZZZ ‘@%X:ﬂ:g) |

(T {mu}uea]) =(V[( = T[{mu}uea)) V) = TeTrp|¥) (I|M¢

=1-> ) Aomg(2). (183)

weN xeX

(182)

0]
In the above proposition, the type-1 and type-2 error prititi@s are swapped to each other from Lemma
4 of [66].

B. Hoeffding bound

Now, we apply the above two-round classical communicatianqgeol to the case off) = |¥)®" with
W) = o > ven VAl z, ). Then we give a two-round classical communication prdttz@chieve the Ho-
effding bounclsupo<s<1 =or —Huys (¥)+log dadg for a givenr as follows. When: > logd — X Hy (V)
we havesup.,., 72 —H1+s(‘lf)—|—logdAdB =logdadp — Hi/s, Where Hy (V) := L H,(V)|,_,. Hence,
it is enough to glve the followmg two kinds of protocols: Oisea protocol in WhICh the exponential
decreasing rates of the type-1 and type-2 errorsraend supg,«; 7 1 : Hlﬂ (¥) + logdadp for
r < logd — —Hl/g( ). The other is a protocol in which the type-1 error is “Zzero anel éxponential
decreasing rate of the second kind of error probabilitydsi 4dz— H, ;». Before constructing the protocols,

we prepare the following lemma. Lét be a distribution(p,) on X and P, be the measurép;’*) on
X.
Lemma 20: Forr < logd — 1H;,»(V)’, we have

. —2s5
Q;D{‘gj‘r}))gD@”P) - H(Q) = A s (0). (184)
In particular,
HSHD(QHP) — H(Q) = D(Prp2||[P) — H(Pyrj2) = —Hyp(0). (185)
min  D(Q||P) — H(Q) = —H (V). (186)

QR:D(Q[|P)=0
U

This lemma will be shown in Appendix D.

Using the above lemmas and the type method, we make the ptstas follows. For this purpose,

we prepare notations for the type method. Whemamnial data, o (x1,...,2,) € X" is given, we

focus on the distributiop(z) = of M which is called the empirical dlstrlbutlon for daig. In the
type method, an empirical distribution |s called a type.He following, we denote the set of empirical
distributions on’ with n trials by 7,,. The cardinality| 7, | is bounded byn+1)I*¥=! [69], which increases

polynomially with the number. That is,

1
lim —log|7,| = 0. (187)

n—oo N,
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This property is the key idea in the type method. &tQ) be the set of-trial data whose empirical
distribution is@. Then, the cardinality7,,(Q)| can be evaluated as [69]

FHH(Q)
| 2]

where [a] is the minimum integern satisfyingm > «a, and |a| is the maximumm satisfyingm < a.
Since any element € T, (Q) satisfies

1 <|TW(Q)| < [e" 9], (188)

PY&) & P(xy) - P(x,) = e "PQIPITHQ) (189)
we obtain the important formula
|;_‘e—nD<Q|P> < P(TL(Q)) < e—"P@IP) (190)

Now, we are ready to mention the main theorem of this submecti
Theorem 21: For anyr < —;H,,,(¥)" andn, there is a subnormalized measure collecfierf, ,,}., on
X" such that

BT{ml, J}ol) =TeT[{m bolp®n, < ATl (dadip) e "m0z TorHige () (191)
a(THm, L 3a]) =W (1 = T[{ml, Y)W < [ Tale™™. (192)

For the case with = —1H, »(¥)’, we have the following statement. For anythere is a subnormalized
measure collectiofm;, ,}., on X™ such that

BT {m; Yol) =TT {m;, Yol < 4 Tal*(dadp) e 2, (193)
a(T{m; ,}o]) =" |(I = T[{m; }])|T*") = 0. (194)
0]
This theorem guarantees that
-1 —
lim inf — log B e (¢ [¥|| prmiz) > sup o~ Huw (V) + logdadp. (195)
n—oo N ’ 0<s<11—5 2

Since limsup,, ., =108 By (€7 [¥ | pmiz) < limyoe =108 By sep (€71 | prmiz) = Hes (7|9 pnia ),
we obtain (27).

In the following, we will concretely construct subnormaltz measure collections to realize the condi-
tions (191) and (192) ((193) and (194)). Then, Theorem 2L leilshown as the combination of Lemmas
22 and 24.

Construction of the subnormalized measure collection {m, },co With r < logd — 1 H,;2(¥)":  First,
we fix the distributionP so thatP(z) = X,. Then, we consider the case of< logd — 1H;,,(¥)". To
choose a subnormalized measure collecfetf, }.cq on X™, we give two disjoint subsets of types by
employing the type method as follows.

def

Tor ©{Q € To| — H(P) > D(Q||P) — H(Q), D(Q||P) < r},
T, 9 {Q € To| — H(P) = —H,(¥) < D(Q||P) — H(Q)}.

In this construction, we fix the elemeift, € 7, that is closest ta” among elements iff;] in terms of

relative entropy. Then, we define the sub@',é,‘tdéf Ti\{P.}.

Then, we divide the set,,(P,) into |7,,.| disjoint setsT,(P,)o ( Q € T,.,) whose cardinalities are
T (P)I/|Toe| 1 OF [T (Po)l /1 Tnr|] . For atypeQ € T, we divide the seT’, (Q) into [|T,,(Q)|/|T.(Pn)ql]



31

disjoint setsT,,(Q)1, - - ., Tn(Q) i1, (Q)1/1T0(Po)ol1 Whose cardinalities are less théh,(F,)q|. Hence, for
Q € T, (190) yields

e—nD(PalP)  p=nD(PalP)

PY(T,(P)g) > > : (196)
Il)e) 2 T = T
and (188) yields
T (P)gl < L") ] <[] < (@], (197)
For a type@ € 7./, we define the non-negative measutg on X" as
o adet | 1 if 2 e T,(Q)
mg(7) = { 0 otherwise. (198)

For a typeQ € 7, andk = 1,...,[|T.(Q)|/|T.(P.)g|], we define the non-negative measutg , on
A" as

0 otherwise.

Hence, the cardinalitym ;| is less thanT,,(P,)o| + |1T.(Q);] < 2|T.(F.)q|- Now, we choose the sét
as:= T, U{(Q,7)}qer.., Wherek takes values if{1,. .., [|T,(Q)|/|T.(P.)o|]}- Then, we define the
subnormalized measure collecti¢m,, }.cq as

. mg fw=QeT!
M 1= { Moy if w=(Q,k) with Q € T, (200)
From the above construction, we find thab;, , }.co is @ subnormalized measure collection &f. [
Then, we have the following lemma.
Lemma 22: The subnormalized measure collectipm;,  }.co on ™ satisfies (191) and (192). O
To show Lemma 22, we prepare the following lemma.
Lemma 23: Assume that is sufficiently large. Then,

2d

1 if 7 ¢ Tn(Q)k
mgx(T) = { (1T @/ Ta(Pa)l 17 if @ € To(P) \ Tn(Q)r (199)

D(F,||P) < — (201)
U
Proof: We denoteP(:i)— P, (i) by, ;. Sincen is sufficiently large, we have log(1+ ”(l)) < QPW)
Using the relationd,, ;| < 1 , we have
P, (i) S O
Jlog =12t — = — :
D(P||P) = ZP BB+ by~ 2o D)ol B )
O : 2d
< ) — r = - < .
< ; Poli) = 255 = 2 ; Oni < = (202)
]

Proof of Lemma 22: To calculate5 (T [{mmw}weg]) = TeT[{m}, , weal P, We firstly evaluate
zexn PT(T)ME(E)? and 3o pn Pn(f) L(T) as

2 Pr@mi@)

rexn
= > P@mL@+ > PU@ENT(@I/|Ta(Pa)all
ZeTn(Q); ZETn(Pn)q

=P"(Tu(Q);) + P (Tu(Pa) @) [1Tu(Q)/ | Ta(Pa)al 17, (203)
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and
Z P™(Z)m!,(Z)
rexn

ST PY@)mL (@) + P @) [|TW(Q)]/|Tu(P)a1!

TeTn(Q); T€Tn(Pn)q
=P™"(T,(Q);) + P (To(Po)) [1Tu(Q)|/1Tn(Pa)o1T™
>P™(T,(P)@) [1Tn(Q)]/|To(Pa)el 1 (204)

Now, we evaluate the two kinds of errors for the above cdlbecof non-negative measures. The first
kind of error probability is evaluated as

( [{m; w}weﬂ]) = TrT[{m; w}weﬂ]pg?x
2|T(Po)| - D gean P(7 )ng |7,(Q
N Z Z dndn erXPn( T)mq.;(x Z ndn

QETn,yr J QETY
3 2|T0(Po)gl - 32 P (T0(@Q ))+P”(T (Po)) [T/ | Ta(Pr)gl17?
_QGTM A dp P (1o (o)) [T (Q) /[ Ta(Fa)ol 17!
7.(Q)]
" & didy
-y 2| T (Pl - PMTW(Q)) + P (Tu(Pa) ) [T ()| Ta(Pr)ol 17!
T didp P (Lo (Po) ) [1Tn (@) /|1 Tn(Pa)o| 17
T.(Q)]
+
2, i

- 2|T,(P)el - PM(TW(Q))
Aadp P (TL(P)Q) [1Tn(Q)]/[To(Pa) el

QETn,r
2ITn( n)Q| |7, (Q)I
Q€Tn,r QET
-y 2IT( n)el - P ( ( ) _|_2|Tn(Pn)|
o7 AP (T(Ba) @) [T @)/ [Ta(Fa)el 171 d3dj
7.(Q)]
+ Z n Jn
QeTY dadp
2|Ta(Pa)ol - (L + | Ta(@Q/|Ta(Pa)ol) - PM(Th(Q)) ) e 1)
< + (Tl + D) ——
S By P (T, (F)o) g
Q)| + |T( n)QI)-P”(Tn(Q)) ) e (P
— T, +1
QZT i ) T4 ) g
2 )-D(Q|P)) nH(P)
< g 2 A v + 2T
QT AYB
8d|7"3 —n(minger, , D(QIP)—H(Q)) (d) r—Higs (V)

< 8d‘T|3 —NSuPp<s <11f

205
i , (205)

where (a) follows from (203) and (204)(b) follows from (196), (197), (190), and Lemma 23, afd
follows from the inequalityminger, , D(Q||P) — H(Q)) < —H (V) < minger» D(Q||P) — H(Q)).
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The second kind of error probability is evaluated as

AT{my, Yweal) = (W1 = TH{m, Joea) 95" = Y Y P(@)

QETn,rc Z’ETn Q)

Z P(T, S T, e~ mineetn e P@RIP) < | g (206)
QETn,rc
where (a) follows from (190). u

Construction of a subnormalized measure collection with » = log d — iHl/g(‘ll),: We consider the case
of r = logdadp — Hy»(¥). In this case, we change the definition of the sul¥Set of 7, as

Tor ©{Q € To| — H(P) > D(Q||P) — H(Q)}.

So, we find that7,,, U7, = T,.

Then, using the same discussion as the above, we define tleetiool {1 ;}o; of non-negative
measures omt™ by using the modified subséf,,. We define the subnormalized measure collection
{my, ,}weq ON &A™ by using (200). O

Then, we have the following lemma.

Lemma 24: The subnormalized measure collectipm;  }.co on ™ satisfies (193) and (194). O

Proof of Lemma 24: Trivially, we have (194). Even in this modification, (205)lIsholds except for
(d). Instead of(d), we use (185) of Lemma 20. Then, we have (193). n

C. Sein-Srassen bound

Now, we give a two-round classical communication protocoathieve the Stein-Strassen bound. For
this purpose, we prepare the following lemma.
Lemma 25: For a givene > 0, there exists a subnormalized measure collecfion }.™, such that

2zean P (@) mu(7)

1ogZ {Z]m () # 0}

erxn (&) mu, ()2
gnHl )+ v/ V(1)@ (e) —logn + O(1), (207)
M,
>N P (@)me(E) = e+ o(1). (208)
k=1 rexn
O

This lemma will be shown as Lemma 28.
Now, we are ready to mention the main theorem of this sulmect\pplying Proposition 19 to the
subnormalized measure collection given in Lemma 25, we ttavéollowing theorem by using = 1 —e.

Theorem 26: For any real numbet € (0,1), there is a collectioqm,, ,}. Of non-negative measures
on &A™ such that

108 AT [{mna}]) < —n(log dadss — (W) — ViV (¢) — logn + O(1),  (209)
a(T{mnwte]) — €. (210)
O

In Subsection IV-C, we have already shown thﬂatsep( |‘I’||pmm) can be given by (25). Hence,

Br.es (€19 pmiz) = —n(log dadp — Hi (V) — /ny/V(¥)P 1 (e') —logn+ O(1). Theorem 26 guarantees
the opposite inequality. Hence, we obtaln the remalnlng tpxh(25)
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Construction of subnormalized measure collection: Now, to show Lemma 25, we construct the sub-
normalized measure collectiopm,,. ., as follows. For this purpose, whéng P(z) — log P(x2') is a
lattice variable, we define the real numbeto be the lattice spads. Whenlog P(x) — log P(z') is a
non-lattice variable, we define the real numbéo be an arbitrary positive real number. For the definitions
of lattice and non-lattice variables and the lattice sgansee Appendix C. We fix;,b > 0 such that
c > a.

Then, we prepare the following lemma.

Lemma 27: The function f(¢) o mingso —sH14s(V) + (1 + s)(H (V) — ct) — (H (V) — b — at)
monotonically decreases for> 0, and there uniquely exists > 0 such thatf(¢,) = 0.

Proof: Since f(t) = b+ mins>o s(H1 (V) — H115(V)) — (sc+c—a)t andsc+ ¢ —a > 0, f(t) is

strictly monotonically decreasing far> 0.

Since H, (V) — Hy+5(V) > 0 with s > 0 and its equality holds only witlk = 0, we havef(0) =
b+mings>o s(H1 (V) — Hi45(¥)) = b > 0. On the other hand, for a fixed> 0, b+ s(H; (V) — Hy4s(¥)) —
(sc+ ¢ — a)t goes to—oo whent goes to the infinity. Hencef(¢) goes to—oco whent goes to infinity.

U

Thus, there uniquely existg > 0 such thatf(¢y) = 0. [ |
Now, we fixt € (0,t), and define
def n| nH (¥ +f\/ <I>_ —c/{; > —log P™(Z)
Rinle = eX : 211
kol { > nH, (¥ —i-\/_\/ <I> €) —c(k+1) (211)
and
M, € ™), Ny < [Ron| M, New < Nye™ (212)
For k < tn, we definelM,, subsetSRm,”E, . ,Rk,mMn‘e of Ry, Whose cardinalities aréV;, ,,. We
define the measureznj (j =1,...,M,) as the measure satisfying the following two conditionse Th
support ofm,,.; is S;, = U ORMJ‘E For# € U™ ;Ri.nje, the relatlonzjvﬁ"1 Ml ;(£) = 1 holds. That
is, {mn|5k}M" forms a subnormalized measure collection. O
Lemma 28: The subnormalized measure coIIectl{mnk,k}fﬁo satisfies (207) and (208). O

In the following, for the simplicity, we omit the subscripgt For our proof of Lemma 28, we prepare
the following lemma.

Lemma 29:
log [Ro.n| = nHy () + v/ V()0 (e) — %logn +0(1). (213)
logf: [ Rin|e™ = nH (V) + /ny/V(U)d 1 e) — %logn +0(1) (214)
k=0
log max P"(Ryn) = —% logn + O(1), (215)
and
P {f c X" ‘nHl(\If) V()0 (e) < —log P”(f)} S (216)
0]

This lemma will be shown in the end of this subsection. Usiegnima 29, we can show the following
lemma.
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Lemma 30: There exist an integeN and a real numbef’ such that any integet > N satisfies the
following conditions. The inequalities

Nin < |Ri.n| for any integerk satisfyingk < tn, (217)

logzn [{Z|m;(Z) # 0}] D zexn P1(@)m; ()

= D gexn Pr(T)m;(T)?
M, tn — —
- D gean P (T)my(7)

=log Nin ze = -

; <,§ ) > zen P (T)m;(Z)?
<nH, (V) + /n/V(¥)d*(e) —logn + C, (218)

P {f € X" |[nH, (0) + /i /V@) &Y (e) — ctn > — log P”(a?)}

< min 6sn(—H1+s (¥)+H: (‘P)—ct-i—ﬁ\/ V()@ 1(e)) (219)

s>0

hold. O

Proofs of Lemma 28: From (216), (218), and (219), we find that the above subnaozedimeasure
collection {m,, ; } o= , satisfies (207) and (208) of Lemma 25 because the right haledodi(219) goes to
zero. So, we obtaln Lemma 28. [ |

Proof of Lemma 30:
Proof of (219) and (217):  Markov inequality implies (219) in the same way as [35, ZA)1. To prove
(217), using Cramér Theorem, we show

1
lim ~log [Ry ] = min —sHyo(¥) + (14 8)(Hy (2) — ct). (220)

n—oo N

As shown in Lemma 29, we have

1
lim —log |Ro.| = Hi(¥). (221)
n—oo M,
Hence, we have
. |Rt n n| /
1 1 222
Jim o Now 1) >0 (222)

for any real numbet’ satisfying thatt’ < ¢. Hence, whem is sufficiently large, we have (217).
Proof of (218):  Next, we proceed to the proof of (218). In this proof, we wi#irive upper and lower
bounds ofy"._y. P"(Z)m;(Z) and)_ .. P"(Z)m;(Z)?. Using these bounds, we evalungj.”:"1 {z|m;(Z) #
n P (E)m; (T)
0= @, @
From the above discussion, for any vectoe R, ,, and any integek satisfyingk < tn, the relation
L—'R" "‘J/Mn <m;(Z) < {—%ZZW/MN holds. Then, forj =1,..., M,

Nk,n

ZP Rkn )/ M, <ZNk e~ (RHL (W) +y/n/V(9)@ 1 (€)+e(k+1)) VRIMAJ/Mn

2e¢ Nk,n
< Z P"(f)mj(f)
rexn
tn
<3 Ny e CHUO /T 4eh) P knq/M < 9 ZP (Rin) /M, (223)
k=0 km k=0
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because}% < L%J and (lzk,nlw < QIE:,Z\_ Thus,

k,n

1 & [
4ec Z P (Ras.n) Ny M?

k=0

2
<ZNk e~ (ML) /V () () +e(k+1) {—‘R’“’”J /M

k,n

—(nH1(¥)+v/n4/V(¥)2 1 (e)+ck) |Rkn‘ 2

|Rk,n‘

<4 Z P"(Ri.n) - (224)
k=0 Nien My,
Hence,
c n n R',n
iN>zmww>@u%iN€@%z@Pmmgm
k,n nl = o n n
=0 D zexn P(@)m;(Z)? o o o P (Rien) /My,
n n R n
< 8e2¢ N 2 o P"(Ry, n)%
“l—ea " Pr(U Rin)
n n Ri,n a
R > LG i
] —ea " Pn(Ul,;n ORk n)
n R n a
_ ge2e v ‘maxk o PP (Rin) St ||R’;n“ek (225)
“l—e " Pr(U™ ‘Ri.n)
Therefore,
(ZN’f ) zean P (@)my(Z)
j=1 N k= ! > zexn P(@)m;(T)?
mn n R n a
<M, 8e  maxio P (Ren) >ho I|R§lek
1 —e @ " Pn(UZn ORk n)
n mn R n a
S gy M T (Re) Zito e (226)
T l—ea O P (U Ry
Thus, since (213) and (214) of Lemma 29 guarantees that
Rl i
lo *=0(1), 227
gz R ¢ = O (227)
(213) and (215) of Lemma 29 and (226) |mply
M, tn = —_
X . P"(Z)m;(Z)
log ( Nk n) rexX - J -
2% e P (@) ()

CnHy () 4+ /iy V(0D (6) — % logn — % logn + O(1). (228)
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Hence, we obtain (218). [ |

Proof of Lemma 29:
Non-lattice case: In this proof, we combine the saddle point approximatiorthod given in [70,
Theorem 2.3.6],[71] and Cramér-Esséen theorem [81, 8]. 2Befine
o(#) € (log P"(Z) + nHy(¥) + v/ V(1)@ (e)/v/n
Quv) = > P(@).
Zw(Z)=v

Then, we have

{Zla < v(@) <0} = MOVIVYETO R VR, (). (229)
v:a<v<b
Hence,
Z |Rk n‘eka :enH1(\Il)+\/ﬁ\/V(\I/)<I>*1(e) Z Z e—\/ﬁv+kaQn<U)
k=0 k=0 . ck << clktl)

g
S

n - n

SenHl(\If)h/%\/V(\If)@*l(e) Z Z e—\/ﬁv+\/ﬁav/6Qn(v)

k=0 ,,. ck c(k+1)
v.%gvg—n

NG
<M MEVIVVIDETHG N V=2, (v). (230)
v:v>0
Similarly, we can show that
5 [Releht 2 B EAVTTO 0 3 =200 1), @31
k=0 v:w>0

Next, we define the distribution function

Foo(t) = P™{alu() < t}. (232)

In the following, we consider the non-lattice case. Now, wepky the saddle point approximation
method given in [70, Theorem 2.3.6],[71]. As is known as CeafBsséen theorem [81, p. 538], there
exist a constand and a functiore,, such that
_ S hopl el
6/ Ver o Wno
and |c,(t)] — 0, which is uniformly convergent on compact sets. Thus, weiob{216).
Hence,

Fro(t — @7 (e)) = @(t) (233)

_(w+e1()?

c(k+1)/vn S
lim /7 3 Qu(v) — / eidvi
A vic(k4+1)//n>v>ck//n ck/v/n 271"/(\11)
c(k+1)/v/n d S e—(t+<1>71(5))2/2

< lim n(/ _<_ 1—(t+® (e 2—>dt

 @lel V)~ a0y

NG
S e (@71 (e))?/2 C“}t”

:hm[_l_t_‘_@_le 2—i| " _I_Cnc n—CnO

=0,
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and
_ (w2~ ()?
2V (¥

VR(l=2) —Va(l-2)w € iy
Vi e Onlv) = /e V()

v:0>0

ay, d S
< —\/ﬁ(l—z)t_ _ —1/.\\2
Jggof dt(—6\/ﬁ(1 (t+2(e)7) NGT:

< n(t - _a n (T
—|—1Hf(28upe Vrl=2)v qup [ea(?)] 1+ 2supe V=D gup |ca(D)]

v<a t<a \/ﬁ v>a t>a \/ﬁ
J S o (B (0)?/2
= li —Vn(=2t 1—(t+ 9 ) )dt
N R
+1nf(2supe VA= sup e, (1)] + 2sup e V™V sup | e, ()])

v<a t<a v>a t>a

lim v/n
n—oo

o+ ()22
)t

)

=0.
Thus, whenin satisfiesvy = ctn//n,

lim VnP"(Rinn) = hm N Z Qn(v)

n—»00
vie(tn+1)//n>v>ctn//n

_ ! —1(y)2
c(tn+1)/vn +§V(;(;))2 6_(1023(‘1’)( )

= lim v/n =
n—00 ctn/\/ﬁ \/ 27TV \/ 27TV(‘11)

which implies (215). Further,

(234)

_ (w2~ ())?
2V ()

ay, €

lim v/n e~ VP2 = lim \/_ e_\/ﬁ(l_?)vidv

n—00 U;O Q ( ) n—r00 27TV(‘1/)

o <w/@t§>;)1 (e)?

= lim f e_(l_%)m
n—00 27V (U)n

a—1(0)2 o= 1(e)2

o0 e IO 1 ~ v
:/ (-8 dr = c (235)
0 27V (W) 1—% ./ 27V (W)

Therefore, the combination of (229) and (234) ylelds (2484 the combination of (230), (231) and (235)
yields (214).
Lattice case:  Now, we consider the lattice case. The range of the m&pcontalned m{an + £ }k

by choosing a suitable real numhbery with |a,| < = { + & 2ﬁ}k
Then, (233) holds fot € 7,, [80, pp. 52-67][81, p 540] Hence similar to (234) and (2 s can show

lim /n Z Qn(v)

n—o0

Viany +c(f;l)>v>a +\C/li

@ Ut (vrd Le)? _ (w2~ ()2
. TR e V(D) e~ (@
= lim v/n

——dv = (—————,
n—+00 an+ - 21V () \/2mV ()

(236)
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with vy = k/4/n, and

_ (w2~ 1())?
2V ()

lim v/n e~ Vr1=2v0 (v) = lim n/oo RV E
lim Vi ) Qulv) = lim vir |- s

VIV>an

e l(o)?
1 e 2V(Y)

1 v (0)
Hence, (236) implies (215). Further, the combination of)22nd (236) yields (213), and the combination
of (230), (231) and (237) does (214). u

(237)

VI. CONCLUSION AND DISCUSSION

In this paper, we have treated local asymptotic hypothesisnty between an arbitrary known bipartite
pure statdW) and the white noise state (the completely mixed statg). As a result, we have clarified
the difference between the optimal performance of one-way tavo-way LOCC POVMs. Under the
exponential constraint for the type-1 error probabilibere clearly exists a difference between the optimal
exponential decreasing rates of the type-2 error protigsilunder one-way and two-way LOCC POVMs.
However, when we surpass the constraint for the type-1 @malvability, this kind of difference is very
subtle. That is, there exists a difference only in the thirdeo for the optimal exponential decreasing
rates of the type-2 error probabilities under one-way anokway LOCC POVMs. This difference has
been given as Theorem 3, which is called the Stein-Strassendb The entanglement of Renyi entropy
appears in the formulas of the optimal exponential decngasites of the type-2 error probabilities under
both exponential and constant constraints for the typerdr @arobability for the one-way LOCC, the
two-way LOCC, and separable constraints. Hence, our sekalie clarified the relationship between the
entanglement of Renyi entropy and the local hypothesigntgst

From the beginning of the study of LOCC, many studies haveded on the effect of increasing the
number of communication rounds, as well as on the differdoeteveen two-way LOCC and separable
operations. From this viewpoint, our study gives a very m@ample in which the optimal performance
under the infinite-round two-way LOCC, which is differendrin the one under the one-way LOCC, can be
attained with two-round communication and is also equah&dne under separable operations. To show
the achievability by two-round communication, we emplog #addle point approximation method given
in [70, Theorem 2.3.6],[71]. To show the impossibility torgass this performance even in the separable
operation, we use the strong large deviation by Bahadur{B&}70, Theorem 3.7.4]. We believe that
these methods will become very strong approaches for agldgeseveral topics in quantum information.

Unfortunately, our result can be applied to the case whenstage to be distinguished from the
completely mixed state is a pure state. This is a seriousctefeour result. However, since our result
completely solved the asymptotic analysis of this kind aeftestdiscrimination in the pure state case, we
have very strong motivation to tackle the mixed state casncH, the extension of this result to the
general mixed state case is remained as an interestinge fatudy, which attracts future researchers.

As mentioned in Section 1, this type of hypothesis testingdsely related to many kinds of information
theoretical tasks, such as data compression [32], [36fpumirandom generation [32], channel coding
with additive noise [31], and resolvability of the distrimn [41]. Hence, our results are expected to be
applied to extending these problems to the case with thditipcandition. However, this kind of extension
has the following problems. Since the obtained resultsianigeld to the pure state case, we need to extend
our result to the mixed state case for this kind of appliceiddowever, this defect can be escaped when
we make several restrictions for the quantum states or thatgm channels, e.g., the output states of the
c-q channel are assumed to be pure entangled states. Aeapobblem, we need careful considerations
for the formulations of these extensions because thereexeya kinds of formulations.

For example, we can consider an extension of the c-q chamuehg as follows. We assume that a
pure entangled state is given and that we are allowed to apgdy unitary as an encoder. The decoder is
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restricted to a measurement satisfying the locality caoonlitin this case, since the encoded states are pure
entangled states, the above condition for the c-q channsdtisfied. So, we expect that the asymptotic
performance of this extension can be characterized by @al loypothesis testing. Since this setting is
equal to the dense coding [83], our analysis might bring geeanalysis for the dense coding.

In addition, we can consider an extension of uniform randemegation as follows. We assume that an
entangled state is given and that we can apply local unitargomly based on a uniform random number
so that the average state cannot be distinguished from the ndise state by any measurement satisfying
the locality condition. In this case, the cardinality of tedom number is as small as possible. That is,
we treat the trade-off between the above difficulty of lodales discrimination and the cardinality of the
used random number. In this scenario, the difference betwiee product of local dimensions and the
cardinality of the random number can be regarded as our gmalof the size of the generated uniform
random number. Then, we expect that the asymptotic perfozenaf this extension can be characterized
by our local hypothesis testing. Analyses of these LOCCresttss remain as future work.
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APPENDIX A
RESULTS OF[66] USED IN SUBSUBSECTIONIV-B1

Here, we summarize the results of [66] used in Subsubsebté@i. As a preparation, we explain a
useful knowledge in a Euclidean spaReé. For two vectorsy and z in a Euclidean spacR¢, and a real
numbere satisfying0 < ¢ < 1, we define the real numbeé¥/ (y, z, ) as

My, z,€) o ma)d({y x|zl <1, x- 2 < €} (238)
zeR

Then, we derive the following Lemma:
Proposition 31 ([66, Lemma 9]): Usingc o y - z, we calculateM (y, z, €) as

My, z,€)
Iyl Case D1)
_ %6 Case D2) (239)
ce+\/(|\z||2—|e‘2l(2nyn2||z|\2—c2) Case D3)
which is attained by
x*(y, z, €)
(y/llyl Case D1)
€W Case D2)
1 T (VP2 0
\ +ex/nzH?|\y|\2ﬁ;;2—c\/||zn2—e2Z) Case D3)

where Cases D1), D2), and D3) are defined as
D1) y-z <elly|.
D2) y/llyll = =/l|=]l andy - z > €[[y]|.
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D3) u/llyll # z/l[=]l andy - z > €[|y|.
Moreover, z*(y, z, €) defined by Eqg. (240) is the unigue solution of the optimizatpyoblem in Case
D3). Note that the relatiofjz||> — €2 > 0 follows from the common condition of Cases D2) and O3).
Now, we concentrate the hypothesis testing with composifmtinesis formulated in Subsubsection
IV-B1. The first kind of error probabilityx(¢?|) has the following two expressions.
Proposition 32 ([66, Lemma 8]): We have the following relation

1 —a(e’|p) =max {{¢]0)* | [6) € H, [[|9)|I* < 1, (Palg) < e

1<Vi <d—1,(il¢) > (i + 1]¢) > o} (241)
where|¢;) is defined as
o 1 g
;) < 77 2 (242)
To give another expression fafe?| ), we define the real vectors andv; onRR! asu, o (Vo1 /D)

andvy, & (1,---,1) /+/d for an integet satisfyingl < [ < d. We also define the natural numbget= 7.(¢)

as the maximum integer < | < d satisfying one of the following three conditions:

AlL) v < ellul].

A2) wi/||wl| = v/||lvl anduy - v; > €||w|-

A3) w/lwll # v/llull, w - v
non-negative.

(uy, v, €) defined by Eqg. (240) are

we can consider three cases.
B1) w, - v, < €llu,ll.
B2) u,/|uy| = vy/[|vy|| @ndu, - vy, > €f|uy]|.
B3) w,/[uy # vy/llvgll @ndu, - vy, > €f|uy]|.
Proposition 33 ([66, Theorem 4]): By using ¢, o u, - vy, the valuea(e?|p) defined in Eq. (39) is
calculated as follows:

1—a(elp)
iy Case B1)
_ Ei'l:ﬁgz Case B2) (243)
(coet /T P=e)Tun PTonlP—2))’

Case B3)

flvn I
The maximum valud — a(e*|p) is attained by
dof |¢[“n/|1|iunm> Case B1)
|9%) = |plem—ri=—r]) Case B2) (244)

llun [l[on

|p[* (uy, v, €)]) Case B3)
Note thatz*(u,,v,, €) is defined in Eq. (240) and the notatiop( |) as

d
) & Z (245)
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APPENDIX B
USEFUL OBSERVATIONS RELATED TOAPPENDIX A

For the discussions in Subsubsection IV-B1, we discuss iiond A1), A2), and A3) given in Appendix
A. In this appendix, we employ the same notations as AppeAdor Conditions Al) and A2), we have
the following lemmas.

Lemma 34: The inequality(w;);/||w]] < (v);/|v| holds, and the equality holds only when = p,.
In other words, whem, > p;, the relationul/||ulH # v/||vi|| holds. O

Proof: The inequalitylp, < ZZ lpi holds, and the equality holds only when = p,. Since
(()i/lvl))? = 3 and ((w)./Jwl)* = , we obtain the desired statement. n

Therefore, we can ignore Condltlon ,]AZ) except for the casg, of p;.

Lemma 35: ﬁl ”ﬁ is strictly monotone increasing far 0

Hence, whenW = ¢, the relatlonﬁl ”ﬁ > ¢ holds forl > [, i.e., Condition A1) does not hold far> 1.

Proof: Since(d“H’;””)2 = (22:1717) it is enough to show tha‘zzmp) > (ZZZ ;’ , Which is
=117 i=1 i=1
equivalent to(>>!_, p) (0 v/p0)? > (i p) (L, /pi)?. We have
I+1 I+1

sz Zm sz Zm (246)
me((zm sz Z\/E Z )) (247)

l
=pl+1(<2pi>+<2m pllzpz v Vi) (248)

Since2—2_ ~ 1. we have

pll

VPir1
9 l l l i l
Pi) — Pi) =2 — Pi) > 0. (249)
— <Z ) <Z VD) <Z —) <Z VP!
So, we obtain the desired statement. [

Lemma 36: Assume thalﬁ > e andp; < p;. All entries of z*(u,, v, €) are non-negative if and only
if

7
W > (ug-v)® !

up-v Hvz2|\2 1
€

(250)

O
Proof: The above non-negativity is equivalent to the non-nedstiof the I-th entry of x*(u,, vy, €),
which is equivalent to

ey/lul o2 = (- 0)? — w - o /[lu? — € 1
0 < 2 2
Vlvl|? — e Vot o2 J1/2

. ||1zz|\2|\1312||2 1

2 2 1 up-v; . -

HUIH € \/7+ ||U 2 Tol® _ ) 1 d1/2
2

€
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[ENETTE

. o . . u; vy _ (ul»vl)2 .
This condition is equivalent tQ/p; > P 1 7””“2_1 . That is,
2
[
42| ||? Tz 1
; ||UZH Z 1 o ( ) l) (251)
LI o
€2
[ |
APPENDIX C

STRONG LARGE DEVIATION

Let p be a non-negative measure a#¢ be the lattice span of the real valued functi&n which is
defined as follows. LetS be the set of the support of the measpre X ~!. When there exists a non-
negative valuer satisfying{a — b},,cs C xZ, the real valued functioX is called a lattice function or
a lattice variable. Then, the lattice spdp is defined as the maximum value of the above non-negative
value x. Denoting all of elements of asa; < as < ... < a;, we have

! ! !
’ i=1 i=1 i=1

due to the following reason; When integeys ..., y;, have the greatest common divisbr there exist
integersn,, . .., n; such thaty>'_ ny, = 1.

When there does not exist such a non-negative valuke real valued functioX is called a non-lattice
function or a non-lattice variable. Then, the lattice spignis regarded as zero.

Now, we summarize the fundamental properties for the Etied non-lattice cases. For this purpose,
we denote the sefd """ | a;}q,es Dy S,

Lemma 37: We fix a small real numbes > 0. In the lattice case, there exists a sufficiently large
integer N such thats,, satisfies the following condition for any > N. Denote all of elements of
Sp N [n(a; +8),n(a; —d)] asby < by < ... < by. We haveb,,; — b; = ds.

In the non-lattice case, for an arbitrary small real numbehere exists a sufficiently large integar
such thats,, satisfies the following condition for any > N. Denote all of elements aof,, N [n(a; +
d),n(a; — d)] asby < by < ... < b,. We haveb; ;1 — b; < e.

Proof. Lattice case: Since the definition otls guarantees thati; ; — b, > dg, it is enough to
show thatb;,; — b; < ds. Assume that integers; satisfies the equations

Z n;a; = dS (253)
i=1
l
> ni=0. (254)
i=1
We define the subsetS, := {a; € S|n;, > 0} and S_ := {a; € S|n; < 0}, the positive integers
me = Zi:aiESJF n; andmy := (a; — a1)/ds, and the positive real number$ := —m, Zmiesi n;a;,
B :=m rares, il d_ = (A —aymimy)/n, andd, = (ymimg — B + myds)/n.

So, we havei(a;+0_) = a;(n—mymay)+A = na;+(A—aymyms) andn(a;—d1) = a;(n—myms)+B =
na, — (aymymo — B). We choose an element:= n(a; +d_) + (cymy + ¢2)ds € [n(a; +9_), n(a; — )]
with integersc; andcy < m;. When(¢;my + ¢2) takes the maximumy is n(a; — 04), i.e.,cymy + o =
(n — mymgy)m,. SO, the maximum of; is n — myms.



a4

Using (253) and the definitions @f an A, we have

(a)
x=cra+ (n—cp —myma)ag + o Z n;a;) — (my — ¢) Z nia; € S,. (255)

i:a; €S+ i:a; €ES_

Here, the relatiorfa) follows from the following factsy; and (n — ¢; —mymy) are non-negative integers,
con; IS @ non-negative integer fare S, and—(m; — ¢)n; is a non-negative integer fare S_. Thus,
when we denote all of elements &f, N [n(a; + 6_),n(a; — ;)] asbh < by < ... < by. We have
bir1 — b; < ds. Whenn is sufficiently large, we havé_,J, < 4. So, we obtain the desired statement.
Non-lattice case: For an arbitrary > 0, we can take integers; such that) < d := Eﬁzl n;a; < € and
S mi = 0. (If impossible, we have the minimum OF'_ n,a; with 3>'_ n, = 0 is strictly larger than
0, which contradictsls = 0.) We redefinen, := [(a; —a1)/€], and define other terms in the same way by
replacingds by d. Using the same discussion, we find that the elemert n(a;+0_)+ci(a;—ay)+cod €
[n(a; +d-),n(a; — 64)] with ¢ < my belongs toS,,. Whenn is sufficiently large, we havé_, s, <.
So, we have,;,; — b; < e. [ ]
Herep is not necessarily normalized. Define the notatigyiX | o | X(w)p(dw). Define the cumulant

generating function-(s) “ og E,[e**]. Denote the inverse function of the derivativés) by .
Proposition 38 (Bahadur and Rao [68], [ 70, Theorem 3.7.4]): Assume thatr(0) < oo. When R >

Ep[X
Ep[m}' we have
. 1 1 1
log p"{ Xy 2 nR} = xo(R)n — 5 logn + x1(R) + xa(R) ~ + ol ~) (256)
log p"{X,, <nR} =n7(0) + o(1), (257)
where
xo(R) = —R(R) + 7(n(R)) (258)
—Llog2m —logn(R) + 7/ (R) if ds =0
def 5108 g1 27 s
XI(R) - { —% log 2 + %n,(R) + log % |f ds > 0, (259)
and x,(R) is a continuous function. WheRt < 7271, we have
log p"{X,, > nR} = n7(0) + o(1) (260)
1 1 1
log p"{ X, < nR} = xo(R)n — 3 logn + x1(R) + X2(R)E + O(E)' (261)
The convergences of the differences between the LHSs and RHScompact uniform. O
APPENDIX D
PROOF OFLEMMA 20
Now, we show Lemma 20. Fdt, we define the distributio®, as
. P1=0(2)
Py(z) & . (262)
Z:{:EX Pl—@(x)
Then, forr < —H,(¥), we defined(r) € (0,1] as
D(Py||P) = r. (263)
Lemma 39: Forr < —H,(V¥), we have
—2s
D(Pg(r)HP) — H(Pg(T)) = sup r— H% (\I/) (264)

0<s<1 1 —$§
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U
Proof: Define the functiony(6) = o log >, P (x). Sincey”(0) > 0, the functiony() is strictly
convex. We haveD (Fy||P) = 0¢'(0) — ¢(0) and H(P@) (1—=0)¢'(0) + p(6). We also have) (|| P) —
H(Py) = (20 — 1)¢'(0) — 2¢(0). Since D(FPy || P) = r, solving the relatiord ()¢’ (0(r)) — ¢(0(r)) =1,
we haveD(Py||P) — H(Py) = f(6(r)) by using the functiony(¢) & G2=1r—e),
The derivative off is f/(0) o “"(9)”9729“’ The derivative of the numerator |59<p”(9) <0 When
5>0>0. Hence sup <1 f(0) is realized whery’(6) = 0, which is equivalent tg(0)+r—0¢'(8) =
i.e., D(FP||P) = r. This condition is equivalent t6 = 6(r). Therefore SUP)< o<1 f(0) = f(O(r)). That
is, we haveD(Py.||P) — H(Pyry) = f(0(r)) = supp<,; f(0). Since f(0) = ‘—er — Hip (¥) with

— 0= we obtaln (264). |
Lemma 40: Forr < —H,(¥), we have
min  D(Q|P) ~ H(Q) = D(Pyr)|IP) — H(Pyi): (265)

Q:D(QIP)SD(Fy(r)lIP)
U
Combining Lemma 39 and 40, we obtain (184) and (186) of Lemfa 2
Proof: Assume that for a distributio@, there exists a parametérc [0, 1] such thatH (Q) = H(P).

Then, we havel; D(Q||Py) = 155 3., Q(x) log Q(z) — 3, Q(x) log P(x) — 2% Hence,

D(@IP) - %D(QHM
0
=37 Qe)log QL) ~ o P(r) - S Q) s Q) + Y Q) og ) + £
0 0
= S Qo) + 2
4 O p(9)
__1—9H<Q) e LR
0 0
~— 775 A 0k P~ o) + 1
:—HZPG )log P(x) + ¢(0) = D(P,||P).
Since 1D (Q||P9) > 0, for 6 € [0, 1], we have
@B Eo e T = H B, (268)
Hence,
Q:D(Q”Pgréig(%(r)”m D(Q[|P) — H(Q) = D(Poi || P) — H(Pp(r))- (267)
u
Proof of (185): Now, we proceed to the proof of (185). (266) implies that
i D(QIP) ~ H(Q) = min D(P)||P) ~ H(Py) (268)
Sinceming D(Q||P) — H(Q) = ming.x)>ur) D(Q||P) — H(Q), we have
min D(QIP) ~ H(Q) = min D(P)||P) ~ H(Py) (269)

In the proof of Lemma 39, we show th&X( P || P)— H (Py) = (20—1)¢'(0) —2p(0) and D(Fy||P)— H (Py)
realizes the minimum at = 1/2. Since(1 — 1)¢'(1/2) — 2p(1/2) = —H,2(¥), we obtain (185). =
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