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between a pure bipartite state and the white noise
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Abstract

We consider asymptotic hypothesis testing (or state discrimination with asymmetric treatment of errors) between
an arbitrary fixed bipartite pure state|Ψ〉 and the white noise state (the completely mixed state) underone-way
LOCC (local operations and classical communications), two-way LOCC, and separable POVMs. As a result, we
derive the Hoeffding bounds under two-way LOCC POVMs and separable POVMs. Further, we derive a Stein’s
lemma type of optimal error exponents under one-way LOCC, two-way LOCC, and separable POVMs up to
the third order, which clarifies the difference between one-way and two-way LOCC POVM. Our results clarify
the relationship between the entanglement of Renyi entropyand the hypothesis testing under LOCC, since the
entanglement of Renyi entropy appears in the formula of boththe Hoeffding bounds and the Stein’s lemma type
of error exponents. Our study gives a very rare example in which the optimal performance under the infinite-round
two-way LOCC is also equal to that under separable operations and can be attained with two-round communication,
but not with the one-way LOCC.

I. INTRODUCTION

When a quantum system consists of two distinct parties, Alice and Bob, it is natural to restrict their
operations to local operation and classical communication(LOCC) [1] because it is not so easy to realize a
quantum operation across both of the distant parties. LOCC operations can be classified by the direction of
classical communication. When the direction of classical communication is restricted to only one direction,
the LOCC operation is called a one-way LOCC. Otherwise, it iscalled a two-way LOCC. Such constraint
for our measurement is called a locality restriction. In this paper, we focus on the effect for distinguishing
quantum states. Such a state discrimination problem has been studied very actively by many researchers
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] , [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30].

In this paper, we concentrate on the detection of a given entangled state from the completely mixed
state, which is often called the white noise state because ithas no biased noise. Since this problem deals
with two states as candidates for the true state in an asymmetric way, it is usually referred to as the
binary simple hypothesis testing. Since we impose the locality restriction, we call it the local hypothesis
testing. Since, as was pointed out from a Shannon theoretical viewpoint [31], [32], [33], [34], [35], [36],
[37], [39], [38], [40], [41], [42], hypothesis testing is related to so many information theoretic problems,
quantum hypothesis testing with the asymptotic and asymmetric setting has attracted much attention in
quantum information theory [30], [42], [45], [47], [48], [44], [43], [49], [53], [50], [51], [52], [46]. In
order to discuss the relation between the locality constraint and these information theoretic problems, it
is natural to deeply investigate quantum hypothesis testing with locality restriction.

This paper was presented in part at Workshop on Quantum Metrology, Interaction, and Causal Structure, Beijing, China, December, 2014,
The 17th workshop on Quantum Information Processing (QIP 2015), Sydney, NSW, Australia, January, 2015, and 2015 IEEE International
Symposium on Information Theory, Hong-Kong, June 2015.

M. Hayashi is with Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602, Japan and Centre for Quantum Technologies,
National University of Singapore, Singapore. e-mail: masahito@math.nagoya-u.ac.jp

M. Owari was with NTT Communication Science Laboratories, NTT Corporation 3-1, Morinosato Wakamiya Atsugi-Shi, Kana-
gawa, 243-0198, Japan. Now, he is with Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-8011, Japan e-mail:
masakiowari@inf.shizuoka.ac.jp

http://arxiv.org/abs/1409.3897v4


2

One might consider that hypothesis testing with the white noise state is too specialized. However, as
known in classical information theory, this type of hypothesis testing is directly related to data compression
[32], [36], uniform random generation [32], channel codingwith additive noise [31], and resolvability of
distribution [41]. Thus, this problem can be regarded as thefirst step for extending these topics to the case
with the locality constraint. Indeed, based on a similar motivation, a recent paper [50] treats the hypothesis
testing of quantum channel with a special case as a quantum extension of a special case of the paper
[54]. Further, hypothesis testing even with the white noisestate is highly non-trivial when we impose any
locality restriction, although it is trivial without one. Hence, this problem represents the difficulty caused
by the locality restriction in the simplest way, and it can beconsidered as one of the most important types
of local hypothesis testing. Therefore, to characterize the accessible information under locality condition,
we tackle the local hypothesis testing with the white noise state in this paper.

On the other hand, since this problem can be described in terms of the entangled pure state to be detected,
this problem is closely related to the amount of entanglement of the entangled pure state. Hence, it has a
great significance as a study of entanglement. In fact, several entanglement measures have been proposed
even for pure entangled states. One is the entanglement of entropy [55], and its relation with hypothesis
testing with the white noise state has been clarified [56]. Asother measures, the geometric measure of
entanglement [57] and the robustness of entanglement [58] are known. However, their relations with this
problem have only been partially resolved [56]. To discuss the relation between entanglement measures
and hypothesis testing, we employ the entanglement of Rényi entropy [59], i.e., the Rényi entropy of the
reduced density matrix of a pure entangled state, which contains the entanglement of entropy, the geometric
measure of entanglement, and the logarithmic robustness ofentanglement as special cases. Since Rényi
entropy is also closely related to the asymptotic performance of quantum information protocols, we may
predict that the entanglement of Renyi entropy is also closely related to the asymptotic performance of
quantum information processing under the locality condition. In this paper, we show that this prediction
is correct. That is, we clarify the relation between our hypothesis testing problem and the entanglement
of Rényi entropy.

Before discussing the history of the local hypothesis testing, we focus on the quantum hypothesis testing
without a locality condition, in which a general asymptotictheory can be established even for the quantum
case where multiple copies of unknown states are available.Firstly, Hiai et al. [43] and Ogawa et al. [44]
derived the quantum version of Stein’s bound [60], i.e., theoptimal exponent of the type-2 error under
the constant constraint for the type-1 error. Audenaert et al. [61] and Nussbaum et al. [62] derived the
quantum version of the Chernoff bound [60], i.e., the optimal exponent of the sum of type-1 and type-2
errors. Other papers [37], [47] derived the quantum versionof the Hoeffding bound [63], [65], [64], which
is the optimal exponent of the type-2 error under the exponential constraint for the type-1 error and can
be considered to be a generalization of the Chernoff bound. However, when we impose the one-way or
two-way LOCC constraint on our measurement, these problemsbecome very difficult, and they have not
been solved completely. In particular, it is quite difficultto solve these problems for an arbitrary fixed
pair of quantum states. In the following, we mainly address the Hoeffding bound and will hardly mention
the Chernoff bound. This treatment does not lose generalitybecause our results for the Hoeffding bound
include the results for the Chernoff bound as special cases.

Before proceeding to the detailed discussion of the local hypothesis testing between a pure entangled
state |Ψ〉 and the white noise state, we prepare a detailed classification of two-way LOCC operation.
whereas a one-way LOCC operation requires only one-round classical communication, a two-way LOCC
operation requires multiple-round classical communication. In this case, a two-way LOCC protocol with
k-round classical communication hask + 1 steps. For example, in the case of two-round classical
communication, the total protocol is given as follows when the initial operation is done by Alice: Alice
performs her operation with her measurement and sends her outcome to Bob. Bob receives Alice’s outcome,
performs his operation with his measurement, and sends his outcome to Alice. Alice then receives Bob’s
outcome and performs her measurement. Therefore, we focus on the difference among these locality
restrictions. under the local hypothesis testing between apure entangled state and the white noise state.
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In the non-asymptotic setting, our previous paper [15] addressed the problem under the constraint that
|Ψ〉 is detected with probability1. Our more recent paper [66] addressed it in a more general setting. In
particular, that paper [66] proposed concrete two-round classical communication two-way LOCC protocols
that are not reduced to one-way LOCC. Then, we extended the problem to the case when the entangled
state is given as then-copy state of a certain entangled state [56]. As asymptoticresults, we showed that
there is no difference between one-way and two-way LOCC for Stein’s bound, i.e., the optimal exponent of
the type-2 error under the constant constraint for the type-1 error. To make an upper bound of the optimal
performance of the two-way LOCC case, our papers [15], [56],[66] also considered the performance
for separable operations, which can be easily treated because of their mathematically simple forms. The
class of separable operations includes LOCC, but there exist separable operations that are not LOCC [3].
Unfortunately, our previous paper [56] could not derive theHoeffding bound for two-way LOCC, i.e.,
the optimal exponent of the type-2 error under the exponential constraint for the type-1 error, while it
derived it for one-way LOCC. Further, even under the constant constraint for the type-1 error, the paper
did not consider the higher order of the decreasing rate of the type-2 error. Indeed, in information theory,
Strassen [67] derived the decreasing rate of the type-2 error up to the third-orderlog n under the same
constraint in the classical setting whenn is the number of available copies. Tomamichel et al. [42] and
Li [48] extended this result up to the second-order

√
n.

In this paper, we derive the Hoeffding bound for two-way LOCCand the optimal decreasing rate of the
type-2 error under the constant constraint for the type-1 error up to the third-orderlog n for one-way and
two-way LOCC. We also derive them for separable measurements. The obtained results are summarized
as follows.

(1) There is a difference in the Hoeffding bound between the one-way and two-way LOCC con-
straints unless the entangled state|Ψ〉 is maximally entangled.

(2) There is no difference in the Hoeffding bound between two-way LOCC and separable constraints.
(3) The optimal decreasing rate of the type-2 error under theconstant constraint for the type-1 error

has no difference between the one-way and two-way LOCC constraints up to the second-order√
n.

(4) The optimal decreasing rate of the type-2 error under theconstant constraint for the type-1 error
is different between the one-way and two-way LOCC constraints in the third-orderlogn unless
the entangled state|Ψ〉 is maximally entangled.

(5) The optimal decreasing rate of the type-2 error under theconstant constraint for the type-1 error
is not different between the two-way LOCC and separable constraints up to the third-orderlog n.

(6) The three-step two-way LOCC protocol proposed in [66] can achieve the Hoeffding bound for
two-way LOCC.

(7) The three-step two-way LOCC protocol proposed in [66] can achieve the optimal decreasing
rate of the type-2 error under the constant constraint for the type-1 error up to the third-order
logn for two-way LOCC.

(8) The entanglement of Renyi entropy appears in the formulas of the Hoeffding bounds and the
optimal decreasing rate of the type-2 error under the constant constraint for the type-1 error for
all the one-way LOCC, the two-way LOCC, and separable constraints.

Finally, we discuss our result from the mathematical point of view. The difficulty of the above results
can be classified into two parts. One is the asymptotic evaluation of optimal performance of separable
operations. The other is the asymptotic evaluation of optimal performance of the three-step two-way LOCC
protocol proposed in [66]. To evaluate the exponential decreasing rates in the latter case, we employ the
type method [69], the saddle point approximation [70], [71].

The evaluation of the former case, we need complicated discussions. Firstly, as mentioned in [66], we
convert our local hypothesis testing with separable operations into a specific composite hypothesis testing.
Then, we evaluate the exponential decreasing rates of errorprobabilities in the converted specific composite
hypothesis testing. Usually, to evaluate the exponential decreasing rate, we employ large deviation theory,
e.g., Cramér Theorem. However, for our analysis, we need more detailed analysis. Hence, we employ
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the strong large deviation initiated by Bhadur-Rao [68], which enables us to analyze the tail probability
up to the constant order of exponentially small probability. (See Proposition 38 in Appendix C.) Indeed,
although Bhadur-Rao [68] obtained such detailed evaluation for the tail probability in 1960, they were
rarely applied to information theoretical topics. That is,our analysis is a good application of the strong
large deviation. Based on this analysis for the specific composite hypothesis testing, we derive our analysis
for the former case.

Indeed, after the first submission of this paper, the recent paper [82] discussed the composite hypothesis
testing with the large deviation formalism. Our converted composite hypothesis testing is different from
the discussion in [82] in the following point. The paper [82]fixes the number of possible states in
the hypothesis, which does not increase dependently of the numbern of tensor product. However, in our
composite hypothesis testing, the number of possible states in the hypothesis increases double exponentially
with respect to the numbern of tensor product. Due to the double exponential increase, the method in the
paper [82] cannot be applied to our problem, which requires aspecial treatment as explained the above.

This paper is organized as follows: In Section II, we summarize the known results for simple hypothesis
testing and explain the main results by preparing the mathematical descriptions of our hypothesis testing
problem. Then, we derive the analytical expressions of the optimal error exponents under one-way LOCC
POVMs in Section III. Next, in Section IV, we derive the analytical expressions of the optimal error
exponents under separable LOCC POVMs. For this derivation,we discuss a specific composite hypothesis
testing by using the strong large deviation [68]. In SectionV, we analyze a special class of two-round
classical communication LOCC (thus, two-way LOCC) for thislocal hypothesis testing problem by using
the type method [69] and the saddle point approximation [70], [71]. Finally, we summarize the results
of our paper in Section VI. Our notation is the same as in our previous paper [56]. It therefore might
be helpful for readers to refer to the list of notations givenin the appendix of [56]. In Appendix A,
we summarize the formulation and results of [66] needed in Subsubsection IV-B1. In Appendix C, we
summarize the basic knowledge for the strong large deviation [68].

II. PRELIMINARY AND MAIN RESULTS

A. Preliminary I: General quantum hypothesis testing

This paper mainly treats hypothesis testing in a bipartite quantum system and itsn-copies extension.
For this purpose, we firstly discuss hypothesis testing in a general quantum systemH and itsn-copies
extension. In quantum hypothesis testing, we consider two hypotheses, the null hypothesis and the
alternative hypothesis. When a hypothesis consists of one element, it is called simple. Otherwise, it is
called composite. This paper mainly addresses simple hypotheses, but it discusses a composite hypothesis
partially. Here, we assume that the null hypothesis is a state ρ and the alternative hypothesis is stateσ. In
then-copies setting, the quantum system is given byH⊗n. Then, the null and alternative hypotheses are
the statesρ⊗n andσ⊗n. Our decision is given by a two-valued POVM consisting of twoPOVM elements
Tn andIn−Tn, whereIn is the identity operator onH⊗n andTn is an positive-semi definite operator on
H⊗n. When the measurement outcome corresponds toTn, we judge an unknown state asσ⊗n, and when
the measurement outcome isIn − Tn, we judge it asρ⊗n.

Thus, type-1 error is written as
αn(Tn)

def
= Trρ⊗nTn, (1)

and type-2 error is written as
βn(Tn)

def
= Trσ⊗n (In − Tn) . (2)

The optimal type-2 error under the condition that the type-1error is no more than a constantα ≥ 0 is
written as

βn(α|ρ‖σ) def
= min

Tn
{βn(Tn) | αn(Tn) ≤ α, In ≥ Tn ≥ 0} . (3)
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Now, we give the asymptotic properties ofβn(α|ρ‖σ). For this purpose, we introduce the cumulative

distribution function (CDF) of the standard normal distributionΦ(x)
def
=
∫ x

−∞
e−y

2/2
√
2π

dy, the quantum relative

entropyD(ρ‖σ) def
= Trρ(log ρ − log σ), and the quantitiesV (ρ‖σ) def

= Trρ(log ρ− log σ −D(ρ‖σ))2, and
ψ(s|ρ‖σ) def

= − log Trρ1−sσs. Then, whenV (ρ‖σ) > 0, we have the asymptotic expansions [63], [64],
[65], [67]

log βn(ǫ|ρ‖σ) = −nD(ρ‖σ)−
√
n
√

V (ρ‖σ)Φ−1(ǫ) +O(logn) (4)

log βn(e
−nr|ρ‖σ) = −n sup

0≤s<1

ψ(s|σ‖ρ)− sr
1− s + o(n). (5)

Expansions (4) and (5) are called the Stein-Strassen and theHoeffding expansions, respectively.
Whenρ andσ commute each other, we have the more detailed expansion

log βn(ǫ|ρ‖σ) = −nD(ρ‖σ)−
√
n
√

V (ρ‖σ)Φ−1(ǫ)− 1

2
logn +O(1). (6)

B. Preliminary II: Known results of local hypothesis testing

Now, we proceed to the hypothesis testing on a bipartite quantum system and itsn-copies extension,
which is the main topic of this paper. A single copy of a bipartite Hilbert space is written asHAB

def
=

HA⊗HB , and its local dimensions are written asdA
def
= dimHA anddB

def
= dimHB. We use notations like

IA, IB, IAB, InA, InB, andInAB for identity operations onHA, HB, HAB, H⊗n
A , H⊗n

B , andH⊗n
AB, respectively.

When it is easy to identify the domain of an identity operator, we abbreviate them toI hereafter.
In this paper, we defined as

d
def
= min(dA, dB), (7)

and consider asymptotic hypothesis testing betweenn-copies of an arbitrary known pure-bipartite state
|Ψ〉 with the Schmidt decomposition as

|Ψ〉 def=
d
∑

i=1

√

λi|i〉 ⊗ |i〉, (8)

andn-copies of the white noise state (the completely mixed state)

ρmix
def
=

IAB
dAdB

(9)

under the various restrictions on available POVMs: global POVMs, separable POVMs, one-way LOCC
POVMs, and two-way LOCC POVMs [1], [72]. We choose the white noise state (the completely mixed
state)ρ⊗nmix as a null hypothesis and the state|Ψ〉⊗n as an alternative hypothesis.

As variants ofβn(α|ρ‖σ), the optimal type-2 error under the condition that the type-1 error is no more
than a constantα ≥ 0 is written as

βn,C(α|ρ‖σ) def
= min

Tn
{βn(Tn) | αn(Tn) ≤ α, {Tn, In − Tn} ∈ C} , (10)

whereC is either→, ↔, Sep, and g corresponding to classes of one-way LOCC, two-way LOCC,
separable and global POVMs, respectively. Here, we note that although→, Sep, andg are compact sets,
↔ is not compact by its original definition [73]. Further, we denote the class of two-way LOCCs with
k-round classical communication by↔, k. In this notation,↔, 1 is equivalent to→. In this case, the
opposite one way LOCC← can be obtained by swapping systemsHA andHB. So, we do not discuss
the opposite one way LOCC←.



6

Hence, in this paper, the class↔ is defined as a closure of the set of all two-way LOCC POVMs,
which involves infinite-step LOCC protocols as well [3], [25], [74], [75], [76]. This definition of the class
↔ justifies the use ofmin in Eq.(10) forC =↔. In the global POVMsg, since

log βn,g(ǫ|Ψ‖ρmix) = −n log dAdB + log(1− ǫ), (11)

as is shown in [56], we have

βn,g(ǫ|ρmix‖Ψ) = 0 (12)

βn,g(e
−nr|ρmix‖Ψ) = 0 with r ∈ [0, log dAdB] (13)

βn,g(e
−nr|ρmix‖Ψ) = 1 with r ∈ (log dAdB,+∞), (14)

and the following expansions

log βn,g(e
−nr|Ψ‖ρmix) = −n log dAdB + log(1− e−nr)

= −n log dAdB − e−nr + o(e−nr). (15)

To discuss the remaining cases, we introduce the Rényi entropyH1−s(Ψ) of the reduced density of the
entangled state|Ψ〉 and its derivative as follows.

H1−s(Ψ)
def
=

log
∑

i λ
1−s
i

s
, H ′

α(Ψ)
def
=

d

dα
Hα(Ψ). (16)

Here,H1(Ψ) is defined as the limitlims→0H1−s(Ψ). By the Rényi entropyH1−s(Ψ), the entropy of the
entanglementE (|Ψ〉), the Schmidt rankRS(|Ψ〉) [72], [1], and the logarithmic robustness of entanglement
LR(|Ψ〉) [77], [78], [79] are characterized as

E (|Ψ〉) = H1(Ψ), logRS(|Ψ〉) = H0(Ψ), LR(|Ψ〉) = H1/2(Ψ). (17)

In the following, for the unified treatment, we only use the notation H1−s(Ψ). Also, we abbreviate
V (Ψ‖ρmix) to V (Ψ). That is, we haveV (Ψ) =

∑

i λi(log λi +H1(Ψ))2.
Then, our previous paper [56] shows the following propositions. The Stein bounds are given as follows.

Proposition 1: [56, Theorem 2] Given a real numberǫ ∈ (0, 1) and a pure entangled state|Ψ〉, there
exists a sufficiently large numberN such that

βn,→ (ǫ|ρmix‖Ψ) = βn,↔ (ǫ|ρmix‖Ψ) = βn,sep (ǫ|ρmix‖Ψ) = 0 (18)

for n ≥ N . Further, for a givenǫ > 0, we have the following expansion.

log βn,→ (ǫ|Ψ‖ρmix) =− n(log dAdB −H1(Ψ)) + o(n), (19)

log βn,↔ (ǫ|Ψ‖ρmix) = log βn,sep (ǫ|Ψ‖ρmix) + o(n)

=− n(log dAdB −H1(Ψ)) + o(n). (20)

�

The Hoeffding bounds are characterized as follows.
Proposition 2: [56, (40) and (110)] Given a real numberr > 0 and a pure entangled state|Ψ〉, we

have the following relation.

H→ (r|Ψ‖ρmix) def
= lim

n→∞
−1

n
log βn,→

(

e−nr|Ψ‖ρmix
)

= sup
0≤s<1

−s
1− sr −Hs(Ψ) + log dAdB. (21)

This relation implies the following equation forr ≥ r→
def
= −H ′

0(Ψ):

H→(r|Ψ‖ρmix) = log dAdB −H0(Ψ). (22)
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Further, whenr ≥ log dAdB −H1/2(Ψ), we have

Hsep (r|Ψ‖ρmix) def
= lim

n→∞
−1

n
log βn,sep

(

e−nr|Ψ‖ρmix
)

= log dAdB −H1/2(Ψ). (23)

�

C. Main results

In this subsection, we give a short description of the main results of this paper. As a refinement of
Proposition 1, we obtain the following theorem for Stein-Strassen bounds. Here, remember that we have

defined the functionΦ(x)
def
=
∫ x

−∞
1√
2π
e

−y2
2 dy.

Theorem 3: When the Schmidt coefficientλi in (8) is not uniform, we have the following expansions
for a givenǫ > 0.

log βn,→ (ǫ|Ψ‖ρmix)

=− n(log dAdB −H1(Ψ))−
√
n
√

V (Ψ)Φ−1(ǫ)− 1

2
logn +O(1), (24)

log βn,↔,2 (ǫ|Ψ‖ρmix) = log βn,↔ (ǫ|Ψ‖ρmix) +O(1)

= log βn,sep (ǫ|Ψ‖ρmix) +O(1)

=− n(log dAdB −H1(Ψ))−
√
n
√

V (Ψ)Φ−1(ǫ)− log n+O(1). (25)

�

Relations (24) and (25) show that the difference betweenlog βn,→ (ǫ|Ψ‖ρmix) and log βn,↔ (ǫ|Ψ‖ρmix)
exists only on the order oflog n. However, there is no difference with the uniform Schmidt coefficient as
follows.

Theorem 4: When the Schmidt coefficientλi in (8) is uniform, we have the following expansions for
a givenǫ > 0.

βn,→ (ǫ|Ψ‖ρmix) = βn,↔ (ǫ|Ψ‖ρmix) = βn,sep (ǫ|Ψ‖ρmix) = max{0, 1− d̄nǫ}, (26)

whered̄ := max(dA, dB). �

Theorem 5: For the Hoeffding bounds of two-way LOCC and separable cases, we obtain the following
relations.

lim
n→∞

−1

n
log βn,↔,2

(

e−nr|Ψ‖ρmix
)

= lim
n→∞

−1

n
log βn,↔

(

e−nr|Ψ‖ρmix
)

= lim
n→∞

−1

n
log βn,sep

(

e−nr|Ψ‖ρmix
)

= sup
0≤s<1

−2s
1− sr −H 1+s

2
(Ψ) + log dAdB. (27)

�

This theorem concludes that the Chernoff bound for the two-way LOCC case equals that for the separable
case, which was an open problem in the previous paper [56].

SinceH 1+s
2
(Ψ) monotonically decreases fors, the supremumsup0≤s<1

−2s
1−sr −H 1+s

2
(Ψ) + log dAdB is

realized withs→ 0 whenr ≥ r↔
def
= −1

4
H ′

1/2(Ψ). In this case, the Hoeffding bounds for two-way LOCC
and separable cases coincide with the right hand side of (23). Since the convexity ofsH1+s(Ψ) implies
that

log d−H 1
2
(Ψ) ≥ H0(Ψ)−H 1

2
(Ψ)

=
1

2

−1
2
H1− 1

2
(Ψ)− (−H1−1(Ψ))

−−1
2
− (−1) − 1

2
H 1

2
(Ψ)

=
1

2

dsH1+s(Ψ)

ds

∣

∣

∣

s=− 1
2

− 1

2
H 1

2
(Ψ) = −1

4
H ′

1/2(Ψ),
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this argument can be regarded as an extension of (23) in Proposition 2.
The right hand sides of (21) and (27) are numerically calculated as shown in Figs. 1 and 2 when the

pure entangled state|Ψ〉 is given as a pure state|Ψ(λ)〉:

|Ψ(λ)〉 =
√
λ

(

d−1
∑

i=1

|ii〉
)

+
√

1− (d− 1)λ|dd〉, (28)

whereλ satisfies0 ≤ λ ≤ 1/
√
d. The graphs in Figs. 1 and 2 show the typical pointsr→ andr↔ on the

horizontal line andlog dAdB −H0(Ψ), log dAdB −H1/2(Ψ), and log dAdB −H1(Ψ) on the vertical line.
Note that|Ψ(0)〉 is a product state and|Ψ(1/

√
d)〉 is a maximally entangled state. The results in Figs. 1

and 2 show that two-way LOCC improves the Hoeffding bound when r is large.
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Fig. 1. Comparison of Hoeffding bounds in one-way LOCC and two-way LOCC whend = 2 and λ = 0.1. In this case, we have
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Fig. 2. Comparison of Hoeffding bounds in one-way LOCC and two-way LOCC whend = 4 and λ = 0.05. In this case, we have
r→ = 0.911, r↔ = 0.212, log dAdB −H0(Ψ) = 1.386, log dAdB −H1/2(Ψ) = 1.841, and log dAdB −H1(Ψ) = 2.185.
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III. H YPOTHESIS TESTING UNDER ONE-WAY LOCC POVMS

In this section, to show the relations for the one-way LOCC POVMs in Proposition 2 and Theorems 3
and 4 ((21), (24), andβn,→ (ǫ|Ψ‖ρmix) = max{0, 1−d̄nǫ}), we considerC =→, that is, the local hypothesis
testing under one-way LOCC POVMs. In this case, it turns out that our results can be formulated in terms
of the following state

σΨ
def
=

d
∑

i=1

λi|i〉〈i| ⊗ |i〉〈i|, (29)

where{|i〉 ⊗ |j〉}i,j is the Schmidt basis of|Ψ〉 [see Eq.(8)]. Then, our hypothesis testing is reduced to
that with statesσΨ andρmix. That is, the last paper [56] showed the following lemma:

Proposition 6: Lemma 1 of [56] For allα > 0, we have

βn,→(α|Ψ‖ρmix) = βn(α|σΨ‖ρmix), (30)

where the optimal type-2 error probabilityβn,→(α|ρ‖σ) is defined by Eq. (10). �

Proofs of (24) and (21): Since

D(Ψ‖ρmix) = log dAdB −H1(Ψ), V (Ψ‖ρmix) = V (Ψ), (31)

ψ(s|ρmix‖Ψ) = (1− s)(Hs(Ψ)− log dAdB), (32)

by applying (6) to the commutative statesρ = ρmix and σ = σΨ, Proposition 6 yields (24). Similarly,
applying (5), Proposition 6 reproduces the existing result(21). Therefore, we obtain the results for the
one-way LOCC case.

Proof of βn,→ (ǫ|Ψ‖ρmix) = max{0, 1− d̄nǫ}: For the two hypothesesσΨ andρmix, the optimal testT
has the support in then-tensor product space of the subspace spanned by{|ii〉}di=1 when ǫ ≤ 1

d̄n
. In this

case, whenTr(In−Tn)ρ⊗nmix = ǫ, we haveTr(In−Tn)σ⊗n
Ψ = d̄nǫ. So, we obtainβn,→ (ǫ|Ψ‖ρmix) = 1−d̄nǫ

IV. HYPOTHESIS TESTING UNDER SEPARABLEPOVM

A. Uniform case: Proof of Theorem 4

First, we consider the most simple case when the Schmidt coefficient is uniform, i.e.,
√

1
dn

because
d = min(dA, dB). Then, for any separable POVM{Tn, In − Tn}, we have[10]

TrTn|Ψ〉〈Ψ| ≤
1

dn
TrTn = dnTrTnρmix. (33)

Hence, when the first kind of error probability is restrictedto TrTn|Ψ〉〈Ψ| = ǫ, the second kind of error
probability is evaluated asTr(In − Tn)ρmix ≥ 1− d̄ǫ. Hence, we have

βn,sep (ǫ|Ψ‖ρmix) ≥ max{0, 1− d̄ǫ} (34)

Since this lower bound can be attained by one-way LOCC, as mentioned in Section III, we obtain (26).

B. Hypothesis testing with a composite hypothesis: Proof of Theorem 5

In this subsection, in order to consider hypothesis testingunder separable POVM for a pure state with
the Schmidt decomposition

∑d
i=1

√
pi|i〉 ⊗ |i〉, we consider a pure state|ϕ〉 def

=
∑d

i=1

√
pi|i〉 ∈ Cd and a

specific composite hypothesis testing on(Cd)⊗n by employing the results in [66]. Here, we assume that
p1 ≥ p2 ≥ . . . ≥ pd.
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1) Single-shot setting: Although our problem is based onn-fold setting, it is quite hard to find the
relation between our problem and the results in [66]. To reduce the difficulty, we firstly discuss this relation
with the single-shot setting. That is, in this subsubsection, we consider this specific composite hypothesis
testing with the single-shot setting. Here, we assume that the distributionp = (pi) is not uniform due
to the assumption of Theorem 3. The following type of composite hypothesis testing plays a key role in
our analysis of our hypothesis testing in the bipartite system. The null hypothesis is given as the pure
state|ϕ〉 in the systemCd. To give the alternative hypothesis, we introduce a notation. In the quantum
systemCd, the basis is written as|j〉 by usingj ∈ {1, . . . , d}. Hence, the quantum systemCd is spanned
by {|j〉}j∈D, whereD def

= {1, . . . , d}. Then, the alternative hypothesisS0 is the set of states{|φL〉}L∈Zd2 ,
where|φL〉 ∈ Cd is defined as

|φL〉 def
=

√

1

d

∑

j∈D
(−1)Lj |j〉, L ∈ Z

d
2, (35)

whereLj ∈ Z2 is thejth entry ofL ∈ Z
d
2. That is, an element of the alternative hypothesis is characterized

by an element ofZd2. Hence, the cardinality of the alternative hypothesis is2d.
For a two-valued POVM{S, I −S} on Cd, the type-1 errorα(S) and type-2 errorβ(S) are defined as

α(S)
def
= TrS|ϕ〉〈ϕ| (36)

β(S)
def
= max

ρ∈S0

Tr(Id − S)ρ, (37)

whereId is an identity operator onCd. The optimal type-2 error under the restriction on the condition
that the type-1 error is no more thanα ≥ 0 can be written as

β(α|ϕ) def
= min

0≤S≤Id
{β(S)|α(S) ≤ α}. (38)

Similarly, we defineα(β|ϕ) as

α(β|ϕ) def
= min

0≤S≤Id
{α(S)|β(S) ≤ β}. (39)

In the rest of this subsection, we often abbreviateβ(α|ϕ) asβ (α).
Now, we define the subsetS(R) def

= {j ∈ D| log pj ≥ R} of D. We also employ the following notations:

Ps(R)
def
=
∑

j∈S(R)
(pj)

s for s = 0, 1/2, 1, (40)

ǫ(R)
def
=
(P1/2(R)

2

dP1(R)

) 1
2
. (41)

When

1 ≥ P1/2(R̂)
2

P0(R)P1(R̂)
, (42)

we define

a(R, R̂)

def
=1− P1(R)

(

P1/2(R)P1/2(R̂)

P1(R̂)
1
2P1(R)

1
2P0(R)

+
(

1− P1/2(R̂)
2

P1(R̂)P0(R)

) 1
2
(

1− P1/2(R)
2

P1(R)P0(R)

) 1
2

)2

. (43)

Then, we have the following lemma.
Lemma 7: When the inequalityǫ(R) ≥ ǫ(R̂) holds, the condition (42) holds. �
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Proof: Since Schwarz inequality implies thatP0(R) ≥ P1/2(R)
2

P1(R)
, which implies the condition (42).

Lemma 35 in Appendix B yields the following lemma.
Lemma 8: Any two distinct elementsR and R̂ of {log pi}i with R > R̂ satisfy the inequalityǫ(R̂) >

ǫ(R). �

So, we have the following lemma.
Lemma 9: We fix R̂ ∈ {log pi}i. Then, we have the following items.
(1) When a real numberR(∈ {log pi}i) < R̂ satisfies

P0(R)

P1/2(R)
e
R
2 ≥ 1−

(

P1(R)P0(R)
P1/2(R)2

− 1
)

1
2

(

P1(R̂)P0(R)

P1/2(R̂)2
− 1
)

1
2

, (44)

we have

α

(

P1/2(R̂)
2

dP1(R̂)

∣

∣

∣

∣

∣

ϕ

)

≤ a(R, R̂). (45)

(2) We assume that there exists an elementRα in {log pi}i satisfying the inequality (44) andRα <
R̂. We denote all of distinct elements of{log pi}i by R̃k < R̃k−1 < . . . < R̃2 < R̃1. We
also assume that an elementRβ in {log pi}i satisfying the following condition; Any element
R̃j(≤ Rβ) ∈ {log pi}i satisfies

P0(R̃j+1)

P1/2(R̃j)
e
R̃j
2 < 1−

(

P1(R̃j+1)P0(R̃j+1)

P1/2(R̃j)2
− 1
)

1
2

(

P1(R̂)P0(R̃j)

P1/2(R̂)2
− 1
)

1
2

. (46)

Then, the real numberŝR andRβ satisfy the inequality

α

(

P1/2(R̂)
2

dP1(R̂)

∣

∣

∣

∣

∣

ϕ

)

≥ a(Rβ, R̂). (47)

�

Proof of Lemma 8: Here, we employ notations summarized in Appendix A. That is,we define the
real vectorsul andvl on Rl asul

def
=
(√

p1, · · · ,
√
pl
)

andvl
def
= (1, · · · , 1) /

√
d for an integerl satisfying

1 ≤ l ≤ d. We consider only the case when

l := |S(R)| = P0(R), l̂ := P0(R̂), ǫ2 := ǫ(R̂)2 = (
ul̂ · vl̂
‖ul̂‖

)2 =
P1/2(R̂)

2

dP1(R̂)
. (48)

SinceR and R̂ are two distinct elements of{log pi}i andR > R̂, we have the inequalityl < l̂. Due to
the above final relation, Lemma 35 in Appendix B directly implies Lemma 8.

Proof of Lemma 9: We prove Lemma 9 by using the notations in the above proof of Lemma 8. For
this purpose, we employ results in [66], which are summarized in Appendix A. Due to (48), we have

ul · vl =
P1/2(R)

d1/2
, ‖vl‖2 =

P0(R)

d
, ‖ul‖2 = P1(R). (49)

SinceR < R̂, we havel ≥ l̂.
Item (1): Firstly, we show Item (1) by using the properties ofx∗(ul, vl, ǫ) given in Proposition 31. That
is, we show (45) by assuming (44). SinceR < R̂, Lemma 8 guarantees thatul·vl‖ul‖ = ǫ(R) > ǫ(R̂) = ǫ,
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which implies (42) by using Lemma 7. Hence, the vectorx∗(ul, vl, ǫ) defined in (240) of Proposition 31
in Appendix A is written as

x∗(ul, vl, ǫ)

=
1

√

‖ul‖2‖vl‖2 − (ul · vl)2

(

√

‖vl‖2 − ǫ2ul

+
ǫ
√

‖ul‖2‖vl‖2 − (ul · vl)2 − ul · vl
√

‖vl‖2 − ǫ2
‖vl‖2

vl

)

. (50)

Due to Lemma 36 in Appendix B, all entries ofx∗(ul, vl, ǫ) are non-negative if and only if

√
pl
d1/2‖vl‖2
ul · vl

≥



1−

√

‖ul‖2‖vl‖2
(ul·vl)2 − 1
√

‖vl‖2
ǫ2
− 1



 , (51)

which is equivalent to (44), due to the relations (48) and (49). So, all entries ofx∗(ul, vl, ǫ) are non-
negative. Thus, for anyL ∈ Zd2, we find that

〈x∗(ul, vl, ǫ)|φL〉2
(a)

≤
〈

x∗(ul, vl, ǫ)
∣

∣

∣

d
∑

i=1

1√
d

∣

∣

∣
i
〉2 (b)

= 〈x∗(ul, vl, ǫ)|vl〉2
(c)

≤ ǫ2, (52)

where (a), (b), and (c) follow from the non-negativity of all entries ofx∗(ul, vl, ǫ), the equations (50),
and the property ofx∗(ul, vl, ǫ) given in Proposition 31, respectively. Thus, since|ϕ〉 = ud, using (50)
and (52), we have

1− α
(

ǫ2
∣

∣ϕ
)

(a)

≥ 〈ϕ|x∗(ul, vl, ǫ)〉2

(b)
=
(ul · vlǫ+

√

(‖vl‖2 − ǫ2)(‖vl‖2‖ul‖2 − (ul · vl)2))2
‖vl‖4

(c)
=

(

P1/2(R)

d1/2
P1/2(R̂)

d1/2P1(R̂)1/2
+

√

(P0(R)
d
− P1/2(R̂)2

dP1(R̂)
)(P0(R)P1(R)

d
− P1/2(R)2

d
)

)2

P0(R)2

d2

=P1(R)

(

P1/2(R)P1/2(R̂)

P1(R̂)
1
2P1(R)

1
2P0(R)

+
(

1− P1/2(R̂)
2

P1(R̂)P0(R)

)
1
2
(

1− P1/2(R)
2

P1(R)P0(R)

)
1
2

)2

, (53)

where(a), (b), and (c) follow from (52), (50) with |ϕ〉 = ud, and (49), respectively. So, we obtain the
inequality (45).
Item (2): Step 1:) Next, we proceed to the proof of Item (2) by combining Propositions 31 and 33.
That is, we will show (47) by assuming (46). Now, we outline the derivation of (47). For the preparation,
we chooselβ := |S(Rβ)| = P0(Rβ), l̂ := |S(R̂)| = P0(R̂), lα := |S(Rα)| = P0(Rα), ǫ := ǫ(R̂) =

u
l̂
·v
l̂

‖u
l̂
‖ ,

andη := ηǫ, whereηǫ is defined in Appendix A. In Step 2:), we show the inequalitylβ > η. In Step 3:),
we show

1− α
(

ǫ2
∣

∣ϕ
)

=

(

uη · vηǫ+
√

(‖vη‖2 − ǫ2)(‖vη‖2‖uη‖2 − (uη · vη)2)
)2

‖vη‖4
, (54)

and

max{〈ulβ |φ〉2||φ〉 ∈ R
lβ , ‖φ‖2 = 1, 〈vlβ |φ〉 ≤ ǫ}

=

(

ulβ · vlβǫ+
√

(‖vlβ‖2 − ǫ2)(‖vlβ‖2‖ulβ‖2 − (ulβ · vlβ)2)
)2

‖vlβ‖4
. (55)
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In Step 4:), combining these relations, we show the inequality (47).
Step 2:) Firstly, we show that the condition A1), A2), nor A3) in Appendix A does not hold for any
integer l satisfying l ≥ lβ . Due to Lemma 34, A2) does not hold becauseRβ < log p1. Since lβ > l̂,
Lemma 35 guarantees that A1) does not hold for any integerl satisfyingl ≥ lβ.

Now, to show the inequalitylβ > η, we show that A3) does not hold for any integerl satisfyingl ≥ lβ.
We choosẽlj := |S(R̃j)| = P0(R̃j). For a given integerl ≥ lβ, we choosej such that̃lj+1 > l ≥ l̃j ,
which implies the relations

pl ≤ pl̃j , ‖vl̃j‖ ≤ ‖vl‖ ≤ ‖vl̃j+1
‖, ‖ul‖ ≤ ‖ul̃j+1

‖, ul̃j · vl̃j . ≤ ul · vl ≤ ul̃j+1
· vl̃j+1

. (56)

Then, we have

√
pl
d1/2‖vl‖2
ul · vl

(a)

≤ √pl̃j

d1/2‖vl̃j+1
‖2

ul̃j · vl̃j
(b)
<









1−

√

‖ul̃j+1
‖2‖vl̃j+1

‖2

(ul̃j
·vl̃j )

2 − 1

√

‖vl̃j ‖
2

ǫ2
− 1









(c)

≤



1−

√

‖ul‖2‖vl‖2
(ul·vl)2 − 1
√

‖vl‖2
ǫ2
− 1



 , (57)

where(b) follows from the condition (46), and(a) and (c) follow from (56). This inequality shows that
the condition (250) in Lemma 36 does not hold. Since Lemma 35 guarantees thatul·vl‖ul‖ is strictly monotone

increasing forl, we haveul·vl‖ul‖ ≥
ulβ ·vlβ
‖ulβ ‖

>
u
l̂
·v
l̂

‖u
l̂
‖ = ǫ becauselβ > l̂. By using these two statements, Lemma

36 guarantees that thel-th entry of x∗(ul, vl, ǫ) is negative for the integerl. So, A3) does not hold for
any integerl satisfyingl ≥ lβ. Thus, the assumption of Item (2) implies that neither A1), A2), nor A3)
does not hold for any integerl satisfyingl ≥ lβ . Hence, we have the desired inequalitylβ > η.
Step 3:) SinceRα < R̂, Lemma 8 implies thatulα ·vlα‖ulα‖

= ǫ(Rα) > ǫ(R̂) = ǫ. Item (1) guarantees thatlα
satisfies Condition A3). So,η ≥ lα. Thus, Lemma 35 yields thatuη ·vη‖uη‖ ≥

ulα ·vlα
‖ulα‖

> ǫ. Hence, B1) does not

hold. SinceRα < R̂ impliesRα < log p1, we havelog pη ≤ Rα < log p1. So, B2) does not hold due to
Lemma 34. Thus, B3) holds. So, Proposition 33 guarantees (54), and the maximum1− α (ǫ2|ϕ) in (54)
is attained by the vectorx∗(uη, vη, ǫ).

Then, we apply Proposition 31 to the case withy = ulβ andz = vlβ . Since the condition D3), i.e., the
relationy/‖y‖ 6= z/‖z‖ andy · z > ǫ‖y‖ holds, we obtain (55).
Step 4:) We show the inequality (47). Since the inequalitylβ > η implies the equation〈vlβ |x∗(uη, vη, ǫ)〉 =
〈vη|x∗(uη, vη, ǫ)〉, we find that the vectorx∗(uη, vη, ǫ) also satisfies the condition for the real vector|φ〉
in the maximum in the LHS of (55). So, we have

max{〈ulβ |φ〉2||φ〉 ∈ R
lβ , ‖φ‖2 = 1, 〈vlβ |φ〉 ≤ ǫ}

≥

(

uη · vηǫ+
√

(‖vη‖2 − ǫ2)(‖vη‖2‖uη‖2 − (uη · vη)2)
)2

‖vη‖4
. (58)

Combining (54), (55), and (58), we have

1− α
(

ǫ2
∣

∣ϕ
)

≤

(

ulβ · vlβǫ+
√

(‖vlβ‖2 − ǫ2)(‖vlβ‖2‖ulβ‖2 − (ulβ · vlβ)2)
)2

‖vlβ‖4
. (59)

Hence, combining the same discussion as (53), we obtain the inequality (47).

Note that it is quite difficult to derive the tight evaluationof α
(

P1/2(R̂)2

dP1(R̂)

∣

∣

∣
ϕ
)

because our choice ofl

is limited to l = |S(R)| = P0(R). We obtain lower and upper bounds as (45).
UsingP c

1 (R)
def
= 1− P1(R), we have the following lemma.
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Lemma 10: WhenR < R̂, the numbera(R, R̂) is bounded as follows.

P c
1 (R) ≤ a(R, R̂) ≤ P c

1 (R̂). (60)

�

Proof: To show Lemma 10, we will show the following.

P1(R̂) ≤ 1− a(R, R̂) ≤ P1(R). (61)

First, we show the second inequality of (61). Since

P1/2(R̂)
2

P0(R)P1(R̂)
+

P1/2(R)
2

P0(R)P1(R)
≥ 2
( P1/2(R̂)

2

P0(R)P1(R̂)
· P1/2(R)

2

P0(R)P1(R)

)
1
2

=2
P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

,

we have
(

1− P1/2(R̂)
2

P0(R)P1(R̂)

)(

1− P1/2(R)
2

P0(R)P1(R)

)

≤
(

1− P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

)2

,

i.e.,
(

1− P1/2(R̂)
2

P0(R)P1(R̂)

)
1
2
(

1− P1/2(R)
2

P0(R)P1(R)

)
1
2

≤1− P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

.

Therefore,

P1(R)

(

P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

+
(

1− P1/2(R̂)
2

P0(R)P1(R̂)

)
1
2
(

1− P1/2(R)
2

P0(R)P1(R)

)
1
2

)2

≤P1(R)

(

P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

+ 1− P1/2(R)P1/2(R̂)

P0(R)P1(R)
1
2P1(R̂)

1
2

)2

=P1(R).

Then, we obtain the second inequality of (61).
To show the first inequality of (61), we employ the notation given in Appendix A, and choose the

integersl := |S(R)| = P0(R) and l̂ := |S(R̂)| = P0(R̂) in the same way as the proof of Lemma 9. So,
the conditionR < R̂ implies thatl̂ ≤ l. Hence, we have‖ul̂‖2 = ul · ul̂. We apply Proposition 31 to the
case wheny = ul, z = vl, andǫ =

u
l̂
·v
l̂

‖u
l̂
‖ . Then, we find thatx =

u
l̂

‖u
l̂
‖ satisfies the condition inM(ul, vl, ǫ)

given in (238).
Now, we show that

‖ul̂‖2 ≤
(

ul · vlǫ+
√

(‖vl‖2 − ǫ2)(‖vl‖2‖ul‖2 − (ul · vl)2)
‖vl‖2

)2

. (62)
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When l = l̂, the RHS of (62) equals‖ul̂‖2. So, we show (62) whenl > l̂ as follows. In this case, Lemma
35 implies thatul·vl‖ul‖ >

u
l̂
·v
l̂

‖u
l̂
‖ = ǫ. Proposition 31 with Case D3 guarantees that

‖ul̂‖ = ul ·
ul̂
‖ul̂‖

≤ ul · vlǫ+
√

(‖vl‖2 − ǫ2)(‖vl‖2‖ul‖2 − (ul · vl)2)
‖vl‖2

, (63)

which implies (62).
Therefore,

P1(R̂) = ‖ul̂‖2 ≤
(

ul · vlǫ+
√

(‖vl‖2 − ǫ2)(‖vl‖2‖ul‖2 − (ul · vl)2)
‖vl‖2

)2

(a)
=P1(R)

(

P1/2(R)P1/2(R̂)

P1(R̂)
1
2P1(R)

1
2P0(R)

+
(

1− P1/2(R̂)
2

P1(R̂)P0(R)

)
1
2
(

1− P1/2(R)
2

P1(R)P0(R)

)
1
2

)2

= 1− a(R, R̂), (64)

where(a) follows from (53). Then, we obtain the first inequality of (61).
2) n-fold i.i.d. setting: In this subsection, we rewrite the results in the previous subsection inn-fold i.i.d.

setting. In this setting, The null hypothesis is given as thepure state|ϕ⊗n〉 in then-tensor product system
(Cd)⊗n. To give the alternative hypothesis, we introduce a notation. In the quantum system(Cd)⊗n, the
basis|i1〉 ⊗ · · · ⊗ |in〉 is simplified to|J〉 by usingJ ∈ {1, . . . , d}n. Hence, the quantum system(Cd)⊗n

is spanned by{|J〉}J∈Dn = {|i1〉 ⊗ · · · ⊗ |in〉}i1,...,in , whereDn def
= {1, . . . , d}n. Then, the alternative

hypothesisSn,0 is the set of states{|φnL〉}L∈Zdn2 , where|φnL〉 ∈
(

Cd
)⊗n

is defined as

|φnL〉
def
=

√

1

dn

∑

J∈Dn
(−1)LJ |J〉, L ∈ Z

dn

2 , (65)

where LJ ∈ Z2 is the J th entry of L ∈ Zd
n

2 . That is, an element of the alternative hypothesis is
characterized by an element ofZd

n

2 . Hence, the cardinality of the alternative hypothesis is2d
n
, which

is double exponential with respect to the numbern.
For a two-valued POVM{Sn, Ind − Sn} on

(

Cd
)⊗n

, the type-1 errorαn(Sn) and type-2 errorβn(Sn)
are defined as

αn(Sn)
def
= TrSn|ϕ〉〈ϕ|⊗n (66)

βn(Sn)
def
= max

ρ∈Sn,0
Tr(Ind − Sn)ρ, (67)

whereInd is an identity operator on(Cd)⊗n. The optimal type-2 error under the restriction on the condition
that the type-1 error is no more thanα ≥ 0 can be written as

βn(α|ϕ) def
= min

0≤Sn≤Ind
{βn(Sn)|αn(Sn) ≤ α}. (68)

Similarly, we defineαn(β|ϕ) as

αn(β|ϕ) def
= min

0≤Sn≤Ind
{αn(Sn)|βn(Sn) ≤ β}. (69)

In the rest of this subsection, we often abbreviateβn(α|ϕ) asβn (α).
Now, we define the subsetSn(R)

def
= {J ∈ Dn| log pnJ ≥ nR} of Dn, where pnJ

def
= pi1 · · · pin for

J = (i1, . . . , in). We employ the following notations:

Pn,s(R)
def
=

∑

J∈Sn(R)
(pnJ)

s for s = 0, 1/2, 1,

ǫn(R)
def
=
(Pn,1/2(R)

2

dnPn,1(R)

) 1
2
.



16

When

1 ≥ Pn,1/2(R̂)
2

Pn,0(R)Pn,1(R̂)
, (70)

we define

an(R, R̂)

def
=1− Pn,1(R)

(

Pn,1/2(R)Pn,1/2(R̂)

Pn,1(R̂)
1
2Pn,1(R)

1
2Pn,0(R)

+
(

1− Pn,1/2(R̂)
2

Pn,1(R̂)Pn,0(R)

)
1
2
(

1− Pn,1/2(R)
2

Pn,1(R)Pn,0(R)

)
1
2

)2

. (71)

Then, Lemmas 9 and 10 are rewritten as follows.
Lemma 11: We fix R̂ ∈ { 1

n
log pnJ}J∈Dn. Then, we have the following items.

(1) When a real numberR(∈ { 1
n
log pnJ}J∈Dn) < R̂ satisfies

Pn,0(R)

Pn,1/2(R)
e
nR
2 +

(

Pn,1(R)Pn,0(R)

Pn,1/2(R)2
− 1
)

1
2

(

Pn,1(R̂)Pn,0(R)

Pn,1/2(R̂)2
− 1
)

1
2

≥ 1, (72)

we have

αn

(

Pn,1/2(R̂)
2

dnPn,1(R̂)

∣

∣

∣

∣

∣

ϕ

)

≤ an(R, R̂). (73)

(2) We assume that there exists an elementRα in { 1
n
log pnJ}J∈Dn satisfying the inequality (72) and

Rα < R̂. We denote all of distinct elements of{ 1
n
log pnJ}J∈Dn by R̃k < R̃k−1 < . . . < R̃2 < R̃1.

We also assume that an elementRβ in { 1
n
log pnJ}J∈Dn satisfying the following condition; Any

elementR̃j(≤ Rβ) ∈ { 1n log pnJ}J∈Dn satisfies

Pn,0(R̃j+1)

Pn,1/2(R̃j)
e
R̃j
2 +

(

Pn,1(R̃j+1)Pn,0(R̃j+1)

Pn,1/2(R̃j)2
− 1
)

1
2

(

Pn,1(R̂)Pn,0(R̃j )

Pn,1/2(R̂)2
− 1
)

1
2

< 1. (74)

Then, the real numberŝR andRβ satisfy the inequality

αn

(

Pn,1/2(R̂)
2

dnPn,1(R̂)

∣

∣

∣

∣

∣

ϕ

)

≥ an(Rβ, R̂). (75)

�

Lemma 12: WhenR < R̂, the numberan(R, R̂) is evaluated as

P c
n,1(R) ≤ an(R, R̂) ≤ P c

n,1(R̂), (76)

whereP c
n,1(R)

def
= 1− Pn,1(R). �
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3) Constant constraint for type-1 error: Under a constant constraint for type-1 error, we have the
following theorem.

Theorem 13: We have

log βn(ǫ|ϕ) =n(H(p)− log d)−
√
n
√

V (p)Φ−1(ǫ)− logn +O(1), (77)

whereH(p)
def
= −

∑

i pi log pi andV (p)
def
=
∑

i pi(H(p) + log pi)
2. �

For a preparation of the proof of Theorem 13, we introduce several notations. First, we choose
Aǫ

def
=
√

V (p)Φ−1(ǫ). Remember thatΦ is the cumulative distribution function of the standard Gaussian
distribution. We fixdS to be the lattice span of the random variable− log pI when the indexI is subject
to the distributionp. Hence, the set{ 1

n
log pnJ}J∈Dn has the lattice structure with the spandS

n
. For the

precise definition ofdS, see Appendix C. Then, we define the functionsg1, g2, andg3 as

g1(dS) :=

{

− log 2 if dS = 0

log 1−e−
1
2 dS

1−e−dS if dS > 0,
(78)

g2(dS) :=

{ −1
2
log 2π + 1

2V (p)
+ 2 log 2 if dS = 0

−1
2
log 2π + 1

2V (p)
+ log 1−e−dS

(1−e−
1
2dS )2

if dS > 0,
(79)

g3(dS) :=

{

−1
2
log 2π + log 2 + 1

2V (p)
if dS = 0

−1
2
log 2π + 1

2V (p)
+ log dS

1−e−
1
2dS

if dS > 0.
(80)

Then, we have the following lemma, which will be shown after the proof of Theorem 13.
Lemma 14: For real numbersBi with i = 1, 2, 3, 4, 5, we defineRn,i

def
= −H(p) + Aǫ√

n
+ Bi

n
with

i = 1, 2, 3, 4, 5.

log
Pn,1/2(Rn,1)Pn,1/2(Rn,2)

Pn,1(Rn,3)
1
2Pn,1(Rn,4)

1
2Pn,0(Rn,5)

= −1
2
log n+B5 −

B3 +B4

2
+ g2(dS)− log(1− ǫ) + o(1). (81)

The convergences of the differences between the LHSs and RHSs are compact uniform forBi.
Assume thatR̂n := −H(p) + Aǫ√

n
+ B̂n

n
, Rn = −H(p) + Aǫ√

n
+ Bn

n
, andR′

n = −H(p) + Aǫ√
n
+ B′

n

n
.

WhenBn and B̂n are bounded, andBn − B′
n converges, we have

log ǫn(Rn) = log
Pn,1/2(Rn)

2

dnPn,1(Rn)

=n(H(p)− log d)−
√
nAǫ − logn−Bn −

A2
ǫ

V (p)
+ 2g3(dS)− log(1− ǫ) + o(1), (82)

lim
n→∞

log
Pn,0(R

′
n)

Pn,1/2(Rn)
e
nRn
2 = g1(0) + lim

n→∞

Bn −B′
n

2
, (83)

an(Rn, R
′
n) = ǫ+ o(1), (84)

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= e
2Bn−B′

n−B̂n
2 + o(1). (85)

WhenBn → −∞, B̂n is bounded, andBn − B′
n converges,

lim
n→∞

log
Pn,0(R

′
n)

Pn,1/2(Rn)
e
nRn
2 ≤ g1(0) + lim

n→∞

Bn − B′
n

2
(86)

lim
n→∞

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
) 1

2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= 0. (87)
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�

Proof of Theorem 13:
Non-lattice case: Step 1:) For simplicity, we first consider the case whendS = 0, i.e., the non-lattice
case. We fixB̂. Due to the non-lattice property (Lemma 37), we can choose wecan choosêBn such that
limn→∞ B̂n = B̂ and R̂n := −H(p) + Aǫ√

n
+ B̂n

n
∈ { 1

n
log pnJ}J∈Dn. Then, we will show

lim
n→∞

αn

(

Pn,1/2(R̂n)
2

dnPn,1(R̂n)

∣

∣

∣

∣

∣

ϕ

)

= ǫ. (88)

Since
Pn,1/2(R̂n)

2

dnPn,1(R̂n)
is characterized by (82), (88) implies the desired argumentwhendS = 0. Now, we outline

the derivation of (88). To show (88), we find upper and lower bounds of (88) whose limit isǫ. For this
purpose, in Step 2:), we find its upper bound by using Item (1) of Lemma 11, and in Step 3:), we find
its lower bound by using Item (2) of Lemma 11. In Step 4:), calculating both bounds, we show (88).
Step 2:) Assume thatlimn→∞Bn converges. We chooseRn := −H(p) + Aǫ√

n
+ Bn

n
. Using (85) and (83),

we have

Pn,0(Rn)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(Rn)Pn,0(Rn)

Pn,1/2(Rn)2
− 1
) 1

2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eg1(0) + e
Bn−B̂

2 + o(1). (89)

Given δ > 0, due to the non-lattice property (See Lemma 37 in Appendix C), we can choseBα,n such
thatRα,n := −H(p) + Aǫ√

n
+ Bα,n

n
belongs to{ 1

n
log pnJ | 1n log pnJ < Rn}J∈Dn and

lim
n→∞

Bα,n = B̂ + 2 log(1− eg1(0)) + δ. (90)

Then,

eg1(0) + e
limn→∞ Bα,n−B̂

2 = eg1(0) + (1− eg1(0))eδ > 1. (91)

With sufficiently largen, Rα,n satisfies

Pn,0(Rα,n)

Pn,1/2(Rα,n)
e
nRα,n

2 +

(

Pn,1(Rα,n)Pn,0(Rα,n)

Pn,1/2(Rα,n)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rα,n)

Pn,1/2(R̂n)2
− 1
) 1

2

> 1 (92)

Rα,n < R̂n. (93)

Thus, we can apply Item (1) of Lemma 11 to this case. Hence, we obtain

αn

(

Pn,1/2(R̂n)
2

dnPn,1(R̂n)

∣

∣

∣

∣

∣

ϕ

)

≤ an(Rα,n, R̂n). (94)

Step 3:) We chooseBn asRn = −H(p) + Aǫ√
n
+ Bn

n
. Then, we chooseR′

n as the maximum element in
{ 1
n
log pnJ | 1n log pnJ < Rn}J∈Dn. So, the non-lattice property (See Lemma 37 in Appendix C) guarantees

limn→∞ n(Rn −R′
n) = 0. WhenBn → −∞, (87) and (86) imply that

lim
n→∞

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

≤ eg1(0) < 1. (95)
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WhenBn is bounded, the combination of (85) and (83) implies that

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eg1(0) + e
Bn−B̂

2 + o(1). (96)

Then, due to the non-lattice property, we can choseBβ,n such thatRβ,n := −H(p) + Aǫ√
n
+

Bβ,n
n

belongs
to { 1

n
log pnJ | 1n log pnJ < Rn}J∈Dn and

lim
n→∞

Bβ,n = B̂ + 2 log(1− eg1(0))− δ. (97)

So, whenBn ≤ Bβ,n, with sufficiently largen, we have

eg1(0) + e
Bn−B̂

2 ≤ eg1(0) + (1− eg1(0))e−δ < 1. (98)

In this case, with sufficiently largen, we have

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

< 1. (99)

Thus,Rβ,n satisfies the conditions forRβ in Item (2) of Lemma 11 withR̂ = R̂n. Due to (92) and (93),
we can apply Item (2) of Lemma 11 to the case withR̂ = R̂n, Rα = Rα,n, andRβ = Rβ,n. Hence, we
obtain

αn

(

Pn,1/2(R̂n)
2

dnPn,1(R̂n)

∣

∣

∣

∣

∣

ϕ

)

≥ an(Rβ,n, R̂n). (100)

Step 4:) (90) and (97) show that the sequencesBα,n andBβ,n converge to constants as well asB̂n. Thus,
(84) implies that

lim
n→∞

an(Rα,n, R̂n) = lim
n→∞

an(Rβ,n, R̂n) = ǫ. (101)

Combining (94) and (100), we obtain (88).
Lattice case: Next, we proceed to the lattice case withdS > 0. The different points from the non-
lattice case are the following. Firstly, we cannot necessarily chooseB̂n such that the limitlimn→∞ B̂n

exists. However, we can choosêBn such thatB̂n is bounded, i.e.,B̂n behaves within an interval with
width dS. The above proof works even with such a bounded case. The second point is the relation
limn→∞ n(Rn−R′

n) = dS > 0, which appears only in Steps 2:) and 3:). In these steps, we need to replace
g1(0) by g1(dS). In Step 2:), the relations (89) and (90) are replaced by

Pn,0(Rn)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(Rn)Pn,0(Rn)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eg1(dS )+
dS
2 + e

Bn−B̂
2

+dS + o(1). (102)

Bα,n := B̂ − 2dS + 2 log(1− eg1(dS)+
dS
2 ) + δ. (103)
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In Step 3:), the relations (95), (96), and (97) are replaced by

lim
n→∞

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

≤ eg1(dS)+dS < 1, (104)

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eg1(dS )+dS + e
Bn−B̂

2
+dS + o(1), (105)

Bβ,n := B̂ − 2dS + 2 log(1− eg1(dS)+dS)− δ. (106)

Hence, the sequenceBβ,n is bounded as well aŝBn andBα,n. Thus, we obtain (101). Combining (94)
and (100), we obtain (88) even in the lattice casedS > 0.

Proof of Lemma 14:
Proofs of (81), (82), and (83): We show the desired relations by applying Proposition38 in Appendix
C. When the distributionp in Proposition 38 is the measure{pi}i andX is log pi, we denote the functions
given in Proposition 38 by adding superscript1, like χ1

0, χ
1
1, τ

1(s), etc. Similarly, when the distributionp
in Proposition 38 is the measure{√pi}i (the counting measure) andX is log pi. We denote them by adding

superscript1
2

(0), like χ
1
2
0 , χ

1
2
1 , τ

1
2 (s), (χ0

0, χ
0
1, τ

0(s)) etc. We also employ the functionψp(s)
def
= log

∑

i p
1+s
i .

Then, we have

τ t(s) = ψp(s+ 1− t), ηt(R) = ψ′
p
−1
(R) + 1− t (107)

for t = 0, 1
2
, 1. Hence,

ηt
′
(R) =

1

ψ′′
p(ψ

′
p
−1(R))

(108)

χt0(R) = −R(ψ′
p
−1
(R) + 1− t) + ψp(ψ

′
p
−1
(R)) (109)

χt0
′
(R) = −ψ′

p
−1
(R)− 1 + t (110)

χt0
′′
(R) = χ

1/2
0

′′
(R) = −

dψ′
p
−1

dR
(R) = − 1

ψ′′
p (ψ

′
p
−1(R))

(111)

χt1(R) =

{

−1
2
log 2π − log(ψ′

p
−1(R) + 1− t) + 1

2ψ′′
p (ψ

′
p
−1(R))

if dS = 0

−1
2
log 2π + 1

2ψ′′
p (ψ

′
p
−1(R))

+ log dS

1−e−dS (ψ′
p
−1(R)+1−t) if dS > 0.

(112)

Generally, Proposition 38 implies that

logPn,1/2(R) =n(−R(ψ′
p
−1
(R) +

1

2
) + ψp(ψ

′
p
−1
(R)))− 1

2
logn + χ

1
2
1 (R) + o(1) (113)

logPn,0(R) =n(−R(ψ′
p
−1
(R) + 1) + ψp(ψ

′
p
−1
(R)))− 1

2
logn + χ0

1(R) + o(1). (114)
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Using∆n
def
=
√
nψ′

p
−1(−H(p) + Aǫ√

n
+ B

n
) = Aǫ

V (p)
+ o(1), for any real numberB, we have

ψp(ψ
′
p
−1
(−H(p) +

Aǫ√
n
+
B

n
)) = ψ′

p(0)
∆n√
n
+ ψ′′

p(0)
∆2
n

2n
+ o(

1

n
)

= −H(p)
∆n√
n
+

A2
ǫ

2V (p)n
+ o(

1

n
)

−(−H(p) +
Aǫ√
n
+
B

n
)ψ′

p
−1
(−H(p) +

Aǫ√
n
+
B

n
) = H(p)

∆n√
n
− Aǫ∆n

1

n
+ o(

1

n
)

= H(p)
∆n√
n
− A2

ǫ

V (p)n
+ o(

1

n
).

Thus, we have

−(−H(p) +
Aǫ√
n
+
B

n
)ψ′

p
−1
(−H(p) +

Aǫ√
n
+
B

n
) + ψp(ψ

′
p
−1
(−H(p) +

Aǫ√
n
+
B

n
)) = − A2

ǫ

2V (p)n
+ o(

1

n
).

(115)

Applying (115) to (113) and (114), we have

logPn,1/2(−H(p) +
Aǫ√
n
+
B

n
) =

1

2
(nH(p)−

√
nAǫ −B)− 1

2
log n− A2

ǫ

2V (p)
+ χ

1
2
1 (−H(p)) + o(1)

(116)

logPn,0(−H(p) +
Aǫ√
n
+
B

n
) =(nH(p)−

√
nAǫ − B)− 1

2
logn− A2

ǫ

2V (p)
+ χ0

1(−H(p)) + o(1).

(117)

Here, the LHS minus the RHS approach to zero, whose convergence is compact uniform for the choice
of B.

Also, the central limit theorem yields

lim
n→∞

Pn,1(−H(p) +
Aǫ√
n
+
B

n
) = 1− Φ(

Aǫ
√

V (p)
) = 1− ǫ. (118)

Since

2χ
1/2
1 (−H(p))− χ0

1(−H(p)) = g2(dS) (119)

2χ
1/2
1 (−H(p)) = 2g3(dS) (120)

χ0
1(−H(p))− χ1/2

1 (−H(p)) = g1(dS), (121)

combining (116), (117), and (118), we obtain (81), (82), and(83). Indeed, whileB depends onn in (82)
and (83), since the convergence is compact uniform for the choice ofB, the relations (82) and (83) hold.
Proof of (84): Due to (81), we find that

Pn,1/2(Rn,1)Pn,1/2(Rn,2)

Pn,1(Rn,2)
1
2Pn,1(Rn,1)

1
2Pn,0(Rn,1)

→ 0 (122)

Pn,1/2(Rn,2)
2

Pn,1(Rn,2)Pn,0(Rn,1)
→ 0 (123)

Pn,1/2(Rn,1)
2

Pn,1(Rn,1)Pn,0(Rn,1)
→ 0. (124)

Since (118) implies

Pn,1(Rn,1)→ 1− ǫ, (125)
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we obtain (84). The compact uniformness of these convergences are guaranteed by the compact uniform-
ness of the convergences in Proposition 38.
Proof of (85): WhenBn andB̂n are bounded, andBn−B′

n converges, using the relation (81), we have

log
Pn,1(R

′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
=

1

2
logn− (B′

n − Bn)− g2(0)− log(1− ǫ) + o(1), (126)

log
Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
=

1

2
logn− (Bn − B̂)− g2(0)− log(1− ǫ) + o(1). (127)

Therefore, we obtain (85).
Proof of (86): The relations (113) and (114) show that

log
Pn,0(R

′
n)

Pn,1/2(Rn)
e
nRn
2 =

B′
n −Bn

2
+ χ0

1(R
′
n)− χ

1
2
1 (Rn) + o(1)

=
B′
n −Bn

2
+ χ0

1(R
′
n)− χ

1
2
1 (Rn) + o(1). (128)

WhenBn → −∞ andBn −B′
n converges, sinceχ0

1(R)− χ
1
2
1 (R) is monotone increasing forR, we have

χ0
1(R

′
n)− χ

1
2
1 (Rn) ≤ χ0

1(−H(p) +
Aǫ√
n
)− χ

1
2
1 (−H(p) +

Aǫ√
n
)

= χ0
1(−H(p))− χ

1
2
1 (−H(p)) + o(1) = g1(ds) + o(1). (129)

So, combinig (128) and (129), we obtain (86).
Proof of (87): Assume thatBn → −∞, B̂n is bounded, andBn − B′

n converges toC. We fix a
sufficiently large numberA > 0. We haveRn < R̂n −A for sufficiently largen becauseBn → −∞. So,

Pn, 1
2
(Rn) ≥ Pn, 1

2
(R̂n). (130)

Since

Pn,1(R̂n)Pn,0(R̂n) ≥ Pn,1/2(R̂n)
2, (131)

with sufficiently largen, we have

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
=
Pn,1(R̂n)Pn,0(R̂n)

Pn,1/2(R̂n)2
· Pn,0(Rn)

Pn,0(R̂n)
≥ Pn,0(Rn)

Pn,0(R̂n)
≥ Pn,0(R̂n − A)

Pn,0(R̂n)

(a)→ eA. (132)

where(a) follows from (117). So,

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1 ≥ eA − 1

eA
Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
. (133)

Using (116) and (117), we have

log
Pn,0(R̂n)

Pn,1/2(R̂n)2
= −1

2
log n− g2(0) + o(1), (134)

i.e.,

Pn,0(R̂n)

Pn,1/2(R̂n)2
→ 0. (135)

Using (114), we have

log
Pn,0(R

′
n)

Pn,0(Rn)
= (Bn − B′

n)(ψ
′
p
−1
(Rn) + 1) + o(1). (136)
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With sufficiently largen, we have
(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

≤

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2

)
1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

(a)

≤ eA

eA − 1

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2

)
1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2

)
1
2

=
eA

eA − 1

(Pn,1(R
′
n)Pn,0(R

′
n)Pn,1/2(R̂n)

2

Pn,1/2(Rn)2Pn,1(R̂n)Pn,0(Rn)

) 1
2

(b)

≤ eA

eA − 1

(Pn,1(R
′
n)Pn,0(R

′
n)Pn,0(R̂n)Pn,1(R̂n)

Pn,1/2(Rn)2Pn,1(R̂n)Pn,0(Rn)

)
1
2

=
eA

eA − 1

(Pn,1(R
′
n)Pn,0(R̂n)

Pn,1/2(Rn)2

)
1
2 ·
(Pn,0(R

′
n)

Pn,0(Rn)

)
1
2

(c)

≤ eA

eA − 1

( Pn,0(R̂n)

Pn,1/2(Rn)2

)
1
2 ·
(Pn,0(R

′
n)

Pn,0(Rn)

)
1
2

(d)

≤ eA

eA − 1

( Pn,0(R̂n)

Pn,1/2(R̂n)2

)
1
2 ·
(Pn,0(R

′
n)

Pn,0(Rn)

)
1
2 (e)→ 0, (137)

where(a), (b), (c), (d), and(e) follow from (133), (131),Pn,1(R′
n) ≤ 1, (130), and the combination of

(135) and (136), respectively. So, we obtain (87).
4) Exponential constraint:
Theorem 15:

log βn(e
−nr|ϕ) = n(2 min

0≤s<1
(

s

1− sr +
1

2
H 1+s

2
(p))− log d)− logn +O(1). (138)

�

For the following discussion, givenr, we defineR(r) andsr ≤ 0 such that

−r = χ1
0(−R(r)), ψ′

p(sr) = −R(r). (139)

This definition is equivalent with

−r = −ψ′
p(sr)sr + ψp(sr), −R(r) = ψ′

p(sr). (140)

Sinceψ′
p is strictly monotone increasing,R(r) > H(p).

We prepare the following lemmas.
Lemma 16: We have the relations

(sr +
1

2
)R(r) + ψp(sr) = min

0≤s<1

( s

1− sr +
1

2
H 1+s

2
(p)
)

(141)

srR(r) + ψp(sr) = −r. (142)

�

Lemma 17: There exist three functionshi(r, dS) (i = 1, 2, 3) satisfying the following conditions. Given
real numbersBi with i = 1, 2, 3, 4, 5, we defineRn,i := −R(r) + Bi

n
with i = 1, 2, 3, 4, 5. Then,

log
Pn,1/2(Rn,1)Pn,1/2(Rn,2)

Pn,1(Rn,3)
1
2Pn,1(Rn,4)

1
2Pn,0(Rn,5)

= −nr − 1

2
log n+B5 −

B3 +B4

2
+ h2(r, dS) + o(1). (143)

The convergences of the differences between the LHSs and RHSs are compact uniform forBi.
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Assume thatR̂n := −R(r) + B̂n
n

, Rn = −R(r) + Bn
n

, andR′
n = −R(r) + B′

n

n
. WhenBn and B̂n are

bounded, andBn −B′
n converges, we have

log ǫn(Rn) = log
Pn,1/2(Rn)

2

dnPn,1(Rn)

=n
(

2 min
0≤s<1

( s

1− sr +
1

2
H 1+s

2
(p)
)

− log d
)

− log n+ 2(sr +
1

2
)Bn + 2h3(r, dS) + o(1), (144)

log
Pn,0(R

′
n)

Pn,1/2(Rn)
e−

nRn
2 = h1(r, dS) +

Bn − B′
n

2
+ o(1), (145)

log an(Rn, R
′
n) = −nr + o(1), (146)

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= e
2Bn−B′

n−B̂n
2 + o(1). (147)

WhenBn → −∞, B̂n is bounded, andBn − B′
n converge,

lim
n→∞

log
Pn,0(R

′
n)

Pn,1/2(Rn)
e
nRn
2 ≤ h1(r, dS) + lim

n→∞

Bn − B′
n

2
(148)

lim
n→∞

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
) 1

2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= 0. (149)

�

The concrete construction ofhi will be given in the proof of Lemma 17.

Proof of Theorem 15:
Non-lattice case: Step 1:) For simplicity, we first consider the case whendS = 0, i.e., the non-lattice
case. We fixB̂. Due to the non-lattice property (Lemma 37), we can chooseB̂n andR̂n := −R(r)+ B̂n

n
∈

{ 1
n
log pnJ}J∈Dn such thatB̂n → B̂. Then, we will show

lim
n→∞

−1
n

logαn

(

Pn,1/2(R̂n)
2

dnPn,1(R̂n)

∣

∣

∣

∣

∣

ϕ

)

= r. (150)

Since
Pn,1/2(R̂n)

2

dnPn,1(R̂n)
is characterized by (144), (150) implies the desired argument whendS = 0. Now, we

outline the derivation of (150). To show (150), we find upper and lower bounds of (150) whose limit
behaves ase−nr. For this purpose, in Step 2:), we find its upper bound by usingItem (1) of Lemma 11,
and in Step 3:), we find its lower bound by using Item (2) of Lemma 11. In Step 4:), calculating both
bounds, we show (150).
Step 2:) Assume thatlimn→∞Bn converges. We chooseRn := −R(r) + Bn

n
. Using (145) and (147), we

have

Pn,0(Rn)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(Rn)Pn,0(Rn)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eh1(r,0) + e
Bn−B̂

2 + o(1). (151)

Givenδ > 0, due to the non-lattice property (Lemma 37), we choseBα,n such thatRα,n := −R(r)+ Bα,n
n

belongs to{ 1
n
log pnJ | 1n log pnJ < Rn}J∈Dn and

lim
n→∞

Bα,n = B̂ + 2 log(1− eh1(r,0)) + δ. (152)
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Then, in the same way as Step 2:) of the proof of Theorem 13, we can show thatRα,n satisfies (94).
Step 3:) We chooseBn as Rn = −R(r) + Bn

n
. Then, we chooseR′

n as the maximum element in
{ 1
n
log pnJ | 1n log pnJ < Rn}J∈Dn. So, the non-lattice property guaranteeslimn→∞ n(Rn − R′

n) = 0. When
Bn → −∞, (149) and (148) imply that

lim
n→∞

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

(a)
= eh1(r,0) < 1. (153)

where(a) follows from h1(r, 0) = χ0
1(R(r))− χ

1
2
1 (R(r)) = log

ψ′
p
−1(R(r))+ 1

2

ψ′
p
−1(R(r))+1

< 0.
WhenBn is bounded, the combination of (145) and (147) implies that

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eh1(r,0) + e
Bn−B̂

2 + o(1). (154)

Then, due to the non-lattice property (Lemma 37), we can chose Bβ,n such thatRβ,n := −R(r) + Bβ,n
n

belongs to{ 1
n
log pnJ | 1n log pnJ < Rn}J∈Dn and

lim
n→∞

Bβ,n = B̂ + 2 log(1− eh1(r,0))− δ. (155)

In the same way as Step 3:) of the proof of Theorem 13, we can show thatRβ,n satisfies (100).
Step 4:) (152) and (155) show that the sequencesBα,n andBβ,n converge to constants as well aŝBn.
Thus, (146) implies that

lim
n→∞

−1
n

log an(Rα,n, R̂n) = lim
n→∞

−1
n

log an(Rβ,n, R̂n) = r. (156)

Combining (94) and (100), we obtain (150).
Lattice case: The lattice case (dS > 0) can be shown in the same way as the proof of Theorem 13 by
replacing−H(p) + Aǫ√

n
andgi(dS) by −R(r) andhi(r, dS).

Next, we proceed to the lattice case withdS > 0. Similar to the proof of Theorem 13, the different
points from the non-lattice case are the following. Firstly, we notice that the limitlimn→∞ B̂n does not
necessarily exist. However, we can chooseB̂n such thatB̂n is bounded. The above proof works even with
such a bounded case. The second point is the relationlimn→∞ n(Rn−R′

n) = dS > 0, which appears only
in Steps 2:) and 3:). In these steps, we need to replaceh1(r, 0) by h1(r, dS). In Step 2:), the relations
(151) and (152) are replaced by

Pn,0(Rn)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(Rn)Pn,0(Rn)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eh1(r,dS)+
dS
2 + e

Bn−B̂
2

+dS + o(1). (157)

Bα,n := B̂ − 2dS + 2 log(1− eh1(r,dS)+
dS
2 ) + δ. (158)
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In Step 3:), the relations (153), (154), and (155) are replaced by

lim
n→∞

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

≤ eh1(r,dS)+dS < 1, (159)

Pn,0(R
′
n)

Pn,1/2(Rn)
e
nRn
2 +

(

Pn,1(R′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
− 1
)

1
2

(

Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
− 1
)

1
2

= eh1(r,dS)+dS + e
Bn−B̂

2
+dS + o(1), (160)

Bβ,n := B̂ − 2dS + 2 log(1− eh1(r,dS)+dS)− δ. (161)

Hence, the sequenceBβ,n is bounded as well aŝBn andBα,n. Thus, we obtain (156). Combining (94)
and (100), we obtain (150) even in the lattice casedS > 0.

Proof of Lemma 16: From Sinceψ′
p is monotone decreasing andψ′

p(0) = −H(p), R(r)
Relation (109), Condition (139), and Proposition 38, we have

−r = χ1
0(−R(r)) = R(r)ψ′

p
−1
(−R(r)) + ψp((ψ

′
p
−1
(−R(r))) = R(r)sr + ψp(sr).

Thus,

−r = −srψ′
p(sr) + ψp(sr), (162)

which implies thatd
dt

2t−1
2t
r− ψp(t)

2t
|t=sr = 0. We also haved

dt
(−2t+1

2t
r− ψp(t)

2t
) =

ψp(t)−tψ′
p(t)+1

2t2
. The derivative

of denominator is−tψ′′
p (t) ≥ 0 for t ≤ 1. So, the derivatived

dt
(−2t+1

2t
r − ψp(t)

2t
) is non-negative if and

only if t ≥ sr. So, the minimummint≤0−2t+1
2t
r − ψp(t)

2t
is realized whent = sr. Hence,

χ
1/2
0 (−R(r)) = R(r)(ψ′

p
−1
(−R(r)) + 1

2
) + ψp(ψ

′
p
−1
(−R(r))) = R(r)

2
− r

=− 2sr + 1

2sr
r − ψp(sr)

2sr
= min

t≤0
−2t + 1

2t
r − ψp(t)

2t

=min
t≤0
−2t + 1

2t
r +

H1+t(p)

2
= min

0≤s<1

s

1− sr +
1

2
H 1+s

2
(p),

wheret = −1−s
2

.

Proof of Lemma 17: Step 1:) Similar to the proof of Lemma 14, we show the desired relations by
applying Proposition 38 in Appendix C. In Step 1:), we prepare several relations and give the form of the
functionhi. We reuse (113) and (114) in the proof of Lemma 14. Using Proposition 38, forR < −H(p),
we have the following relation.

logP c
n,1(R) =n(−Rψ′

p
−1
(R) + ψp(ψ

′
p
−1
(R))− 1

2
log n+ χ1

1(R) + o(1). (163)

Using sr = ψ′
p
−1(−R(r)) and∆

def
= nψ′

p
−1(−R(r) + B

n
)− sr, for any real numberB, we have

ψp(ψ
′
p
−1
(−R(r) + B

n
)) = ψp(sr) + ψ′

p(sr)
∆

n
+ o(

1

n
) (164)

−(−R(r) + B

n
)ψ′

p
−1
(−R(r) + B

n
) = R(r)(sr +

∆

n
)− B

n
sr + o(

1

n
). (165)
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Sinceψ′
p(sr) = −R(r), we have

−
(

− R(r) + B

n

)

ψ′
p
−1
(

− R(r) + B

n

)

+ ψp

(

ψ′
p
−1
(

−R(r) + B

n

))

= R(r)sr + ψp(sr) +
B

n
sr + o(

1

n
).

(166)

Applying (166) to (113), (114), and (163), we have

logP c
n,1(−R(r) +

B

n
) =n(srR(r) + ψp(sr))−

1

2
log n− srB + χ1

1(−R(r)) + o(1) (167)

logPn,1/2(−R(r) +
B

n
) =n((sr +

1

2
)R(r) + ψp(sr))−

1

2
logn− (sr +

1

2
)B + χ

1
2
1 (−R(r)) + o(1) (168)

logPn,0(−R(r) +
B

n
) =n((sr + 1)R(r) + ψp(sr))−

1

2
logn− (sr + 1)B + χ0

1(−R(r)) + o(1). (169)

Now, we choose

h1(r, dS) := χ0
1(R(r))− χ

1
2
1 (R(r)) (170)

h2(r, dS) := 2χ
1
2
1 (R(r))− χ0

1(R(r)) (171)

h3(r, dS) := χ
1
2
1 (R(r)). (172)

Step 2:) Proofs of (143) - (146): Combining (167), (168), (169), and (142) of Lemma 16,we obtain
(143). Here, the compact uniformness of these convergence is guaranteed by the compact uniformness of
the convergences in Proposition 38. Combining (168) and (141) of Lemma 16, we obtain (144). Combining
(168) and (169), we obtain (145). Using (143), we obtain (122), (123), and (124) in the same way as the
proof of Lemma 14. Thus, combining (167), we obtain (146).
Proof of (147): WhenBn and B̂n are bounded, andBn − B′

n converges, using the relation (143), we
have

log
Pn,1(R

′
n)Pn,0(R

′
n)

Pn,1/2(Rn)2
= nr +

1

2
log n− (B′

n − Bn) + h2(r, dS) + o(1), (173)

log
Pn,1(R̂n)Pn,0(Rn)

Pn,1/2(R̂n)2
= nr +

1

2
log n− (Bn − B̂) + h2(r, dS) + o(1). (174)

Therefore, we obtain (147).
Proof of (148): The relation (128) of the proof of (86) holds even in the current situation. When

Bn → −∞ andBn − B′
n converges, sinceχ0

1(R)− χ
1
2
1 (R) is monotone increasing forR, we have

χ0
1(R

′
n)− χ

1
2
1 (Rn) ≤ χ0

1(−R(r))− χ
1
2
1 (−R(r)) = h1(r, dS). (175)

Combinig (128) and (175), we obtain (148).
Proof of (149): (149) can be shown as the same way as (87). The different point is (135), which is
replaced as follows. Using (113) and (114), we have

log
Pn,0(R̂n)

Pn,1/2(R̂n)2
= nr +

1

2
log n+ h2(r, dS) + o(1). (176)

Here, (136) holds even in the curret situation. Hence, usingthe same discussion as (137), we obtain (149).
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C. Application to hypothesis testing under separable POVMs

Now, we choose the dimensiond
def
= min(dA, dB) and the pure stateϕ =

∑d
i=1

√
λi|i〉 ∈ Cd by using

the Schmidt coefficient{λi}di=1 of |Ψ〉. Then, we have the following proposition.
Proposition 18 ([66, Theorem 5]):

βn,sep(α|Ψ‖ρmix) = d̄−nβn (α|ϕ) , (177)

whered̄ is defined as
d̄

def
= max (dA, dB) . (178)

�

Combining (177) and Theorem 13, we find thatβn,sep (ǫ|Ψ‖ρmix) can be given by (25) becauselog d+
log dmax = log dAdB. Similarly, combining (177) and Theorem 15, we find thatβn,sep (e

−nr|Ψ‖ρmix) can
be given by (27).

V. HYPOTHESIS TESTING UNDER TWO-WAY LOCC POVM

A. Construction of two-round classical communication protocol

In this section, we considerC =↔, that is, the local hypothesis testing under two-way LOCC POVMs.
The previous paper [66] proposed a specific class of two-round classical communication two-way LOCC
protocols that are not reduced to one-way LOCC. In this subsection, we review their construction. Then,
in the latter subsections, we show that they can achieve the Hoeffding bound and Stein-Strassen bound
for the classC = sep by the following protocol.

For the entangled state|Ψ̃〉 def=
∑

x∈X
√
λx|x〉⊗|x〉 and the white noise state (the completely mixed state)

ρmix, For a given setΩ, a collection{mω}ω∈Ω of non-negative measures onX is called asubnormalized
measure collection on X when

∑

ω∈Ωmω(x) ≤ 1 for any x ∈ X . Here,ω ∈ Ω is an index indicating the
measuremω. For a measuremω on X , we denote the support ofmω and its cardinality byXω and |mω|
and define the operator

Mω
def
=
∑

x∈X
mω(x)|x〉〈x|. (179)

Then, for a collection{mω}ω∈Ω of non-negative measures onX , we define the operator

M c def
= I −

∑

ω∈Ω
Mω. (180)

Then, we can define the POVMM
def
= {Mω}∪ {M c}. Using the collection{mω}ω∈Ω, we give a tree-step

LOCC protocol to distinguish the two states|Ψ̃〉 andρmix as follows:
1) Alice measures her state with a POVMM . When Alice’s measurement outcome corresponds to

M c, Alice and Bob stop the protocol and conclude the unknown state to beρmix. Otherwise, they
continue the protocol.

2) At the second step, Bob measures his state with a POVM{Nω
j }

|mω |
j=0 depending on Alice’s measure-

ment outcomeω. For j ∈ {1, . . . , |mω|}, Nω
j is defined asNω

j = |ξωj 〉〈ξωj |, where{|ξωj 〉}
|mω |
j=1 is a mu-

tually unbiased basis of the subspacespan{|h〉}h∈Xω . Then,Nω
0 is defined asNω

0
def
= IB−

∑|mω |
j=1 N

ω
j .

When Bob observes the measurement outcomej = 0, Alice and Bob stop the protocol and conclude
the unknown state to beρmix. Otherwise, they continue the protocol.

3) At the third step, Alice measures her states with a two-valued POVM{Oωj, IA − Oωj}. Here, the
POVM elementOωj is chosen as Alice’s state after Bob’s measurement when the given state is|Ψ̃〉.
Hence,Oωj is defined as

Oωj def
=

√
MωσA

(

|ξωj 〉〈ξωj |
)T √

MωσA

〈ξωj |MωσA|ξωj 〉
, (181)
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whereσA
def
= TrB|Ψ̃〉〈Ψ̃|, and T is the transposition in the Schmidt basis of|Ψ̃〉. When Alice’s

measurement resultk is 0, Alice and Bob conclude the unknown state to be|Ψ̃〉; otherwise, they
conclude the unknown state to beρmix.

Here, the above two-round classical communication protocol depends only on the subnormalized measure
collection {mω}ω∈Ω on X . Hence, we denote the test given above byT [{mω}ω∈Ω]. Then, we have the
following proposition.

Proposition 19 ([66, Lemma 4]): The first and type-2 error probabilities of the testT [{mω}ω∈Ω] are
evaluated as

β(T [{mω}ω∈Ω]) =TrT [{mω}ω∈Ω]ρmix =
∑

ω∈Ω

|mω| ·
∑

x∈X λx(mω(x))
2

dAdB
∑

x∈X λxmω(x)
, (182)

α(T [{mω}ω∈Ω]) =〈Ψ̃|(I − T [{mω}ω∈Ω])|Ψ̃〉 = TrTrB|Ψ̃〉〈Ψ̃|M c

=1−
∑

ω∈Ω

∑

x∈X
λxmω(x). (183)

�

In the above proposition, the type-1 and type-2 error probabilities are swapped to each other from Lemma
4 of [66].

B. Hoeffding bound

Now, we apply the above two-round classical communication protocol to the case of|Ψ̃〉 = |Ψ〉⊗n with
|Ψ〉 def=

∑

x∈X
√
λx|x, x〉. Then, we give a two-round classical communication protocol to achieve the Ho-

effding boundsup0≤s<1
−2s
1−sr−H 1+s

2
(Ψ)+log dAdB for a givenr as follows. Whenr ≥ log d− 1

4
H1/2(Ψ)′,

we havesup0≤s≤1
−2sr
1−s −H 1+s

2
(Ψ)+ log dAdB = log dAdB −H1/2, whereHs(Ψ)′ := d

dt
Ht(Ψ)|t=s. Hence,

it is enough to give the following two kinds of protocols: Oneis a protocol in which the exponential
decreasing rates of the type-1 and type-2 errors arer and sup0≤s≤1

−2sr
1−s − H 1+s

2
(Ψ) + log dAdB for

r < log d − 1
4
H1/2(Ψ)′. The other is a protocol in which the type-1 error is zero and the exponential

decreasing rate of the second kind of error probability islog dAdB−H1/2. Before constructing the protocols,
we prepare the following lemma. LetP be a distribution(px) on X andP1/2 be the measure(p1/2x ) on
X .

Lemma 20: For r < log d− 1
4
H1/2(Ψ)′, we have

min
Q:D(Q‖P )≤r

D(Q‖P )−H(Q) = sup
0≤s<1

−2s
1− sr −H 1+s

2
(Ψ). (184)

In particular,

min
Q
D(Q‖P )−H(Q) = D(P1/2‖P )−H(P1/2) = −H1/2(Ψ). (185)

min
Q:D(Q‖P )=0

D(Q‖P )−H(Q) = −H1(Ψ). (186)

�

This lemma will be shown in Appendix D.
Using the above lemmas and the type method, we make the protocols as follows. For this purpose,

we prepare notations for the type method. When ann-trial data~xn
def
= (x1, . . . , xn) ∈ X n is given, we

focus on the distributionp(x)
def
= #{i|xi=x}

n
, which is called the empirical distribution for data~xn. In the

type method, an empirical distribution is called a type. In the following, we denote the set of empirical
distributions onX with n trials byTn. The cardinality|Tn| is bounded by(n+1)|X |−1 [69], which increases
polynomially with the numbern. That is,

lim
n→∞

1

n
log |Tn| = 0. (187)
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This property is the key idea in the type method. LetTn(Q) be the set ofn-trial data whose empirical
distribution isQ. Then, the cardinality|Tn(Q)| can be evaluated as [69]

⌈

enH(Q)

|Tn|

⌉

≤ |Tn(Q)| ≤ ⌊enH(Q)⌋, (188)

where⌈a⌉ is the minimum integerm satisfyingm ≥ a, and ⌊a⌋ is the maximumm satisfyingm ≤ a.
Since any element~x ∈ Tn(Q) satisfies

P n(~x)
def
= P (x1) · · ·P (xn) = e−n(D(Q‖P )+H(Q)), (189)

we obtain the important formula

1

|Tn|
e−nD(Q‖P ) ≤ P n(Tn(Q)) ≤ e−nD(Q‖P ). (190)

Now, we are ready to mention the main theorem of this subsection.
Theorem 21: For anyr < −1

4
H1/2(Ψ)′ andn, there is a subnormalized measure collection{mr

n,ω}ω on
X n such that

β(T [{mr
n,ω}ω]) =TrT [{mr

n,ω}ω]ρ⊗nmix ≤ 4|Tn|3(dAdB)−ne
−n sup0≤s<1

−2s
1−s r−H 1+s

2
(Ψ)
, (191)

α(T [{mr
n,ω}ω]) =〈Ψ⊗n|(I − T [{mr

n,ω}ω])|Ψ⊗n〉 ≤ |Tn|e−nr. (192)

For the case withr = −1
4
H1/2(Ψ)′, we have the following statement. For anyn, there is a subnormalized

measure collection{mo
n,ω}ω on X n such that

β(T [{mo
n,ω}ω]) =TrT [{mo

n,ω}ω]ρ⊗nmix ≤ 4|Tn|3(dAdB)−nenH1/2(Ψ), (193)

α(T [{mo
n,ω}ω]) =〈Ψ⊗n|(I − T [{mo

n,ω}ω])|Ψ⊗n〉 = 0. (194)

�

This theorem guarantees that

lim inf
n→∞

−1
n

log βn,↔
(

e−nr|Ψ‖ρmix
)

≥ sup
0≤s<1

−2s
1− sr −H 1+s

2
(Ψ) + log dAdB. (195)

Since lim supn→∞
−1
n
log βn,↔ (e−nr|Ψ‖ρmix) ≤ limn→∞

−1
n
log βn,sep (e

−nr|Ψ‖ρmix) = H↔ (r|Ψ‖ρmix),
we obtain (27).

In the following, we will concretely construct subnormalized measure collections to realize the condi-
tions (191) and (192) ((193) and (194)). Then, Theorem 21 will be shown as the combination of Lemmas
22 and 24.
Construction of the subnormalized measure collection {mr

n,ω}ω∈Ω with r < log d − 1
4
H1/2(Ψ)′: First,

we fix the distributionP so thatP (x) = λx. Then, we consider the case ofr < log d − 1
4
H1/2(Ψ)′. To

choose a subnormalized measure collection{mr
ω}ω∈Ω on X n, we give two disjoint subsets of types by

employing the type method as follows.

Tn,r def
= {Q ∈ Tn| −H(P ) > D(Q‖P )−H(Q), D(Q‖P ) ≤ r},

T ′
n

def
= {Q ∈ Tn| −H(P ) = −H1(Ψ) ≤ D(Q‖P )−H(Q)}.

In this construction, we fix the elementPn ∈ T ′
n that is closest toP among elements inT ′

n in terms of
relative entropy. Then, we define the subsetT ′′

n
def
= T ′

n \ {Pn}.
Then, we divide the setTn(Pn) into |Tn,r| disjoint setsTn(Pn)Q ( Q ∈ Tn,r) whose cardinalities are

⌈|Tn(Pn)|/|Tn,r|⌉ or ⌊|Tn(Pn)|/|Tn,r|⌋. For a typeQ ∈ Tn,r, we divide the setTn(Q) into ⌈|Tn(Q)|/|Tn(Pn)Q|⌉
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disjoint setsTn(Q)1, . . . , Tn(Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉ whose cardinalities are less than|Tn(Pn)Q|. Hence, for
Q ∈ Tn,r, (190) yields

P n(Tn(Pn)Q) ≥
e−nD(Pn‖P )

|Tn| · |Tn,r|
≥ e−nD(Pn‖P )

|Tn|2
, (196)

and (188) yields

|Tn(Pn)Q| ≤ ⌊enH(Pn)⌋ ≤ ⌊enH(P )⌋ ≤ ⌊enH(Q)⌋. (197)

For a typeQ ∈ T ′′
n , we define the non-negative measurem̄Q on X n as

m̄Q(~x)
def
=

{

1 if ~x ∈ Tn(Q)
0 otherwise.

(198)

For a typeQ ∈ Tn,r andk = 1, . . . , ⌈|Tn(Q)|/|Tn(Pn)Q|⌉, we define the non-negative measurem̄Q,k on
X n as

m̄Q,k(~x)
def
=







1 if ~x ∈ Tn(Q)k
⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1 if ~x ∈ Tn(Pn) \ Tn(Q)k
0 otherwise.

(199)

Hence, the cardinality|m̄Q,k| is less than|Tn(Pn)Q|+ |Tn(Q)j| ≤ 2|Tn(Pn)Q|. Now, we choose the setΩ
asΩ := T ′′

n ∪{(Q, j)}Q∈Tn,r , wherek takes values in{1, . . . , ⌈|Tn(Q)|/|Tn(Pn)Q|⌉}. Then, we define the
subnormalized measure collection{mr

n,ω}ω∈Ω as

mr
n,ω :=

{

m̄Q if ω = Q ∈ T ′′
n

m̄Q,j if ω = (Q, k) with Q ∈ Tn,r. (200)

From the above construction, we find that{mr
n,ω}ω∈Ω is a subnormalized measure collection onX n. �

Then, we have the following lemma.
Lemma 22: The subnormalized measure collection{mr

n,ω}ω∈Ω on X n satisfies (191) and (192). �

To show Lemma 22, we prepare the following lemma.
Lemma 23: Assume thatn is sufficiently large. Then,

D(Pn‖P ) ≤
2d

n
. (201)

�

Proof: We denoteP (i)−Pn(i) by δn,i. Sincen is sufficiently large, we have− log(1+
δn,i
Pn(i)

) ≤ −2 δn,i
Pn(i)

.
Using the relation|δn,i| ≤ 1

n
, we have

D(Pn‖P ) =
d
∑

i=1

Pn(i) log
Pn(i)

Pn(i) + δn,i
= −

d
∑

i=1

Pn(i) log(1 +
δn,i
Pn(i)

)

≤
d
∑

i=1

Pn(i)− 2
δn,i
Pn(i)

= −2
d
∑

i=1

δn,i ≤
2d

n
. (202)

Proof of Lemma 22: To calculateβ(T [{mr
n,ω}ω∈Ω]) = TrT [{mr

n,ω}ω∈Ω]ρ⊗nmix, we firstly evaluate
∑

~x∈Xn P n(~x)mr
ω(~x)

2 and
∑

~x∈Xn P n(~x)mr
ω(~x) as

∑

~x∈Xn

P n(~x)mr
ω(~x)

2

=
∑

~x∈Tn(Q)j

P n(~x)mr
ω(~x)

2 +
∑

~x∈Tn(Pn)Q

P n(~x)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−2

=P n(Tn(Q)j) + P n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−2, (203)



32

and
∑

~x∈Xn

P n(~x)mr
ω(~x)

=
∑

~x∈Tn(Q)j

P n(~x)mr
ω(~x) +

∑

~x∈Tn(Pn)Q

P n(~x)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

=P n(Tn(Q)j) + P n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

≥P n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1. (204)

Now, we evaluate the two kinds of errors for the above collection of non-negative measures. The first
kind of error probability is evaluated as

β(T [{mr
n,ω}ω∈Ω]) = TrT [{mr

n,ω}ω∈Ω]ρ⊗nmix
(a)

≤
∑

Q∈Tn,r

∑

j

2|Tn(Pn)| ·
∑

~x∈Xn P n(~x)(m̄Q,j(x))
2

dnAd
n
B

∑

x∈X P
n(~x)m̄Q,j(x)

+
∑

Q∈T ′′
n

|Tn(Q)|
dnAd

n
B

≤
∑

Q∈Tn,r

2|Tn(Pn)Q| ·
∑

j P
n(Tn(Q)j) + P n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−2

dnAd
n
BP

n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

+
∑

Q∈T ′′
n

|Tn(Q)|
dnAd

n
B

=
∑

Q∈Tn,r

2|Tn(Pn)Q| · P n(Tn(Q)) + P n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

dnAd
n
BP

n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

+
∑

Q∈T ′′
n

|Tn(Q)|
dnAd

n
B

=
∑

Q∈Tn,r

2|Tn(Pn)Q| · P n(Tn(Q))

dnAd
n
BP

n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1

+
∑

Q∈Tn,r

2|Tn(Pn)Q|
dnAd

n
B

+
∑

Q∈T ′′
n

|Tn(Q)|
dnAd

n
B

=
∑

Q∈Tn,r

2|Tn(Pn)Q| · P n(Tn(Q))

dnAd
n
BP

n(Tn(Pn)Q)⌈|Tn(Q)|/|Tn(Pn)Q|⌉−1
+

2|Tn(Pn)|
dnAd

n
B

+
∑

Q∈T ′′
n

|Tn(Q)|
dnAd

n
B

≤
∑

Q∈Tn,r

2|Tn(Pn)Q| · (1 + |Tn(Q)|/|Tn(Pn)Q|) · P n(Tn(Q))

dnAd
n
BP

n(Tn(Pn)Q)
+ (|T ′

n|+ 1)
enH(P )

dnAd
n
B

=
∑

Q∈Tn,r

2(|Tn(Q)|+ |Tn(Pn)Q|) · P n(Tn(Q))

dnAd
n
BP

n(Tn(Pn)Q)
+ (|T ′

n|+ 1)
enH(P )

dnAd
n
B

(b)

≤
∑

Q∈Tn,r

2d · 4|Tn|2en(H(Q)−D(Q‖P ))

dnAd
n
B

+ 2|T ′
n|
enH(P )

dnAd
n
B

(c)

≤8d|Tn|3e−n(minQ∈Tn,r D(Q‖P )−H(Q))

dnAd
n
B

(d)

≤ 8d|Tn|3e
−n sup0≤s<1

−2s
1−s r−H 1+s

2
(Ψ)
, (205)

where(a) follows from (203) and (204),(b) follows from (196), (197), (190), and Lemma 23, and(c)
follows from the inequalityminQ∈Tn,r D(Q‖P )−H(Q)) ≤ −H1(Ψ) ≤ minQ∈T ′′

n
D(Q‖P )−H(Q)).
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The second kind of error probability is evaluated as

α(T [{mr
n,ω}ω∈Ω]) = 〈Ψ⊗n|(I − T [{mr

n,ω}ω∈Ω])|Ψ⊗n〉 =
∑

Q∈Tn,r,c

∑

~x∈Tn(Q)

P n(~x)

=
∑

Q∈Tn,r,c

P n(Tn(Q))
(a)

≤ |Tn|e−nminQ∈Tn,r,c D(Q‖P ) ≤ |Tn|e−nr, (206)

where(a) follows from (190).
Construction of a subnormalized measure collection with r = log d− 1

4
H1/2(Ψ)′: We consider the case

of r = log dAdB −H1/2(Ψ). In this case, we change the definition of the subsetTn,r of Tn as

Tn,r def
= {Q ∈ Tn| −H(P ) > D(Q‖P )−H(Q)}.

So, we find thatTn,r ∪ T ′
n = Tn.

Then, using the same discussion as the above, we define the collection {m̄Q,j}Q,j of non-negative
measures onX n by using the modified subsetTn,r. We define the subnormalized measure collection
{mo

n,ω}ω∈Ω on X n by using (200). �

Then, we have the following lemma.
Lemma 24: The subnormalized measure collection{mo

n,ω}ω∈Ω on X n satisfies (193) and (194). �

Proof of Lemma 24: Trivially, we have (194). Even in this modification, (205) still holds except for
(d). Instead of(d), we use (185) of Lemma 20. Then, we have (193).

C. Stein-Strassen bound

Now, we give a two-round classical communication protocol to achieve the Stein-Strassen bound. For
this purpose, we prepare the following lemma.

Lemma 25: For a givenǫ > 0, there exists a subnormalized measure collection{mk}Mn

k=0 such that

log

Mn
∑

k=1

|{~x|mk(~x) 6= 0}|
∑

~x∈Xn P n(~x)mk(~x)
∑

~x∈Xn P n(~x)mk(~x)2

≤nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− log n+O(1), (207)
Mn
∑

k=1

∑

~x∈Xn

P n(~x)mk(~x) = ǫ+ o(1). (208)

�

This lemma will be shown as Lemma 28.
Now, we are ready to mention the main theorem of this subsection. Applying Proposition 19 to the

subnormalized measure collection given in Lemma 25, we havethe following theorem by usingǫ′ = 1−ǫ.

Theorem 26: For any real numberǫ ∈ (0, 1), there is a collection{mn,ω}ω of non-negative measures
on X n such that

log β(T [{mn,ω}ω]) ≤ −n(log dAdB −H1(Ψ))−
√
n
√

V (Ψ)Φ−1(ǫ′)− log n+O(1), (209)

α(T [{mn,ω}ω])→ ǫ′. (210)

�

In Subsection IV-C, we have already shown thatβn,sep (ǫ
′|Ψ‖ρmix) can be given by (25). Hence,

βn,↔ (ǫ′|Ψ‖ρmix) ≥ −n(log dAdB −H1(Ψ))−√n
√

V (Ψ)Φ−1(ǫ′)− log n+O(1). Theorem 26 guarantees
the opposite inequality. Hence, we obtain the remaining part of (25).
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Construction of subnormalized measure collection: Now, to show Lemma 25, we construct the sub-
normalized measure collection{mn|ǫ,k}Mn

k=0 as follows. For this purpose, whenlogP (x)− logP (x′) is a
lattice variable, we define the real numberc to be the lattice spandS. When logP (x) − logP (x′) is a
non-lattice variable, we define the real numberc to be an arbitrary positive real number. For the definitions
of lattice and non-lattice variables and the lattice spandS, see Appendix C. We fixa, b > 0 such that
c > a.

Then, we prepare the following lemma.
Lemma 27: The function f(t)

def
= mins≥0−sH1+s(Ψ) + (1 + s)(H1(Ψ) − ct) − (H1(Ψ) − b − at)

monotonically decreases fort > 0, and there uniquely existst0 > 0 such thatf(t0) = 0. �

Proof: Sincef(t) = b + mins≥0 s(H1(Ψ) − H1+s(Ψ)) − (sc + c − a)t and sc + c − a > 0, f(t) is
strictly monotonically decreasing fort > 0.

SinceH1(Ψ) − H1+s(Ψ) ≥ 0 with s ≥ 0 and its equality holds only withs = 0, we havef(0) =
b+mins≥0 s(H1(Ψ)−H1+s(Ψ)) = b > 0. On the other hand, for a fixeds ≥ 0, b+s(H1(Ψ)−H1+s(Ψ))−
(sc+ c− a)t goes to−∞ when t goes to the infinity. Hence,f(t) goes to−∞ when t goes to infinity.
Thus, there uniquely existst0 > 0 such thatf(t0) = 0.

Now, we fix t ∈ (0, t0), and define

Rk,n|ǫ
def
=

{

~x ∈ X n

∣

∣

∣

∣

nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− ck ≥ − logP n(~x)

> nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− c(k + 1)

}

, (211)

and

Mn
def
= ⌊enb⌋, Nn

def
= |R0,n|M−1

n , Nk,n
def
= Nne

−ka. (212)

For k ≤ tn, we defineMn subsetsRk,n,1|ǫ, . . . ,Rk,n,Mn|ǫ of Rk,n|ǫ, whose cardinalities areNk,n. We
define the measuremn,j (j = 1, . . . ,Mn) as the measure satisfying the following two conditions. The

support ofmn|ǫ,j is Sj,n def
= ∪tnk=0Rk,n,j|ǫ. For ~x ∈ ∪tnk=0Rk,n|ǫ, the relation

∑Mn

j=1mn|ǫ,j(~x) = 1 holds. That
is, {mn|ǫ,k}Mn

k=0 forms a subnormalized measure collection. �

Lemma 28: The subnormalized measure collection{mn|ǫ,k}Mn

k=0 satisfies (207) and (208). �

In the following, for the simplicity, we omit the subscript|ǫ. For our proof of Lemma 28, we prepare
the following lemma.

Lemma 29:

log |R0,n| = nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− 1

2
log n+O(1). (213)

log
∞
∑

k=0

|Rk,n|eka = nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− 1

2
log n+O(1) (214)

log max
k=0,...,tn

P n(Rk,n) = −
1

2
logn +O(1), (215)

and

P n
{

~x ∈ X n
∣

∣

∣
nH1(Ψ) +

√
n
√

V (Ψ)Φ−1(ǫ) < − logP n(~x)
}

→ ǫ. (216)

�

This lemma will be shown in the end of this subsection. Using Lemma 29, we can show the following
lemma.
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Lemma 30: There exist an integerN and a real numberC such that any integern ≥ N satisfies the
following conditions. The inequalities

Nk,n ≤ |Rk,n| for any integerk satisfyingk ≤ tn, (217)

log

Mn
∑

j=1

|{~x|mj(~x) 6= 0}|
∑

~x∈Xn P n(~x)mj(~x)
∑

~x∈Xn P n(~x)mj(~x)2

= log
Mn
∑

j=1

(

tn
∑

k=0

Nk,n

)

∑

~x∈Xn P n(~x)mj(~x)
∑

~x∈Xn P n(~x)mj(~x)2

≤nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− log n+ C, (218)

P n
{

~x ∈ X n
∣

∣

∣
nH1(Ψ) +

√
n
√

V (Ψ)Φ−1(ǫ)− ctn ≥ − logP n(~x)
}

≤min
s≥0

e
sn(−H1+s(Ψ)+H1(Ψ)−ct+ 1√

n

√
V (Ψ)Φ−1(ǫ)) (219)

hold. �

Proofs of Lemma 28: From (216), (218), and (219), we find that the above subnormalized measure
collection{mn,k}Mn

k=0 satisfies (207) and (208) of Lemma 25 because the right hand side of (219) goes to
zero. So, we obtain Lemma 28.

Proof of Lemma 30:
Proof of (219) and (217): Markov inequality implies (219) in the same way as [35, (2.121)]. To prove
(217), using Cramér Theorem, we show

lim
n→∞

1

n
log |Rt′n,n| = min

s≥0
−sH1+s(Ψ) + (1 + s)(H1(Ψ)− ct′). (220)

As shown in Lemma 29, we have

lim
n→∞

1

n
log |R0,n| = H1(Ψ). (221)

Hence, we have

lim
n→∞

1

n
log
|Rt′n,n|
Nt′n,n

= f(t′) > 0 (222)

for any real numbert′ satisfying thatt′ < t. Hence, whenn is sufficiently large, we have (217).
Proof of (218): Next, we proceed to the proof of (218). In this proof, we willderive upper and lower
bounds of

∑

~x∈Xn P n(~x)mj(~x) and
∑

~x∈Xn P n(~x)mj(~x)
2. Using these bounds, we evaluatelog

∑Mn

j=1 |{~x|mj(~x) 6=
0}|

∑

~x∈Xn P
n(~x)mj (~x)

∑

~x∈Xn P
n(~x)mj(~x)2

.
From the above discussion, for any vector~x ∈ Rk,n and any integerk satisfyingk ≤ tn, the relation

⌊ |Rk,n|
Nk,n
⌋/Mn ≤ mj(~x) ≤

⌈

|Rk,n|
Nk,n

⌉

/Mn holds. Then, forj = 1, . . . ,Mn

1

2ec

tn
∑

k=0

P n(Rk,n)/Mn ≤
tn
∑

k=0

Nk,ne
−(nH1(Ψ)+

√
n
√
V (Ψ)Φ−1(ǫ)+c(k+1))

⌊ |Rk,n|
Nk,n

⌋

/Mn

≤
∑

~x∈Xn

P n(~x)mj(~x)

≤
tn
∑

k=0

Nk,ne
−(nH1(Ψ)+

√
n
√
V (Ψ)Φ−1(ǫ)+ck)

⌈ |Rk,n|
Nk,n

⌉

/Mn ≤ 2ec
tn
∑

k=0

P n(Rk,n)/Mn (223)
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because1
2

|Rk,n|
Nk,n

≤
⌊ |Rk,n|
Nk,n

⌋

and
⌈ |Rk,n|
Nk,n

⌉

≤ 2
|Rk,n|
Nk,n

. Thus,

1

4ec

tn
∑

k=0

P n(Rk,n)
|Rk,n|
Nk,nM2

n

≤
tn
∑

k=0

Nk,ne
−(nH1(Ψ)+

√
n
√
V (Ψ)Φ−1(ǫ)+c(k+1))

⌊ |Rk,n|
Nk,n

⌋2

/M2
n

≤
∑

~x∈Xn

P n(~x)mj(~x)
2

≤
tn
∑

k=0

Nk,ne
−(nH1(Ψ)+

√
n
√
V (Ψ)Φ−1(ǫ)+ck)

⌈ |Rk,n|
Nk,n

⌉2

/M2
n

≤4ec
tn
∑

k=0

P n(Rk,n)
|Rk,n|
Nk,nM2

n

. (224)

Hence,

(

tn
∑

k=0

Nk,n

)

∑

~x∈Xn P n(~x)mj(~x)
∑

~x∈Xn P n(~x)mj(~x)2
≤
(

tn
∑

k=0

Nne
−ka
)4ec

∑tn
k=0 P

n(Rk,n)
|Rk,n|
Nk,nM2

n

1
2ec

∑tn
k=0 P

n(Rk,n)/Mn

≤ 8e2c

1− e−a ·Nn ·
∑tn

k=0 P
n(Rk,n)

|Rk,n|
Nk,nMn

P n(∪tnk=0Rk,n)

=
8e2c

1− e−a ·Nn ·
∑tn

k=0 P
n(Rk,n)

|Rk,n|
|R0,n|e

ka

P n(∪tnk=0Rk,n)

≤ 8e2c

1− e−a ·Nn ·
maxtnk=0 P

n(Rk,n)
∑tn

k=0
|Rk,n|
|R0,n|e

ka

P n(∪tnk=0Rk,n)
. (225)

Therefore,
Mn
∑

j=1

( tn
∑

k=0

Nk,n

)
∑

~x∈Xn P n(~x)mj(~x)
∑

~x∈Xn P n(~x)mj(~x)2

≤Mn
8e2c

1− e−a ·Nn ·
maxtnk=0 P

n(Rk,n)
∑tn

k=0
|Rk,n|
|R0,n|e

ka

P n(∪tnk=0Rk,n)

=
8e2c

1− e−a · |R0,n| ·
maxtnk=0 P

n(Rk,n)
∑tn

k=0
|Rk,n|
|R0,n|e

ka

P n(∪tnk=0Rk,n)
. (226)

Thus, since (213) and (214) of Lemma 29 guarantees that

log
tn
∑

k=0

|Rk,n|
|R0,n|

eka = O(1), (227)

(213) and (215) of Lemma 29 and (226) imply

log

Mn
∑

j=1

( tn
∑

k=0

Nk,n

)
∑

~x∈Xn P n(~x)mj(~x)
∑

~x∈Xn P n(~x)mj(~x)2

=nH1(Ψ) +
√
n
√

V (Ψ)Φ−1(ǫ)− 1

2
log n− 1

2
log n+O(1). (228)
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Hence, we obtain (218).

Proof of Lemma 29:
Non-lattice case: In this proof, we combine the saddle point approximation method given in [70,
Theorem 2.3.6],[71] and Cramér-Esséen theorem [81, p. 538]. Define

v(~x)
def
= (logP n(~x) + nH1(Ψ) +

√
n
√

V (Ψ)Φ−1(ǫ))/
√
n

Qn(v)
def
=

∑

~x:v(~x)=v

P n(~x).

Then, we have

|{~x|a ≤ v(~x) ≤ b}| = enH1(Ψ)+
√
n
√
V (Ψ)Φ−1(ǫ)

∑

v:a≤v≤b
e−

√
nvQn(v). (229)

Hence,
∞
∑

k=0

|Rk,n|eka =enH1(Ψ)+
√
n
√
V (Ψ)Φ−1(ǫ)

∞
∑

k=0

∑

v: ck√
n
≤v≤ c(k+1)√

n

e−
√
nv+kaQn(v)

≤enH1(Ψ)+
√
n
√
V (Ψ)Φ−1(ǫ)

∞
∑

k=0

∑

v: ck√
n
≤v≤ c(k+1)√

n

e−
√
nv+

√
nav/cQn(v)

≤enH1(Ψ)+
√
n
√
V (Ψ)Φ−1(ǫ)

∑

v:v≥0

e−
√
n(1− a

c
)vQn(v). (230)

Similarly, we can show that
∞
∑

k=0

|Rk,n|eka ≥ enH1(Ψ)+
√
n
√
V (Ψ)Φ−1(ǫ)

∑

v:v≥0

e−
√
n(1− a

c
)v−aQn(v). (231)

Next, we define the distribution function

Fn,c(t)
def
= P n{~x|v(~x) ≤ t}. (232)

In the following, we consider the non-lattice case. Now, we employ the saddle point approximation
method given in [70, Theorem 2.3.6],[71]. As is known as Cramér-Esséen theorem [81, p. 538], there
exist a constantS and a functioncn such that

Fn,c(t− Φ−1(ǫ)) = Φ(t)− S

6
√
n
(1− t2)e

−t2/2
√
2π

+
cn(t)√
n
. (233)

and |cn(t)| → 0, which is uniformly convergent on compact sets. Thus, we obtain (216).
Hence,

lim
n→∞

√
n

∣

∣

∣

∣

∣

∑

v:c(k+1)/
√
n>v≥ck/√n

Qn(v)−
∫ c(k+1)/

√
n

ck/
√
n

e−
(v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv

∣

∣

∣

∣

∣

≤ lim
n→∞

√
n
(

∫ c(k+1)/
√
n

ck/
√
n

d

dt

( S

6
√
n
(1− (t+ Φ−1(ǫ))2)

e−(t+Φ−1(ǫ))2/2

√
2π

)

dt

+
cn(c/

√
n)− cn(0)√
n

)

= lim
n→∞

[S

6
(1− (t + Φ−1(ǫ))2)

e−(t+Φ−1(ǫ))2/2

√
2π

]
c(k+1)√

n

ck√
n

+ cn(c/
√
n)− cn(0)

=0,
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and

lim
n→∞

√
n

∣

∣

∣

∣

∣

∑

v:v≥0

e−
√
n(1− a

c
)vQn(v)−

∫ ∞

0

e−
√
n(1− a

c
)v e

− (v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv

∣

∣

∣

∣

∣

≤ lim
n→∞

√
n

∫ ∞

0

e−
√
n(1− a

c
)t d

dt
(
S

6
√
n
(1− (t+ Φ−1(ǫ))2)

e−(t+Φ−1(ǫ))2/2

√
2π

)dt

+ inf
a
(2 sup

v≤a
e−

√
n(1− a

c
)v sup

t≤a

|cn(t)|√
n

+ 2 sup
v>a

e−
√
n(1− a

c
)v sup

t>a

|cn(t)|√
n

)

= lim
n→∞

∫ ∞

0

e−
√
n(1− a

c
)t d

dt
(
S

6
(1− (t+ Φ−1(ǫ))2)

e−(t+Φ−1(ǫ))2/2

√
2π

)dt

+ inf
a
(2 sup

v≤a
e−

√
n(1− a

c
)v sup

t≤a
|cn(t)|+ 2 sup

v>a
e−

√
n(1− a

c
)v sup

t>a
|cn(t)|)

=0.

Thus, whentn satisfiesv0 = ctn/
√
n,

lim
n→∞

√
nP n(Rtn,n) = lim

n→∞

√
n

∑

v:c(tn+1)/
√
n>v≥ctn/√n

Qn(v)

= lim
n→∞

√
n

∫ c(tn+1)/
√
n

ctn/
√
n

e
− (v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv = c

e
− (v0+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
, (234)

which implies (215). Further,

lim
n→∞

√
n
∑

v:v≥0

e−
√
n(1− a

c
)vQn(v) = lim

n→∞

√
n

∫ ∞

0

e−
√
n(1− a

c
)v e

− (v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv

= lim
n→∞

√
n

∫ ∞

0

e−(1− a
c
)x e

− (x/
√
n+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)n
dx

=

∫ ∞

0

e−(1− a
c
)x e−

Φ−1(ǫ)2

2V (Ψ)

√

2πV (Ψ)
dx =

1

1− a
c

e−
Φ−1(ǫ)2

2V (Ψ)

√

2πV (Ψ)
. (235)

Therefore, the combination of (229) and (234) yields (213),and the combination of (230), (231) and (235)
yields (214).
Lattice case: Now, we consider the lattice case. The range of the mapv is contained in{an + ck√

n
}k

by choosing a suitable real numberan with |an| ≤ c
2
√
n
. Then, we define the setTn def

= {an+ ck√
n
+ c

2
√
n
}k.

Then, (233) holds fort ∈ Tn [80, pp. 52-67][81, p. 540]. Hence, similar to (234) and (235), we can show

lim
n→∞

√
n

∑

v:an+
c(k+1)√

n
≥v≥an+ ck√

n

Qn(v)

= lim
n→∞

√
n

∫ an+
c(k+1)√

n

an+
ck√
n

e−
(v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv = c

e−
(v0+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
, (236)
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with v0 = k/
√
n, and

lim
n→∞

√
n
∑

v:v≥an
e−

√
n(1− a

c
)vQn(v) = lim

n→∞

√
n

∫ ∞

an

e−
√
n(1− a

c
)v e

− (v+Φ−1(ǫ))2

2V (Ψ)

√

2πV (Ψ)
dv

=
1

1− a
c

e−
Φ−1(ǫ)2

2V (Ψ)

√

2πV (Ψ)
. (237)

Hence, (236) implies (215). Further, the combination of (229) and (236) yields (213), and the combination
of (230), (231) and (237) does (214).

VI. CONCLUSION AND DISCUSSION

In this paper, we have treated local asymptotic hypothesis testing between an arbitrary known bipartite
pure state|Ψ〉 and the white noise state (the completely mixed state)ρmix. As a result, we have clarified
the difference between the optimal performance of one-way and two-way LOCC POVMs. Under the
exponential constraint for the type-1 error probability, there clearly exists a difference between the optimal
exponential decreasing rates of the type-2 error probabilities under one-way and two-way LOCC POVMs.
However, when we surpass the constraint for the type-1 errorprobability, this kind of difference is very
subtle. That is, there exists a difference only in the third order for the optimal exponential decreasing
rates of the type-2 error probabilities under one-way and two-way LOCC POVMs. This difference has
been given as Theorem 3, which is called the Stein-Strassen bound. The entanglement of Renyi entropy
appears in the formulas of the optimal exponential decreasing rates of the type-2 error probabilities under
both exponential and constant constraints for the type-1 error probability for the one-way LOCC, the
two-way LOCC, and separable constraints. Hence, our results have clarified the relationship between the
entanglement of Renyi entropy and the local hypothesis testing.

From the beginning of the study of LOCC, many studies have focused on the effect of increasing the
number of communication rounds, as well as on the differencebetween two-way LOCC and separable
operations. From this viewpoint, our study gives a very rareexample in which the optimal performance
under the infinite-round two-way LOCC, which is different from the one under the one-way LOCC, can be
attained with two-round communication and is also equal to the one under separable operations. To show
the achievability by two-round communication, we employ the saddle point approximation method given
in [70, Theorem 2.3.6],[71]. To show the impossibility to surpass this performance even in the separable
operation, we use the strong large deviation by Bahadur-Rao[68][70, Theorem 3.7.4]. We believe that
these methods will become very strong approaches for addressing several topics in quantum information.

Unfortunately, our result can be applied to the case when thestate to be distinguished from the
completely mixed state is a pure state. This is a serious defect of our result. However, since our result
completely solved the asymptotic analysis of this kind of state discrimination in the pure state case, we
have very strong motivation to tackle the mixed state case. Hence, the extension of this result to the
general mixed state case is remained as an interesting future study, which attracts future researchers.

As mentioned in Section 1, this type of hypothesis testing isclosely related to many kinds of information
theoretical tasks, such as data compression [32], [36], uniform random generation [32], channel coding
with additive noise [31], and resolvability of the distribution [41]. Hence, our results are expected to be
applied to extending these problems to the case with the locality condition. However, this kind of extension
has the following problems. Since the obtained results are limited to the pure state case, we need to extend
our result to the mixed state case for this kind of applications. However, this defect can be escaped when
we make several restrictions for the quantum states or the quantum channels, e.g., the output states of the
c-q channel are assumed to be pure entangled states. As another problem, we need careful considerations
for the formulations of these extensions because there are several kinds of formulations.

For example, we can consider an extension of the c-q channel coding as follows. We assume that a
pure entangled state is given and that we are allowed to applylocal unitary as an encoder. The decoder is
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restricted to a measurement satisfying the locality condition. In this case, since the encoded states are pure
entangled states, the above condition for the c-q channel issatisfied. So, we expect that the asymptotic
performance of this extension can be characterized by our local hypothesis testing. Since this setting is
equal to the dense coding [83], our analysis might bring a deeper analysis for the dense coding.

In addition, we can consider an extension of uniform random generation as follows. We assume that an
entangled state is given and that we can apply local unitary randomly based on a uniform random number
so that the average state cannot be distinguished from the white noise state by any measurement satisfying
the locality condition. In this case, the cardinality of therandom number is as small as possible. That is,
we treat the trade-off between the above difficulty of local state discrimination and the cardinality of the
used random number. In this scenario, the difference between the product of local dimensions and the
cardinality of the random number can be regarded as our analogue of the size of the generated uniform
random number. Then, we expect that the asymptotic performance of this extension can be characterized
by our local hypothesis testing. Analyses of these LOCC extensions remain as future work.
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APPENDIX A
RESULTS OF[66] USED IN SUBSUBSECTION IV-B1

Here, we summarize the results of [66] used in SubsubsectionIV-B1. As a preparation, we explain a
useful knowledge in a Euclidean spaceRd. For two vectorsy andz in a Euclidean spaceRd, and a real
numberǫ satisfying0 < ǫ ≤ 1, we define the real numberM(y, z, ǫ) as

M(y, z, ǫ)
def
= max

x∈Rd
{y · x | ‖x‖ ≤ 1, x · z ≤ ǫ}. (238)

Then, we derive the following Lemma:
Proposition 31 ([66, Lemma 9]): Using c

def
= y · z, we calculateM(y, z, ǫ) as

M(y, z, ǫ)

=











‖y‖ Case D1)
‖y‖
‖z‖ǫ Case D2)
cǫ+
√

(‖z‖2−ǫ2)(‖y‖2‖z‖2−c2)
‖z‖2 Case D3),

(239)

which is attained by

x∗(y, z, ǫ)

def
=



























y/‖y‖ Case D1)
ǫ y
‖y‖‖z‖ Case D2)

1√
‖z‖2‖y‖2−c2

(

√

‖z‖2 − ǫ2y

+
ǫ
√

‖z‖2‖y‖2−c2−c
√

‖z‖2−ǫ2
‖z‖2 z

)

Case D3),

(240)

where Cases D1), D2), and D3) are defined as
D1) y · z ≤ ǫ‖y‖.
D2) y/‖y‖ = z/‖z‖ andy · z > ǫ‖y‖.
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D3) y/‖y‖ 6= z/‖z‖ andy · z > ǫ‖y‖.
Moreover,x∗(y, z, ǫ) defined by Eq. (240) is the unique solution of the optimization problem in Case
D3). Note that the relation‖z‖2 − ǫ2 ≥ 0 follows from the common condition of Cases D2) and D3).�

Now, we concentrate the hypothesis testing with composite hypothesis formulated in Subsubsection
IV-B1. The first kind of error probabilityα(ǫ2|ϕ) has the following two expressions.

Proposition 32 ([66, Lemma 8]): We have the following relation

1− α(ǫ2|ϕ) =max
{

〈ϕ|φ〉2
∣

∣ |φ〉 ∈ H, ‖|φ〉‖2 ≤ 1, 〈φd|φ〉 ≤ ǫ,

1 ≤ ∀i ≤ d− 1, 〈i|φ〉 ≥ 〈i+ 1|φ〉 ≥ 0,
}

, (241)

where|φj〉 is defined as

|φj〉 def=
1√
j

j
∑

i=1

|i〉. (242)

�

To give another expression forα(ǫ2|ϕ), we define the real vectorsul andvl onRl asul
def
=
(√

p1, · · · ,
√
pl
)

andvl
def
= (1, · · · , 1) /

√
d for an integerl satisfying1 ≤ l ≤ d. We also define the natural numberη = ηǫ(ϕ)

as the maximum integer1 ≤ l ≤ d satisfying one of the following three conditions:
A1) ul · vl ≤ ǫ‖ul‖.
A2) ul/‖ul‖ = vl/‖vl‖ andul · vl > ǫ‖ul‖.
A3) ul/‖ul‖ 6= vl/‖vl‖, ul · vl > ǫ‖ul‖, and all the elements ofx∗(ul, vl, ǫ) defined by Eq. (240) are

non-negative.
Sinceu1/‖u1‖ = v1/‖v1‖, one of Conditions A1), A2), and A3) holds at leastl = 1, i.e.,η ≥ 1. Hence,

we can consider three cases.
B1) uη · vη ≤ ǫ‖uη‖.
B2) uη/‖uη‖ = vη/‖vη‖ anduη · vη > ǫ‖uη‖.
B3) uη/‖uη‖ 6= vη/‖vη‖ anduη · vη > ǫ‖uη‖.

Proposition 33 ([66, Theorem 4]): By using cη
def
= uη · vη, the valueα(ǫ2|ϕ) defined in Eq. (39) is

calculated as follows:

1− α(ǫ2|ϕ)

=















∑η
i=1 pi Case B1)

ǫ2‖uη‖2
‖vη‖2 Case B2)

(cηǫ+
√

(‖vη‖2−ǫ2)(‖uη‖2‖vη‖2−c2η))
2

‖vη‖4 Case B3).

(243)

The maximum value1− α(ǫ2|ϕ) is attained by

|φ∗〉 def=







|φ[uη/‖uη‖]〉 Case B1)
|φ[ǫ uη

‖uη‖‖vη‖ ]〉 Case B2)
|φ[x∗(uη, vη, ǫ)]〉 Case B3).

(244)

Note thatx∗(uη, vη, ǫ) is defined in Eq. (240) and the notation|φ[ ]〉 as

|φ[a]〉 def
=

d
∑

i=1

ai|i〉. (245)

�
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APPENDIX B
USEFUL OBSERVATIONS RELATED TOAPPENDIX A

For the discussions in Subsubsection IV-B1, we discuss Conditions A1), A2), and A3) given in Appendix
A. In this appendix, we employ the same notations as AppendixA. For Conditions A1) and A2), we have
the following lemmas.

Lemma 34: The inequality(ul)l/‖ul‖ ≤ (vl)l/‖vl‖ holds, and the equality holds only whenp1 = pl.
In other words, whenp1 > pl, the relationul/‖ul‖ 6= vl/‖vl‖ holds. �

Proof: The inequality lpl ≤
∑l

i=1 pi holds, and the equality holds only whenp1 = pl. Since
((vl)l/‖vl‖)2 = 1

l
and ((ul)l/‖ul‖)2 = pl

∑l
i=1 pi

, we obtain the desired statement.
Therefore, we can ignore Condition A2) except for the case ofp1 > pl.
Lemma 35: ul·vl

‖ul‖ is strictly monotone increasing forl. �

Hence, when
u
l̂
·v
l̂

‖u
l̂
‖ = ǫ, the relationul·vl‖ul‖ > ǫ holds forl ≥ l̂, i.e., Condition A1) does not hold forl ≥ l̂.

Proof: Since ( ul·vl
d‖ul‖)

2 =
(
∑l
i=1

√
pi)

2

∑l
i=1 pi

, it is enough to show that(
∑l+1
i=1

√
pi)2

∑l+1
i=1 pi

>
(
∑l
i=1

√
pi)

2

∑l
i=1 pi

, which is

equivalent to(
∑l

i=1 pi)(
∑l+1

i=1

√
pi)

2 > (
∑l+1

i=1 pi)(
∑l

i=1

√
pi)

2. We have

(

l
∑

i=1

pi)(

l+1
∑

i=1

√
pi)

2 − (

l+1
∑

i=1

pi)(

l
∑

i=1

√
pi)

2 (246)

=pl+1

(

(

l
∑

i=1

pi) +
2

√
pl+1

(

l
∑

i=1

pi)(

l
∑

i=1

√
pi)− (

l
∑

i=1

√
pi)

2
)

(247)

=pl+1

(

(

l
∑

i=1

pi) + (

l
∑

i=1

√
pi)
( 2
√
pl+1

(

l
∑

i=1

pi)− (

l
∑

i=1

√
pi)
)

)

. (248)

Since2
√
pi√
pl+1

> 1, we have

2
√
pl+1

(
l
∑

i=1

pi)− (
l
∑

i=1

√
pi) = 2(

l
∑

i=1

pi√
pl+1

)− (
l
∑

i=1

√
pi) > 0. (249)

So, we obtain the desired statement.
Lemma 36: Assume thatul·vl‖ul‖ > ǫ andpl < p1. All entries ofx∗(ul, vl, ǫ) are non-negative if and only

if

√
pl
d1/2‖vl‖2
ul · vl

≥



1−

√

‖ul‖2‖vl‖2
(ul·vl)2 − 1
√

‖vl‖2
ǫ2
− 1



 . (250)

�

Proof: The above non-negativity is equivalent to the non-negativity of the l-th entry ofx∗(ul, vl, ǫ),
which is equivalent to

0 ≤
√

‖vl‖2 − ǫ2
√
pl +

ǫ
√

‖ul‖2‖vl‖2 − (ul · vl)2 − ul · vl
√

‖vl‖2 − ǫ2
‖vl‖2

1

d1/2

=
√

‖vl‖2 − ǫ2




√
pl +

ul · vl
‖vl‖2





√

‖ul‖2‖vl‖2
(ul·vl)2 − 1
√

‖vl‖2
ǫ2
− 1

− 1





1

d1/2



 .
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This condition is equivalent to
√
pl ≥ ul·vl

d1/2‖vl‖2



1−

√

‖ul‖2‖vl‖2
(ul·vl)2

−1
√

‖vl‖2
ǫ2

−1



. That is,

√
pl
d1/2‖vl‖2
ul · vl

≥



1−

√

‖ul‖2‖vl‖2
(ul·vl)2 − 1
√

‖vl‖2
ǫ2
− 1



 . (251)

APPENDIX C
STRONG LARGE DEVIATION

Let p be a non-negative measure anddS be the lattice span of the real valued functionX, which is
defined as follows. LetS be the set of the support of the measurep ◦ X−1. When there exists a non-
negative valuex satisfying{a− b}a,b∈S ⊂ xZ, the real valued functionX is called a lattice function or
a lattice variable. Then, the lattice spandS is defined as the maximum value of the above non-negative
valuex. Denoting all of elements ofS asa1 < a2 < . . . < al, we have

dS = min
ni∈Z

{ l
∑

i=1

niai

∣

∣

∣

∣

∣

l
∑

i=1

ni = 0,
l
∑

i=1

niai > 0

}

(252)

due to the following reason; When integersy1, . . . , yl have the greatest common divisor1, there exist
integersn1, . . . , nl such that

∑l
i=1 niyi = 1.

When there does not exist such a non-negative valuex, the real valued functionX is called a non-lattice
function or a non-lattice variable. Then, the lattice spandS is regarded as zero.

Now, we summarize the fundamental properties for the lattice and non-lattice cases. For this purpose,
we denote the set{

∑n
i=1 ai}ai∈S by Sn.

Lemma 37: We fix a small real numberδ > 0. In the lattice case, there exists a sufficiently large
integerN such thatSn satisfies the following condition for anyn ≥ N . Denote all of elements of
Sn ∩ [n(a1 + δ), n(al − δ)] as b1 < b2 < . . . < bk. We havebi+1 − bi = dS.

In the non-lattice case, for an arbitrary small real numberǫ, there exists a sufficiently large integerN
such thatSn satisfies the following condition for anyn ≥ N . Denote all of elements ofSn ∩ [n(a1 +
δ), n(al − δ)] asb1 < b2 < . . . < bk. We havebi+1 − bi < ǫ.

Proof: Lattice case: Since the definition ofdS guarantees thatbi+1 − bi ≥ dS, it is enough to
show thatbi+1 − bi ≤ dS. Assume that integersni satisfies the equations

l
∑

i=1

niai = dS (253)

l
∑

i=1

ni = 0. (254)

We define the subsetsS+ := {ai ∈ S|ni ≥ 0} and S− := {ai ∈ S|ni < 0}, the positive integers
m2 :=

∑

i:ai∈S+
ni and m1 := (al − a1)/dS, and the positive real numbersA := −m1

∑

i:ai∈S−
niai,

B := m1

∑

i:ai∈S+
niai, δ− := (A− a1m1m2)/n, andδ+ := (alm1m2 −B +m1ds)/n.

So, we haven(a1+δ−) = a1(n−m1m2)+A = na1+(A−a1m1m2) andn(al−δ+) = al(n−m1m2)+B =
nal − (alm1m2−B). We choose an elementx := n(a1 + δ−) + (c1m1 + c2)dS ∈ [n(a1 + δ−), n(al − δ+)]
with integersc1 and c2 ≤ m1. When(c1m1 + c2) takes the maximum,x is n(al − δ+), i.e., c1m1 + c2 =
(n−m1m2)m1. So, the maximum ofc1 is n−m1m2.
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Using (253) and the definitions ofδ− anA, we have

x = c1al + (n− c1 −m1m2)a1 + c2(
∑

i:ai∈S+

niai)− (m1 − c2)
∑

i:ai∈S−

niai
(a)
∈ Sn. (255)

Here, the relation(a) follows from the following facts;c1 and(n− c1−m1m2) are non-negative integers,
c2ni is a non-negative integer fori ∈ S+, and−(m1 − c2)ni is a non-negative integer fori ∈ S−. Thus,
when we denote all of elements ofSn ∩ [n(a1 + δ−), n(al − δ+)] as b1 < b2 < . . . < bk. We have
bi+1 − bi ≤ dS. Whenn is sufficiently large, we haveδ−, δ+ ≤ δ. So, we obtain the desired statement.
Non-lattice case: For an arbitraryǫ > 0, we can take integersni such that0 < d̃ :=

∑l
i=1 niai < ǫ and

∑l
i=1 ni = 0. (If impossible, we have the minimum of

∑l
i=1 niai with

∑l
i=1 ni = 0 is strictly larger than

0, which contradictsdS = 0.) We redefinem1 := ⌈(al−a1)/ǫ⌉, and define other terms in the same way by
replacingdS by d̃. Using the same discussion, we find that the elementx := n(a1+δ−)+c1(al−a1)+c2d̃ ∈
[n(a1 + δ−), n(al − δ+)] with c2 ≤ m1 belongs toSn. Whenn is sufficiently large, we haveδ−, δ+ ≤ δ.
So, we havebi+1 − bi < ǫ.

Herep is not necessarily normalized. Define the notationEp[X ]
def
=
∫

X(ω)p(dω). Define the cumulant

generating functionτ(s)
def
= logEp[e

sX ]. Denote the inverse function of the derivativeτ ′(s) by η.
Proposition 38 (Bahadur and Rao [68], [70, Theorem 3.7.4]): Assume thatτ(0) < ∞. When R >

Ep[X]
Ep[1]

, we have

log pn{Xn ≥ nR} = χ0(R)n−
1

2
log n+ χ1(R) + χ2(R)

1

n
+ o(

1

n
) (256)

log pn{Xn ≤ nR} = nτ(0) + o(1), (257)

where

χ0(R)
def
= −Rη(R) + τ(η(R)) (258)

χ1(R)
def
=

{ −1
2
log 2π − log η(R) + 1

2
η′(R) if dS = 0

−1
2
log 2π + 1

2
η′(R) + log dS

1−e−dSη(R) if dS > 0,
(259)

andχ2(R) is a continuous function. WhenR < Ep[X]
Ep[1]

, we have

log pn{Xn ≥ nR} = nτ(0) + o(1) (260)

log pn{Xn ≤ nR} = χ0(R)n−
1

2
logn + χ1(R) + χ2(R)

1

n
+ o(

1

n
). (261)

The convergences of the differences between the LHSs and RHSs are compact uniform. �

APPENDIX D
PROOF OFLEMMA 20

Now, we show Lemma 20. Forθ, we define the distributionPθ as

Pθ(x)
def
=

P 1−θ(x)
∑

x∈X P
1−θ(x)

. (262)

Then, forr < −H1(Ψ), we defineθ(r) ∈ (0, 1] as

D(Pθ(r)‖P ) = r. (263)

Lemma 39: For r < −H1(Ψ), we have

D(Pθ(r)‖P )−H(Pθ(r)) = sup
0≤s<1

−2s
1− sr −H 1+s

2
(Ψ). (264)
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�

Proof: Define the functionϕ(θ) def
= log

∑

x∈X P
1−θ(x). Sinceϕ′′(θ) > 0, the functionϕ(θ) is strictly

convex. We haveD(Pθ‖P ) = θϕ′(θ)−ϕ(θ) andH(Pθ) = (1− θ)ϕ′(θ)+ϕ(θ). We also haveD(Pθ‖P )−
H(Pθ) = (2θ− 1)ϕ′(θ)− 2ϕ(θ). SinceD(Pθ(r)‖P ) = r, solving the relationθ(r)ϕ′(θ(r))− ϕ(θ(r)) = r,

we haveD(Pθ(r)‖P )−H(Pθ(r)) = f(θ(r)) by using the functionf(θ)
def
= (2θ−1)r−ϕ(θ)

θ
.

The derivative off is f ′(θ)
def
= ϕ(θ)+r−θϕ′(θ)

θ2
. The derivative of the numerator is−θϕ′′(θ) < 0 when

1
2
≥ θ > 0. Hence,sup0≤s≤ 1

2
f(θ) is realized whenf ′(θ) = 0, which is equivalent toϕ(θ)+r−θϕ′(θ) = 0,

i.e., D(Pθ‖P ) = r. This condition is equivalent toθ = θ(r). Therefore,sup0≤s≤ 1
2
f(θ) = f(θ(r)). That

is, we haveD(Pθ(r)‖P ) − H(Pθ(r)) = f(θ(r)) = sup0≤s<1 f(θ). Sincef(θ) = −2s
1−sr − H 1+s

2
(Ψ) with

1− θ = 1+s
2

, we obtain (264).
Lemma 40: For r < −H1(Ψ), we have

min
Q:D(Q‖P )≤D(Pθ(r)‖P )

D(Q‖P )−H(Q) = D(Pθ(r)‖P )−H(Pθ(r)). (265)

�

Combining Lemma 39 and 40, we obtain (184) and (186) of Lemma 20.
Proof: Assume that for a distributionQ, there exists a parameterθ ∈ [0, 1] such thatH(Q) = H(Pθ).

Then, we have 1
1−θD(Q‖Pθ) = 1

1−θ
∑

xQ(x) logQ(x)−
∑

xQ(x) logP (x)−
ϕ(θ)
1−θ . Hence,

D(Q‖P )− 1

1− θD(Q‖Pθ)

=
∑

x

Q(x)(logQ(x)− logP (x))− 1

1− θ
∑

x

Q(x) logQ(x) +
∑

x

Q(x) logP (x) +
ϕ(θ)

1− θ

=− θ

1− θ
∑

x

Q(x) logQ(x) +
ϕ(θ)

1− θ

=− θ

1− θH(Q) +
ϕ(θ)

1− θ =
θ

1− θH(Pθ) +
ϕ(θ)

1− θ
=− θ

1− θ
∑

x

Pθ(x)(1− θ) logP (x)−
θ

1− θϕ(θ) +
ϕ(θ)

1− θ

=− θ
∑

x

Pθ(x) logP (x) + ϕ(θ) = D(Pθ‖P ).

Since 1
1−θD(Q‖Pθ) ≥ 0, for θ ∈ [0, 1], we have

max
Q:D(Q‖P )≤D(Pθ‖P )

H(Q) = H(Pθ). (266)

Hence,

min
Q:D(Q‖P )≤D(Pθ(r)‖P )

D(Q‖P )−H(Q) = D(Pθ(r)‖P )−H(Pθ(r)). (267)

Proof of (185): Now, we proceed to the proof of (185). (266) implies that

min
Q:H(Q)≥H(P )

D(Q‖P )−H(Q) = min
θ
D(Pθ‖P )−H(Pθ). (268)

SinceminQD(Q‖P )−H(Q) = minQ:H(Q)≥H(P )D(Q‖P )−H(Q), we have

min
Q
D(Q‖P )−H(Q) = min

θ
D(Pθ‖P )−H(Pθ). (269)

In the proof of Lemma 39, we show thatD(Pθ‖P )−H(Pθ) = (2θ−1)ϕ′(θ)−2ϕ(θ) andD(Pθ‖P )−H(Pθ)
realizes the minimum atθ = 1/2. Since(1− 1)ϕ′(1/2)− 2ϕ(1/2) = −H1/2(Ψ), we obtain (185).
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