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Abstract—The key rate of the B92 quantum key distribution
protocol had not been reported before this research when the
number of qubits is finite. We compute it by using the security
analysis framework proposed by Scarani and Renner in 2008.

Keywords—B92, quantum key distribution

I. Introduction

The B92 quantum key distribution (QKD) protocol [2]
has remained less popular than the famous BB84 protocol
[1], while both protocols provide the unconditional security.
One plausible reason for the unpopularity is that the B92 is
weaker to the channel noise than the BB84. Specifically, the
BB84 with the standard one-way information reconciliation
can generate secure key over the depolarizing channel at
depolarizing rate 16.5%, while the previous security analyses
of the B92 cannot guarantee the secure key generation at
depolarizing rate 3.5% [13], 3.7% [4] or 4.2% [10]. By using
the security analysis framework introduced by Renner in 2005
[9], we improved the maximal tolerable depolarizing rate to
6.5% [7].

All of the above analyses [4], [7], [10], [13] assumed the
infinite number of qubits in the protocol, and derived the
asymptotic key rates. On the other hand, in practice the number
of qubits used in a protocol is always finite. However, before
this research, the key rates with finite qubits in the B92
protocol had not been reported, as far as the authors know.
In this paper, we report the key rates with finite qubits, based
on the analytic framework introduced by Scarani and Renner
[12] and our previous researches [7], [11]. We stress that the
assumption in our paper is the same as [12], and in particular
we assume the collective attack instead of the coherent attack.

II. New Security Analysis of the B92 Protocol with Finite
Qubits

In this section, we present a new formula for the key rate
of the B92 protocol with finite qubits, based on previous
researches [7], [11], [12]. The following description has some
overlap with our previous research improving the asymptotic
key rate of the B92 [7]. Firstly, we fix notations. Let{|0〉,
|1〉} be some fixed orthonormal basis of a qubit. In the B92
protocol [2], Alice sends the quantum state

|ϕ j〉 = β|0〉 + (−1)jα|1〉, (1)

for j = 0, 1, whereβ =
√

1− α2, and 0< α < 1/
√

2. For
convenience of presentation, we also define

|ϕ̄ j〉 = α|0〉 − (−1)jβ|1〉.

We can see that{|ϕ j〉, |ϕ̄ j〉} forms an orthonormal basis of a
qubit.

On the other hand, we can express a qubit channel as
follows. Define the three Pauli matricesσx, σy, and σz as
usual. Then a qubit density matrixρ can be expressed as [8]

ρ =
1
2

(

I + xσx + yσy + zσz

)

,

where x, y, z ∈ R and x2 + y2 + z2 ≤ 1. The vector (x, y, z)
is called a Bloch vector. The qubit channelEB from Alice to
Bob can be expressed [6] as a map between Bloch vectors by
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. (3)

Define
|Ψ〉 = |0〉A|ϕ0〉B + |1〉A|ϕ1〉B√

2
.

As in [13], we also define the four POVM

F0 = |ϕ̄1〉〈ϕ̄1|/2, (4)

F1 = |ϕ̄0〉〈ϕ̄0|/2, (5)

F0̄ = |ϕ1〉〈ϕ1|/2, (6)

F1̄ = |ϕ0〉〈ϕ0|/2. (7)

In [13], the measurement outcomes corresponding toF0̄ and
F1̄ was not distinguished. We distinguish them for better
channel estimation.

After passing the quantum channelEB from Alice to Bob,
|Ψ〉〈Ψ| becomes

ρ1,AB = (I ⊗ EB)|Ψ〉〈Ψ|. (8)

In a quantum key distribution protocol, the state changeEB

is caused by Eve’s cloning of the transmitted qubits to her
quantum memory. The content of Eve’s quantum memory is
mathematically described by the purification|Φ1,ABE〉 of ρ1,AB.
Let ρ1,ABE = |Φ1,ABE〉〈Φ1,ABE |.

In addition to Eve’s quantum memory, she also knows the
content of public communication over the classical public
channel between Alice and Bob. For each transmitted qubit
from Alice to Bob, the public communication consists of 1-
bit information indicating whether Bob excludes his received
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qubit for generating the final secret key or not. We also
have to take it into account. We shall represent the public
communication by a classical random variableP that becomes
1 if Bob excludes his qubit and 0 otherwise. So,P = 0 when
Bob’s measurement outcome isF0 or F1, and P = 1 when
Bob’s measurement outcome isF0̄ or F1̄.

On the other hand, in the B92 protocol, Bob performs the
measurement specified by Eqs. (4)–(7). Alice and Bob use
their qubit for generation of the final secret key only if its
measurement outcome isF0 or F1. Otherwise it is excluded
from the key generation. This is mathematically equivalentto
set Alice’s bit to 0 if the measurement outcomes isF0̄ or
F1̄. Therefore, from Eve’s perspective on Alice’s classical bit,
the joint state between Alice and Bob after the selection by
measurement outcomes is equivalent to

ρ2,ABEP = (IA ⊗
√

F0 ⊗ IEρ1,ABE IA ⊗
√

F0 ⊗ IE

+IA ⊗
√

F1 ⊗ IEρ1,ABE IA ⊗
√

F1 ⊗ IE) ⊗ |0〉P〈0|P
+|0〉A〈0|A ⊗ (

√

F0̄ ⊗ IETrA[ρ1,ABE]
√

F0̄ ⊗ IE

+
√

F1̄ ⊗ IETrA[ρ1,ABE]
√

F1̄ ⊗ IE) ⊗ |1〉P〈1|P.

Observe that the state change fromρ1,ABE to ρ2,ABEP is a trace-
preserving completely positive map.

In order to calculate the key rate, we need to consider Eve’s
ambiguity on Alice’s classical bit [10], [9] defined as follows.
Let

ρ2,XEP =
∑

j=0,1

| j〉A〈 j|A ⊗ IEPTrB[ρ2,ABEP]| j〉A〈 j|A ⊗ IEP .

Eve’s ambiguity on Alice’s classical bitS (X|EP) is defined as

S (X|EP) = S (ρ2,XEP) − S (ρ2,EP), (9)

whereρ2,EP = TrA[ρ2,XEP], andS (·) denotes the von Neumann
entropy.

In order to calculate the amount of public communication
required for information reconciliation, we define the joint
random variables (X′, Y′) as

X′ = j if the transmitted qubit is|ϕ j〉,
Y′ = k if the measurement outcome isFk, (10)

under the condition that the measurement outcome is either
F0 or F1. Observe the difference betweenX andX′. X′ is not
defined butX is defined to be 0 when Bob’s measurement
outcome is eitherF0̄ or F1̄.

We shall show the key rate per single transmitted qubit that
is neither announced for the channel estimation nor excluded
due to the measurement outcome beingF0̄ or F1̄. Note that
Eq. (9) is Eve’s ambiguity per a qubit that is not announced for
the channel estimation butcan be discarded. The probability
of the measurement outcome beingF0 or F1 is

Tr[ρ1,AB(IA ⊗ (F0 + F1))].

So we can see that Eve’s ambiguity per single transmitted
qubit that is neither announced for the channel estimation nor
discarded is

S (X|EP)
Tr[ρ1,AB(I ⊗ (F0 + F1))]

.

By [10], [9] the asymptotic key rate is

S (X|EP)
Tr[ρ1,AB(I ⊗ (F0 + F1))]

− H(X′|Y′). (11)

The above analysis is almost the same as our previous one [7]
for the asymptotic key rate assuming the infinite number of
qubits.

Note that the above formula (11) assumes that Alice and
Bob know the channel between them. In the BB92 protocol,
we cannot estimate all the parameters of the channel, even if
we assume infinitely many qubits in the protocol. We can only
estimate part of them. In addition to that, because the number
of qubits in the protocol is finite, there must be statistical
errors.

To handle the finiteness of qubits, Scarani and Renner [12]
used the interval estimation of channel parameters (R and~t
of (3) in our study). In contrast to the more popular point
estimation, by using statistical samples, interval estimation
gives a set of parameters that contains true parameters with
high probability 1− ǫPE. By using the results in [12], the key
rate of the B92 protocol can be computed as

r = min
(R,~t)∈Γ(ǫPE)

S (X|EP) − H(X′|Y′) − ∆/n, (12)

where Γ(ǫPE) is a confidence region given by an interval
estimation procedure with the confidence level≥ 1− ǫPE, ∆ is
as defined in [12, Eq. (5)], andn is the number of the qubits
to which Alice and Bob apply the privacy amplification.

To compute the rate (12), there are two remaining tasks,
namely (a) computation ofΓ(ǫPE), and (b) computation of
min(R,~t)∈Γ(ǫPE) S (X|EP). Task (b) is performed by using the
convex optimization method [3] as done in our previous
researches [7], [11]. For convex optimization, the confidence
regionΓ(ǫPE) must be a convex set that can be easily handled
by a mathematical software, like Mathematica. In [11], such
a convex confidence region was introduced for the BB84
protocol by using the KL divergence. We shall defineΓ(ǫPE)
also by using the KL divergence.

In the conventional researches [4], [7], [10], [13], their
channel estimation procedures classified Bob’s measurement
outcomes into three categories, namely,F0, F1 and the incon-
clusive (F0̄ or F1̄). In this research, we propose to distinguish
F0̄ and F1̄ for better estimation accuracy. On the other hand,
the conventional estimation procedures did not distinguish
which |ϕ0〉 or |ϕ1〉 produced Bob’s measurement outcome. We
also propose to distinguish Alice’s transmitted qubits|ϕ0〉 and
|ϕ1〉 in channel estimation.

By the above consideration, the proposed channel estimation
procedure has at least 8 kinds of outcomes. On the other
hand, the treatment of Bob’s outcomeF0, F1, F0̄ and F1̄ is
asymmetric, because all ofF0̄ and F1̄ are disclosed to Alice
and are used for channel estimation, while parts ofF0 andF1

are kept secret for the secret key generation. Because of this
asymmetry, the sum of 8 POVM operators corresponding the
above 8 outcomes does not become the 4× 4 identity matrix
I4×4. To make the sum equal toI4×4, we include the outcome
meaning the qubit kept secret for secret key generation. By
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rpub(0 < rpub < 1) we denote the conditional probability for a
qubit being disclosed for channel estimation, and the qubitis
kept secret for secret key generation with a probabilityrpub.
We define the following 8 POVM operators:

E0 = rpub|0A〉〈0A| ⊗ F0 (13)

E1 = rpub|0A〉〈0A| ⊗ F1 (14)

E2 = |0A〉〈0A| ⊗ F0̄ (15)

E3 = |0A〉〈0A| ⊗ F1̄ (16)

E4 = rpub|1A〉〈1A| ⊗ F0 (17)

E5 = rpub|1A〉〈1A| ⊗ F1 (18)

E6 = |1A〉〈1A| ⊗ F0̄ (19)

E7 = |1A〉〈1A| ⊗ F1̄ (20)

E8 = (1− rpub)I2×2 ⊗ (F0 + F1). (21)

The last operatorE8 corresponds to the imaginary measure-
ment outcome expressing the non-disclosure of a qubit.

By this preparation of notations, we can describe the
proposed confidence region of the channel parameters. Let
D(P‖Q) denotes the Kullback-Leibler divergence,λ(ρ1,AB) the
theoretical probability distribution of the 9 outcomes defined
as

λ∞(ρ1,AB) = (Tr[ρ1,ABE0], . . . ,Tr[ρ1,ABE8]),

and λm the empirical distribution (i.e. relative frequencies)
of the 9 outcomes, wherem is the total number of qubits
transmitted including both disclosed and non-disclosed qubits.
Observe that Alice and Bob can computeλm in the protocol
execution, and their task is to estimate the channel parameters
(R, ~t). The set

{(R, ~t) | D(λm‖λ∞(ρ1,AB)) ≤ ǫPE, (R, ~t) defines a CP map}
(22)

is a confidence region of (R, ~t) with confidence level at least
1− ǫPE, by the well-known fact [5, Theorem 11.2.1]. It is also
well-known that the set of (R, ~t) yielding a CP map is convex
[6], andD(·‖·) is a convex function. Therefore the set (22) is a
convex set. The above idea is similar to our previous research
[11] on BB84. We have verified that the set (22) can be used
asΓ(ǫPE) in (12).

The minimization in (12) is just a convex optimization
and can be done as follows. Observe first thatS (X|EP) is
a function of the channel parameters (3) ofEB. By the
almost same argument as [14, Remark 11] one sees that
S (X|EP) is a convex function of the channel parameters (3).
Moreover, we see that the minimum ofS (X|EP) is attained
when Rxy = Ryx = Ryz = Rzy = ty = 0 by the almost same
argument as [14, Proposition 1]. Therefore, one can compute
the minimization ofS (X|EP) by the convex optimization [3].

III. Numerical Result

We consider the depolarizing channelEq with depolarizing
rate q. The definition ofq follows [13]. For a qubit density
matrix ρ, we haveEq(ρ) = (1− q)ρ + (q/2)I2×2. With such a
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channelEq, R and~t in Eq. (2) are given by
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, ~t = ~0.

We stress that we do not restrict the range of minimization
in (12) to the depolarizing or the Pauli channels. The mini-
mization is carried out over the set of all the qubit channels
in (22). The FindMinimum function in Mathematica 9.0 was
used for the minimization.

In Fig. 1, the key rates for various depolarizing rates are
plotted, and we compare key rates by our proposal and the
asymptotic rates by Matsumoto [7]. We can observe that
positive key rate is achieved at depolarizing rate 6.4% with
108 samples. The sample size refers to the total numberm
of transmitted qubits from Alice to Bob, including qubits
giving measurement outcomesF0̄ andF0̄ and qubits becoming
sifted key. In Fig. 2, the key rates for various sample sizes
are plotted with a fixed depolarizing rate 5%, and we also
compare key rates by our proposal and the asymptotic rates
by Matsumoto [7]. We can observe that our key rates converge
to the asymptotic one. We only consideredα = 0.39 and did
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not optimize the value ofα in Eq. (1). The valueα = 0.39 was
also used in [7].rpub was always set to 0.5 in our numerical
computation.

IV. Conclusion

Before this research, the secure key rate of the B92 quantum
key distribution protocol had not been reported. We have
clarified it. Our analysis is based on the finite key rate formula
proposed by Scarani and Renner [12] combined with our
previous researches [7], [11]. We have shown that one can
have a positive key rate with 108 samples over a depolarizing
channel with depolarizing rate 6.4%.
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