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Abstract—A new model of multi-party secret key agreement

is proposed, in which one terminal called the communicator an K
transmit public messages to other terminals before all terrmals T

agree on a secret key. A single-letter characterization ofhie

achievable region is derived in the stationary memorylessase. :

The new model generalizes some other (old and new) models of Communicator £)

key agreement. In particular, key generation with an omnisgent
helper is the special case where the communicator knows all
sources, for which we derive a zero-rate one-shot converserf W W w.

. . . 1 2 m
the secret key per bit of communication.

I. INTRODUCTION

A random number known only to several geographicall
distributed terminals is a resource that can be used fotaryp
graphic purposes such as secure communications. Remgrkabl K K K
the terminals can usually distill such a shared random ngymbe ! 2 "
or secret key, by communicating information about certain
correlated random processes they observe individuallgn ev
though the communication is wiretapped by some eavesdrop-
per. The fundamental limits on the maximal secret key rate _ . . L
can be studied using information theoretic tools [1][2][3] IS achievable with a communication rate

In this paper we propose a new protocol of multi- Ry > I(U;Z) — I(U; X)) (2)
party secret key agreement, callesbcret key generation
with one communicatgras shown in Figure 1. Terminals
Z,Xy,..., X, observe general sourcds Xi,..., X,,, re-
spectively. The communicatoE is allowed to send public
message$Vy, ..., W,, to X1,..., X, before all them + 1
terminals agree on an integér (the key). We assume that for

Figure 1: Key generation with one communicator

where Qzx, is the per-letter distribution of the stationary
memoryless source and — Z — X;. However them = 1

case does not assume the full complexity and difficulty of
the general case, as we shall see later in terms of the single
letter region and the coding scheme.

If no communication constraints are imposed, then the

eachi € {1, S m} there is an eavesdr_opper wiretapping thr%aximal key rate is (c.f. [4]):

communication link from the communicator t&;. Indepen-

dence ofK andW, for eachil € {1,...,m} ensures security. n}in I(Z; X)). 3
1<i<m

We derive a single-letter characterization of the achikvab
public communication rates and the key rate in the stationafvhile random binningZ™ shows the achievability of (3), it
memoryless case, which is a special case of the above form@@nnot be used for the rate constraint case, where the eeseiv
tion where we identifyZ, X1, ..., X,, with the corresponding do not need to be able the construct; indeed a main
block symbols. difficulty with the rate constraint is to decide what common

Of course, other related protocols of key generation hafeessage should the terminals be able to agree on.
been studied in the literature. The canonical one-way poto  Finally if the terminals only need to construct a com-
(Model S with forward communication in [2]) is a special casgon random number without any secrecy guarantee (the CR
of the secret key generation with one communicator protocggneration problem), then the rate region is also known [5,
wherem = 1, in which case a key rate Theorem 4.2] (see also [6]): a CR rate of
R < I(U;X,) 1) R<I(U;2) 4)

is achievable if

Following the convention in [2], we denote the terminals bg alphabets . .
of the sources they observe. R, > I(U, Z) - I(U7 Xl)a

Vi=1,....,m (5)
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whereU — Z — X™, which can be shown using an extensiofheorem 2. The set of achievable rates is the closure of
of source coding with side information [7]. In contrast, key

generation problem in this paper requires much more ineblve (R,Ry,...,Rn): RZ

achievability construction and analysis. Specifically, use U min{/(U; Z), I(US1;X1),..., [(US;; Xin) }
superposition coding in a novel way in order to convey theQusmz Ry > I(US; Z[X;), 1<1<m
information of the key securely to the receivers. Whereas in (12)

the common usage of superposition coding the lower layer o . .
codeword is decoded before the upper layer [8], in our coRemark3. The region in Theorem 2 is not decreased if we
struction the index of the upper layer codeword is trangitt restrict to the union oveQuz [1,"; Qs, uz-

to the receiver to facilitate the decoding of the lower layg@temark 4. Previous results of Ahlswede-Csiszar [2] and

codeword. Moreover, we use the recent achievability tepieni csjszar-Narayan [4] shown in (1)-(3) are clearly specises
of likelihood encoding [9] in order to simplify the securitygf Theorem 2.

analysis considerably.
Particularly interesting is the special case 4f= X,
which we call theomniscient helpeproblem. In this case,

a zero-rate one-shot converse on the secret key per bilzg gjluded to in the Introduction, the problem reduces to

of communication can be derived using hypercontracﬁvityan interesting special case when the communicator knows
strengthening the best converse bound that can be obtaiggthther sources. In this situation the communicator can be
from Fano's inequality. This new converse, derived fromtfirgiewed as a helper, since the requirement that it can recover
principles, also underlines the intimate interplay betwkey the key is vacuous because of its omniscience; the raterregio

agreement and hypercontractivity. in Theorem 2 can also be simplified as follows, since setting

S; = X; in (12) is optimal.

A. Special Case: Omniscient Helper

Il. PROBLEM SETUP AND MAIN RESULTS
Let Qzx» be the joint distribution of sources Theorem 5. In the special case ofZ = X™, the set of

Z,X1,...,Xnm. As in Figure 1, the Terminals achievable rates is the closure of
Z,X,...,X,, observe Z Xi,...,X,,, respectively,
and the communicator Z computes the integers (R, Ri,..., Rm) :

Wi(Z),...,W,(Z) possibly stochastically and sends U R < min{I(U; X™), H(X1), ..., H(Xm)};
them to Xy,...,X,,, respectively. Then, then + 1 parties ~ Quxm \ B = I(U;X™) = I(U; X)), 1<l<m
calculate integers K(Z), K1(X1,W1),..., Kmn(Xm, W) (13)
possibly stochastically. o i
In the case of stationary memoryless sources and block! N€ region in (13) has some special features:
coding, we substituteZ « Z™ and X; < X;" for each Remark6. The region for a product source can be strictly
[, where n is the blocklength. The measures of reliabléarger than the Minkowski sum of its factors. Indeed evernwit
communication and secrecy are defined as follows: unconstrained communication rates, the supremum keysate i
as in (3), where the minimum implies that a joint encoding
n = 131?5,11?[[{ # Ki, ) can asymptotically strictly outperform separate encodifig
vn = max {log |K| — H(K|W))}. @) the independent components.
t=t=m Remark7. The key rate can be positive even X has
Definition 1. The (m + 1)-tuple (R, R1,..., Ry,) is said to independent coordinates. For example, when= 2 and
be achievablef a sequence of key generation schemes can g 1 X, are equiprobable binary random variables, a key
designed to fulfill the following conditions: rate of R = 1 is achievable if the helper send§"™ © X," to
X> and, thus, the terminals agree an".

|
hnnil@gfﬁloqu = (®) Remark8. Comparing the CR generation region (4),(5) and
lim sup 1 logWi| < Ri, 1=1,....m; ) the key generation region (13), we see that in ?he omniscient
nooo M - o helper problem the secrecy constraint does not increagethe
lim €, =0; (10) quired communication rates as longRs< min;<;<,, H(X;).
nee In particular, this is unconditionally true for continuous
Jim v =0. (11)  sources with infinite entropy. But even when the rate regions

tceoincide, the underlying achievability constructions dié
erent; indeed the coding schemes for CR generation in ([5,
Theorem 4.2] and [6]) do not provide security. The reason why

_ ~ secrecy can be gained with no extra cost for snfalls that
2Indeed, the new model stems from the first author's attempietsign the helper shares sufficient secure randomness (the spurces

a key agreement protocol in which the secret key per unit basta clean . . .
correspondence to hypercontractivity. with the other terminals to protect its messages.

From the standard diagonalization argument [10],
achievable region is closed. Our main result is the follawvin



IIl. ONE-SHOT ACHIEVABILITY VIA LIKELIHOOD
ENCODER

We outline the derivation of a one-shot achievability bound
using the recent proof technique of likelihood encoding
[11][9]. This method adapts to general non-discrete, non-
i.i.d. sources and simplifies the analysis of the secrecy con
straint. Some standard notations in one-shot informatien t
ory, which may be found in reference [12], will be used in
this section.

Theorem 9. Suppose the sources have joint distribution
Qzxm. Fix an arbitrary Quz, Qs,ujz, 1 <1 < m, integers
Iy,..., I, and J; ..., J,,. Then there exists a key generation
scheme withKC| = Iy, (W] = Hﬁzl I;J; which guarantees
that

PIK # Kj] < 2m(e + T +T)), (14)
log [K| — H(K|W1)
3
< inf 4m(2T + T + 26) log L2
0<6<(1J))% exp(—1) 0
(15)
for eachl <1 < m, where we have defined
=11, (16)
=0

Moreover for eachi, let ;13 be the equiprobable distri-
bution on.7;, and define

1 .
PéﬁW;:jV:i = Qz|8,=s,(i,j)U=u(i)» Vis J; (24)
0 . p® -

Py = z| W, v W v (25)

Then the encoder is a stochastic map

5 1
Ty yirm|z = PV\ZHP‘%,?IVZ (26)
=1

that maps the observatiene Z tov € 7 andw™ € J™.

In other words, we first find using a likelihood encoder

with the likelihood functionPZ:ZW and then findw,

using a likelihood encoder with the likelihood function
g):zthzv' Supposev = (vp, v1, ..., vm,) Wherevy, €

7;, 0 <1 < m. We identify k = vy andw; = (@, v}) as

the key for the communicator and the public messages.

Note that the second componentswf have a nested

(aligned) structure, which is important for maximizing

the key rate.

Error analysis The main idea is to use the soft covering

lemma (c.f. [11, Theorem VII.1] or [13]) iteratively

to show that the true distributiom;,,, is close to

PV(TZ/)V 2 in total variation (expected over the codebook).
1

By constructioni?; and V' are independent under®,
implying that the individual message and the key are also

) exp(%) nearly independent under Moreover, the decoding error
T := inf {P[ZU;Z(U;Z) > 5]+ 2 }, (17) probability of the receivers unddP() can be bounded
eR 2VT directly by Shannon’s achievability bound [14].
) exp(2) . . N . =
T, := inf {P[zSHZ|U(Sl;Z|U) > 4] + 2 }, (18) Theorem 9 immediately implies the achievability part
TeR 2v/Ji of the region (12) in the i.i.d. case: assume without loss

€

1<i<m~€

max in%{P[zUSZ;XL(USz; Xp) <log(lo — 1) +1]

of generality that the sources are ordered in such a way
that 7(US;;X;) is non-increasing inl. We then identify

S™ U, X1,X2,...,Xm,Z) in Theorem 9 as the block-
_ . 19 ( R 1, A2, s Ay
+exp(=)} (19) coding counterpartS™™, U", X ",..., X,,", Z") and leto
Proof Sketch: be exponentially converging to zero as— oo, and
. sCeotdebook constructiorfor eachl = 1, ..., m define the Jy = exp(n(I(S;; Xi|U) + B))), 1=1,...,m; (27)
Iy := exp(n(min{I(U; Z), I(USy; Xp) } — B)); (28)
I :={1,....L}. (20) I == exp(n(min{I(U; Z), I(US;_1; X;_1)}
Construct a codebook(ig, i1, .. . ,im), it € Z;, 0 <1 < —min{/(U; 2), [(US;;X1)})), 1=2,...,m; (29)
m, where each codeword is generated i.i.d. according to I; := exp(n(I(U;Z) — min{I(U;Z),1(US1;X1)})) (30)
Qu.LetZ =7y xZy x--- x I, andI = |Z|. For each h h hievability of
i € Z andl <[ < m, independently generate a codebool® Show the achievability of rates
. R :=min{I(U;Z), I(US;,;; Xin)} — 5; 31
(516, (21) mintI{U;2), I )} =8 (1)
Ry := max{I(S;;Z|U), I(US;; Z|X))} + 38, 1<I<m
where each codeword is generated i.i.d. according to (32)
Gsijv=u(i)- for 5 > 0 arbitrary. This establishes the achievability of

7, and

Encoding definepy as the equiprobable distribution on

(R,Rl,...,Rm): R <
min{I(U;Z), I(US1;X1),..., I(USp; X ) }
Ry > max{I(S;;Z|VU), I(US;;Z|X,)}, VI

U

Qusm |z

| !

(33)

(22)
(23)

PZ\V:i = Qzu=u(i), V4
Pzy = Pziypv.



Then the achievability of (12) follows by noting that theo the maximal value under appropriate rate conditions.l@n t
boundary of (33) can be achieved wh&nis chosen so that other hand, previous works have obtained one-shot corserse
the two terms in the max are equal. using smooth Renyi entropy [15] or the meta-converse idea
[16][17], for which the asymptotic tightness are achieved i

_ V. C%ONVERSE o the other extreme of limited correlated sources but undichit
Due to space, this section only presents the main idea {§mmunications.

the converse of Theorem 2. An m-tuple of random variablegX, . . ., X,,) is said to be
A. Deterministic Encoder _(pl,...,pm)-hypercontractive fop; € [1,0), I =1,...,m
We first consider the case wheké and W™ are functions i
of Z™ (but X; are allowed to calculate their keys randomly " "
from (W, X;"), for 1 < I < m). Given a key generation E Hfl(Xl H”fl Xi)llp (40)
scheme, denote byk, K;,...,K,, the keys produced by =1 =1
Z.X,...X, and Wy, W,,...,W,, the messages sent tofor all bounded real-valued measurable functigndefined on
Xi,...,Xn. Define X, 1 =1,...,m. In[18], Nair showed that (40) is equivalent
- to the following inequality
U = (K, Z7h); (34)
i— . 1
Si=W,X,'™"), 1<i<m1<i<n (35) I(U; X™) Z; (U; X)) (41)

and let N be equiprobable od1,...,n} independent of all
previously defined random variables. We identify being valid for all P x~. Thus from Theorem 5 and (41),
key generation cannot be accomplished asymptotically if

U=Uy, S =S8, Vi, (36)
which fuffills that R<Z (R — Ry); (42)
(U,S1,..0,Sm) —Z— (X1, ..o, Xim)- (37)
while if ry,...,r, satisfies the property that
The bolunds in 'I(;hgorem 2 canlbe verified using entropjc > Zz 1(1 — ) for all (pi,....pm) such that
manipulations and Fano’s inequality. (X1, ,Xm) is (p1,...,pm)-hypercontractive, then there
B. Stochastic Encoders exists(R, Rl,RQ, ..., R,,) achievable such tha% = r; for

The converse for stochastic encoders cannot be obtalnedegg\?l =1, ¢ hot for th
simple modifications of the analysis in IV-A. Indeed, the bdu et ﬁrcl)ve a zglro rag ont;s (t)h converf]et or eSomnl—
in (12) no longer holds for stochastic encoders if we stick glent helper problem. Consider the one-shot case. Suppose

the assignment of the auxiliary random variables in (34)-(3 € (_p_055|bly stochastic) encoder fqr the publlc_messages !
An alternative approach is to view a stochastic encoder ?%ecn‘led by].DW’"JXm and ‘,Qe (possibly stochastic) decoder
a deterministic function oz andV, whereV is a random '°" the key is given by[[,Z, Pr;x,w,- Let prcn be the
number satisfying X", ..., X,,")— Z"—V, and then employ correct distribution under whichK; = Ky = --- = K,,, IS

the converse for deterministic encoders. We immediatedy s quiprobably Qistri_buted OR. _Clear_ly, a small total_ va_riati_on
that any achievable raté®, R, ..., R,,) must satisfy | Pm — pg| implies both uniformity of the key distribution

and a small probability of key disagreement.
R < mindI(U; 2V), I{US1; Xa), - I(USmi X )5 (38) Theorem 10. In the omniscient helper problem, if the source
Ry 2 max{I(S;;ZV|V), I(US;; ZVIX))},  1<i<m (39) xm s (p,,..., pn)-hypercontractivé, then

for somePystv|z. Then it is possible to show that the region ;
specified by (38)-(39) is equivalent to the region specified i |P o pgem| > 1 — K| H (|W1 zm
K]
V. A ZERO-RATE ONE-SHOT CONVERSE (43)

(12) upon optimization.

In this section we derive a novel one-shot bound, usifgemarkll Theorem 10 only concerns the performance of
hypercontractivity, on the maximum ratio of the log alphtab&R generation, which will provide an obvious upper bound
sizes of the key and the messages such that the key carpbethe performance of key generation. For the omniscient
successfully generated in the omniscient helper problémeeS helper problem, it turns out to be tight because the highest
this ratio is supremized as the key rate and the communicatkey-communication ratio is achieved with small rates (by
rates tend to zero, such a converse bound may also be cafledvexity of the achievable region), in which regime the
a zero-rateconverse. The bound is asymptotically tight in the
case of abundant correlated sources but limited commuioicat 3In [18] the equivalence is demonstrated far= 2, but the method therein

. . can be easily extended to the > 2 case.
rate_S,. and gives atrong conversas it ShOWS_th?'t the total “4In the i.i.d. case this is equivalent to the per-letter seux¢™ being
variation between the true and the correct distributiomgl$e (p1,...,pm)-hypercontractive by the tensorization property [18].

IICI




—1
Py

secrecy constraint does not require higher communicasitasr _ ST .
(Remark 8). But the functiont™ — [T~ , ¢;*"* is a concave function on

. ™ so by J 'S lity,
Remark12. Theorem 10 yields a stronger converse on tlig’oo) S0 by Jensens inequaiity

where

achievable ratio of the the log alphabet sizes of the key and Kl m T’fi]
the messages than Theorem 5, because: | | ZH l / Pr— i Wi A Px, (53)
« The converse from Theorem 5 is vacuous when the rates k=11=1 1
are zero. In contrast, Theorem 10 is still applicable when ~ !
the log size of the key alphabet grows sub-linearly in the 1 K Sivg
blocklength. In fact, as long as <1I(> /X 19 > Pri—kixwi=u dPx, (54)
=1 | w ! k=1
o 1 p !
log [K| =Y —(log|K| —log W) = —o0  (44) m [ ) Sor
=1 P! =11 >. / —dPx (55)
PO
=1 Lw i
which is weaker than (42), Theorem 10 implies that L 1
|Picm — pugem | converges to 2. (W =
Even if (42) holds, the converse of Theorem 5 relying — H K| (56)
on Fano’s inequality does not guarantee that the error z:-1. _
probability in (6) tends to 1. Moreover Theorem 5 usegombining (52) and (56) we obtain
relative entropy as the secrecy measure (7) (stronger than K| 17 p;1
total variation), amounting to a weaker converse. Z]P ﬂ{Kl k) i - <|Wl )
Proof: For anyk € K, [K] = | =1 LK
(57)
P [H{Kl - k}] (45) Finally we invoke the following elementary bound:
=1

1
§|PKm — e |
/ ZHPKZ k| X, Wy=w;, Pwm | xmd Pxm (46) K| m
wmll :Zplﬂ{[{l:k
1=1

K|

1->"P [ﬂ{Kl—k}]
T s

< / I?U%LXHPKZ:k\XLWZ:dePXm (47) = |IC|
m = 1 L llfl
< / ) EnﬁxPKz:MXlWl:wldPXm (48) >1- I — K= - kz:l]P’ lO{K; = k}] (59)
o and the proof is finished by combining (57) and (58). m

IA
s

/(mwaxPKz—lele_wl)pldPXl] (49)
X VI. DISCUSSION

Il
-
T

Py It remains an enticing problem for future research to find out
max Pre,p| X, Wi=w, dPXz] (50)  \hether the achievable region is changed if we further requi
that the key has to be independent of all messages, instead of
each message individually (see (7)). Such a stronger secrec
(51)  constraint is relevant when a powerful eavesdropper is table
intercept the messages to all the receivers. Our achiéyabil
proof does not guarantee this stronger level of secrecyfobut
o o some specific sources it is possible to use structured codes t
« (49) uses the definition of hypercontractivity; align different sub-codebooks so that the achievable mtes
o (50) usesp; > 1 andmaxy, Pr—k|x,wy=w, < 1. not change. Furthermore, in the unlimited communicatiaeca

IA
s

L/ A

Z/ Py, x, W=, A Px,
wi Xl

Il
-

L
l

IA
s

I
-
r

Raising both sides of (51) to the power-gf-- 1, we obtain the key rate is not compromised by the stronger requirement

=t either; see (3). Generally, an inner bound can be obtained by
m - 1 replacingS; in (12) with S, the proof of which involves a
P [ﬂ{Kz _ k}] P vertical structure of superposition codebooks &y S, ...,

S, in contrast to the parallel structure 61, ..., S,, in the
-1 achievability proof of Theorem 2.
Theorem 10 also gives an asymptotically tight strong con-
(52) verse bound for the canonical one-way protocol (Model S
with forward communication in [2]). By settingr» = 2 and

=1

i Py

<11 [Z/X Py, =k x,wi=w, dPx,
=1 wy l




R, = 0, the resulting model immediately gives an upper{6] V. M. Prabhakaran and M. M. Prabhakaran, “Assisted comnio

bound on the performance of a CR generation model wAgre

communicates td,. This in turn bounds performance of one-
way key generation model because the public communicatign

can be used as part of the CR. In the end we can show that the

TV betweenPgky and the correct distributiongyw = px pw

tends to2 if log|K| — 7

S*(Xl;Xg)

mlOgD/\/l — o0, Where

s*(X1; X>) is the strong data processing coefficient [18].
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