
ar
X

iv
:1

40
9.

40
64

v1
 [

cs
.C

R
]

14
 S

ep
 2

01
4

1

On the Simulatability Condition in Key

Generation Over a Non-authenticated Public

Channel

Wenwen Tu and Lifeng Lai

Abstract

Simulatability condition is a fundamental concept in studying key generation over a non-authenticated

public channel, in which Eve is active and can intercept, modify and falsify messages exchanged over the

non-authenticated public channel. Using this condition, Maurer and Wolf showed a remarkable “all or

nothing” result: if the simulatability condition does not hold, the key capacity over the non-authenticated

public channel will be the same as that of the case with a passive Eve, while the key capacity over the

non-authenticated channel will be zero if the simulatability condition holds. However, two questions

remain open so far: 1) For a given joint probability mass function (PMF), are there efficient algorithms

(polynomial complexity algorithms) for checking whether the simulatability condition holds or not?;

and 2) If the simulatability condition holds, are there efficient algorithms for finding the corresponding

attack strategy? In this paper, we answer these two open questions affirmatively. In particular, for a

given joint PMF, we construct a linear programming (LP) problem and show that the simulatability

condition holdsif and only if the optimal value obtained from the constructed LP is zero. Furthermore,

we construct another LP and show that the minimizer of the newly constructed LP is a valid attack

strategy. Both LPs can be solved with a polynomial complexity.

Index Terms

Active adversary, Computational complexity, Farkas’ lemma, Linear programming, Non-authenticated

channel, Simulatability condition.

W. Tu and L. Lai are with Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester,

MA. Email: {wtu, llai}@wpi.edu. The work of W. Tu and L. Lai was supported by the National Science Foundation CAREER

Award under Grant CCF-1318980 and by the National Science Foundation under Grant CNS-1321223.

July 9, 2018 DRAFT

http://arxiv.org/abs/1409.4064v1

I. INTRODUCTION

The problem of secret key generation via public discussion under both source and channel

models has attracted significant research interests [1]–[11]. Under the source model, users observe

correlated sources generated from a certain joint probability mass function (PMF), and can

discuss with each other via a noiseless public channel. Any discussion over the public channel

will be overheard by Eve. Furthermore, the public channel can either be authenticated or non-

authenticated. An authenticated public channel implies that Eve is a passive listener. On the other

hand, a non-authenticated public channel implies that Eve is active and can intercept, modify or

falsify any message exchanged through the public channel.

Clearly, the secret key rate that can be generated using the non-authenticated public channel

is no larger than that can be generated using the authenticated pulic channel. In [8]–[11], Maurer

and Wolf introduced a concept of simulatability condition (this condition will be defined precisely

in the sequel) and established a remarkable “all or nothing”result. In particular, they showed that

for the secret key generation via a non-authenticated public channel with two legitimate terminals

in the presence of an active adversary: 1) if the simulatability condition holds, the two legitimate

terminals will not be able to establish a secret key, and hence the key capacity is 0; and 2) if

the simulatability condition does not hold, the two legitimate terminals can establish a secret

key and furthermore the key capacity will be the same as that of the case when Eve is passive.

Intuitively speaking, if the simulatability condition holds, from its own source observations, Eve

can generate fake messages that are indistinguishable frommessages generated from legitimate

users. On the other hand, if the simulatability condition does not hold, the legitimate users will

be able to detect modifications made by Eve.

It is clear that the simulatability condition is a fundamental concept for the key generation via

a non-authenticated public channel, and hence it is important to design efficient algorithms to

check whether the simulatability condition holds or not. Using ideas from mechanical models,

[10] made significant progress in designing efficient algorithms. In particular, [10] proposed

to represent PMFs as mass constellations in a coordinate, and showed that the simulatability

condition holds if and only if one mass constellation can be transformed into another mass

constellation using a finite number of basic mass operations. Furthermore, [10] introduced another

notion of one mass constellation being “more centered” thananother constellation and designed a

2

low-complexity algorithm to check this “more centered” condition. For some important special

cases, which will be described precisely in Section II, [10]showed that the “more centered”

condition is necessary and sufficient for the mass constellation transformation problem (and

hence is necessary and sufficient condition for the simulatability condition for these special

cases). However, in the general case, the “more centered” condition is a necessary but not

sufficient condition for the mass constellation transformation problem. Hence, whether there

exists efficient algorithms for the mass constellation transformation problem (and hence the

simulatability condition) in the general case is still an open question.

As the result, despite the significant progress made in [10],the following two questions remain

open regarding the simulatability condition for the general case:

1) For a given joint PMF, are there efficient algorithms (polynomial complexity algorithms)

for checking whether the simulatability condition holds ornot?

2) If the simulatability condition holds, are there efficient algorithms for finding the corre-

sponding Eve’s attack strategy?

In this paper, we answer these two open questions affirmatively.

To answer the first open question, we construct a linear programming (LP) problem and

show that the simulatability condition holdsif and only if the optimal value obtained from

this LP is zero. We establish our result in three main steps. We first show that, after some

basic transformations, checking whether the simulatability condition holds or not is equivalent

to checking whether there exists a nonnegative solution to aspecially constructed system of

linear equations. We then use a basic result from linear algebra to show that whether there

exists a nonnegative solution to the constructed system of linear equations is equivalent to

whether there is a solution (not necessarily nonnegative) to a related system of inequalities or

not. Finally, we use Farkas’ lemma [12], a fundamental result in linear programming and other

optimization problems, to show that whether the system of inequalities has a solution or not

is equivalent to whether the optimal value of a specially constructed LP is zero or not. Since

there exists polynomial complexity algorithms for solvingLP problems [13]–[15], we thus find

a polynomial complexity algorithm for checking the simulatability condition for a general PMF.

To answer the second open question, we construct another LP and show that the minimizer

of this LP is a valid attack strategy. The proposed approach is very flexible in the sense that one

can simply modify the cost function of the constructed LP to obtain different attack strategies.

3

Furthermore, the cost function can be modified to satisfy various design criteria. For example,

a simple cost function can be constructed to minimize the amount of modifications Eve needs

to perform during the attack. All these optimization problems with different cost functions can

be solved with a polynomial complexity.

The remainder of the paper is organized as follows. In Section II, we introduce some prelim-

inaries and the problem setup. In Section III, we present ourmain results. In Section IV, we use

numerical examples to illustrate the proposed algorithm. In Section V, we present an approach

to further reduce the computational complexity. In SectionVI, we offer our concluding remarks.

II. PRELIMINARIES AND PROBLEM SETUP

Let X = {1, · · · , |X |}, Y = {1, · · · , |Y|} andZ = {1, · · · , |Z|} be three finite sets. Consider

three correlated random variables(X, Y, Z), taking values fromX × Y × Z, with joint PMF

PXY Z, the simulatability condition is defined as follows:

Definition 1. ([8]) For a givenPXY Z , we sayX is simulatable byZ with respect toY , denoted

by SimY (Z → X), if there exists a conditional PMFPX̄|Z such thatPY X̄ = PY X , with

PY X̄(y, x) =
∑

z∈Z

PY Z(y, z) · PX̄|Z(x|z), (1)

in whichPY X andPY Z are the joint PMFs of(Y,X) and (Y, Z) underPXY Z respectively.

One can also define SimX(Z → Y) in the same manner. This concept of simulatability,

first defined in [8], is a fundamental concept in the problem ofsecret key generation over a

non-authenticated public channel [9]–[11], in which two terminals Alice and Bob would like

to establish a secret key in the presence of an adversary Eve.These three terminals observe

sequencesXN , Y N andZN generated according to

PXNY NZN (xN , yN , zN) =
N
∏

i=1

PXY Z(xi, yi, zi). (2)

Alice and Bob can discuss with each other via a publicnon-authenticated noiseless channel,

which means that Eve not only has full access to the channel but can also interrupt, modify

and falsify messages exchanged over this public channel. The largest key rate that Alice and

Bob1 can generate with the presence of the active attacker is denoted asS∗(X ; Y ||Z). Let

1Please see [9]–[11] for precise definitions.

4

S(X ; Y ||Z) denote the largest key rate that Alice and Bob can generate when Eve is passive, i.e.,

when the public channel is authenticated. Clearly,S(X ; Y ||Z) ≥ S∗(X ; Y ||Z). Although a full

characterization ofS(X ; Y ||Z) is unknown in general, [9] established the following remarkable

“all or nothing” result:

Theorem 1. ([9]) If SimY (Z → X) or SimX(Z → Y), then S∗(X ; Y ||Z) = 0. Otherwise,

S∗(X ; Y ||Z) = S(X ; Y ||Z).

This significant result implies that, if the simulatabilitycondition does not hold, one can

generate a key with the same rate as if Eve were passive. On theother hand, if the simulatability

condition holds, the key rate will be zero. Intuitively speaking, if SimY (Z → X) holds, then

after observingZN , Eve can generatēXN by passingZN through a channel defined byPX̄|Z.

Then(X̄N , Y N) has the same statistics as(XN , Y N). Hence by knowing onlyY N , Bob cannot

distinguishX̄N andXN , and hence cannot distinguish Alice or Eve.

As mentioned in the introduction, [10] has made important progress in developing low-

complexity algorithms for checking whether SimY (Z → X) (or SimX(Z → Y)) holds or not.

In particular, [10] developed an efficient algorithm to check a related condition called “more

centered” condition. When|Y| = 2, that is whenY is a binary random variable, this “more

centered” condition is shown to be necessary and sufficient for SimY (Z → X). Hence, [10] has

found an efficient algorithm to check SimY (Z → X) for the special case ofY being binary (the

algorithm is also effective in checking SimX(Z → Y) whenX is binary). However, whenY

is not binary, the “more centered” condition is only a necessary condition for SimY (Z → X).

Hence, two questions remain open:

1) For a general givenPXY Z, are there efficient algorithms (polynomial complexity algo-

rithms) for checking whether SimY (Z → X) (or SimX(Z → Y)) holds or not?

2) If SimY (Z → X) (or SimX(Z → Y)) holds, are there efficient algorithms for finding the

correspondingPX̄|Z (or PȲ |Z)?

In this paper, we answer these two open questions affirmatively.

Notations: Throughout this paper, we use boldface uppercase letters todenote matrices,

boldface lowercase letters to denote vectors. We also use1, 0 andI, unless stated otherwise, to

denote all ones column vector, all zeros column vector and the identity matrix, respectively. In

addition, we denote the vectorization of a matrix by Vec(·). Specifically, for anm × n matrix

5

A, Vec(A) is anmn× 1 column vector:

Vec(A) = [a11, · · · , am1, · · · , a1n, · · · , amn]
T , (3)

in which [·]T is the transpose of the matrix. And vice versa can be done byA =Reshape(Vec(A), [m,n]).

We useA ⊗B to denote the Kronecker product of matricesA andB. Specifically, assumeA

is anm× n matrix, then

A⊗B =











a11B · · · a1nB
...

. . .
...

am1B · · · amnB











. (4)

All matrices and vectors in this paper are real.

III. M AIN RESULTS

In this paper, we focus on SimY (Z → X). The developed algorithm can be easily modified

to check SimX(Z → Y). We rewrite (1) in the following matrix form

C = AQ, (5)

in which C = [cij] is a |Y| × |X | matrix with cij = PY X(i, j), A = [aik] is a |Y| × |Z| matrix

with aik = PY Z(i, k), andQ = [qkj] is a |Z| × |X | matrix with qkj = PX̄|Z(j|k) if such PX̄|Z

exists.

Checking whether SimY (Z → X) holds or not is equivalent to checking whether there exists

a transition matrixQ such that (5) holds. AsQ is a transition matrix, its entriesqkjs must satisfy

qkj ≥ 0, ∀k ∈ [1 : |Z|], j ∈ [1 : |X |], (6)
|X |
∑

j=1

qkj = 1, ∀k ∈ [1 : |Z|]. (7)

We note that ifqkjs satisfy (6) and (7), they will automatically satisfyqkj ≤ 1. Hence, we don’t

need to state this requirement here.

If there exists at least one transition matrixQ satisfying (5), (6) and (7) simultaneously, we

can conclude that the simulatability condition SimY (Z → X) holds.

(7) can be written in the matrix form

1|Z|×1 = Q1|X |×1, (8)

6

Then, (5) and (8) can be written in the following compact form:




Vec(CT)

1|Z|×1





=

































a11I a12I · · · a1|Z|I

...
...

. ..
...

a|Y|1I a|Y|2I · · · a|Y||Z|I

1 0 · · · 0

0 1
. ..

...
...

.
...

0 · · · 0 1

































Vec(QT)

=





A⊗ I

I|Z| ⊗ 1



Vec(QT), (9)

in which the sizes forI, 1 and0 are |X | × |X |, 1× |X | and1× |X |, respectively.

For notational convenience, we define

c ,





Vec(CT)

1|Z|×1



 , (10)

A ,





A⊗ I

I|Z| ⊗ 1



 , (11)

q , Vec(QT). (12)

From (9), it is clear thatc is anm× 1 vector,A is anm× n matrix, andq is ann× 1 vector,

in which

m = |Y||X |+ |Z|, (13)

n = |Z||X |. (14)

With these notation and combining (9) with (6), the originalproblem of checking whether

SimY (Z → X) holds or not is equivalent to checking whether there existsnonnegativesolutions

q for the system

Aq = c. (15)

7

In the following, we check whether there exists at least a nonnegative solution for the system

defined by (15). There are two main steps: 1) whether the system is consistent or not; 2) if it is

consistent, whether there exists a nonnegative solution ornot. Checking the consistency of (15)

is straightforward: a necessary and sufficient condition for a system of non-homogenous linear

equations to be consistent is

Rank(A) = Rank((A|c)), (16)

where (A|c) is the augmented matrix ofA. If (16) is not satisfied, it can be concluded that

SimY (Z → X) does not hold. If (16) is satisfied, we need to further check whether there exists

a nonnegative solution to (15) or not.

To proceed further, we will need the following definition of generalized inverse (g-inverse) of

a matrixG.

Definition 2. ([16]) For a given m × n real matrixG, an n ×m real matrix Gg is called a

g-inverse ofG if

GGgG = G.

The g-inverseGg is generally not unique (Ifn = m andG is full rank, thenGg is unique

and equal to the inverse matrixG−1). A particular choice of g-inverse is called the Moore-

Penrose pseudoinverseG+, which can be computed using multiple different approaches. One

approach is to use the singular value decomposition (SVD): by SVD, for a givenG and its SVD

decomposition

G = UΣVT , (17)

then,G+ can be obtained as

G+ = VΣ+UT , (18)

in which Σ+ is obtained by taking the reciprocal of each non-zero element on the diagonal of

the diagonal matrixΣ, leaving the zeros in place. One can easily check that the Moore-Penrose

pseudoinverseG+ obtained by SVD satisfies the g-inverse matrix definition andhence is a valid

g-inverse.

With the concept of g-inverse, we are ready to state our main result regarding the first open

question.

8

Theorem 2. Let Ag be any given g-inverse ofA (e.g., it can be chosen as the Moore-Penrose

pseudoinverseA+), andh∗ be obtained by the following LP

h∗ = min
t
{tTAgc}, (19)

s. t. t � 0,

(I− A
g
A)T t = 0.

Then SimY (Z → X) holds,if and only if h∗ = 0 and (16) holds.

Proof: If (16) does not hold, then there is no solution to (15), and hence SimY (Z → X)

does not hold.

In the remainder of the proof, we assume that (16) holds. If (16) holds, the general solution

to (15) can be written in the following form (see, e.g., Theorem 2 a.(d) of [17])

q = A
gc+ (Ag

A− I)p, (20)

in which A
g can be any given g-inverse ofA, andp is an arbitrary length-n vector.

As the result, the problem of whether there exists a nonnegative solution to (15) (i.e.,q � 0)

is equivalent to the problem of whether there exists a solutionp for the following system defined

by

(I− A
g
A)p � A

gc. (21)

To check whether the system defined by (21) has a solution, we use Farkas’ lemma, a fundamental

lemma in linear programming and related area in optimization. For completeness, we state the

form of Farkas’ lemma used in our proof in Appendix A. To use Farkas’ lemma, we first write

a LP related to the system defined in (21)

h∗ = min
t
{tTAgc},

s.t. t � 0,

(I− A
g
A)T t = 0.

The above LP is always feasible sincet = 0 is a vector that satisfies the constraints, which

results intTAgc = 0. Hence the optimal valueh∗ ≤ 0. Using Farkas’ lemma, we have that (21)

has a solutionif and if h∗ = 0. More specifically, ifh∗ = 0, then there exists at least a

9

solutionp for (21), which further implies that there is a nonnegative solution to (15), and hence

SimY (Z → X) holds. On the other hand, ifh∗ < 0, then there is no solutionp for (21), which

further implies that there is no nonnegative solution to (15), and hence SimY (Z → X) does not

hold.

As mentioned above, if Rank(A) = m = n holds, thenAg = A
−1 is unique. For other cases,

A
g might not be unique. One may wonder whether different choices of Ag will affect the result

in Theorem 2 or not. The following proposition answers this question.

Proposition 1. Different choices ofAg will not affect the result on whetherh∗ equals 0 or not.

Proof: Let Ag
1 andA

g
2 be two different g-inverses ofA, and leth∗

1 and h∗
2 be the values

obtained usingAg
1 andAg

2 in (19) respectively. It suffices to show that ifh∗
1 = 0, thenh∗

2 = 0.

Assuming thath∗
1 = 0, then there exists a vectorp1 satisfying(I − A

g
1A)p1 � A

g
1c, we will

show that there exists a vectorp2 satisfying(I− A
g
2A)p2 � A

g
2c, which then impliesh∗

2 = 0.

First, we know thatAg
1c andAg

2c are two solutions to the systemAq = c, which can be easily

verified by settingAg asAg
1 andAg

2 in (20) respectively and settingp = 0. This implies that

A(Ag
2c− A

g
1c) = 0, (22)

and henceAg
2c− A

g
1c is a solution to the systemAq = 0.

Second, we know that any solution to the systemAq = 0 can be written in the form(I −
A

g
A)p [17]. As A

g
2c− A

g
1c is a solution to systemAq = 0, there must exist ap0 such that

(I− A
g
2A)p0 = A

g
2c− A

g
1c. (23)

In addition, it is easy to check that(I−A
g
1A)p1 + (I−A

g
2A)p0 is also a solution to the system

Aq = 0. Thus, there exists ap2 such that

(I− A
g
2A)p2 = (I− A

g
1A)p1 + (I− A

g
2A)p0. (24)

Plugging (23) into (24), we have

(I− A
g
2A)p2 = (I− A

g
1A)p1 + (I− A

g
2A)p0

= (I− A
g
1A)p1 + A

g
2c− A

g
1c (25)

� A
g
2c, (26)

10

in which the last inequality comes from the assumption that(I − A
g
1A)p1 � A

g
1c. Hence, we

have found ap2, such that(I− A
g
2A)p2 � A

g
2c. This implies thath∗

2 = 0.

Remark 1. The proposed algorithm for checking whether SimY (Z → X) holds or not has

a polynomial complexity. Among all operations required, computing the g-inverse and solving

the LP defined by(19) require most computations. The complexity to obtainA
g is of order

O(n3) [18]. Furthermore, there exists polynomial complexity algorithms to solve the LP defined

by (19). For example, [14] provided an algorithm to solve LP usingO(n3L) operations, where

L is number of binary bits needed to store input data of the problem (one can refer to Chapter

8 in [15] for more details about the complexity of algorithmsfor solving LP). Hence, the total

operations of our algorithm for checking SimY (Z → X) is of orderO(n3L). In addition, we

note that we can terminate the LP algorithm earlier once the algorithm finds at such that

tAgc < 0, as this indicates thath∗ < 0. This can potentially further reduce the computational

complexity.

Thus, we can conclude that the proposed algorithm can check whether SimY (Z → X) holds

or not with a polynomial complexity. Algorithm 1 summarizesthe main steps involved in our

algorithm. In the following algorithm, we use Res= 0 to denote that SimY (Z → X) does not

hold and Res= 1 to denote that SimY (Z → X) holds.

In the following, we provide our answer to the second open question, i.e., if SimY (Z → X)

holds, how to findPX̄|Z efficiently.

Theorem 3. Let e be anyn× 1 vector withe ≻ 0, andq∗ be the obtained from the following

LP:

min
q

f(q) = eTq, (27)

s.t. q � 0,

Aq = c.

If SimY (Z → X) holds, thenQ∗ = Reshape(q∗, [|X |, |Z|])T is a valid choice forPX̄|Z.

Proof: By assumption, SimY (Z → X) holds, which implies that the system defined by (15)

11

Algorithm 1 Checking SimY (Z → X)

1: Input: PMF PXY Z ;

2: Initiate:

3: a. Calculate matricesA andC;

4: b. Constructc andA using (10) and (11) respectively;

5: c. Set Res= 0;

6: if (Rank(A) 6= Rank(A|c)) then

7: break;

8: else

9: d. Find aAg, and calculateAgc, I− A
g
A;

10: e. Solve LP (19) and obtainh∗;

11: if (h∗ == 0) then

12: Res= 1;

13: else

14: break;

15: end if

16: end if

17: Output: Res.

is consistent and it has nonnegative solutions. Hence, the following LP is feasible

min
q

f(q) = eTq, (28)

s.t. q � 0,

Aq = c,

where e ≻ 0. Hence, the minimizerq∗ is nonnegative and satisfiesAq∗ = c. We can then

reshapeq∗ into matrixQ∗ (see (12)).Q∗ is a valid choice forPX̄|Z.

Remark 2. Since finding a suitablePX̄|Z using our approach is equivalent to solving a LP, the

12

complexity is of polynomial order.

Remark 3. For a given distributionPXY Z , there may be more than one possiblePX̄|Z such

that (1) holds. Different choices ofe in (27) give different values forPX̄|Z.

Remark 4. The objective functionf(q) can be further modified to satisfy various design criteria

of Eve. For example, let

q̃ = Vec(Q̃[q̃kj]
T)

with q̃kj = PX|Z(k|j), then setting

f(q) = ||q− q̃||22
will minimize the amount of changes in the conditional PMF inthe l2 norm sense. This is a

quadratic programming, which can still be solved efficiently.

IV. NUMERICAL EXAMPLES

In this section, we provide several examples to illustrate the proposed algorithm. We also use

some of the examples used in [10] to compare our proposed algorithm with the method in [10].

Example 1: Let PXY Z with rangesX = {x1, x2}, Y = {y1, y2} andZ = {z1, z2, z3} be:

PXY Z(x1, y1, z1) = 6/100,

PXY Z(x2, y1, z1) = 4/100,

PXY Z(x1, y1, z2) = 9/100,

PXY Z(x2, y1, z2) = 6/100,

PXY Z(x1, y1, z3) = 15/100,

PXY Z(x2, y1, z3) = 10/100,

PXY Z(x1, y2, z1) = 36/100,

PXY Z(x2, y2, z1) = 4/100,

PXY Z(x1, y2, z2) = 9/100,

PXY Z(x2, y2, z2) = 1/100,

PXY Z(x1, y2, z3) = 0,

PXY Z(x2, y2, z3) = 0.

13

To use our algorithm, we have the following steps:

Step 1:ComputePY Z andPY X , and write them in the matrix formA andC:

A =





0.1 0.15 0.25

0.4 0.1 0



 ,C =





0.3 0.2

0.45 0.05



 . (29)

Step 2:ConstructA andc using (10) and (11) respectively:

A =

































0.1 0 0.15 0 0.25 0

0 0.1 0 0.15 0 0.25

0.4 0 0.1 0 0 0

0 0.4 0 0.1 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

































, (30)

c = [0.3, 0.2, 0.45, 0.05, 1, 1, 1]T . (31)

Step 3:Check the ranks ofA and (A|c):
We get

Rank(A) = Rank((A|c)) = 5. (32)

Step 4:Choose the g-inverse to be the Moore-Penrose pseudoinverseA
+ and calculateA+c and

I− A
+
A:

A
+c =



























0.9762

0.0238

0.5952

0.4048

0.4524

0.5476



























, (33)

I− A
+
A =



















0.0238 −0.0238 −0.0952 0.0952 0.0476 −0.0476

−0.0238 0.0238 0.0952 −0.0952 −0.0476 0.0476

−0.0952 0.0952 0.3810 −0.3810 −0.1905 0.1905

0.0952 −0.0952 −0.3810 0.3810 0.1905 −0.1905

0.0476 −0.0476 −0.1905 −0.1905 0.0952 −0.0952

−0.0476 0.0476 0.1905 −0.1905 −0.0952 0.0952



















. (34)

14

Step 5:Solve LP (19). Using the above data, we obtainh∗ = 0, which implies that SimY (Z → X)

holds.

Step 6:Obtain a possiblePX̄|Z. We construct the LP defined in (27) withe = [2, 2, 2, 1, 1, 1]T ,

and get

q∗ = [1, 0, 1/2, 1/2, 1/2, 1/2]T .

Thus the simulatability channel is

PX̄|Z =











1 0

1/2 1/2

1/2 1/2











, (35)

which is consistent with the result obtained from the criterion proposed in [10]. If we sete =

[1, 1, 1, 1, 1, 1]T , we get

q∗ = [0.9762, 0.0238, 0.5952, 0.4048, 0.4524, 0.5476]T,

which implies that another valid choice is

PX̄|Z =











0.9762 0.0238

0.5962 0.4048

0.4524 0.5476











. (36)

Example 2: In this example, we consider a case in whichY is not binary. To represent the

joint PMF concisely, we follow the same approach in [10] and use

MUV = (PU(u), (PV |U=u(v1), · · · , PV |U=u(v|V|−1)))u∈U

to represent the joint PMFPUV . For this example, we set

MZY = (0.3, (0, 0)), (0.3, (0.5, 0)),

(0.3, (0.25,
√
3/4)), (0.1, (0.25,

√
3/12)),

MXY = (0.3, (0.25, 0)), (0.3, (0.375,
√
3/8)),

(0.3, (0.125,
√
3/8))(0.05, (0.24,

√
3/12))

(0.05, (0.26,
√
3/12)). (37)

15

In step 1, we writePY Z andPY X in the matrix formA andC:

A =











0 0.1500 0.0750 0.0250

0 0 0.1299 0.0144

0.3000 0.1500 0.0951 0.0606











,

C =











0.0750 0.1125 0.0375 0.0120 0.0130

0 0.0650 0.0650 0.0072 0.0072

0.2250 0.1225 0.1975 0.0308 0.0298











.

To make the paper concise, we do not list the values ofA, c and following steps in details.

Steps2, 3, 4 are similar to those in Example1. But in Step5, we obtain thath∗ < 0, which

indicates that SimY (Z → X) does not hold. This result is also consistent with the conclusion

in [10], which is obtained by an analysis that exploits the special mass constellation structure of

the data. We note that the mechanical model based “more centered” criterion in [10] does not

work for this example, asY is not binary anymore, although the mass constellation representation

of PMFs can still be used to exploit the special structure that this set of data has.

Next, we provide an example for which the mass constellationpresentation does not work

while our algorithm can easily obtain the answers.

Example 3: In this example, we considerX, Y, Z with larger dimensions, in particular, we

set |X | = 4, |Y| = 4, and|Z| = 6. Again to represent the joint PMF concisely, we use the same

method as that used in Example2 to representPXY Z. For this example, we randomly set

MZY =

(0.1604, (0.1966, 0.1054, 0.4198)), (0.1654, (0.1230, 0.4709, 0.3355)),

(0.1613, (0.0350, 0.6219, 0.0823)), (0.1504, (0.4585, 0.2504, 0.2343)),

(0.1207, (0.2443, 0.4704, 0.0701)), (0.2419, (0.2979, 0.1151, 0.4601));

MXY =

(0.2603, (0.1784, 0.3822, 0.2056)), (0.2181, (0.1538, 0.4409, 0.2255)),

(0.2356, (0.2129, 0.2684, 0.3913)), (0.2861, (0.3422, 0.2044, 0.3363)).

16

We denote the above PMF with following two matrices

A =















0.0315 0.0203 0.0056 0.0690 0.0295 0.0720

0.0169 0.0779 0.1003 0.0377 0.0568 0.0278

0.0673 0.0555 0.0133 0.0352 0.0085 0.1113

0.0446 0.0117 0.0421 0.0085 0.0260 0.0307















,

C =















0.0464 0.0335 0.0502 0.0979

0.0995 0.0962 0.0632 0.0585

0.0535 0.0492 0.0922 0.0962

0.0609 0.0392 0.0300 0.0335















. (38)

Following the same steps as those in Example 1, we obtain thath∗ = 0, which means SimY (Z →
X) holds. Furthermore, by settinge = 124×1 in (27), we obtain one possiblePX̄|Z , denoted by

matrix Q∗:

Q∗ =



























0.4979 0.1504 0.2038 0.1479

0.0148 0.3751 0.5618 0.0483

0.5210 0.4391 0.0254 0.0144

0.1302 0.0917 0.0301 0.7481

0.5638 0.2674 0.0161 0.1527

0.0261 0.0622 0.4110 0.5006



























. (39)

One can easily check thatAQ∗ = C holds. We note that, because of the lack of special data

structure and the high dimensions, it is difficult to use the mass constellation structure of [10]

to check whether SimY (Z → X) holds or not in this example.

Example 4: In this example, we consider the following PMFPXY :

PXY (x, y) =











1−α
2
, if x = y;

α
2
, if x 6= y,

andZ is generated by[X, Y] via an erasure channel with erasure probability1 − γ, i.e., Z =

(X, Y) with a probability γ and Z = φ with probability 1 − γ. It was shown in [10] that

simY (Z → X) and simX(Z → Y) hold if and only if γ ≥ 1− 2α. In the following, we use our

algorithm to verify the obtained result.

17

As above, in step 1, we computePY Z and writePY Z andPY X in matrix formA andC:

A =





(1−α)γ
2

αγ

2
0 0 1−γ

2

0 0 αγ

2
(1−α)γ

2
1−γ

2



 ,

C =





1−α
2

α
2

α
2

1−α
2



 .

In step 2, we calculate matricesA andc:

A =












































(1−α)γ
2

0 αγ

2
0 0 0 0 0 1−γ

2
0

0 (1−α)γ
2

0 αγ

2
0 0 0 0 0 1−γ

2

0 0 0 0 αγ

2
0 (1−α)γ

2
0 1−γ

2
0

0 0 0 0 0 αγ

2
0 (1−α)γ

2
0 1−γ

2

1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1













































,

c = [1− α, α, α, 1− α, 1, 1, 1, 1, 1]T .

The following steps are similar to those in Examples 1 and 2. Using our algorithm, we can

find that, for any given valuesα andγ, as long asγ ≥ 1 − 2α, h∗ = 0, and the simulatability

condition holds. We can also obtain a possible simulatability channelPX̄|Z that Eve may use,

following the same steps as in Example 1. On the other side, ifγ < 1−2α, we obtainedh∗ < 0,

and hence the simulatability condition does not hold.

V. COMPLEXITY REDUCTION

In Proposition 1, we show that different choices ofA
g will not affect the result on whether

h∗ equals zero or not. However, different choices ofA
g may affect the amount of computation

needed. Primal-dual path-following method is one of the best methods for solving LP of the

18

following form [15]:

min
t

tTb

s.t. t � 0,

Bt = d,

in which B is a matrix of sizem× n. The complexity is related to the size ofB. In particular,

in terms ofm andn, the complexity isO((nm2+n1.5m)L) [19], [20]. In LP (19) constructed in

the proof of Theorem 2,B = (I−A
g
A)T , which is ann× n matrix, and hence the complexity

is O(n3L) as mentioned in Section III.

In the following, we show that if we choose the g-inverse ofA to beA+, the Moore-Penrose

inverse, the problem size can be reduced by some further transformations. Let the SVD ofA be

UΣVT . ThenA+ = VΣ+UT . Suppose rank(Σm×n) = r and sets = n− r.We have

A
+
A = VΣ+UTUΣVT

= V





Ir 0r×s

0s×r 0s×s



VT . (40)

As discussed in the proof of Theorem 2, checking SimY (Z → X) holds or not is equivalent

to checking whether

(I− A
+
A)p � A

+c (41)

has a solution or not. We now perform some transformations on(41). First we have

I− A
+
A = V





Ir0r×s

0s×r Is



VT −V





Ir 0r×s

0s×r0s×s



VT

= V





0r×r 0r×s

0s×r I s



VT . (42)

Hence, (41) is equivalent to

V





0r×r 0r×s

0s×r I s



VTp � A
+c. (43)

V can be split into four blocks as

V =





Vr×r Vr×s

Vs×r Vs×s



 . (44)

19

We usew to denote then× 1 column vectorVTp, i.e.,

w = VTp. (45)

Note thatp ↔ w is a reversible bijection, sinceVT is a full rank matrix.

Then (43) is equivalent to




0r×r Vr×s

0s×r Vs×s









wr×1

ws×1



 � A
+c, (46)

which is equivalent to




Vr×s

Vs×s





[

ws×1

]

� A
+c. (47)

Hence, checking whether (41) has a solution or not is equivalent to checking whether (47) has a

solution or not. To check whether (47) has a solution or not, we can construct a new LP for (47)

in the same way as in the proof in Theorem 2. However, the size of the newly constructed LP

will be smaller than that of (19) constructed in the proof of Theorem 2. The complexity for

the newly constructed LP will beO((ns2 + n1.5s)L). Sinces is always less than or equal ton

(sometimes,s can be much less thann) and thatL doesn’t change, compared with the LP (19),

the computational complexity for this new LP will be reduced.

VI. CONCLUSION

In this paper, we have proposed an efficient algorithm to check the simulatability condition,

an important condition in the problems of secret key generation using a non-authenticated public

channel. We have also proposed a simple and flexible method tocalculate a possible simulata-

bility channel if the simulatability condition holds. The proposed algorithms have polynomial

complexities. We have presented numerical examples to showthe efficiency of the protocol.

Finally, we have proposed an approach to further reduce the computational complexity.

APPENDIX A

FARKAS’ L EMMA

There are several equivalent forms of the Farkas’ lemma [12]. Here, we state a form that will

be used in our proof.

Lemma 1. (Farkas’ Lemma [12]) LetB be a matrix, andb be a vector, then the system specified

byBp � b, has a solutionp, if and only iftTb ≥ 0 for each column vectort � 0 with BTt = 0.

20

REFERENCES

[1] U. Maurer, “Secret key agreement by public discussion from common information,”IEEE Trans. Inform. Theory, vol. 39,

pp. 733–742, May 1993.

[2] R. Ahlswede and I. Csisźar, “Common randomness in information theory and cryptography, Part I: Secret sharing,”IEEE

Trans. Inform. Theory, vol. 39, pp. 1121–1132, July 1993.

[3] I. Csisźar and P. Narayan, “Common randomness and secret key generation with a helper,”IEEE Trans. Inform. Theory,

vol. 46, pp. 344–366, Mar. 2000.

[4] S. Nitinawarat, C. Ye, A. Barg, P. Narayan, and A. Reznik,“Secret key generation for a pairwise independent network

model,” IEEE Trans. Inform. Theory, vol. 56, pp. 6482–6489, Dec. 2010.

[5] C. Chan and L. Zheng, “Network coding for secret key agreement,” IEEE Trans. Inform. Theory, 2010. Submitted.

[6] I. Csisźar and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE Trans. Inform. Theory, vol. 50, pp. 3047–3061,

Dec. 2004.

[7] C. Ye and P. Narayan, “Secret key and private key constructions for simple multiterminal source models,”IEEE Trans.

Inform. Theory, vol. 58, pp. 639–651, Feb. 2012.

[8] U. Maurer, “Information-theoretically secure secret-key agreement by not authenticated public discussion,” inAdvances in

CryptologyEurocrypt97, pp. 209–225, Springer, 1997.

[9] U. M. Maurer and S. Wolf, “Secret key agreement over a non-authenticated channel - Part I: Definitions and bounds,”

IEEE Trans. Inform. Theory, vol. 49, pp. 822–831, Apr. 2003.

[10] U. M. Maurer and S. Wolf, “Secret key agreement over a non-authenticated channel - Part II: The simulatability condition,”

IEEE Trans. Inform. Theory, vol. 49, pp. 832–838, Apr. 2003.

[11] U. M. Maurer and S. Wolf, “Secret key agreement over a non-authenticated channel - Part III: Privacy amplification,”

IEEE Trans. Inform. Theory, vol. 49, pp. 839–851, Apr. 2003.

[12] A. Schrijver,Theory of linear and integer programming. New York: John Wiley & Sons, 1998.

[13] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” inProceedings of the sixteenth annual ACM

symposium on Theory of computing, pp. 302–311, ACM, 1984.

[14] C. C. Gonzaga,An algorithm for solving linear programming problems inO(n3L) operations. New York: Springer, 1989.

[15] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali,Linear programming and network flows. New York: John Wiley & Sons,

2011.

[16] C. R. Rao and S. K. Mitra,Generalized inverse of matrices and its applications. New York: John Wiley & Sons, 1971.

[17] C. R. Rao, “Calculus of generalized inverses of matrices Part I: General theory,”Sankhy ā: The Indian Journal of Statistics,

Series A, pp. 317–342, 1967.

[18] H.-M. Möller, Exact Computation of the Generalized Inverse and the Least-squares Solution. Techn. Univ., Fak. für

Mathematik, 1999.

[19] R. D. Monteiro and I. Adler, “Interior path following primal-dual algorithms. Part I: Linear programming,”Mathematical

Programming, vol. 44, pp. 27–41, 1989.

[20] R. D. Monteiro and I. Adler, “Interior path following primal-dual algorithms. Part II: Convex quadratic programming,”

Mathematical Programming, vol. 44, pp. 43–66, 1989.

21

