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Abstract

Simulatability condition is a fundamental concept in stindykey generation over a non-authenticated
public channel, in which Eve is active and can intercept, ifyaahd falsify messages exchanged over the
non-authenticated public channel. Using this conditiomukér and Wolf showed a remarkable “all or
nothing” result: if the simulatability condition does nailt, the key capacity over the non-authenticated
public channel will be the same as that of the case with a ypm&sie, while the key capacity over the
non-authenticated channel will be zero if the simulatabitiondition holds. However, two questions
remain open so far: 1) For a given joint probability mass fiomc(PMF), are there efficient algorithms
(polynomial complexity algorithms) for checking whethéetsimulatability condition holds or not?;
and 2) If the simulatability condition holds, are there éffit algorithms for finding the corresponding
attack strategy? In this paper, we answer these two opertigpeaffirmatively. In particular, for a
given joint PMF, we construct a linear programming (LP) peob and show that the simulatability

condition holdsf and only if the optimal value obtained from the constructed LP is zeusthiermore,
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we construct another LP and show that the minimizer of thelywewnstructed LP is a valid attack

strategy. Both LPs can be solved with a polynomial compjexit
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I. INTRODUCTION

The problem of secret key generation via public discussioteu both source and channel
models has attracted significant research interests [L]-{Inder the source model, users observe
correlated sources generated from a certain joint proibabilass function (PMF), and can
discuss with each other via a noiseless public channel. Asudsion over the public channel
will be overheard by Eve. Furthermore, the public channel egher be authenticated or non-
authenticated. An authenticated public channel implias Bve is a passive listener. On the other
hand, a non-authenticated public channel implies that E\ative and can intercept, modify or
falsify any message exchanged through the public channel.

Clearly, the secret key rate that can be generated usingam@uthenticated public channel
is no larger than that can be generated using the authedipatic channel. In [8]-[11], Maurer
and Wolf introduced a concept of simulatability conditioimi§ condition will be defined precisely
in the sequel) and established a remarkable “all or nothiaglt. In particular, they showed that
for the secret key generation via a non-authenticated pubAnnel with two legitimate terminals
in the presence of an active adversary: 1) if the simulatglmbndition holds, the two legitimate
terminals will not be able to establish a secret key, and é¢he key capacity is 0; and 2) if
the simulatability condition does not hold, the two legiita terminals can establish a secret
key and furthermore the key capacity will be the same as th#teocase when Eve is passive.
Intuitively speaking, if the simulatability condition ks, from its own source observations, Eve
can generate fake messages that are indistinguishablenfressages generated from legitimate
users. On the other hand, if the simulatability conditiomsloot hold, the legitimate users will
be able to detect modifications made by Eve.

It is clear that the simulatability condition is a fundanardoncept for the key generation via
a non-authenticated public channel, and hence it is impbttadesign efficient algorithms to
check whether the simulatability condition holds or notifgsideas from mechanical models,
[10] made significant progress in designing efficient aldponis. In particular, [10] proposed
to represent PMFs as mass constellations in a coordinateslamwed that the simulatability
condition holds if and only if one mass constellation can f@dformed into another mass
constellation using a finite number of basic mass operatfunshermore, [10] introduced another

notion of one mass constellation being “more centered” #rather constellation and designed a



low-complexity algorithm to check this “more centered” ddion. For some important special
cases, which will be described precisely in Section I, [$8pwed that the “more centered”
condition is necessary and sufficient for the mass consteildransformation problem (and
hence is necessary and sufficient condition for the simiilétia condition for these special
cases). However, in the general case, the “more centereaditcan is a necessary but not
sufficient condition for the mass constellation transfdiora problem. Hence, whether there
exists efficient algorithms for the mass constellation 4famation problem (and hence the
simulatability condition) in the general case is still arenpguestion.

As the result, despite the significant progress made in fh@]following two questions remain
open regarding the simulatability condition for the geheese:

1) For a given joint PMF, are there efficient algorithms (pagnial complexity algorithms)

for checking whether the simulatability condition holdsrmt?
2) If the simulatability condition holds, are there effidiealgorithms for finding the corre-
sponding Eve’s attack strategy?

In this paper, we answer these two open questions affirniative

To answer the first open question, we construct a linear progring (LP) problem and
show that the simulatability condition holds and only if the optimal value obtained from
this LP is zero. We establish our result in three main steps.fWgt show that, after some
basic transformations, checking whether the simulatghbtiondition holds or not is equivalent
to checking whether there exists a nonnegative solution spexially constructed system of
linear equations. We then use a basic result from linearbadgéo show that whether there
exists a nonnegative solution to the constructed systemnefil equations is equivalent to
whether there is a solution (not necessarily honnegatve) telated system of inequalities or
not. Finally, we use Farkas’ lemma [12], a fundamental teisulinear programming and other
optimization problems, to show that whether the system efjualities has a solution or not
is equivalent to whether the optimal value of a speciallystarcted LP is zero or not. Since
there exists polynomial complexity algorithms for solvibB problems [13]-[15], we thus find
a polynomial complexity algorithm for checking the simalaility condition for a general PMF.

To answer the second open question, we construct anothend Rreow that the minimizer
of this LP is a valid attack strategy. The proposed approacteiy flexible in the sense that one

can simply modify the cost function of the constructed LP bdain different attack strategies.

3



Furthermore, the cost function can be modified to satisfyouardesign criteria. For example,
a simple cost function can be constructed to minimize thewsrhof modifications Eve needs
to perform during the attack. All these optimization prabgewith different cost functions can
be solved with a polynomial complexity.

The remainder of the paper is organized as follows. In Sedtiowve introduce some prelim-
inaries and the problem setup. In Section Ill, we presentaain results. In Section IV, we use
numerical examples to illustrate the proposed algoritmSéction V, we present an approach

to further reduce the computational complexity. In Secdnwe offer our concluding remarks.

[I. PRELIMINARIES AND PROBLEM SETUP

LetX ={1,---,|X|}, Y ={1,---,|Y|} andZ = {1,--- , | Z]|} be three finite sets. Consider
three correlated random variableX Y, 7), taking values fromX¥ x ) x Z, with joint PMF

Pxy 7, the simulatability condition is defined as follows:

Definition 1. ( [8]) For a given Pxy, we sayX is simulatable byZ with respect toY’, denoted
by Sim-(Z — X), if there exists a conditional PMPg , such thatPy x = Pyx, with
Pyx(y, z) :ZPYZ(%Z) - Pxiz(z]2), 1)

zEZ
in which Py x and Py, are the joint PMFs of(Y, X) and (Y, Z) under Px, , respectively.

One can also define SimiZ — Y) in the same manner. This concept of simulatability,
first defined in [8], is a fundamental concept in the problensefret key generation over a
non-authenticated public channel [9]-[11], in which twomeals Alice and Bob would like
to establish a secret key in the presence of an adversary Tese three terminals observe
sequenceX”, YV and Z" generated according to

N
PXNYNZN($N> ?JN> ZN) = H PXYZ(xia Yi, Zi)' 2)

=1
Alice and Bob can discuss with each other via a pubbn-authenticated noiseless channel,

which means that Eve not only has full access to the chanretdmu also interrupt, modify
and falsify messages exchanged over this public channel.|digest key rate that Alice and

Bob! can generate with the presence of the active attacker istetbras S*(X;Y||Z). Let

Please see [9]-[11] for precise definitions.



S(X;Y||Z) denote the largest key rate that Alice and Bob can generate ke is passive, i.e.,
when the public channel is authenticated. Clea$liX; Y ||Z) > S*(X;Y||Z). Although a full
characterization ob(X; Y||Z) is unknown in general, [9] established the following renadulie

“all or nothing” result:

Theorem 1. ( [9]) If Simy(Z — X) or Simx(Z — Y), thenS*(X;Y||Z) = 0. Otherwise,
51 (X;Y|2) = 5(X;Y]|Z).

This significant result implies that, if the simulatabiligpndition does not hold, one can
generate a key with the same rate as if Eve were passive. Quilteehand, if the simulatability
condition holds, the key rate will be zero. Intuitively sgesy, if Simy(Z — X) holds, then
after observingZ", Eve can generat& ™ by passingZ" through a channel defined by ,.
Then (XY Y") has the same statistics a5, Y"). Hence by knowing only", Bob cannot
distinguishX”™ and X, and hence cannot distinguish Alice or Eve.

As mentioned in the introduction, [10] has made importardgpess in developing low-
complexity algorithms for checking whether Sii¥ — X) (or Simy(Z — Y)) holds or not.
In particular, [10] developed an efficient algorithm to ckex related condition called “more
centered” condition. Whefy| = 2, that is whenY is a binary random variable, this “more
centered” condition is shown to be necessary and suffican®iim, (Z — X). Hence, [10] has
found an efficient algorithm to check SitZ — X)) for the special case df being binary (the
algorithm is also effective in checking SilZ — Y) when X is binary). However, whert”
is not binary, the “more centered” condition is only a neaegsondition for Sin(Z — X).
Hence, two questions remain open:

1) For a general giverPyy , are there efficient algorithms (polynomial complexity alg

rithms) for checking whether Sip{Z — X)) (or Simyx(Z — Y)) holds or not?

2) If Simy(Z — X) (or Simy(Z — Y')) holds, are there efficient algorithms for finding the

corresponding’s|, (or Py|2)?

In this paper, we answer these two open questions affirniative

Notations: Throughout this paper, we use boldface uppercase lettedetote matrices,
boldface lowercase letters to denote vectors. We alsa peeandI, unless stated otherwise, to
denote all ones column vector, all zeros column vector aeddantity matrix, respectively. In

addition, we denote the vectorization of a matrix by MecSpecifically, for anm x n matrix
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A, Vedq(A) is anmn x 1 column vector:

" @)

VeC(A) = [a'lla"' yAmly " 5 Alny 5 Gmn

inwhich[-]7 is the transpose of the matrix. And vice versa can be donk byReshap@/ec(A), [m, n)).
We useA ® B to denote the Kronecker product of matricksand B. Specifically, assum@
is anm x n matrix, then
anB -+ a1,B
A®B= A : (4)
amB - an,B

All matrices and vectors in this paper are real.

. MAIN RESULTS

In this paper, we focus on SinjZ — X). The developed algorithm can be easily modified

to check Siiy(Z — Y'). We rewrite (1) in the following matrix form
C=AQ, (5)

in which C = [¢;5] is a|Y| x |X| matrix with ¢;; = Pyx(,7), A = [a;] is a|Y| x | Z| matrix
with ag = Pyz(i, k), andQ = [q;] is a|Z] x |X| matrix with q; = Px|,(j|k) if such Pg
exists.
Checking whether Sign(Z — X) holds or not is equivalent to checking whether there exists
a transition matrixQ such that (5) holds. A]) is a transition matrix, its entrieg,;s must satisfy
r; = 0, Vke[l:|Z]],jel:|X]] (6)

X
> a =1, vk € [1:]|2]. (7)

We note that ifg;;s satisfy (6) and (7), they will automatically satisfy; < 1. Hence, we don't
need to state this requirement here.

If there exists at least one transition mattxsatisfying (5), (6) and (7) simultaneously, we
can conclude that the simulatability condition $if(@ — X ) holds.

(7) can be written in the matrix form
1z = Qlixxa, (8)
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Then, (5) and (8) can be written in the following compact form

Vec(CT)
121
alll 0,121 a1|g|I
ajypl - ajypl ayz/1
= 1 0 0 Vec(Q")
0 1
0o . 0 1 |
ARI
= Vec(Q), 9
I Iz®1

in which the sizes fol, 1 and0 are |X| x |X], 1 x |X| and1 x |X|, respectively.

For notational convenience, we define

Vec(CT

cs (C) , (20)
11211
A®I

A2 @ (11)
Iz®1

a2 Ve(Q"). (12)

From (9), it is clear that is anm x 1 vector, A is anm x n matrix, andq is ann x 1 vector,
in which
m = |Y||X]+|Z], (13)
n = |Z||X|. (14)

With these notation and combining (9) with (6), the origipabblem of checking whether
Simy (Z — X)) holds or not is equivalent to checking whether there existsnegativesolutions

q for the system

Aq = c. (15)



In the following, we check whether there exists at least anegative solution for the system
defined by (15). There are two main steps: 1) whether the mysteonsistent or not; 2) if it is
consistent, whether there exists a nonnegative solutiarobrChecking the consistency of (15)
is straightforward: a necessary and sufficient conditianafeystem of non-homogenous linear

equations to be consistent is
Rank'A) = Rank (A|c)), (16)

where (A|c) is the augmented matrix ofi. If (16) is not satisfied, it can be concluded that
Simy (Z — X) does not hold. If (16) is satisfied, we need to further checktivr there exists
a nonnegative solution to (15) or not.

To proceed further, we will need the following definition afrgeralized inverse (g-inverse) of

a matrix G.

Definition 2. ( [16]) For a givenm x n real matrix G, ann x m real matrix G is called a
g-inverse ofG if
GGG =G.

The g-inverseGY is generally not unique (Ih = m and G is full rank, thenG?Y is unique
and equal to the inverse matri®—!). A particular choice of g-inverse is called the Moore-
Penrose pseudoinverse™, which can be computed using multiple different approaciase
approach is to use the singular value decomposition (SVpBWD, for a givenG and its SVD

decomposition
G =UxV’, (17)
then,G* can be obtained as
Gt =Vvxtu’, (18)

in which X% is obtained by taking the reciprocal of each non-zero eleroarthe diagonal of
the diagonal matrix, leaving the zeros in place. One can easily check that theré4Benrose
pseudoinversé&™ obtained by SVD satisfies the g-inverse matrix definition hadce is a valid
g-inverse.

With the concept of g-inverse, we are ready to state our nesalt regarding the first open

guestion.



Theorem 2. Let AY be any given g-inverse df (e.g., it can be chosen as the Moore-Penrose
pseudoinversé\*), and h* be obtained by the following LP

h* = mtin{tTAgc}, (19)
S. t. t =0,
(I—-AA)"t = 0.

Then Sim(Z — X) holds,if and only if ~* = 0 and (16) holds.

Proof: If (16) does not hold, then there is no solution to (15), andceeSiny- (7 — X)
does not hold.
In the remainder of the proof, we assume that (16) holds.@) {olds, the general solution
to (15) can be written in the following form (see, e.g., Theeor2 a.(d) of [17])

q= A% + (AYA — T)p, (20)

in which AY can be any given g-inverse @f, andp is an arbitrary length vector.
As the result, the problem of whether there exists a honnegsblution to (15) (i.e.q > 0)

is equivalent to the problem of whether there exists a swiytifor the following system defined
by

(I-A%A)p = Alc. (21)
To check whether the system defined by (21) has a solutionse&arkas’ lemma, a fundamental
lemma in linear programming and related area in optimizatieor completeness, we state the

form of Farkas’ lemma used in our proof in Appendix A. To usekiBa’ lemma, we first write

a LP related to the system defined in (21)
h* = mtin{tTAgc},
st.  t>0,
(I-A%A)t=0.
The above LP is always feasible sinte= 0 is a vector that satisfies the constraints, which

results int” A%c = 0. Hence the optimal valug* < 0. Using Farkas’ lemma, we have that (21)

has a solutionf and if h* = 0. More specifically, ifh* = 0, then there exists at least a



solutionp for (21), which further implies that there is a nonnegatigkigon to (15), and hence
Simy(Z — X)) holds. On the other hand, i < 0, then there is no solutiop for (21), which
further implies that there is no nonnegative solution to)(&5d hence Sign(Z — X) does not
hold. u
As mentioned above, if Rafk) = m = n holds, thenA9 = A~! is unique. For other cases,
AY might not be unique. One may wonder whether different crsoafe\? will affect the result

in Theorem 2 or not. The following proposition answers thigsfion.
Proposition 1. Different choices of\Y will not affect the result on whethér* equals O or not.

Proof: Let Ay and AJ be two different g-inverses of, and leth; and hj be the values
obtained using\y and AJ in (19) respectively. It suffices to show that’if = 0, thenh} = 0.
Assuming thath; = 0, then there exists a vecter; satisfying(I — AYA)p; < Afc, we will
show that there exists a vectps satisfying(I — AJA)p, < Afc, which then impliesh; = 0.
First, we know that\{c andAjc are two solutions to the systefng = ¢, which can be easily
verified by settinghA? asA{ and A in (20) respectively and setting = 0. This implies that
A(Ajc — Afc) =0, (22)
and henceljc — Afc is a solution to the systerhq = 0.

Second, we know that any solution to the systémp = 0 can be written in the form{I —

A9A)p [17]. As Ajc — Afc is a solution to systemhq = 0, there must exist @, such that
(I—AJA)py = Ac — Afc. (23)

In addition, it is easy to check th&f — AJA)p; + (I — AJA)p, is also a solution to the system
Aq = 0. Thus, there exists p, such that

(I—-ASA)py = (I—AJA)p: + (I - AJA)p,. (24)
Plugging (23) into (24), we have
(I-AJA)p, = (I-AfA)p1+ (I—AJA)py
= (I—AJA)p, + Alc — Alc (25)

=< Ajc, (26)
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in which the last inequality comes from the assumption tiat AJA)p; < AYc. Hence, we
have found gp,, such thatI — AJA)p, < Afc. This implies thath} = 0.
|

Remark 1. The proposed algorithm for checking whether S{ii — X) holds or not has

a polynomial complexity. Among all operations requiredmpaiting the g-inverse and solving
the LP defined by19) require most computations. The complexity to obtaiis of order
O(n?) [18]. Furthermore, there exists polynomial complexity @ithms to solve the LP defined
by (19). For example, [14] provided an algorithm to solve LP usifign>L) operations, where
L is number of binary bits needed to store input data of the ljgrmb(one can refer to Chapter
8 in [15] for more details about the complexity of algorithfies solving LP). Hence, the total
operations of our algorithm for checking SitZ — X) is of order O(n®L). In addition, we
note that we can terminate the LP algorithm earlier once tihgoathm finds at such that
tA9c < 0, as this indicates thak* < 0. This can potentially further reduce the computational

complexity.

Thus, we can conclude that the proposed algorithm can chéelther Sim(Z — X) holds
or not with a polynomial complexity. Algorithm 1 summarizége main steps involved in our
algorithm. In the following algorithm, we use Res0 to denote that Sim(Z — X) does not
hold and Res= 1 to denote that Sim(Z — X)) holds.

In the following, we provide our answer to the second operstiom, i.e., if Sim- (7 — X)

holds, how to findPx,, efficiently.

Theorem 3. Let e be anyn x 1 vector withe > 0, and q* be the obtained from the following
LP:

min f(q) = e'q, (27)

q
s.t. q>=0,

Aq =c.
If Simy(Z — X) holds, thenQ* = Reshapgy*, [|X|,|Z]|])" is a valid choice forPy,,.

Proof: By assumption, Sim(Z — X)) holds, which implies that the system defined by (15)

11



Algorithm 1 Checking Sim(Z — X))
1: Input: PMF Pxy z;

2: Initiate:

3:  a. Calculate matriceA andC,;

4:  b. Construcic and A using (10) and (11) respectively;
5. C. Set Res=0;

6: if (RankA) # Rank'A|c)) then

7: break;

8: else

o: d. Find aAY, and calculaté\fc, I — A9A;
10: e. Solve LP (19) and obtain*;

11: if (h* ==0) then

12: Res=1;
13: else

14: break;
15: end if

16: end if

17: Output: Res.

is consistent and it has nonnegative solutions. Hence,dlf@ning LP is feasible

min f(q) = e’q, (28)
q
s.t. q>=0,
Aq=c,

wheree > 0. Hence, the minimizery* is nonnegative and satisfiegsq* = c. We can then

reshapeyg” into matrix Q* (see (12)).Q* is a valid choice forPg . [ |

Remark 2. Since finding a suitabl#’s,, using our approach is equivalent to solving a LP, the

12



complexity is of polynomial order.

Remark 3. For a given distributionPyy 7, there may be more than one possiltg,, such

that (1) holds. Different choices o in (27) give different values foPg ;.

Remark 4. The objective functiorf(q) can be further modified to satisfy various design criteria

of Eve. For example, let
q = Ved Q[di,1")
with G,; = Px|z(k|j), then setting
fl@) =lla—all;
will minimize the amount of changes in the conditional PMRhe [, norm sense. This is a

guadratic programming, which can still be solved efficigntl

IV. NUMERICAL EXAMPLES

In this section, we provide several examples to illustrategroposed algorithm. We also use
some of the examples used in [10] to compare our proposedithigiowith the method in [10].
Example 1: Let Pxy, with rangesX = {x1, 22}, Y = {y1,y2} and Z = {z, 25, 23} be:

Pxyz(x1,91,21) = 6/100,
Pxyz(x2,y1,21) = 4/100,
Pxyz(z1,91, 22) = 9/100,
Pxyz(x2,y1,22) = 6/100,
Pxyz(x1,91,23) = 15/100,
Pxyz(x9,y1,23) = 10/100,
Pxyz(x1,y9,21) = 36/100,
Pxyz(x2,ys,21) = 4/100,
Pxyz(21,y2, 22) = 9/100,
Pxyz(x2,ys, 22) = 1/100,
Pxyz(x1,Y2,23) = 0,

Pxy (2, Y2, 23) = 0.

13



To use our algorithm, we have the following steps:

Step 1:ComputePy, and Py x, and write them in the matrix forrA and C:

0.1 0.15 0.25 0.3 0.2
A= ,C= . (29)
04 01 0 0.45 0.05

Step 2:ConstructA andc using (10) and (11) respectively:

(01 0 015 0 025 0 |
0 01 0 015 0 025
04 0 01 0 0 0
A= 0 04 0 01 0 0 |, (30)
1 1.0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1]
c =0.3,0.2,0.45,0.05, 1,1, 1]". (31)
Step 3:Check the ranks of\ and (A|c):
We get
Rank’A) = Rank (A|c)) = 5. (32)

Step 4:Choose the g-inverse to be the Moore-Penrose pseudointersed calculaté)h ¢ and

I- ATA:

[ 0.9762 |
0.0238
0.5952

Afc = , (33)

0.4048

0.4524

| 0.5476

I-ATA =

[ 0.0238 —0.0238 —0.0952 0.0952 0.0476 —0.0476-
—0.0238 0.0238 0.0952 —0.0952 —0.0476 0.0476
—0.0952 0.0952 0.3810 —0.3810 —0.1905 0.1905
0.0952 —0.0952 —0.3810 0.3810 0.1905 —0.1905
0.0476 —0.0476 —0.1905 —0.1905 0.0952 —0.0952
—0.0476 0.0476 0.1905 —0.1905 —0.0952 0.0952

(34)
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Step 5:Solve LP (19). Using the above data, we obtgin= 0, which implies that Sim(Z — X)
holds.
Step 6:Obtain a possiblePs,,. We construct the LP defined in (27) with= [2,2,2,1,1, 17,
and get

Q' =[1,0,1/2,1/2,1/2,1/2]".
Thus the simulatability channel is

1 0
Priz=11/2 1/2 |, (35)
1/2 1/2
which is consistent with the result obtained from the cigtierproposed in [10]. If we set =
[1,1,1,1,1,1)F, we get
q* = [0.9762,0.0238, 0.5952, 0.4048, 0.4524, 0.5476]",

which implies that another valid choice is

0.9762 0.0238
Pgiz = | 0.5962 0.4048 | . (36)
0.4524 0.5476

Example 2: In this example, we consider a case in whichis not binary. To represent the

joint PMF concisely, we follow the same approach in [10] asé u

Myy = (Py(u), (Pyjv=u(v1), -+, Prjo=u(vjy-1))Jucu
to represent the joint PMP;,. For this example, we set
Mzy = (0.3,(0,0)),(0.3,(0.5,0)),
(0.3,(0.25,V/3/4)), (0.1, (0.25,V3/12)),
Myy = (0.3,(0.25,0)),(0.3,(0.375,V3/8)),
(0.3,(0.125,4/3/8))(0.05, (0.24, v/3/12))

(0.05, (0.26,v/3/12)). (37)

15



In step 1, we writePy, and Py x in the matrix formA andC:

0 0.1500 0.0750 0.0250
A= 0 0 0.1299 0.0144 |,
0.3000 0.1500 0.0951 0.0606

0.0750 0.1125 0.0375 0.0120 0.0130
C = 0 0.0650 0.0650 0.0072 0.0072
0.2250 0.1225 0.1975 0.0308 0.0298

To make the paper concise, we do not list the valued oé and following steps in details.
Steps2, 3,4 are similar to those in Example But in Step5, we obtain thath* < 0, which
indicates that Sim(Z — X) does not hold. This result is also consistent with the caictu
in [10], which is obtained by an analysis that exploits thecsgl mass constellation structure of
the data. We note that the mechanical model based “morerediteriterion in [10] does not
work for this example, a¥" is not binary anymore, although the mass constellatioressmtation
of PMFs can still be used to exploit the special structure thia set of data has.

Next, we provide an example for which the mass constellapi@sentation does not work
while our algorithm can easily obtain the answers.

Example 3: In this example, we consideX, Y, Z with larger dimensions, in particular, we
set|X| =4, |Y| =4, and|Z| = 6. Again to represent the joint PMF concisely, we use the same

method as that used in Exam@éeo representPyxy . For this example, we randomly set

Mzy =
(0.1604, (0.1966, 0.1054, 0.4198)), (0.1654, (0.1230, 0.4709, 0.3355)),
(0.1613, (0.0350, 0.6219, 0.0823)), (0.1504, (0.4585, 0.2504, 0.2343)),
(0.1207, (0.2443, 0.4704, 0.0701)), (0.2419, (0.2979, 0.1151, 0.4601));
Mxy =
(0.2603, (0.1784, 0.3822, 0.2056)), (0.2181, (0.1538, 0.4409, 0.2255)),

(0.2356, (0.2129, 0.2684, 0.3913)), (0.2861, (0.3422, 0.2044, 0.3363)).
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We denote the above PMF with following two matrices

[ 0.0315 0.0203 0.0056 0.0690 0.0295 0.0720 |
0.0169 0.0779 0.1003 0.0377 0.0568 0.0278
0.0673 0.0555 0.0133 0.0352 0.0085 0.1113
| 0.0446 0.0117 0.0421 0.0085 0.0260 0.0307 |

[ 0.0464 0.0335 0.0502 0.0979
0.0995 0.0962 0.0632 0.0585
C = ) (38)
0.0535 0.0492 0.0922 0.0962

| 0.0609 0.0392 0.0300 0.0335

Following the same steps as those in Example 1, we obtairkthat0, which means Sim(Z —
X)) holds. Furthermore, by setting= 14, in (27), we obtain one possiblBy,, denoted by
matrix Q*:

[ 0.4979 0.1504 0.2038 0.1479 |
0.0148 0.3751 0.5618 0.0483
Q = 0.5210 0.4391 0.0254 0.0144 . (39)
0.1302 0.0917 0.0301 0.7481
0.5638 0.2674 0.0161 0.1527

| 0.0261 0.0622 0.4110 0.5006

One can easily check th#tQ* = C holds. We note that, because of the lack of special data
structure and the high dimensions, it is difficult to use thessnconstellation structure of [10]
to check whether Sign(Z — X') holds or not in this example.

Example 4: In this example, we consider the following PM#Fy

l—« H .
=, ifr=y

oL itz #y,

and Z is generated byX, Y] via an erasure channel with erasure probability v, i.e., Z =

PXY(xvy) =

(X,Y) with a probabilityy and Z = ¢ with probability 1 — ~. It was shown in [10] that
simy(Z — X) and sinx(Z — Y) hold if and only ify > 1 — 2«. In the following, we use our

algorithm to verify the obtained result.
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As above, in step 1, we compufg-, and write Py, and Py x in matrix form A and C:

[ -0y oy 1
A = 2 2 0 0 2
0 0 « (l-a)y 1=y |’
i 2 2 2
et [}
C . 2 2
o l1—o
| 2 2

In step 2, we calculate matricés and c:

A —

(Len g @990 0 0 L2 0|
0 o290 0 0 0 52
0 0 002l o g
0 0 000% o U2 o L2
1 1 0000 0 0 0 0],
0 0 1100 0 0 0 0
0 0 0011 0 0 0 0
0 0 0000 1 1 0 0

0 0 0000 0O 0 1 1

c=[l-a,aal—a11,1,11]".

The following steps are similar to those in Examples 1 and ging) our algorithm, we can
find that, for any given values and~, as long asy > 1 — 2a, h* = 0, and the simulatability
condition holds. We can also obtain a possible simulatgbthannel P; , that Eve may use,
following the same steps as in Example 1. On the other sidexifl — 2«, we obtainedh* < 0,

and hence the simulatability condition does not hold.

V. COMPLEXITY REDUCTION

In Proposition 1, we show that different choices &f will not affect the result on whether
h* equals zero or not. However, different choicesAdf may affect the amount of computation

needed. Primal-dual path-following method is one of thet Ibesthods for solving LP of the
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following form [15]:

st. t=o0,

in which B is a matrix of sizen x n. The complexity is related to the size Bf. In particular,
in terms ofm andn, the complexity iSO ((nm?+n'5m)L) [19], [20]. In LP (19) constructed in
the proof of Theorem 2B = (I — A9A)7, which is ann x n matrix, and hence the complexity
is O(n®L) as mentioned in Section IIl.

In the following, we show that if we choose the g-inversedofo be A+, the Moore-Penrose
inverse, the problem size can be reduced by some furthesferamnations. Let the SVD ok be
UXVT. ThenAt = VE+UT. Suppose rank,,.,,) = r and sets = n — r.We have

ATA = vtu'uzv”
IT 07‘ S
=V VT, (40)
OSXT OSXS
As discussed in the proof of Theorem 2, checking y3ith — X') holds or not is equivalent

to checking whether

I-ATA)p=<A'c (41)
has a solution or not. We now perform some transformationgah First we have
L0, L. 0yxs
I-ATA=V v —v “lvT
_OSXT IS OSXTOSXS
O?“ T OT’ S
=v| 7TV (42)
OSXT IS
Hence, (41) is equivalent to
O?“ s O?“ S
v T T vTp < Ate. (43)
OSXT |S
V can be split into four blocks as
VT’ T VT’ S
v=| 7T (44)
VSXT VSXS
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We usew to denote the: x 1 column vectorV7p, i.e.,
w = VTp. (45)

Note thatp <+ w is a reversible bijection, sinc¥” is a full rank matrix.

Then (43) is equivalent to

07“ T VT’ S WT’
T < Ate, (46)
Os><r Vs><s Wiex1
which is equivalent to
V?" S
" [ Wt ] < A'c. (47)
VSXS

Hence, checking whether (41) has a solution or not is eqemidb checking whether (47) has a
solution or not. To check whether (47) has a solution or netcan construct a new LP for (47)
in the same way as in the proof in Theorem 2. However, the dizbeonewly constructed LP
will be smaller than that of (19) constructed in the proof dfebrem 2. The complexity for
the newly constructed LP will b&((ns* + n'®s)L). Sinces is always less than or equal to
(sometimess can be much less tharn and thatl. doesn’t change, compared with the LP (19),

the computational complexity for this new LP will be reduced

VI. CONCLUSION

In this paper, we have proposed an efficient algorithm to lchiee simulatability condition,
an important condition in the problems of secret key gemaraising a non-authenticated public
channel. We have also proposed a simple and flexible methodltalate a possible simulata-
bility channel if the simulatability condition holds. Thegposed algorithms have polynomial
complexities. We have presented numerical examples to ghewefficiency of the protocol.

Finally, we have proposed an approach to further reduce dhgpuatational complexity.

APPENDIX A

FARKAS’ L EMMA

There are several equivalent forms of the Farkas’ lemma He&le, we state a form that will

be used in our proof.

Lemma 1. (Farkas’ Lemma [12]) LeB be a matrix, ant be a vector, then the system specified
by Bp = b, has a solutiorp, if and only ift”b > 0 for each column vectar = 0 with BYt = 0.
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