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Superposition Coding is Almost Always Optimal
for the Poisson Broadcast Channel

Hyeji Kim*, Benjamin Nachmahnand Abbas El Gamal

Abstract

This paper shows that the capacity region of the contindimos-Poisson broadcast channel is achieved via supeigositi
coding for most channel parameter values. Interestingly,dhannel in some subset of these parameter values doeglong b
to any of the existing classes of broadcast channels forwiperposition coding is optimal (e.g., degraded, lessynonore
capable). In particular, we introduce the notion of effesli less noisy broadcast channel and show that it impliss feisy but
is not in general implied by more capable. For the rest of th@noel parameter values, we show that there is a gap between
Marton’s inner bound and the UV outer bound.

I. INTRODUCTION

The continuous-time Poisson channel is a canonical modtieopoint to point optical communication channel in the low
power regime [1-3]. The capacity of this channel was esthbll using different approaches by Kabanov [4], Davis [BY a
Wyner [6, 7]. In particular, Wyner [6, 7] established the aeity using an elementary method in which the capacity isvsho
to be the the limit of the capacity of a certain memorylesabjirchannel. Wyner's approach spurred several generializat
to multiple user Poisson channels. In [8] Lapidoth and Shas@blished the capacity region of the Poisson multigleeas
channel. In [9], Lai, Liang, and Shamai studied the Poissterference channel. In [10], Bross, Lapidoth, and Shanoalied
the Poisson channel with side information at the transmitte [11], Lapidoth, Telatar, and Erbanke studied the Rwiss
broadcast channel and established the condition undethwh& channel is degraded; hence the capacity region is\echie
using superposition coding [12].

In this paper, which is an expanded and a more complete veddifil 3], we show that for the Poisson broadcast channel,
superposition coding is optimal much beyond the parameteges for which the channel is degraded. We consider the 2-
receiver continuous-time Poisson broadcast channel (PdBicted in Figure 1. The channel input sigid&(t) € [0,1], ¢ > 0,
that is, we assume peak powerconstraint of 1 onX (¢).Given X (t) = x(¢), the outputY;(¢) is a Poisson process (PP) with
instantaneous ratd;(z(t) + s;) fori =1,2,i.e,, for0 <w <w+7 < T,

% (w, T)

o e T keN,

P{Yi(w+7) = Y;(w) =k| X (t) ==2(),t€[0,T]} =

where it

F(w,T) = / Az(l'(t) + Sz) dt.
The parameterd; is the channel gain for receivér= 1,2. The parametes; > 0 is the rate of the input referred dark noise
for receivers.

We consider the private message setting in which the seNdeishes to communicate a messaljg to receiverY; at
rate R; and a messag@/, to receiverY; at rate Ry, where M; and M, are independent and uniformly distributed over
[1:27F1] x [1: 2"R2], The results we establish on the optimality of superpasitioding can be readily extended to the case
with common message [14]. We defing 21 2f2 n) code, achievability, and the capacity region for this segttin the
standard way [14].

As in [11], we use Wyner’'s approach for the point-to-poinisBon channel to study the capacity region of the Poisson
broadcast channel. As depicted in Figure 2-(a), time is tahinto intervals of lengti\ > 0 and the continuous time P-BC
is approximated in each interval by the binary memorylesmticast channel (binary P-BC) depicted in Figure 2-(b)h wit
transition probabilities:

a1 :A151A+O(A2), as :A252A+O(A2),
b1 :A1(1+81)A—|—O(A2), b2 :A2(1+82)A—|—O(A2)

Following Wyner’s arguments, Lapidoth, Telatar, and Utteashowed that the capacity region of the P-BC is equal to the
capacity region of thé /A-extension of this binary channel &s tends to zero.
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Fig. 1: Two receiver continuous time Poisson broadcast ralan
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Fig. 2: (a) Time quantization. (b) Binary P-BC.

In this paper, we show the surprising fact that superpaositinding is optimal for almost all channel parameter valiés.
find explicit analytical expressions for the ranges of pamnvalues in which the channel is less noisy and more capab).

We then introduce the new class effectively less noispproadcast channels for which superposition coding is cgitiamd
show that it includes the less noisy class but is not stricttyuded in the more capable class. The key idea is that #e le
noisy condition needs to hold only for channel input disttibns that attain the maximum weighted sum rate. We findieixpl
analytical expressions for the ranges of parameter valwestich the P-BC is effectively less noisy. By further sgérening

the effectively less noisy condition, we show numericaliatt superposition coding can be optimal even when the cthanne
is not more capable or effectively less noisy. Finally wevghbat for the remaining set of parameter values. there ispa ga
between Marton’s inner bound [16] and the UV outer bound.[17]

The rest of the paper is organized as follows. In Section llrexdew superposition coding and the optimal superposition
coding inner bound for binary input broadcast channels, sunimarize known classes of broadcast channels for which
superposition coding inner bound is tight. In Section I1E establish the parameter ranges for which a P-BC is lesy aoi
more capable. In Section IV, we introduce the new class @céffely less noisy broadcast channels for which supetipasi
coding is also optimal, and obtain the parameter range factwh P-BC is effectively less noisy. In Section V, we show
that for certain range of parameter values, there is a gapeleet Marton’s inner bound and the UV outer bound. Hence, the
capacity region of the P-BC is still not known in general. kcgon VI, we extend our results to the average power canstra
case. Finally in Section VII, we remark on the optimality apgrposition coding for general binary input broadcasnolets.

We demonstrate via an example that our intuition about whgeposition coding is optimal for the broadcast channal ca
be quite misleading.

II. SUPERPOSITION CODING INNER BOUND

Consider a 2-receiver discrete memoryless broadcast ehafi, y2|x). The superposition coding scheme [12] is motivated
by broadcast channels for which one receiver is “strongeathtthe other. This suggests a layered coding approach ichwhi
the weaker receiver (sa¥,) recovers only its own messagé, carried by the auxiliary random variablé while the stronger
receiver {1) recovers both messagés/;, M) carried by X. This coding scheme leads to the inner bound on the capacity
region of the general discrete memoryless broadcast (DMdB@nnelp(y1, y2|z) that consists of all rate paifR;, R2) such



that [18]

Ry < I(X;Y1|U),
RQ < I(Ua}/Q)v (2)
Ri+ Ry <I(X;Y1)

for some pmfp(u,z), and|i| < |X| + 1.

Let R; denote the region (2). Note that a second superpositiomgddiner bound can be readily obtained by exchanging
Y; andY,; and R, and Ry in (2). Denoting the second region I3, it can be shown that if the capacity of the channel
p(y1)z), C1, is larger than the capacity of the chanp€ls|z), Ca, thenRy C {(R1, R2): R1/C1 + R2/Cs < 1}.

Remark 1. In [19], Wang, Sasoglu, Bandemer, and Kim compared two fgs#tion encoding schemes for the broadcast
channel. The first is th& X scheme above, and the second is {tieV') scheme in which\/; is carried byV, M is carried

by U, and X is a function of (U, V). The weaker receiveY, again recovers\/, carried byU and the stronger receivéf,
recovers)/, carried byV. They showed that the optimal inner bound achieved bylifrescheme can be strictly larger than
that achieved by th& X scheme. It turns out, however, that if the broadcast chameebinary input, the optimal inner bound
(assuming’; > C5) is co (R1 U {(0,C2)}) [20]. Since in this paper we are concerned with the binary@®-Bhich has binary
input and outputs, we focus only on conditions under whithegiR; or R, is optimal.

It is well known that regioriR; is tight for the following classes of DM-BC.

Definition 1 (Degraded broadcast channel [12for a DM-BCp(y1, y2|z) Y> is said to be a degraded version¥f if there
exists a random variablg/ such thaty]|{X = z} ~ py,|x(y}|z), i.e., Y{ has the same conditional pmf &5 (given X) and
X =Y/ — Y5 form a Markov chain.

Definition 2 (Less noisy channel [15])For a DM-BC p(y1, y2|2z) receiverY; is said to beless noisythan receiverYs if
I(U; Y1) > I(U; Yz) for all p(u, z).

Van-Dijk [21] showed that receivéf; is less noisy than receivéh if 1(X;Y7)—1(X;Y>) is concave irp(x), or equivalently,
I(X;Y7) — I(X;Y3) is equal to its upper concave envelopf (X;Y;) — I(X;Y3)] (the smallest concave function that is
greater than or equal tB(X;Y7) — I(X;Y2)). As we will see, this alternative condition of less noisysignificantly simpler
to compute than the original condition.

Definition 3 (More capable channel [15]For a DM-BCp(y1, y2|z) receiverY; is said to bemore capablehan receiveis
if I(X;Y1) > I(X;Ys) for all p(z).

The more capable condition can also be recast in terms ofdheawe envelope: Receivéi is more capable thai if
CI(X;Ys) — I(X;Y1)] = 0 for everyp(z).

It is also well known that degraded implies less noisy whiciplies more capable [15], but the converses do not always

hold. In [22], Nair generalized the notions of less noisy amate capable. LeP, be a class of pmfg(u, v, ) such that for
any triple of random variabled/, V, X) ~ p(u, v, x), there exists a pmf(, v, z) such that

q(x) € Py,
I(V;Y1), < I(V; Y1),
1(U;Y2), < 1(U;Ya)g, 3
I(V;Y1), + I(X;Ya V), < I(V; Y1) + I(X; Ya|V),,
I(U;Y2)y + I(X;Y1|U), < I(U; Ya) g + 1(X;Y1|U),.

The notationl (V; Y1), refers to the mutual information betweghandY; when the input is generated accordingta, v, ).

Definition 4 (Essentially less noisy [22]) For a DM-BCp(y1, y2|z), Y1 is said to beessentially less noighanY if there exists
a sufficient class of pmf®, as defined in (3) such thd(U; Y1) > I(U;Y2) for everyp(z) € P, and allU — X — (¥1,Y3).

Definition 5 (Essentially more capable [22])For a DM-BCp(y1, y2|z), Y7 is said to beessentially more capabkhanYs if
there exists a sufficient class of pn#s as defined in (3) such thd{X;Y1|U) > I(X;Y>|U) for everyp(z) € P, and all
U—X— (Yl,YQ).

It can be easily seen from the definitions that less noisyigsmssentially less noisy and more capable implies esdignti
more capable. However the converses do not always hold. iAissshown in [22] that essentially less noisy neither irapli
nor is implied by essentially more capable. The capacitjorefpr the essentially less noisy and the essentially map=able
classes [23] is regiofR; as defined in (2). Also note that when the channel is essiniiss noisy, the sum bound in (2) is
always inactive.



IIl. L ESS NOISY AND MORE CAPABLEP-BC

We evaluate the conditions for the less noisy and more capsibted in the previous section for the P-BC and show that
the P-BC is less noisy for almost all channel parameter galMée assume without loss of generality that< s;. The results
for s; > s, can be similarly established. Also assume tHat= « and A, = 1. The result forA; # 1 can be established
using the fact that the capacity foA;, A3) = (a1,a2) is equal toas times the capacity region fqid,, A2) = (a1/as, 1).

In [11], Lapidoth et al. showed thaf, is a degraded version &f; if « > 1. This can be seen either by directly inspecting
the P-BC channel model or its binary P-BC counterpart.

We now determine the conditions under which the P-BC is ledsynrand more capable.

We use the binary P-BC with the parameters given in (1) torektbe definitions of less noisy and more capable to the
P-BC. Let

1
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where X and Y/~ are the input and outputs of binary P-BC as depicted in Figu(b). Using Wyner’s results [6, 7], it
immediately follows that

Ii(q) = a( = (g + s1)log(q + 51) + q(1 + s1) log(1 + 51) + (1 — g)s1 log(s1)),

(4)
I>(q) = —(q + s2) log(q + s2) + q(1 + s2) log(1 + s2) + (1 — q)s2 log(s2),
and thatl;(q) is maximized at
14 s; Itsi
q; = ( sz — i (5)

€S,

fori=1,2.
We define the less noisy condition for P-BC as follows.

Definition 6. For the 2-receiver P-BC, receivéf is less noisy thart: if I1(q) — I2(¢) is concave ing € [0,1], i.e., if
€[Ii(q) — ()] = I1(q) — I2(q).
Similarly we define the more capable condition for P-BC aofus.

Definition 7. For the 2-receiver P-BC, receiv&f is more capable thal, if I;(¢) — I2(¢) > 0 for everyq € [0,1], i.e., if
€[l2(q) — I1i(q)] = 0.
To establish the parameter ranges for less noisy and moebleap-BC, we define the following breakpointscaf

145
a1 = 1+s, sy
- SQlOg(l—Fl/Sg)—l
~osplog(1+1/sq) =17
oy — (14 s2)log(1+1/s2) — 1
(1+81)10g(1—|—1/51)—1’
Qg = S—l
52

We also need the following lemma which characterizes theeuppncave envelope &f; (¢) — I2(q)) and (I2(q¢) — I1(q)).

Lemma 1. Consider a P-BC.

1. Let
0 if 0<a<ag,
t= gfl(a) if az < a<ay, (6)
1 if > an,
where

2 — (14 s2)log (1 +s2)/(x + s2)) — 1+ =
m()_(1+Sﬂbg«1+sﬂﬂx+sﬂ)—l+x' (7)

Then, the upper concave envelope(df(q) — I2(q)) is

I(q) — I2(q) foro0<qg<t,

€L (q) — L(q)] = {(1 —q)(L(t) - I(t)/(1—t) forq>t.



2. Let

0 if 0<a<ay,
r= ggl(a) if ay < a<as, (8)
1 if o> ao,

where

solog(l+x/s2) —x
silog(l1+x/s1) —x
Then, the upper concave envelope(df(q) — I1(q)) is

(q/r)(I2(r) = Ii(r)) for0<g<r,
I(q) — Ii(q) for ¢ > r.

The proof of Lemma 1 is in Appendix A. Figure 3-(a) plates o. The shaded area is whet€l; (q) — I2(q)] = I1(q)— I2(q).
Figure 3-(b) plotsr vs a. The shaded region is whe®I>(q) — I1(q)] = I2(q) — I1(q). Figure 4 plotsl;(q) — I2(¢) and
€I (q) — I2(q)] for a = 0.3a3 + 0.791(g2) and a = g1(qz2) for (s1,s2) = (0.1,1). Figure 5 plotslz(¢) — I;(¢) and
€I (q) — Li(g)] for o = 0.3ca + 0.7g2(q1) anda = g2(¢1) for (s1,s2) = (0.1,1).

92(17 = (9)

¢la(q)—Ni(g)] = {
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Fig. 3: (a) Plot oft vs o for s; = 0.1,s2 = 1. The shaded area is whet®I,(q) — I2(q)] = I1(gq) — I2(g), i.e.,0 < ¢ < t. (b) Plot of r vs o for
s1 =0.1,s2 = 1. The shaded area is whe®@l>(q) — I1(q)] = I2(q) — I1(q), i.e.,r < g < 1.
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Fig. 4: Plots ofI1(q) — I2(g) (solid) and€[I1(q) — I2(q)] (dashed line) vg for (a) & = 0.3a3 + 0.791(¢g2) and (b)ar = g1(g2) (s1 = 0.1,s2 = 1).

We are now ready to state the conditions for less noisy anc: roapable.

Theorem 1. For sy < s5:
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Fig. 5: Plots ofI2(q) — I1(q) (solid) and€[I2(q) — I1(q)] (dashed line) vg for (a) @ = 0.3aa + 0.792(g1) and (b)a = g2(q1) (s1 = 0.1,s2 = 1).

1. If « > aq, Y7 is less noisy tharY, and the capacity region is the set of rate péifs, R2) such that

Rl S ﬂjl(po)v

Ry < I(Bpo + B) — BlLa(po) (10)

for some0 < 3,po < 1.
2. If as < a < oy, Y7 is more capable thali; and the capacity region is the set of rate paiRs, R2) such that

Ry < Boli(po) + Sili(p1) + Bo11(p2),
Ry < Ix(p) — Bol2(po) — Bil2(p1) — Bala(p2), (11)
Ri+ Ry < Ii(p)
for some0 < fy, 81, B2,p0, p1,p2 < 1, wherefy + 81 + B2 = 1 andp = Bopo + Sip1 + Papa.

3. If 0 <a<ay, Ysis less noisy thary; and the capacity region is the set of rate paRs, R2) such that

Ry < Ii(Bpo) — BI1(po),

Ry < BI5(po) (12)

for some0 < B,py < 1.
4. If oy < a < ag, Y2 is more capable thali; and the capacity region is the set of rate paRs, R2) such that

Ry < Ii(p) — Boli(po) — Bil1(p1) — P21i(p2),
Ry < Bola(po) + Sil2(pr) + Bo11(p2),
Ri+ Ry < Ir(p)

for some0 < f, 81, B2,p0,p1,02 < 1, wherefy + 81 + B2 = 1 andp = Sopo + Sip1 + Papa.

The capacity region fo¥; less noisy thaf? is the superposition rate regidh without the sum rate bound féf ~ Bern(3)
and p(z|u) is the Z-channel shown in Figure 6-(a) whetepy € [0, 1]; and the capacity region fdr> less noisy thary; is
Ry for U ~ Bern(8) andp(z|u) is the Z-channel shown in Figure 6-(b) whefep, < [0, 1].

(a) (b)

Fig. 6: (a)p(x|u) for Y7 less noisy thar¥s. (b) p(z|u) for Ya less noisy thart.



The capacity region fok; more capable thal is the superposition rate regidty with U € {0, 1,2}, py(j) = 85, and
XH{U = j} ~Bern(p;), j =0, 1,2; and the capacity region fdr; more capable thair; is the superposition rate regioft4
with py(j) = B; and X |{U —]} ~ Bern(p;) for j =0,1

Figure 7 illustrates the ranges of for which the P—BC is degraded, less noisy and more capalten Hheorem 1 the
P-BC is less noisy ity < oy Or @ > «; and more capable ift < a3 or a > as.

, more capable

——— less noisy less noisy

degraded ——M8¥

>
Oy Qa3 (o3 aq 1

Fig. 7: lllustration of the ranges af for which the channel is degraded, less noisy, and more tapsbstated in Theorem 1.

Proof of Theorem 1:

We first find the condition omx for one receiver being less noisy or more capable than ther otteiver.

1. By part 1 of Lemma 1¢[[1(q) — I2(q)] = I1(q) — I2(q) if and only if & > «4. ThusY; is less noisy thai; iff o > a;.
2. By part 2 of Lemma 1¢[I>(q) — I1(¢)] = 0 if and only if « > ay. ThusY; is more capable thal; iff « > as.

(
3. By part 2 of Lemma 1¢[I>(q) — I1(q)] = I2(q) — I1(¢) if and only if 0 < o < ay. ThusY; is less noisy thart; iff
0<a<ay.

4. By part 1 of Lemma 1¢[I1(q) — I2(q)] = 0 if and only if 0 < a < 3. ThusY; is more capable thah; iff 0 < a < as.

We now obtain the capacity region for P-BC such tliatis more capable thal (part 2) and for P-BC such that; is

less noisy thar¥; (part 1). By exchanging’; andY> and I;(-) and I(-), the capacity expression for part 4 and part 3 of
Theorem 1 can be obtained similarly.

For thel/A-extension binary P-BC shown in Figure 2-(b), superpasitioding inner bound is the set of rate pdif& , Rs)
such that

Ry < (1/A)I(X; YU,
Ry < (1/A)I(U;Ys), (13)
Ri+ Re < (1/A)I(X§Y1A)

for some pmfp(u, z), and|i| < |X| + 1.

Let U € {0, 1,2} wherepy (i) = 8; andpx |y (1]i) = p; € [0,1]. As A — 0, the region in (13) is equivalent to the region
in (11) in Theorem 2. If a P-BC is more capable, the region i) (¢ indeed the capacity region. This is because the UV outer

bound for1/A-extension binary P-BC adA — 0 reduces to the inner bound in (11) under the condition forereapable
P-BC.

For part 1 of Theorem 1, note that the capacity region is tgerein (11) with an inactive sum bound, i.e., the set of rate
pairs (R1, Rs) that satisfy

R < Z Bil1(pi),

i€{0,1,2}
(14)
RQSIQ( > Bipi)— > Bil(pi)
1€{0,1,2} 1€{0,1,2}

for somegS;,p; € [0,1] such thatzze{0 12y Bi = 1. Let R’ and R” denote the region in (10) and (14) respectively. Note
that R’ is the set of rate pairg¢R;, R,) that satisfy inequalities in (14) fof3y, 81, 52) = (3, 3,0) for somej € [0,1]
andpy € [0,1] andp; = 1. Thus®R’ C R”. We now show that every supporting hyperplaneJbf intersects®’, i.e.,



MaX(R,,Ry)eR” ()\Rl + RQ) < InaX(lerz)egQ/()\Tl + 7’2). Consider

wax O+ )= max (S G600 - e+ R( Y 6w

(R1,R2)€ER” Bi,pi€[0,1]

i€{0,1,2} i€{0,1,2}

=20 (ot (37, 20000 100) ¢ 160)
= o (ARG - 20+ 10))

p€[0,1]
@ max < max (Al1(p) — I2(p) + I2(p)), max ((1—p)(AL(t) — I(t'))/(1 — ') + IZ(I))))

pel0,t’] pe(t’,1]
(15)

(b) _
< max (A (po) — Ba(po)) + (Bpo + ) (16)

B,p0€[0,1]
= max (M\r;+72).

(r1,r2)ER’

Step (a) holds by Lemma 1. To prove step), note that the two terms in (15) are obtained by lettidgpo) = (1,p) and
(B.po) = (1 —p)/(1L — '), ') in (16).

We now show thafR’ is convex. Suppos&’ is not convex, i.e.co{R'} # R’ whereco{R’'} denotes the convex hull of
R’. There exists a rate pair;,72) € co{R’'} on the boundary oto{R'}, i.e., ur1 + 2 = max(gr, r,)ecofr’}(R1 + R2)
for somep > 0 such that(ry, ) ¢ R'. Note that(ri,r2) = n(r10,7r20) + (1 — n)(r11,721) for some0 < n < 1 and
(Tlo,’l’go), (T11,7’21) e R. Sincemax(Rl,Rz)ew{yl}(uRl + RQ) = maX(Rl,RZ)GR/(uRl + RQ), the two rate pairi’l’lo,Tgo)
and(ry1,791) satisfy

T10 + 20 = Uri] + 7121 =  max Ri + Ro). 17
HT10 20 HT11 21 (R],RZ)GR/(H 1 2) ( )

We now show that the equality (17) cannot hold {org, r20) # (r11,721), i-€., there exists a unique rate paR;, R2) such
that uRy + Ry = max(,, r,)ex (pr1 + r2). Consider

max r1+re) = max ([ + B) + uBI — B .
- (pry +12) 671)06[0,1](2(51?0 B) + 1BI1(po) — Bl2(po))

We show that(5, po) that achieves the maximum is unique. Note that
max (I2(Bpo + B) + uBIi(po) — Bl2(po)) = max (I2(p) + €[uli(p) — LI2(p)])-

Since Iy (p) is strictly concavelz(p) + €luli(p) — I2(p)] is strictly concave. Lep* the unique solution that maximizes
Iy(p) + €[pli(p) — I2(p)]. Then

max (I2(Bpo + B) + pBIi(po) — Bla(po)) = L(p*) + €[uli(p*) — I2(p*)]

= max_ (I2(p*) + pBLi(po) — BL2(po))
B,po:Bpo+B=p*

Finally by Lemma 1, there exists a uniq(e, po) such that3p, + 3 = p* and
Cluli(p*) — I2(p™)] = uBL1(po) — Bl2(po).

ThusR’ = co{R’}. To complete the proof foR’ = R”, we use Lemma 2 below. [ |

Lemma 2. [24] Let R € R be convex andR’ C R” be two bounded convex subsets ®f closed relative taR. If every
supporting hyperplane dR” intersectsR’, thenR’ = R".

As mentioned in the first part of this section, superpositioding is also optimal for the essentially less noisy ane rsally
more capable classes. Can we extend the range of paraméberwhich superposition coding is optimal by evaluating the
conditions for these two classes?

To answer this question, first note that or binary input boaatl channels, the essentially more capable conditiondh [2
reduces to that for the more capable class; hence essgniiaide capable does not extend the range @dr which superposition
coding is optimal beyond more capable. To see this, congidaginary input broadcast channel which is not more capable.
Then there existg, ¢ € (0,1) such that/(X;Y3), — I(X;Y1), > 0andI(X;Y1), — I[(X;Y2), > 0. Then

CI(X;Ys), — I(X;Y1),] > 0 for everyr € (0,1),
CI(X; Y1), — I(X;Y2),] > 0 for everyr € (0,1).



Thus, for everyX ~ Bern(r) for r € (0, 1), there existd/; andU, such thatl (X; Y2|U;)—I(X;Y1|U1) > 0 andI(X; Y1 |Uz2)—
I1(X;Y2|Uz) > 0. Hence if a binary input broadcast channel is not more capialié also not essentially more capable.

The answer for essentially less noisy is less clear. It agpabe quite difficult to evaluate the set of pnis that satisfy
the condition in (21). In the following section, we define avnelass of broadcast channels for which the condition can be
easily evaluated and which includes the essentially lessy/raass.

IV. EFFECTIVELY LESS NOISYP-BC

Consider outer boun®; on the capacity region of the DM-B@(y1, y2|2) which consists of all rate pair§R;, R.) such
that

Ry < I(U;Ya),
Ry + Ry < I(U;Ya) + I(X;Y1|U)
for somep(u, ). To see that this is indeed an outer bound, note that it islgithe Kdorner—Marton [16] outer bound without

the sum rate bound.
The outer boundR; can be alternatively represented in terms of its suppofiyygerplanes as:

(18)

maxp(u,m)(/\I(X;YﬂU) +1(U;Y2)) ifo<A<1,

19
max,(y ) A([(U; Ya) + [(X;Y1|U))  if A> 1. (19)

max_ (Ary +79) = {
(r1,m2)ERL

Now consider the supporting hyperplane representatioh@fitperposition rate regidR; in (2):

max,(y ») (Amin{I(X; Y1 |U), [(X; Y1) — [(U; Y2)} + I(U; Y2))  if0<A<T,

AR 4+ Ry) = .
max ( 1 2) {maxp(u_’z) )\(I(U;Yl) + I(X;Y1|U)) if A> 1.

(R17R2)€R1

Note thatR,; andR; differ only in the first term wher) < X < 1: for R;, the term isAI(X;Y1|U), while for R, the term is
Amin{I(X;Y1|U), I(X;Y1) — I[(U;Ys)}. When\ > 1, for Ry, the term isAI(U; Yz), while for R, the term isAI(U;Y7).

Now it is easy to see that if the DM-BC is less noisy, i.B{/;Y1) > I(U;Y>) for all p(u,z), then these two bounds
coincide. The key observation that leads to a more genesakdhan less noisy is that the inequaliiy/; Y1) > I(U;Y>2)
does not need to hold for evepfu, ). For example, ifl(U; Y1) > I(U;Yz) for everyp(z) € P and everyp(u|z) such that

max max (AI(X;Y1|U) 4+ I(U;Y2)) = max max (M (X;Y1|U) + I(U;Y3)) (20)
p(z) pulz) p(z)€P p(ulz)
for every0 < A < 1, then®; andR®; coincide.

This particular example is quite interesting because Hothcondition for the seP and the inequality (U; Y1) > I(U; Ys)
can be expressed in terms of the upper concave envelopgXofY;) — I(X;Y>), which makes their evaluation quite
straightforward especially for binary broadcast channels

We are now ready to introduce a new class of broadcast chaforelvhich superposition coding is optimal.

Definition 8 (Effectively less noisy broadcast channeldjor a DM-BC, p(y1,y2|x), let P be the set of pmfe(x) such that
for every0 < X\ <11,
max (I(X;Ya) + €A(X; Y1) — [(X;Y2)]) = max. (I(X;Y2) + €N(X; Y1) — I(X;Y2)]). 1)
p(x p(x
ReceiverY; is said to beeffectively less noisthan receively; if I(X;Y1) — I(X;Y2) = €[I(X; Y1) — I(X; Y2)] for every
p(x) € P.

Clearly if the DM-BC is less noisy, then it is effectively egoisy. We can further show that if the channel is esseytiall
less noisy as defined in [22], it is also effectively less noi® show this note that the sufficient clgBs in (3) must satisfy
max max (AI(X;Y1|U) + I(U;Y2)) < max max (M(X;Y1|U) + I(U;Ys))
p(@) pulz) p(x)€P, p(ulx)
for every0 < X < 1. HenceP, D P. If I(U;Y1) < I(U;Y3) for p(z) € P, and everyp(u|x), thenI(U;Y1) < I(U;Y2)
for p(z) € P and everyp(ulz). We do not know if the condition for effectively less noisysgictly weaker than that for
essentially less noisy, however. As we will see in the negtign, effectively less noisy neither implies nor is impliby more
capable in general.
The definition of effectively less noisy can be readily exted to the P-BC in the same manner as the less noisy and more
capable we presented in the previous section.

Definition 9 (Effectively less noisy P-BC)For the 2-receiver P-BC, leD C [0, 1] be such that for everg < X <1,

max La(g) + €A1 (q) — L2(q)] = maxTa(q) + €A1 (g) — L2(q)]. (22)
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ReceiverY; is said to be effectively less noisy thaa if I1(q) — I2(q) = €[I1(q) — I2(q)] for everyq € Q.
To establish the parameter ranges for effectively lessyn@i8C, we need the following additional breakpointsaaf
@12 = g1(g2),
a3 = g2(q1)
where the functiong; (-) andgs(-) are defined in (7) and (9), respectively.

Theorem 2. Consider a 2-receiver P-BC and assume that ss.

1. If a > a19, Y7 is effectively less noisy thaf;, and the capacity region is the set of rate pairs that sati€dy.
2. If a < as3, Ys is effectively less noisy thalr;, and the capacity region is the set of rate pairs that saiis?y.

Note that as for the less noisy case, the capacity regionffecterely less noisy channels is also attained using lyirdar
and a Z-channel frond/ to X. Figure 8 illustrates the parameter ranges for which sugsgtipn coding is optimal.

, eff. less noisy

——— less noisy

degraded ——M8M8@™ M

I I
, mare capable ‘
1 | | |
Lo less noisy .
b |
b |
| |
| | |
Qg Q3 Q23 Q2 Q12 aq 1

|
l
| ! |
| l |
1 l | ‘
| | | | | >
I I I I T

Fig. 8: lllustration of the ranges af for which the channel is degraded, less noisy, more capahle effectively less noisy as stated in Theorems 1 and 2.

It can be shown thaty < a3z < ass < as < ajp < a3 (see Appendix B). The fact that, < ay5 implies that ifY; is
effectively less noisy thaii, it is also more capable thar (see Figure 4-(b) for an example). Thus effectively lessydoes
not offer any new range of parameters for which superpasitisding is optimal. On the other hand, the fact that< ass
implies that fora € (a3, ass), Ya is effectively less noisy but is not more capable than(see Figure 5-(b) for an example).
Thus effectively less noisy offers a new range of paramdtersvhich superposition coding is optimal.

Proof of Theorem 2:
1. We first show tha = [0, ¢2] satisfies (22). Specifically we show thit(q) + €[\1(q) — I2(¢)] is decreasing irigz, 1].

Sincelx(q) + €[A\1(¢q) — I2(q)] is concave, it suffices to show that the derivativelgfy) + €[A1(q) — I2(q)] atg = g2
is nonpositive. Consider

d(I2(q) + €M1 (q) — I2(q)]) (@ ) Mi(q2) if go >t
dq i—a | L(@2) — ML(¢) — L(¥)/(1—t) otherwise.
®)
<0

for t' = t(«/) wherea/ = Aa. Step(a) follows by rewritting AI;(¢) for A; = « asIi(q) for A1 = Aa (see (4)) and

then applying Lemma 1. Stefd) holds becausa; (¢2) < 0 and —(AI1(¥') — Ix(t'))/(1 — ') < 0. The first inequality

holds sinces; < so implies¢; < g2 andAI{(¢1) = 0. The second inequality holds by (30).

By Lemma 1,&[I1(q) — I2(q)] = I1(q) — I2(q) for g € [0,¢2] if and only if &« > ¢1(g2) = a12 (also see Figure 3 (a)).
2. We first show thatQ = [q¢, 1] satisfies (22) withl;(-) and I>(-) interchanged. Specifically we show that(q) +

€[AI2(q) — L1(¢)] is increasing in[0, ¢1]. Since I;(q) + €[AI2(q) — I1(q)] is concave, it suffices to show that the

derivative ofI1 (¢) + €[Al2(q) — I1(¢)] at ¢ = ¢1 is nonnegative. Consider

(I (q) + €\ L (g) — I (g)]) d(11(q) + Ae[I2(q) — I1(q)/N])

dq =an dg =q
(@) A5 (q1) if g1 >
I(q1) + (A\L(r") — (")) /7" otherwise.
(b)
>0

for v’ = r(a’) wherea/ = o/ . Step(a) follows by rewrittingI; (¢) /A for Ay = a asI;(q) for Ay = o/ (see (4)) and
then applying Lemma 1. Stef) holds becaus@l(q1) > 0 and (A2(r") — I, (r")) /" > 0. The first inequality holds
sinces; < s, impliesq; < g2 and\I}(q2) = 0. The second inequality holds by (30).

By Lemma 1,&[2(q) — I1(q)] = I2(q) — I1(q) for q € [q1,1] if and only if & < g2(q1) = az23 (also see Figure 3 (b)).
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Figure 9 illustrates the parameter ranges for which sup#ipo coding is optimal. As can be seen the area indhe
plane where superposition coding is not optimal becomedlanes s; increases. In Appendix C, we show that the fraction
of the channel parameter space for which superpositiomgodi optimal approaches one; hence superposition codiimgas
sense almost always optimal for the P-BC. In comparisonfrimion of the parameter space for which the P-BC is degtade
is always bounded away from 1.

52 52

Fig. 9: Plots ofa versussa for s; = 0 (top left), s; = 0.1 (top right), s1 = 1 (bottom left) ands; = 3 (bottom right). The shaded areas in each plot are
where superposition coding is optimal and the light shaded & > 1) is whereY> is a degraded version df; .

As illustrated in Figure 8, the capacity region of the P-BGaihieved using superposition coding in the ranges a3
anda > «ay. Note that for the remaining range afthe channel is not more capable or effectively less noisychvfollows
immediately from the if and only if conditions establishedTiheorems 1 and 2. In the following section we explore bounds
on the capacity region in the range ferc (ass, as).

V. GAP BETWEENMARTON AND UV

The best known inner and outer bounds on the capacity reditmedM-BC are the Marton inner bound [16] and the UV
outer bound [17], respectively. We show that toe (as3, as) there can be a gap between these two bounds.

In [25], Geng, Jog, Nair and Wang showed that for binary inmatadcast channels, Marton’s inner reduces to the set of
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rate pairs(R;, R) such that
k
Ry < I(W; Y1) + Y BI(X; V4| W = j),

j=1

5
Ry <I(W;Ya) + Y BiI(X;Ya|W =), (23)
j=k+1
k 5
Ry + Ry < min{I(W; Y1), [(W;Y2)} + Y BiII(X VAW =) + D BiI(X;Ya|W = )
=1 j=k+1
for somepw (j) = 55, j € [1 : 5], andp(z|w). This region is achieved usingndomized time-divisiof26]. This ingenious
insight helps simplify the computation of Marton’s innerusal for the binary P-BC; hence for the P-BC itself.
The UV outer bound on the capacity region of the DM-BC is theddeate pairs(R;, R2) such that

Rl S I(V, Yl),
Ry < I(U;Ya),
Ri+ Ry <I(ViY1) + I(U; Y2 | V),
Ri+ Ry < I(ViY1|U) + I(U; Y2)
for somep(u,v) and functionz(u, v), |U|, |V| < |X| + 1. Computing this bound even for binary input broadcast ckinn
is quite difficult. Hence, we compute the maximum sum ratesttie Marton and the UV bounds instead of the complete
bounds. Figure 10 plots the maximum sum ratesdey < a < a; whens; = 0.1 andsy = 1 (a3 = 0.27, a2 = 0.4). Note

that for0.27 < o < 0.286, the sum rates coincide. For the rest of the range there isadl gap between the Marton and the
UV bound sum rates. In particular far = 0.34, the gap is approximatel§.0039.

(24)

0.1 g

0.0965 B

0.093 | 2 -

Max. sum rate

0.0895 | £ |

0086f , |

0.27 0.286 0.34 0.4

Fig. 10: Plots of the maximum Marton sum rate (dot), supefippssum rate (dash), and UV sum rate for = 0.1, s2 = 1, anda € [a23, a2].

It turns out that superposition coding is optimal in the rm¢here Marton’s sum rate and thd” outer bound sum rate in
Figure 10 coincide, i.e., for: € [0.27,0.286]. To show this, note that the condition for effectively lessisy in (20) can be
tightened further. It is clearly sufficient th&{U; Y1) > I(U; Y2) for everyp*(u,x) € P(U, X) and every0 < A < 1 such that

max (A (X;Y1|U)+ I(U;Ys)) = max MX;Y1|U)+1(U;Ys)). 25

max (M(X;11|U) + 1(U;Y2)) I (M(X;Y1|U) + 1(U;Yz2)) (25)
This is the condition satisfied for the P-BC in the range [0.27,0.286]. However, unlike the looser condition (20), where
we are able to express the class of pmfs in terms of the coraaxadope ofl (X;Y7) — I(X; Ys2) and determine analytically
the range in which the P-BC is effectively less noisy, we caly mumerically evaluate the above condition.

V1. AVERAGE POWER CONSTRAINT

The results on superposition coding in sections II- IV canréadily extended to the case when there is also an average
power constraint. Suppose that in addition to the maximumepaonstraintX (¢) < 1 (which is needed for the capacity to
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be finite) there is an average power constraint , i.e.,
1 T
—/ X(t)dt < o. (26)
T 0

The capacity region of P-BC for the average power constisgtiing is equal to the capacity region of the corresponding
binary P-BC forE[X] < ¢. This is a simple extension for Wyner’s argument that theacép of point-to-point Poisson channel
is the equal to the capacity of the corresponding binary eabfor E[X] < o [6, 7].

Note that if a broadcast channel is less noisy or more captif@ddJV outer bound in (24) with an input constraint coinGide
with the superposition inner bound with the same input cairgt Hence, if a P-BC is less noisy, it is also less noisyeuride
average power constraint, and similarly if a P-BC is moreabde it is also more capable under the average power contstra

In contrast, if a P-BC is effectively less noisy, it is not assarily effectively less noisy under the average powestcaimt.
The results of effectively less noisy, however, can be gasitended to the average power constraint setting.

Theorem 3. For P-BC with an average power constraint in (26),

1. ReceiverY; is effectively less noisy thals if « > g;(min{o, ¢2}),

2. ReceiverY; is effectively less noisy thalr; if o < go(min{o, ¢1})
where the functiong, (-) and g»(-) are defined in (7) and (9), respectively.

Proof:
Note thatX ~ Bern(q) for ¢ € [0, o] satisfies the average power constraint. The condition inniein 9 can be modified

to the average power constraint setting. ket [0, o] be such that for ever§ < X <1,
max I>(q) + €[A1(q) — I2(q)] = fgleagfz(Q) + €[\ (q) — I2(q)]- (27)

q€[0,0]

ReceiverY; is effectively less noisy thali, under the average power constrainfifq) — I>(¢) = €[I1(q) — I2(q)] for every
q € Q.
1. Recall that for P-BC without an average power constraintis effectively less noisy thabr; if

Ii(q) — I2(q) = €[L1(q) — I2(q)] for ¢ € [0, 2.
For P-BC with an average power constrajnt o, Y is effectively less noisy thai, if
Ii(q) — I2(q) = €[L1(q) — Lx(qg)] for ¢ € [0, min{o, g2 }].

If « > g1(min{o,q2}), Y7 is effectively less noisy thal> under the average power constraint.
2. Recall that for P-BC without an average power constraintis effectively less noisy thai if

I(q) — Ii(q) = €[I2(q) — I1(q)] for g € [q1,1].

If there is an average power constraint< o for someo > ¢, thenY; is effectively less noisy thal; under the
average power constraint if

I(q) — Ii(q) = €[I2(q) — 11 (q)] for q € [q1,0].

Thus fora < g2(q1), Yz is effectively less noisy thaii; under the average power constraint.
If there is an average power constrajnt o for someo < ¢, thenYs is effectively less noisy under the average power
constraint thart; if

I>(q) — Ii(q) = €[I2(q) — L1 (q)] for ¢ = 0.

Thus fora < g2(0), Y3 is effectively less noisy under the average power condtthamY;.

VII. FINAL REMARKS

We showed that superposition coding is optimal for almolsPalsson broadcast channels, and that when superposstion i
not optimal, there is a gap between Marton’s inner bound aedU4V outer bound. Hence the capacity region for the P-BC
is still not known in general.

We note that in [27], Geng, Nair, Shamai, and Wang similaHgveed that for the class of binary input symmetric output
broadcast channels (which do not include the binary P-B&eeisuperposition coding is optimal or there is a gap beatwee
Marton’s inner bound and the UV outer bound.

We introduced the effectively less noisy broadcast chanfal which superposition coding is optimal. This conditifmm
effectively less noisy can be further extended, but we cdn werify it numerically.

Why is this the case and does it hold for general binary inpaaticast channels?
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The intuitive reason superposition coding is almost alwagtmal for the P-BC is that the binary P-BC is more capable
(and even less noisy) for most parameter ranges as eswblisPAppendix C. Hence one channel is almost always stronger
than the other.

For other classes of binary input broadcast channels, the eapable condition is much less likely to be satisfied. As an
extreme case, consider the skewed binary broadcast chanfRiglure 11-(a), which is a generalization of the skew syrnime
BC in [26]. We can show that the channel is not more capabledgalso not less noisy or degraded) for ev@ryps € (0,1).

It turns out, however, that fofp;, p2) in the dark shaded area in Figure 11-(b), the channel istefédg less noisy, and for
(p1, p2) in the lightly shaded area in Figure 11-(b), the BC is notafiely less noisy but superposition coding is still optima
(which is shown by verifying the stronger condition in (25Jhese shaded areas constittué&s of the parameter space area!
This clearly demonstrates that our intuition about whenespgsition coding is optimal does not always hold. The udsbda
area in Figure 11-(b) is where Marton’s sum rate is strictiyager than the superposition sum rate (neax{C4, C>}), which
implies that superposition coding is not optimal.

0
Y;
b1
0 1
X &
1 e 0
Y5
1 y
0.2 0.4 06 0.8 1
b1
@ (b)

Fig. 11: (a) skewed binary broadcast channel (b) Plgtof's p2. The lightly shaded area is where superposition coding fsnap and the dark shaded area
is where one receiver is effectively less noisy than theroteeeiver.

To perform the analytical and computational evaluations,relied heavily on the concave envelope method that has been
used in other applications, including [28] which estaldsithe optimality of dirty paper coding and superpositiodieg for
MIMO broadcast channels with common message, and [29] wétichivs that UV outer bound is not tight.

Finally, it would be interesting to find a similar extensiohtbe more capable to the notion of effectively less noisye Th
difficulty is finding an outer bound similar to the one we used dffectively less noisy.
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APPENDIXA
PROOF OFLEMMA 1

We first prove that the functiofVz(q) — I1(¢)) can change concavity at most once in the rapge|0, 1]. In particular, the
function I>(q) — I1(q) is (i) concave in[0, 1] if a < ay, (ii) convex in[0,1] if a > «y, or (iii) convex in [0, k] and concave
in [k, 1] otherwise, where

asy — 8

1

To show the above statement, note that the second derivatiteq) — 11 (q),

" " _ (@ —1)q+ asy — 51
I3 (q) — I (q) = @+s)(@+s2) (29)

has a unique zero, is nonnegativenif> «1, and is nonpositive it < ay. Now we are ready to prove Lemma 1.
1. Let fi1(q) = (I1(q) — I2(q))/(1 — ¢q). We first show that defined in (6) satisfies

t = arg max f1(q). (30)
g€10,1]
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It can be shown that

file)=(1 - q)—2(a—g1(q))((1 +51)log;I: -1 4_q>7

whereg; (q) is defined in (7). It can be easily checked tifatq) and (o — g1(q)) have the same sign fér< ¢ < 1 and
91(¢q) is increasing fory > 0. Hence

a) if « < g1(0) = a3, then f{(¢) < 0in [0,1] and f1(q) is maximized at.

b) if a > lim,_1 g1(¢) = a1, then fi(¢) > 0in [0, 1] and f1(¢q) is maximized at.

c) otherwise,f{(q) > 0in [0,g; *(a)] and f'(¢) < 0 in [g; ' (), 1] and f1(¢) is maximized at.
Let

(o) = 3 1@ = I2(a) if0<qg<t,
D=V ) - B@)/A—1) gt

ThenLi(q) > I(q) — I2(q) becausefi(t) > fi(q) for anyq € [0, 1].
On the other hand, note that for> ¢, L1(¢) can be expressed as

Li(q) = (1= q)/(1 = 1)) (11 () = L) + ((¢ — )/ (1 = 1)) (1 (1) — I(1)).

Sinceq = ((1 —q)/(1 —t)) -t + ((¢ — t)/(1 —t)) - 1, it follows that forq > ¢, L1(q) is a convex combination of
Il(t) — Ig(t) and]l(l) — 12(1) ThUSQ:[Il(q) — Ig(q)] > Ll(q)
Finally to argue thatl,(q) = €[l1(q) — I2(q)], we are left to show thak(g) is indeed concave. We first show that
L1(q) is concave in0, t]. Recall thatl; (¢) — I2(q) is concave in0, x| for  in (28). Thus it suffices to show that< «.
Equivalently we show thaf{(x) < 0. Consider

Flq) = Ii(q) —I(q) (L) = 1r(1)) — (1(g) — Lx(q))

' 1—q (1-4g)?
= (I1(q) = I3(0)/ (1 = @) = (I} (u) = I3 (u))/(1 — q)

for someq < u < 1. The inequalityf;(x) < 0 holds sincel; (¢) — I}/ (g) > 0 for ¢ > « as can be seen from (29). We

conclude thatl;(¢q) is concave because it is concavelint] and[t, 1] and is differentiable at.
. Let fa(q) = (I2(q) — I1(q))/q. We show that- defined in (8) satisfies

r = arg max_fa(q). (31)
q€[0,1]

It can be shown that

f2(@) = ¢7*(a — g2(a))(q — s1log(1 + ¢/s1)),
wheregs(q) is defined in (9). It can be easily seen thfatq) and (o — g2(¢)) have the same sign fdr< ¢ < 1. Also
it can be shown thai,(q) is increasing fory > 0. Hence
a) if @ <lim,0g2(q) = au, then fi(¢g) <0 in [0,1] and f2(q) is maximized atr.
b) if & > ¢2(1) = g, then fi(q) > 0in [0,1] and f2(q) is maximized atr.
c) otherwise,f5(q) > 01in [0, g5 *(a)] and f5(q) < 0in [g5 *(a),1] and f2(q) is maximized atr.
Let

I(q) — Ii(q if ¢ >

ThenIy(q) — I1(q) < Lo(q) becausefs(r) > f2(q) for anyq € [0,1].

On the other hand®[I2(q) — I1(q)] > L2(q) because fob < ¢ < r, La(q) is a convex combination ofz(r) — I;(r)
andI5(0) — I;(0). To complete the proof we now show thB§(q) is concave. Recall thak(q) — I1(¢) is concave in
[k,1] for  in (28). To show thatlz(q) is concave inr, 1], we showx < r, i.e. f4(x) > 0. Consider

£(q) = Ié(q);I{(q) _ IZ(Q)q—zfl(Q)

= (I3(q) — I1(9))/q — (I3(u) — I1(u)) /q

for someu < q. Sincel} (¢) — I{'(¢) > 0in [0, ], it follows that f(x) > 0. We conclude that(q) is concave because
it is concave in[0,r] and[r, 1] and is differentiable at.

La(q) = {(Q/T)(Iz(r) L) f0<q<r
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APPENDIXB
ORDER OF BREAKPOINTS

Since less noisy channels are also more capable it folloassath < a3 and as < «7. Also Y; and Y; cannot be more
capable simultaneously unless the two channels are idéntibus,0 < a4 < a3z < as < «3. To completely characterize the
order, we need to show the following:

(a) (b (¢) (d)
as <agp < og andag < aoz < .
Note that inequalitiegb) and (d) follow by Lemma 1. The remaining inequalities were showrotiyh simulation. To show
(a), we checked using Mathematica that the minimunuef — as for 0 < s; < s5 is nonnegative. To shoye), let

w(z) = zlog(l14+1/z) -1
(1+z)log(l+x) — (1+=x)log(qgea+z) — 1+ g2

Then the conditionys < aes is equivalent tow(x) < w(sy) for all x < s, for any g2, and we checked that this is true using
Mathematica and Maple.

APPENDIXC
VOLUME

Consider the set of channel parametérs:si, s2) € [0, 1] x [0,b] x [0, kb] for b, k > 0. Let by = min{b, kb}. The fraction
of the set of P-BC parameters for which the channel is degr&le

1 // dod 0.5k1 if k>1,
— Soas1 =
k2 ) )ose o0 |1—05k if k< 1.
The fraction of the set of P-BC parameters for which supetiposcoding is optimal is lower bounded by the fraction for
which the P-BC is less noisy. Consider

// / (1+s1)/(1+s2)
dadss dsy
kb 51582 J51/52
1 /bo /kb/ l+81)/ l-l-Sz)
= da dss dsq
ka 0 51 1/82
b

1 o kb 1+s1 S1
—1- = ) dsad
kb? Jo /51 (1+52 82) P2

1 [P 1+ kb kb
=1-— 1 1 — s1log — |d
kb2 J, (( + s1) log 1+ s S110g 51) S1
1 ((1+bo)*—1 bo? 1+ by’ bo?logby  bo
=1— — ——2—log(1 + kb) — — log kb — log(1 + bo) + ——=—= + =2
ka( 5 og(1 + kb) 5 log 5 og(1+bo) + 5 T3
1 [bo® 1+ kb 14+bo, log(1+bg) 1
=1-——( =(1 —1 - bo (log(1 + kb) — log(1 + bg) + =
kb2< (log == ~log = =) g+ bo(log(l+kb) —log(1 +bo) +3) ).

which approaches tb asb — oo.





