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Superposition Coding is Almost Always Optimal
for the Poisson Broadcast Channel

Hyeji Kim∗, Benjamin Nachman† and Abbas El Gamal∗

Abstract

This paper shows that the capacity region of the continuous-time Poisson broadcast channel is achieved via superposition
coding for most channel parameter values. Interestingly, the channel in some subset of these parameter values does not belong
to any of the existing classes of broadcast channels for which superposition coding is optimal (e.g., degraded, less noisy, more
capable). In particular, we introduce the notion of effectively less noisy broadcast channel and show that it implies less noisy but
is not in general implied by more capable. For the rest of the channel parameter values, we show that there is a gap between
Marton’s inner bound and the UV outer bound.

I. I NTRODUCTION

The continuous-time Poisson channel is a canonical model ofthe point to point optical communication channel in the low
power regime [1–3]. The capacity of this channel was established using different approaches by Kabanov [4], Davis [5], and
Wyner [6, 7]. In particular, Wyner [6, 7] established the capacity using an elementary method in which the capacity is shown
to be the the limit of the capacity of a certain memoryless binary channel. Wyner’s approach spurred several generalizations
to multiple user Poisson channels. In [8] Lapidoth and Shamai established the capacity region of the Poisson multiple-access
channel. In [9], Lai, Liang, and Shamai studied the Poisson interference channel. In [10], Bross, Lapidoth, and Shamai studied
the Poisson channel with side information at the transmitter. In [11], Lapidoth, Telatar, and Erbanke studied the Poisson
broadcast channel and established the condition under which the channel is degraded; hence the capacity region is achieved
using superposition coding [12].

In this paper, which is an expanded and a more complete version of [13], we show that for the Poisson broadcast channel,
superposition coding is optimal much beyond the parameter ranges for which the channel is degraded. We consider the 2-
receiver continuous-time Poisson broadcast channel (P-BC) depicted in Figure 1. The channel input signalX(t) ∈ [0, 1], t ≥ 0,
that is, we assume apeak powerconstraint of 1 onX(t).GivenX(t) = x(t), the outputYi(t) is a Poisson process (PP) with
instantaneous rateAi(x(t) + si) for i = 1, 2, i.e., for 0 ≤ w ≤ w + τ ≤ T ,

P{Yi(w + τ) − Yi(w) = k|X(t) = x(t), t ∈ [0, T ]} =
Γk(w, τ)

k!
e−Γ(w,τ), k ∈ N,

where

Γ(w, τ) =

∫ w+τ

w

Ai(x(t) + si) dt.

The parameterAi is the channel gain for receiveri = 1, 2. The parametersi ≥ 0 is the rate of the input referred dark noise
for receiveri.

We consider the private message setting in which the senderX wishes to communicate a messageM1 to receiverY1 at
rate R1 and a messageM2 to receiverY2 at rateR2, whereM1 and M2 are independent and uniformly distributed over
[1 : 2nR1 ]× [1 : 2nR2 ]. The results we establish on the optimality of superposition coding can be readily extended to the case
with common message [14]. We define a(2nR1 , 2nR2 , n) code, achievability, and the capacity region for this setting in the
standard way [14].

As in [11], we use Wyner’s approach for the point-to-point Poisson channel to study the capacity region of the Poisson
broadcast channel. As depicted in Figure 2-(a), time is quantized into intervals of length∆ > 0 and the continuous time P-BC
is approximated in each interval by the binary memoryless broadcast channel (binary P-BC) depicted in Figure 2-(b), with
transition probabilities:

a1 = A1s1∆+O(∆2), a2 = A2s2∆+O(∆2),

b1 = A1(1 + s1)∆ +O(∆2), b2 = A2(1 + s2)∆ +O(∆2).
(1)

Following Wyner’s arguments, Lapidoth, Telatar, and Urbanke showed that the capacity region of the P-BC is equal to the
capacity region of the1/∆-extension of this binary channel as∆ tends to zero.
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Fig. 1: Two receiver continuous time Poisson broadcast channel.
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Fig. 2: (a) Time quantization. (b) Binary P-BC.

In this paper, we show the surprising fact that superposition coding is optimal for almost all channel parameter values.We
find explicit analytical expressions for the ranges of parameter values in which the channel is less noisy and more capable [15].
We then introduce the new class ofeffectively less noisybroadcast channels for which superposition coding is optimal and
show that it includes the less noisy class but is not strictlyincluded in the more capable class. The key idea is that the less
noisy condition needs to hold only for channel input distributions that attain the maximum weighted sum rate. We find explicit
analytical expressions for the ranges of parameter values for which the P-BC is effectively less noisy. By further strengthening
the effectively less noisy condition, we show numerically that superposition coding can be optimal even when the channel
is not more capable or effectively less noisy. Finally we show that for the remaining set of parameter values. there is a gap
between Marton’s inner bound [16] and the UV outer bound [17].

The rest of the paper is organized as follows. In Section II wereview superposition coding and the optimal superposition
coding inner bound for binary input broadcast channels, andsummarize known classes of broadcast channels for which
superposition coding inner bound is tight. In Section III, we establish the parameter ranges for which a P-BC is less noisy and
more capable. In Section IV, we introduce the new class of effectively less noisy broadcast channels for which superposition
coding is also optimal, and obtain the parameter range for which a P-BC is effectively less noisy. In Section V, we show
that for certain range of parameter values, there is a gap between Marton’s inner bound and the UV outer bound. Hence, the
capacity region of the P-BC is still not known in general. In Section VI, we extend our results to the average power constraint
case. Finally in Section VII, we remark on the optimality of superposition coding for general binary input broadcast channels.
We demonstrate via an example that our intuition about when superposition coding is optimal for the broadcast channel can
be quite misleading.

II. SUPERPOSITION CODING INNER BOUND

Consider a 2-receiver discrete memoryless broadcast channel p(y1, y2|x). The superposition coding scheme [12] is motivated
by broadcast channels for which one receiver is “stronger” than the other. This suggests a layered coding approach in which
the weaker receiver (sayY2) recovers only its own messageM2 carried by the auxiliary random variableU , while the stronger
receiver (Y1) recovers both messages(M1,M2) carried byX . This coding scheme leads to the inner bound on the capacity
region of the general discrete memoryless broadcast (DM-BC) channelp(y1, y2|x) that consists of all rate pairs(R1, R2) such
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that [18]

R1 < I(X ;Y1 |U),

R2 < I(U ;Y2),

R1 +R2 < I(X ;Y1)

(2)

for some pmfp(u, x), and |U| ≤ |X |+ 1.
Let R1 denote the region (2). Note that a second superposition coding inner bound can be readily obtained by exchanging

Y1 and Y2 andR1 andR2 in (2). Denoting the second region byR2, it can be shown that if the capacity of the channel
p(y1|x), C1, is larger than the capacity of the channelp(y2|x), C2, thenR2 ⊆ {(R1, R2) : R1/C1 +R2/C2 ≤ 1}.

Remark 1. In [19], Wang, Sasoglu, Bandemer, and Kim compared two superposition encoding schemes for the broadcast
channel. The first is theUX scheme above, and the second is the(U, V ) scheme in whichM1 is carried byV , M2 is carried
by U , andX is a function of(U, V ). The weaker receiverY2 again recoversM2 carried byU and the stronger receiverY1

recoversM1 carried byV . They showed that the optimal inner bound achieved by theUV scheme can be strictly larger than
that achieved by theUX scheme. It turns out, however, that if the broadcast channelhas binary input, the optimal inner bound
(assumingC1 ≥ C2) is co (R1 ∪ {(0, C2)}) [20]. Since in this paper we are concerned with the binary P-BC, which has binary
input and outputs, we focus only on conditions under which eitherR1 or R2 is optimal.

It is well known that regionR1 is tight for the following classes of DM-BC.

Definition 1 (Degraded broadcast channel [12]). For a DM-BCp(y1, y2|x) Y2 is said to be a degraded version ofY1 if there
exists a random variableY ′

1 such thatY ′
1 |{X = x} ∼ pY1|X(y′1|x), i.e., Y ′

1 has the same conditional pmf asY1 (givenX) and
X → Y ′

1 → Y2 form a Markov chain.

Definition 2 (Less noisy channel [15]). For a DM-BC p(y1, y2|x) receiverY1 is said to beless noisythan receiverY2 if
I(U ;Y1) ≥ I(U ;Y2) for all p(u, x).

Van-Dijk [21] showed that receiverY1 is less noisy than receiverY2 if I(X ;Y1)−I(X ;Y2) is concave inp(x), or equivalently,
I(X ;Y1) − I(X ;Y2) is equal to its upper concave envelopeC[I(X ;Y1) − I(X ;Y2)] (the smallest concave function that is
greater than or equal toI(X ;Y1)− I(X ;Y2)). As we will see, this alternative condition of less noisy issignificantly simpler
to compute than the original condition.

Definition 3 (More capable channel [15]). For a DM-BCp(y1, y2|x) receiverY1 is said to bemore capablethan receiverY2

if I(X ;Y1) ≥ I(X ;Y2) for all p(x).

The more capable condition can also be recast in terms of the concave envelope: ReceiverY1 is more capable thanY2 if
C[I(X ;Y2)− I(X ;Y1)] = 0 for everyp(x).

It is also well known that degraded implies less noisy which implies more capable [15], but the converses do not always
hold. In [22], Nair generalized the notions of less noisy andmore capable. LetPo be a class of pmfsp(u, v, x) such that for
any triple of random variables(U, V,X) ∼ p(u, v, x), there exists a pmfq(ũ, ṽ, x) such that

q(x) ∈ Po,

I(V ;Y1)p ≤ I(Ṽ ;Y1)q,

I(U ;Y2)p ≤ I(Ũ ;Y2)q,

I(V ;Y1)p + I(X ;Y2 |V )p ≤ I(Ṽ ;Y1)q + I(X ;Y2 |Ṽ )q,

I(U ;Y2)p + I(X ;Y1 |U)p ≤ I(Ũ ;Y2)q + I(X ;Y1 |Ũ)q.

(3)

The notationI(V ;Y1)p refers to the mutual information betweenV andY1 when the input is generated according top(u, v, x).

Definition 4 (Essentially less noisy [22]). For a DM-BCp(y1, y2|x), Y1 is said to beessentially less noisythanY2 if there exists
a sufficient class of pmfsPo as defined in (3) such thatI(U ;Y1) ≥ I(U ;Y2) for everyp(x) ∈ Po and allU → X → (Y1, Y2).

Definition 5 (Essentially more capable [22]). For a DM-BCp(y1, y2|x), Y1 is said to beessentially more capablethanY2 if
there exists a sufficient class of pmfsPo as defined in (3) such thatI(X ;Y1|U) ≥ I(X ;Y2|U) for everyp(x) ∈ Po and all
U → X → (Y1, Y2).

It can be easily seen from the definitions that less noisy implies essentially less noisy and more capable implies essentially
more capable. However the converses do not always hold. Alsoit is shown in [22] that essentially less noisy neither implies
nor is implied by essentially more capable. The capacity region for the essentially less noisy and the essentially more capable
classes [23] is regionR1 as defined in (2). Also note that when the channel is essentially less noisy, the sum bound in (2) is
always inactive.
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III. L ESS NOISY AND MORE CAPABLEP-BC

We evaluate the conditions for the less noisy and more capable stated in the previous section for the P-BC and show that
the P-BC is less noisy for almost all channel parameter values. We assume without loss of generality thats1 ≤ s2. The results
for s1 > s2 can be similarly established. Also assume thatA1 = α andA2 = 1. The result forA2 6= 1 can be established
using the fact that the capacity for(A1, A2) = (a1, a2) is equal toa2 times the capacity region for(A1, A2) = (a1/a2, 1).

In [11], Lapidoth et al. showed thatY2 is a degraded version ofY1 if α ≥ 1. This can be seen either by directly inspecting
the P-BC channel model or its binary P-BC counterpart.

We now determine the conditions under which the P-BC is less noisy and more capable.
We use the binary P-BC with the parameters given in (1) to extend the definitions of less noisy and more capable to the

P-BC. Let
Ii(q) = lim

∆→0

1

∆
I(X ;Y ∆

i ), X ∼ Bern(q), i = 1, 2,

whereX and Y ∆
i are the input and outputs of binary P-BC as depicted in Figure2-(b). Using Wyner’s results [6, 7], it

immediately follows that

I1(q) = α
(

− (q + s1) log(q + s1) + q(1 + s1) log(1 + s1) + (1− q)s1 log(s1)
)

,

I2(q) = −(q + s2) log(q + s2) + q(1 + s2) log(1 + s2) + (1− q)s2 log(s2),
(4)

and thatIi(q) is maximized at

qi =
(1 + si)

1+si

essii
− si (5)

for i = 1, 2.
We define the less noisy condition for P-BC as follows.

Definition 6. For the 2-receiver P-BC, receiverY1 is less noisy thanY2 if I1(q) − I2(q) is concave inq ∈ [0, 1], i.e., if
C[I1(q)− I2(q)] = I1(q)− I2(q).

Similarly we define the more capable condition for P-BC as follows.

Definition 7. For the 2-receiver P-BC, receiverY1 is more capable thanY2 if I1(q) − I2(q) ≥ 0 for everyq ∈ [0, 1], i.e., if
C[I2(q)− I1(q)] = 0.

To establish the parameter ranges for less noisy and more capable P-BC, we define the following breakpoints ofα:

α1 =
1 + s1
1 + s2

,

α2 =
s2 log(1 + 1/s2)− 1

s1 log(1 + 1/s1)− 1
,

α3 =
(1 + s2) log(1 + 1/s2)− 1

(1 + s1) log(1 + 1/s1)− 1
,

α4 =
s1
s2

.

We also need the following lemma which characterizes the upper concave envelope of(I1(q)− I2(q)) and(I2(q)− I1(q)).

Lemma 1. Consider a P-BC.

1. Let

t =











0 if 0 ≤ α ≤ α3,

g−1
1 (α) if α3 < α < α1,

1 if α ≥ α1,

(6)

where

g1(x) =
(1 + s2) log

(

(1 + s2)/(x+ s2)
)

− 1 + x

(1 + s1) log
(

(1 + s1)/(x+ s1)
)

− 1 + x
. (7)

Then, the upper concave envelope of(I1(q)− I2(q)) is

C[I1(q)− I2(q)] =

{

I1(q) − I2(q) for 0 ≤ q ≤ t,

(1− q)(I1(t)− I2(t))/(1 − t) for q > t.
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2. Let

r =











0 if 0 ≤ α ≤ α4,

g−1
2 (α) if α4 < α < α2,

1 if α ≥ α2,

(8)

where

g2(x) =
s2 log(1 + x/s2)− x

s1 log(1 + x/s1)− x
. (9)

Then, the upper concave envelope of(I2(q)− I1(q)) is

C[I2(q)−I1(q)] =

{

(q/r)(I2(r) − I1(r)) for 0 ≤ q < r,

I2(q)− I1(q) for q ≥ r.

The proof of Lemma 1 is in Appendix A. Figure 3-(a) plotst vsα. The shaded area is whereC[I1(q)−I2(q)] = I1(q)−I2(q).
Figure 3-(b) plotsr vs α. The shaded region is whereC[I2(q) − I1(q)] = I2(q) − I1(q). Figure 4 plotsI1(q) − I2(q) and
C[I1(q) − I2(q)] for α = 0.3α3 + 0.7g1(q2) and α = g1(q2) for (s1, s2) = (0.1, 1). Figure 5 plotsI2(q) − I1(q) and
C[I2(q)− I1(q)] for α = 0.3α4 + 0.7g2(q1) andα = g2(q1) for (s1, s2) = (0.1, 1).
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Fig. 3: (a) Plot oft vs α for s1 = 0.1, s2 = 1. The shaded area is whereC[I1(q) − I2(q)] = I1(q) − I2(q), i.e., 0 ≤ q ≤ t. (b) Plot of r vs α for
s1 = 0.1, s2 = 1. The shaded area is whereC[I2(q)− I1(q)] = I2(q)− I1(q), i.e., r ≤ q ≤ 1.
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We are now ready to state the conditions for less noisy and more capable.

Theorem 1. For s1 ≤ s2:
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Fig. 5: Plots ofI2(q)− I1(q) (solid) andC[I2(q) − I1(q)] (dashed line) vsq for (a) α = 0.3α4 + 0.7g2(q1) and (b)α = g2(q1) (s1 = 0.1, s2 = 1).

1. If α ≥ α1, Y1 is less noisy thanY2 and the capacity region is the set of rate pairs(R1, R2) such that

R1 ≤ βI1(p0),

R2 ≤ I2(βp0 + β̄)− βI2(p0)
(10)

for some0 ≤ β, p0 ≤ 1.
2. If α2 ≤ α ≤ α1, Y1 is more capable thanY2 and the capacity region is the set of rate pairs(R1, R2) such that

R1 ≤ β0I1(p0) + β1I1(p1) + β2I1(p2),

R2 ≤ I2(p)− β0I2(p0)− β1I2(p1)− β2I2(p2),

R1 +R2 ≤ I1(p)

(11)

for some0 ≤ β0, β1, β2, p0, p1, p2 ≤ 1, whereβ0 + β1 + β2 = 1 andp = β0p0 + β1p1 + β2p2.

3. If 0 ≤ α ≤ α4, Y2 is less noisy thanY1 and the capacity region is the set of rate pairs(R1, R2) such that

R1 ≤ I1(βp0)− βI1(p0),

R2 ≤ βI2(p0)
(12)

for some0 ≤ β, p0 ≤ 1.
4. If α4 ≤ α ≤ α3, Y2 is more capable thanY1 and the capacity region is the set of rate pairs(R1, R2) such that

R1 ≤ I1(p)− β0I1(p0)− β1I1(p1)− β2I1(p2),

R2 ≤ β0I2(p0) + β1I2(p1) + β2I1(p2),

R1 +R2 ≤ I2(p)

for some0 ≤ β0, β1, β2, p0, p1, p2 ≤ 1, whereβ0 + β1 + β2 = 1 andp = β0p0 + β1p1 + β2p2.

The capacity region forY1 less noisy thanY2 is the superposition rate regionR1 without the sum rate bound forU ∼ Bern(β)
andp(x|u) is the Z-channel shown in Figure 6-(a) whereβ, p0 ∈ [0, 1]; and the capacity region forY2 less noisy thanY1 is
R2 for U ∼ Bern(β) andp(x|u) is the Z-channel shown in Figure 6-(b) whereβ, p0 ∈ [0, 1].
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The capacity region forY1 more capable thanY2 is the superposition rate regionR1 with U ∈ {0, 1, 2}, pU (j) = βj , and
X |{U = j} ∼ Bern(pj), j = 0, 1, 2; and the capacity region forY2 more capable thanY1 is the superposition rate region iR2

with pU (j) = βj andX |{U = j} ∼ Bern(pj) for j = 0, 1, 2.

Figure 7 illustrates the ranges ofα for which the P-BC is degraded, less noisy and more capable. From Theorem 1 the
P-BC is less noisy ifα ≤ α4 or α ≥ α1 and more capable ifα ≤ α3 or α ≥ α2.

PSfrag replacements
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Fig. 7: Illustration of the ranges ofα for which the channel is degraded, less noisy, and more capable as stated in Theorem 1.

Proof of Theorem 1:

We first find the condition onα for one receiver being less noisy or more capable than the other receiver.

1. By part 1 of Lemma 1,C[I1(q)− I2(q)] = I1(q)− I2(q) if and only if α ≥ α1. ThusY1 is less noisy thanY2 iff α ≥ α1.
2. By part 2 of Lemma 1,C[I2(q)− I1(q)] = 0 if and only if α ≥ α2. ThusY1 is more capable thanY2 iff α ≥ α2.
3. By part 2 of Lemma 1,C[I2(q) − I1(q)] = I2(q) − I1(q) if and only if 0 ≤ α ≤ α4. ThusY2 is less noisy thanY1 iff

0 ≤ α ≤ α4.
4. By part 1 of Lemma 1,C[I1(q)−I2(q)] = 0 if and only if 0 ≤ α ≤ α3. ThusY2 is more capable thanY1 iff 0 ≤ α ≤ α3.

We now obtain the capacity region for P-BC such thatY1 is more capable thanY2 (part 2) and for P-BC such thatY1 is
less noisy thanY2 (part 1). By exchangingY1 andY2 and I1(·) and I2(·), the capacity expression for part 4 and part 3 of
Theorem 1 can be obtained similarly.

For the1/∆-extension binary P-BC shown in Figure 2-(b), superposition coding inner bound is the set of rate pairs(R1, R2)
such that

R1 < (1/∆)I(X ;Y ∆
1 |U),

R2 < (1/∆)I(U ;Y ∆
2 ),

R1 +R2 < (1/∆)I(X ;Y ∆
1 )

(13)

for some pmfp(u, x), and |U| ≤ |X |+ 1.

Let U ∈ {0, 1, 2} wherepU (i) = βi andpX|U (1|i) = pi ∈ [0, 1]. As ∆ → 0, the region in (13) is equivalent to the region
in (11) in Theorem 2. If a P-BC is more capable, the region in (11) is indeed the capacity region. This is because the UV outer
bound for1/∆-extension binary P-BC as∆ → 0 reduces to the inner bound in (11) under the condition for more capable
P-BC.

For part 1 of Theorem 1, note that the capacity region is the region in (11) with an inactive sum bound, i.e., the set of rate
pairs(R1, R2) that satisfy

R1 ≤
∑

i∈{0,1,2}

βiI1(pi),

R2 ≤ I2

(

∑

i∈{0,1,2}

βipi

)

−
∑

i∈{0,1,2}

βiI2(pi)
(14)

for someβi, pi ∈ [0, 1] such that
∑

i∈{0,1,2} βi = 1. Let R′ andR′′ denote the region in (10) and (14) respectively. Note
that R′ is the set of rate pairs(R1, R2) that satisfy inequalities in (14) for(β0, β1, β2) = (β, β̄, 0) for someβ ∈ [0, 1]
and p0 ∈ [0, 1] and p1 = 1. Thus R′ ⊆ R′′. We now show that every supporting hyperplane ofR′′ intersectsR′, i.e.,
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max(R1,R2)∈R′′(λR1 +R2) ≤ max(r1,r2)∈R′(λr1 + r2). Consider

max
(R1,R2)∈R′′

(λR1 +R2) = max
βi,pi∈[0,1]

(

∑

i∈{0,1,2}

βi(λI1(pi)− I2(pi)) + I2
(

∑

i∈{0,1,2}

βipi
)

)

= max
p∈[0,1]

(

max
βi,pi:

∑
βipi=p

(

∑

i∈{0,1,2}

βi(λI1(pi)− I2(pi))
)

+ I2(p)

)

= max
p∈[0,1]

(

C[λI1(p)− I2(p)] + I2(p)

)

(a)
= max

(

max
p∈[0,t′]

(

λI1(p)− I2(p) + I2(p)
)

, max
p∈[t′,1]

(

(1− p)(λI1(t
′)− I2(t

′))/(1 − t′) + I2(p)
)

)

(15)
(b)

≤ max
β,p0∈[0,1]

(

β(λI1(p0)− I2(p0)) + I2(βp0 + β̄)
)

(16)

= max
(r1,r2)∈R′

(λr1 + r2).

Step(a) holds by Lemma 1. To prove step(b), note that the two terms in (15) are obtained by letting(β, p0) = (1, p) and
(β, p0) = ((1− p)/(1− t′), t′) in (16).

We now show thatR′ is convex. SupposeR′ is not convex, i.e.,co{R′} 6= R
′ whereco{R′} denotes the convex hull of

R′. There exists a rate pair(r1, r2) ∈ co{R′} on the boundary ofco{R′}, i.e., µr1 + r2 = max(R1,R2)∈co{R′}(µR1 + R2)
for someµ ≥ 0 such that(r1, r2) 6∈ R′. Note that(r1, r2) = η(r10, r20) + (1 − η)(r11, r21) for some0 < η < 1 and
(r10, r20), (r11, r21) ∈ R′. Sincemax(R1,R2)∈co{R′}(µR1 + R2) = max(R1,R2)∈R′(µR1 + R2), the two rate pairs(r10, r20)
and (r11, r21) satisfy

µr10 + r20 = µr11 + r21 = max
(R1,R2)∈R′

(µR1 +R2). (17)

We now show that the equality (17) cannot hold for(r10, r20) 6= (r11, r21), i.e., there exists a unique rate pair(R1, R2) such
thatµR1 +R2 = max(r1,r2)∈R′(µr1 + r2). Consider

max
(r1,r2)∈R′

(

µr1 + r2
)

= max
β,p0∈[0,1]

(

I2(βp0 + β̄) + µβI1(p0)− βI2(p0)
)

.

We show that(β, p0) that achieves the maximum is unique. Note that

max
β,p0

(

I2(βp0 + β̄) + µβI1(p0)− βI2(p0)
)

= max
p

(

I2(p) + C[µI1(p)− I2(p)]
)

.

Since I2(p) is strictly concave,I2(p) + C[µI1(p) − I2(p)] is strictly concave. Letp∗ the unique solution that maximizes
I2(p) + C[µI1(p)− I2(p)]. Then

max
β,p0

(

I2(βp0 + β̄) + µβI1(p0)− βI2(p0)
)

= I2(p
∗) + C[µI1(p

∗)− I2(p
∗)]

= max
β,p0:βp0+β̄=p∗

(

I2(p
∗) + µβI1(p0)− βI2(p0)

)

Finally by Lemma 1, there exists a unique(β, p0) such thatβp0 + β̄ = p∗ and

C[µI1(p
∗)− I2(p

∗)] = µβI1(p0)− βI2(p0).

ThusR′ = co{R′}. To complete the proof forR′ = R′′, we use Lemma 2 below.

Lemma 2. [24] Let R ∈ R
d be convex andR′ ⊆ R′′ be two bounded convex subsets ofR, closed relative toR. If every

supporting hyperplane ofR′′ intersectsR′, thenR′ = R′′.

As mentioned in the first part of this section, superpositioncoding is also optimal for the essentially less noisy and essentially
more capable classes. Can we extend the range of parameterα for which superposition coding is optimal by evaluating the
conditions for these two classes?

To answer this question, first note that or binary input broadcast channels, the essentially more capable condition in [22]
reduces to that for the more capable class; hence essentially more capable does not extend the range ofα for which superposition
coding is optimal beyond more capable. To see this, considera binary input broadcast channel which is not more capable.
Then there existsp, q ∈ (0, 1) such thatI(X ;Y2)p − I(X ;Y1)p > 0 andI(X ;Y1)q − I(X ;Y2)q > 0. Then

C[I(X ;Y2)r − I(X ;Y1)r] > 0 for everyr ∈ (0, 1),

C[I(X ;Y1)r − I(X ;Y2)r] > 0 for everyr ∈ (0, 1).
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Thus, for everyX ∼ Bern(r) for r ∈ (0, 1), there existsU1 andU2 such thatI(X ;Y2|U1)−I(X ;Y1|U1) > 0 andI(X ;Y1|U2)−
I(X ;Y2|U2) > 0. Hence if a binary input broadcast channel is not more capable it is also not essentially more capable.

The answer for essentially less noisy is less clear. It appears to be quite difficult to evaluate the set of pmfsPo that satisfy
the condition in (21). In the following section, we define a new class of broadcast channels for which the condition can be
easily evaluated and which includes the essentially less noisy class.

IV. EFFECTIVELY LESS NOISYP-BC

Consider outer bound̄R1 on the capacity region of the DM-BCp(y1, y2|x) which consists of all rate pairs(R1, R2) such
that

R2 ≤ I(U ;Y2),

R1 +R2 ≤ I(U ;Y2) + I(X ;Y1 |U)
(18)

for somep(u, x). To see that this is indeed an outer bound, note that it is simply the Körner–Marton [16] outer bound without
the sum rate bound.

The outer bound̄R1 can be alternatively represented in terms of its supportinghyperplanes as:

max
(r1,r2)∈R̄1

(λr1 + r2) =

{

maxp(u,x)(λI(X ;Y1|U) + I(U ;Y2)) if 0 ≤ λ ≤ 1,

maxp(u,x) λ(I(U ;Y2) + I(X ;Y1|U)) if λ > 1.
(19)

Now consider the supporting hyperplane representation of the superposition rate regionR1 in (2):

max
(R1,R2)∈R1

(λR1 +R2) =

{

maxp(u,x)
(

λmin{I(X ;Y1|U), I(X ;Y1)− I(U ;Y2)} + I(U ;Y2)
)

if 0 ≤ λ ≤ 1,

maxp(u,x) λ
(

I(U ;Y1) + I(X ;Y1|U)
)

if λ > 1.

Note thatR̄1 andR1 differ only in the first term when0 ≤ λ ≤ 1: for R̄1, the term isλI(X ;Y1|U), while for R1 the term is
λmin{I(X ;Y1|U), I(X ;Y1)− I(U ;Y2)}. Whenλ > 1, for R̄1, the term isλI(U ;Y2), while for R1 the term isλI(U ;Y1).

Now it is easy to see that if the DM-BC is less noisy, i.e.,I(U ;Y1) ≥ I(U ;Y2) for all p(u, x), then these two bounds
coincide. The key observation that leads to a more general class than less noisy is that the inequalityI(U ;Y1) ≥ I(U ;Y2)
does not need to hold for everyp(u, x). For example, ifI(U ;Y1) ≥ I(U ;Y2) for everyp(x) ∈ P and everyp(u|x) such that

max
p(x)

max
p(u|x)

(λI(X ;Y1 |U) + I(U ;Y2)) = max
p(x)∈P

max
p(u|x)

(λI(X ;Y1 |U) + I(U ;Y2)) (20)

for every0 ≤ λ ≤ 1, thenR1 and R̄1 coincide.
This particular example is quite interesting because both the condition for the setP and the inequalityI(U ;Y1) ≥ I(U ;Y2)

can be expressed in terms of the upper concave envelope ofI(X ;Y1) − I(X ;Y2), which makes their evaluation quite
straightforward especially for binary broadcast channels.

We are now ready to introduce a new class of broadcast channels for which superposition coding is optimal.

Definition 8 (Effectively less noisy broadcast channels). For a DM-BC,p(y1, y2|x), let P be the set of pmfsp(x) such that
for every0 ≤ λ ≤ 1,

max
p(x)

(

I(X ;Y2) + C[λI(X ;Y1)− I(X ;Y2)]
)

= max
p(x)∈P

(

I(X ;Y2) + C[λI(X ;Y1)− I(X ;Y2)]
)

. (21)

ReceiverY1 is said to beeffectively less noisythan receiverY2 if I(X ;Y1) − I(X ;Y2) = C[I(X ;Y1) − I(X ;Y2)] for every
p(x) ∈ P.

Clearly if the DM-BC is less noisy, then it is effectively less noisy. We can further show that if the channel is essentially
less noisy as defined in [22], it is also effectively less noisy. To show this note that the sufficient classPo in (3) must satisfy

max
p(x)

max
p(u|x)

(λI(X ;Y1 |U) + I(U ;Y2)) ≤ max
p(x)∈Po

max
p(u|x)

(λI(X ;Y1 |U) + I(U ;Y2))

for every 0 ≤ λ ≤ 1. HencePo ⊇ P . If I(U ;Y1) ≤ I(U ;Y2) for p(x) ∈ Po and everyp(u|x), then I(U ;Y1) ≤ I(U ;Y2)
for p(x) ∈ P and everyp(u|x). We do not know if the condition for effectively less noisy isstrictly weaker than that for
essentially less noisy, however. As we will see in the next section, effectively less noisy neither implies nor is implied by more
capable in general.

The definition of effectively less noisy can be readily extended to the P-BC in the same manner as the less noisy and more
capable we presented in the previous section.

Definition 9 (Effectively less noisy P-BC). For the 2-receiver P-BC, letQ ⊆ [0, 1] be such that for every0 ≤ λ ≤ 1,

max
q∈[0,1]

I2(q) + C[λI1(q)− I2(q)] = max
q∈Q

I2(q) + C[λI1(q)− I2(q)]. (22)
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ReceiverY1 is said to be effectively less noisy thanY2 if I1(q)− I2(q) = C[I1(q)− I2(q)] for everyq ∈ Q.

To establish the parameter ranges for effectively less noisy P-BC, we need the following additional breakpoints ofα :

α12 = g1(q2),

α23 = g2(q1)

where the functionsg1(·) andg2(·) are defined in (7) and (9), respectively.

Theorem 2. Consider a 2-receiver P-BC and assume thats1 ≤ s2.
1. If α ≥ α12, Y1 is effectively less noisy thanY2, and the capacity region is the set of rate pairs that satisfy(10).
2. If α ≤ α23, Y2 is effectively less noisy thanY1, and the capacity region is the set of rate pairs that satisfy(12).

Note that as for the less noisy case, the capacity region for effectively less noisy channels is also attained using binary U
and a Z-channel fromU to X . Figure 8 illustrates the parameter ranges for which superposition coding is optimal.

PSfrag replacements

α
α4 α3 α23 α2 α12 α1 1

eff. less noisy

more capable

less noisyless noisy

degraded

Fig. 8: Illustration of the ranges ofα for which the channel is degraded, less noisy, more capable,and effectively less noisy as stated in Theorems 1 and 2.

It can be shown thatα4 ≤ α3 ≤ α23 ≤ α2 ≤ α12 ≤ α1 (see Appendix B). The fact thatα2 ≤ α12 implies that if Y1 is
effectively less noisy thanY2, it is also more capable thanY2 (see Figure 4-(b) for an example). Thus effectively less noisy does
not offer any new range of parameters for which superposition coding is optimal. On the other hand, the fact thatα3 ≤ α23

implies that forα ∈ (α3, α23], Y2 is effectively less noisy but is not more capable thanY1 (see Figure 5-(b) for an example).
Thus effectively less noisy offers a new range of parametersfor which superposition coding is optimal.

Proof of Theorem 2:
1. We first show thatQ = [0, q2] satisfies (22). Specifically we show thatI2(q)+C[λI1(q)− I2(q)] is decreasing in[q2, 1].

SinceI2(q) +C[λI1(q)− I2(q)] is concave, it suffices to show that the derivative ofI2(q) +C[λI1(q)− I2(q)] at q = q2
is nonpositive. Consider

d
(

I2(q) + C[λI1(q)− I2(q)]
)

dq

∣

∣

∣

∣

q=q2

(a)
=

{

λI ′1(q2) if q2 ≥ t′

I ′2(q2)− (λI1(t
′)− I2(t

′))/(1 − t′) otherwise.

(b)

≤ 0

for t′ = t(α′) whereα′ = λα. Step(a) follows by rewrittingλI1(q) for A1 = α as I1(q) for A1 = λα (see (4)) and
then applying Lemma 1. Step(b) holds becauseλI ′1(q2) ≤ 0 and−(λI1(t

′)− I2(t
′))/(1 − t′) ≤ 0. The first inequality

holds sinces1 ≤ s2 implies q1 ≤ q2 andλI ′1(q1) = 0. The second inequality holds by (30).
By Lemma 1,C[I1(q)− I2(q)] = I1(q)− I2(q) for q ∈ [0, q2] if and only if α ≥ g1(q2) = a12 (also see Figure 3 (a)).

2. We first show thatQ = [q1, 1] satisfies (22) withI1(·) and I2(·) interchanged. Specifically we show thatI1(q) +
C[λI2(q) − I1(q)] is increasing in[0, q1]. Since I1(q) + C[λI2(q) − I1(q)] is concave, it suffices to show that the
derivative ofI1(q) + C[λI2(q)− I1(q)] at q = q1 is nonnegative. Consider

d
(

I1(q) + C[λI2(q)− I1(q)]
)

dq

∣

∣

∣

∣

q=q1

=
d
(

I1(q) + λC[I2(q)− I1(q)/λ]
)

dq

∣

∣

∣

∣

q=q1

(a)
=

{

λI ′2(q1) if q1 ≥ r′

I ′1(q1) + (λI2(r
′)− I1(r

′))/r′ otherwise.

(b)

≥ 0

for r′ = r(α′) whereα′ = α/λ. Step(a) follows by rewrittingI1(q)/λ for A1 = α asI1(q) for A1 = α/λ (see (4)) and
then applying Lemma 1. Step(b) holds becauseλI ′2(q1) ≥ 0 and (λI2(r

′) − I1(r
′))/r′ ≥ 0. The first inequality holds

sinces1 ≤ s2 implies q1 ≤ q2 andλI ′2(q2) = 0. The second inequality holds by (30).
By Lemma 1,C[I2(q)− I1(q)] = I2(q)− I1(q) for q ∈ [q1, 1] if and only if α ≤ g2(q1) = a23 (also see Figure 3 (b)).
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Figure 9 illustrates the parameter ranges for which superposition coding is optimal. As can be seen the area in theα-s2
plane where superposition coding is not optimal becomes smaller as s1 increases. In Appendix C, we show that the fraction
of the channel parameter space for which superposition coding is optimal approaches one; hence superposition coding isin a
sense almost always optimal for the P-BC. In comparison, thefraction of the parameter space for which the P-BC is degraded
is always bounded away from 1.
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Fig. 9: Plots ofα versuss2 for s1 = 0 (top left), s1 = 0.1 (top right), s1 = 1 (bottom left) ands1 = 3 (bottom right). The shaded areas in each plot are
where superposition coding is optimal and the light shaded area (α ≥ 1) is whereY2 is a degraded version ofY1.

As illustrated in Figure 8, the capacity region of the P-BC isachieved using superposition coding in the rangesα ≤ α23

andα ≥ α2. Note that for the remaining range ofα the channel is not more capable or effectively less noisy, which follows
immediately from the if and only if conditions established in Theorems 1 and 2. In the following section we explore bounds
on the capacity region in the range forα ∈ (α23, α2).

V. GAP BETWEENMARTON AND UV

The best known inner and outer bounds on the capacity region of the DM-BC are the Marton inner bound [16] and the UV
outer bound [17], respectively. We show that forα ∈ (α23, α2) there can be a gap between these two bounds.

In [25], Geng, Jog, Nair and Wang showed that for binary inputbroadcast channels, Marton’s inner reduces to the set of
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rate pairs(R1, R2) such that

R1 < I(W ;Y1) +

k
∑

j=1

βjI(X ;Y1 |W = j),

R2 < I(W ;Y2) +

5
∑

j=k+1

βjI(X ;Y2 |W = j),

R1 +R2 < min{I(W ;Y1), I(W ;Y2)}+
k

∑

j=1

βjI(X ;Y1 |W = j) +
5

∑

j=k+1

βjI(X ;Y2 |W = j)

(23)

for somepW (j) = βj , j ∈ [1 : 5], andp(x|w). This region is achieved usingrandomized time-division[26]. This ingenious
insight helps simplify the computation of Marton’s inner bound for the binary P-BC; hence for the P-BC itself.

The UV outer bound on the capacity region of the DM-BC is the set of rate pairs(R1, R2) such that

R1 ≤ I(V ;Y1),

R2 ≤ I(U ;Y2),

R1 +R2 ≤ I(V ;Y1) + I(U ;Y2 |V ),

R1 +R2 ≤ I(V ;Y1 |U) + I(U ;Y2)

(24)

for somep(u, v) and functionx(u, v), |U|, |V| ≤ |X | + 1. Computing this bound even for binary input broadcast channels
is quite difficult. Hence, we compute the maximum sum rates for the Marton and the UV bounds instead of the complete
bounds. Figure 10 plots the maximum sum rates forα23 ≤ α ≤ α2 whens1 = 0.1 ands2 = 1 (α23 = 0.27, α2 = 0.4). Note
that for 0.27 ≤ α ≤ 0.286, the sum rates coincide. For the rest of the range there is a small gap between the Marton and the
UV bound sum rates. In particular forα = 0.34, the gap is approximately0.0039.
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Fig. 10: Plots of the maximum Marton sum rate (dot), superposition sum rate (dash), and UV sum rate fors1 = 0.1, s2 = 1, andα ∈ [α23, α2].

It turns out that superposition coding is optimal in the range where Marton’s sum rate and theUV outer bound sum rate in
Figure 10 coincide, i.e., forα ∈ [0.27, 0.286]. To show this, note that the condition for effectively less noisy in (20) can be
tightened further. It is clearly sufficient thatI(U ;Y1) ≥ I(U ;Y2) for everyp∗(u, x) ∈ P(U,X) and every0 ≤ λ ≤ 1 such that

max
p(u,x)

(

λI(X ;Y1 |U) + I(U ;Y2)
)

= max
p∗(u,x)∈P(U,X)

(

λI(X ;Y1 |U) + I(U ;Y2)
)

. (25)

This is the condition satisfied for the P-BC in the rangeα ∈ [0.27, 0.286]. However, unlike the looser condition (20), where
we are able to express the class of pmfs in terms of the concaveenvelope ofI(X ;Y1)− I(X ;Y2) and determine analytically
the range in which the P-BC is effectively less noisy, we can only numerically evaluate the above condition.

VI. AVERAGE POWER CONSTRAINT

The results on superposition coding in sections II- IV can bereadily extended to the case when there is also an average
power constraint. Suppose that in addition to the maximum power constraintX(t) ≤ 1 (which is needed for the capacity to
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be finite) there is an average power constraint , i.e.,

1

T

∫ T

0

X(t)dt ≤ σ. (26)

The capacity region of P-BC for the average power constraintsetting is equal to the capacity region of the corresponding
binary P-BC forE[X ] ≤ σ. This is a simple extension for Wyner’s argument that the capacity of point-to-point Poisson channel
is the equal to the capacity of the corresponding binary channel for E[X ] ≤ σ [6, 7].

Note that if a broadcast channel is less noisy or more capable, the UV outer bound in (24) with an input constraint coincides
with the superposition inner bound with the same input constraint. Hence, if a P-BC is less noisy, it is also less noisy under the
average power constraint, and similarly if a P-BC is more capable, it is also more capable under the average power constraint.

In contrast, if a P-BC is effectively less noisy, it is not necessarily effectively less noisy under the average power constraint.
The results of effectively less noisy, however, can be easily extended to the average power constraint setting.

Theorem 3. For P-BC with an average power constraint in (26),

1. ReceiverY1 is effectively less noisy thanY2 if α ≥ g1(min{σ, q2}),
2. ReceiverY2 is effectively less noisy thanY1 if α ≤ g2(min{σ, q1})

where the functionsg1(·) andg2(·) are defined in (7) and (9), respectively.

Proof:
Note thatX ∼ Bern(q) for q ∈ [0, σ] satisfies the average power constraint. The condition in Definition 9 can be modified

to the average power constraint setting. LetQ ⊆ [0, σ] be such that for every0 ≤ λ ≤ 1,

max
q∈[0,σ]

I2(q) + C[λI1(q)− I2(q)] = max
q∈Q

I2(q) + C[λI1(q)− I2(q)]. (27)

ReceiverY1 is effectively less noisy thanY2 under the average power constraint ifI1(q)− I2(q) = C[I1(q)− I2(q)] for every
q ∈ Q.

1. Recall that for P-BC without an average power constraint,Y1 is effectively less noisy thanY2 if

I1(q)− I2(q) = C[I1(q)− I2(q)] for q ∈ [0, q2].

For P-BC with an average power constraintq ≤ σ, Y1 is effectively less noisy thanY2 if

I1(q) − I2(q) = C[I1(q)− I2(q)] for q ∈ [0,min{σ, q2}].

If α ≥ g1(min{σ, q2}), Y1 is effectively less noisy thanY2 under the average power constraint.
2. Recall that for P-BC without an average power constraint,Y2 is effectively less noisy thanY1 if

I2(q)− I1(q) = C[I2(q)− I1(q)] for q ∈ [q1, 1].

If there is an average power constraintq ≤ σ for someσ ≥ q1, then Y2 is effectively less noisy thanY1 under the
average power constraint if

I2(q)− I1(q) = C[I2(q)− I1(q)] for q ∈ [q1, σ].

Thus forα ≤ g2(q1), Y2 is effectively less noisy thanY1 under the average power constraint.
If there is an average power constraintq ≤ σ for someσ < q1, thenY2 is effectively less noisy under the average power
constraint thanY1 if

I2(q)− I1(q) = C[I2(q)− I1(q)] for q = σ.

Thus forα ≤ g2(σ), Y2 is effectively less noisy under the average power constraint thanY1.

VII. F INAL REMARKS

We showed that superposition coding is optimal for almost all Poisson broadcast channels, and that when superposition is
not optimal, there is a gap between Marton’s inner bound and the UV outer bound. Hence the capacity region for the P-BC
is still not known in general.

We note that in [27], Geng, Nair, Shamai, and Wang similarly showed that for the class of binary input symmetric output
broadcast channels (which do not include the binary P-BC) either superposition coding is optimal or there is a gap between
Marton’s inner bound and the UV outer bound.

We introduced the effectively less noisy broadcast channels for which superposition coding is optimal. This conditionfor
effectively less noisy can be further extended, but we can only verify it numerically.

Why is this the case and does it hold for general binary input broadcast channels?
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The intuitive reason superposition coding is almost alwaysoptimal for the P-BC is that the binary P-BC is more capable
(and even less noisy) for most parameter ranges as established in Appendix C. Hence one channel is almost always stronger
than the other.

For other classes of binary input broadcast channels, the more capable condition is much less likely to be satisfied. As an
extreme case, consider the skewed binary broadcast channelin Figure 11-(a), which is a generalization of the skew symmetric
BC in [26]. We can show that the channel is not more capable (hence also not less noisy or degraded) for everyp1, p2 ∈ (0, 1).
It turns out, however, that for(p1, p2) in the dark shaded area in Figure 11-(b), the channel is effectively less noisy, and for
(p1, p2) in the lightly shaded area in Figure 11-(b), the BC is not effectively less noisy but superposition coding is still optimal
(which is shown by verifying the stronger condition in (25)). These shaded areas constitute76% of the parameter space area!
This clearly demonstrates that our intuition about when superposition coding is optimal does not always hold. The unshaded
area in Figure 11-(b) is where Marton’s sum rate is strictly greater than the superposition sum rate (i.e.,max{C1, C2}), which
implies that superposition coding is not optimal.
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Fig. 11: (a) skewed binary broadcast channel (b) Plot ofp1 vs p2. The lightly shaded area is where superposition coding is optimal and the dark shaded area
is where one receiver is effectively less noisy than the other receiver.

To perform the analytical and computational evaluations, we relied heavily on the concave envelope method that has been
used in other applications, including [28] which establishes the optimality of dirty paper coding and superposition coding for
MIMO broadcast channels with common message, and [29] whichshows that UV outer bound is not tight.

Finally, it would be interesting to find a similar extension of the more capable to the notion of effectively less noisy. The
difficulty is finding an outer bound similar to the one we used for effectively less noisy.
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APPENDIX A
PROOF OFLEMMA 1

We first prove that the function(I2(q)− I1(q)) can change concavity at most once in the rangeq ∈ [0, 1]. In particular, the
function I2(q) − I1(q) is (i) concave in[0, 1] if α ≤ α4, (ii) convex in [0, 1] if α ≥ α1, or (iii) convex in [0, κ] and concave
in [κ, 1] otherwise, where

κ =
αs2 − s1
1− α

∈ [0, 1]. (28)

To show the above statement, note that the second derivativeof I2(q)− I1(q),

I ′′2 (q)− I ′′1 (q) =
(α− 1)q + αs2 − s1
(q + s1)(q + s2)

, (29)

has a unique zero, is nonnegative ifα ≥ α1, and is nonpositive ifα ≤ α4. Now we are ready to prove Lemma 1.

1. Let f1(q) = (I1(q)− I2(q))/(1− q). We first show thatt defined in (6) satisfies

t = arg max
q∈[0,1]

f1(q). (30)
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It can be shown that

f ′
1(q) = (1− q)−2(α− g1(q))

(

(1 + s1) log
1 + s1
q + s1

− 1 + q

)

,

whereg1(q) is defined in (7). It can be easily checked thatf ′
1(q) and(α− g1(q)) have the same sign for0 < q < 1 and

g1(q) is increasing forq > 0. Hence

a) if α ≤ g1(0) = α3, thenf ′
1(q) ≤ 0 in [0, 1] andf1(q) is maximized att.

b) if α ≥ limq→1 g1(q) = α1, thenf ′
1(q) ≥ 0 in [0, 1] andf1(q) is maximized att.

c) otherwise,f ′
1(q) ≥ 0 in [0, g−1

1 (α)] andf ′(q) ≤ 0 in [g−1
1 (α), 1] andf1(q) is maximized att.

Let

L1(q) =

{

I1(q)− I2(q) if 0 ≤ q ≤ t,

(1 − q)(I1(t)− I2(t))/(1− t) if q > t.

ThenL1(q) ≥ I1(q) − I2(q) becausef1(t) ≥ f1(q) for any q ∈ [0, 1].
On the other hand, note that forq > t, L1(q) can be expressed as

L1(q) =
(

(1− q)/(1− t)
)

(I1(t)− I2(t)) +
(

(q − t)/(1− t)
)

(I1(1)− I2(1)).

Sinceq =
(

(1 − q)/(1 − t)
)

· t +
(

(q − t)/(1 − t)
)

· 1, it follows that for q > t, L1(q) is a convex combination of
I1(t)− I2(t) andI1(1)− I2(1). ThusC[I1(q)− I2(q)] ≥ L1(q).
Finally to argue thatL1(q) = C[I1(q) − I2(q)], we are left to show thatL1(q) is indeed concave. We first show that
L1(q) is concave in[0, t]. Recall thatI1(q)− I2(q) is concave in[0, κ] for κ in (28). Thus it suffices to show thatt ≤ κ.
Equivalently we show thatf ′

1(κ) ≤ 0. Consider

f ′
1(q) =

I ′1(q)− I ′2(q)

1− q
−

(I1(1)− I2(1))− (I1(q)− I2(q))

(1− q)2

= (I ′1(q)− I ′2(q))/(1− q)− (I ′1(u)− I ′2(u))/(1− q)

for someq ≤ u ≤ 1. The inequalityf ′
1(κ) ≤ 0 holds sinceI ′′1 (q)− I ′′2 (q) ≥ 0 for q ≥ κ as can be seen from (29). We

conclude thatL1(q) is concave because it is concave in[0, t] and [t, 1] and is differentiable att.
2. Let f2(q) = (I2(q)− I1(q))/q. We show thatr defined in (8) satisfies

r = arg max
q∈[0,1]

f2(q). (31)

It can be shown that

f ′
2(q) = q−2(α− g2(q))(q − s1 log(1 + q/s1)),

whereg2(q) is defined in (9). It can be easily seen thatf ′
2(q) and (α− g2(q)) have the same sign for0 < q < 1. Also

it can be shown thatg2(q) is increasing forq > 0. Hence

a) if α ≤ limq→0 g2(q) = α4, thenf ′
2(q) ≤ 0 in [0, 1] andf2(q) is maximized atr.

b) if α ≥ g2(1) = α2, thenf ′
2(q) ≥ 0 in [0, 1] andf2(q) is maximized atr.

c) otherwise,f ′
2(q) ≥ 0 in [0, g−1

2 (α)] andf ′
2(q) ≤ 0 in [g−1

2 (α), 1] andf2(q) is maximized atr.

Let

L2(q) =

{

(q/r)(I2(r) − I1(r)) if 0 ≤ q < r,

I2(q)− I1(q) if q ≥ r.

ThenI2(q)− I1(q) ≤ L2(q) becausef2(r) ≥ f2(q) for any q ∈ [0, 1].
On the other hand,C[I2(q) − I1(q)] ≥ L2(q) because for0 ≤ q ≤ r, L2(q) is a convex combination ofI2(r) − I1(r)
andI2(0)− I1(0). To complete the proof we now show thatL2(q) is concave. Recall thatI2(q) − I1(q) is concave in
[κ, 1] for κ in (28). To show thatL2(q) is concave in[r, 1], we showκ ≤ r, i.e. f ′

2(κ) ≥ 0. Consider

f ′
2(q) =

I ′2(q)− I ′1(q)

q
−

I2(q)− I1(q)

q2

= (I ′2(q)− I ′1(q))/q − (I ′2(u)− I ′1(u))/q

for someu ≤ q. SinceI ′′2 (q)− I ′′1 (q) ≥ 0 in [0, κ], it follows thatf ′
2(κ) ≥ 0. We conclude thatL2(q) is concave because

it is concave in[0, r] and [r, 1] and is differentiable atr.
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APPENDIX B
ORDER OF BREAKPOINTS

Since less noisy channels are also more capable it follows that α4 ≤ α3 andα2 ≤ α1. Also Y1 and Y2 cannot be more
capable simultaneously unless the two channels are identical. Thus,0 ≤ α4 ≤ α3 ≤ α2 ≤ α1. To completely characterize the
order, we need to show the following:

α2

(a)

≤ α12

(b)

≤ α1 andα3

(c)

≤ α23

(d)

≤ α2.

Note that inequalities(b) and (d) follow by Lemma 1. The remaining inequalities were shown through simulation. To show
(a), we checked using Mathematica that the minimum ofα12 − α2 for 0 ≤ s1 ≤ s2 is nonnegative. To show(c), let

w(x) =
x log(1 + 1/x)− 1

(1 + x) log(1 + x) − (1 + x) log(q2 + x)− 1 + q2
.

Then the conditionα3 ≤ α23 is equivalent tow(x) ≤ w(s2) for all x ≤ s2 for any q2, and we checked that this is true using
Mathematica and Maple.

APPENDIX C
VOLUME

Consider the set of channel parameters:(α, s1, s2) ∈ [0, 1]× [0, b]× [0, kb] for b, k ≥ 0. Let b0 = min{b, kb}. The fraction
of the set of P-BC parameters for which the channel is degraded is

1

kb2

∫∫

s1≥s2

ds2 ds1 =

{

0.5k−1 if k ≥ 1,

1− 0.5k if k < 1.

The fraction of the set of P-BC parameters for which superposition coding is optimal is lower bounded by the fraction for
which the P-BC is less noisy. Consider

1−
1

kb2

∫∫

s1≤s2

∫ (1+s1)/(1+s2)

s1/s2

dα ds2 ds1

= 1−
1

kb2

∫ b0

0

∫ kb

s1

∫ (1+s1)/(1+s2)

s1/s2

dα ds2 ds1

= 1−
1

kb2

∫ b0

0

∫ kb

s1

(

1 + s1
1 + s2

−
s1
s2

)

ds2 ds1

= 1−
1

kb2

∫ b0

0

(

(1 + s1) log
1 + kb

1 + s1
− s1 log

kb

s1

)

ds1

= 1−
1

kb2

(

(1 + b0)
2 − 1

2
log(1 + kb)−

b0
2

2
log kb−

1 + b0
2

2
log(1 + b0) +

b0
2 log b0
2

+
b0
2

)

= 1−
1

kb2

(

b0
2

2

(

log
1 + kb

kb
−log

1 + b0
b0

)

−
log(1 + b0)

2
+ b0

(

log(1 + kb)− log(1 + b0) +
1

2

)

)

,

which approaches to1 asb → ∞.




