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Abstract

We consider a cooperative Gaussian interference channel in which each receiver must decode

its intended message locally, with the help of cooperation either at the receivers side or at the

transmitter side. In the case of receiver cooperation, the receivers can process and share information

through limited capacity backhaul links. In contrast to various previously considered distributed

antenna architectures, where processing is performed in a centralized fashion, the model considered

in this paper aims to capture the essence of decentralized processing, allowing for a more general

class of “interactive” interference management strategies. For the three-user case, we characterize

the fundamental tradeoff between the achievable communication rates and the corresponding

backhaul cooperation rate, in terms of degrees of freedom (DoF). Surprisingly, we show that

the optimum communication-cooperation tradeoff per user remains the same when we move from

the two-user to three-user case. In the absence of cooperation, this is due to interference alignment.

When backhaul cooperation is available, we develop the new idea of cooperation alignment, which

guarantees that the average (per user) backhaul load remains the same as we increase the number

of users. In the case of transmitter cooperation, the transmitters can form their jointly precoded

signals through an interactive protocol over the backhaul. Specifically, we show that the optimal

(per user) communication/cooperation tradeoff in the three-user case is the same as for receiver

cooperation.

This work is the outcome of a collaboration that started while V. Ntranos was a research intern at Bell Labs, Alcatel-

Lucent. Emails: ntranos@usc.edu, mohammadali.maddah-ali@alcatel-lucent.com, caire@tu-berlin.de. A shorter version

of this paper containing preliminary results was presented at IEEE Int. Symp. on Inform. Theory, Hong Kong, June
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Index Terms

Distributed Interference Management, Interference Channel, Cooperative Communication,

Interference Alignment, Compute and Forward

I. INTRODUCTION

Consider a K-user Gaussian interference channel with cooperation either at the transmitter or

at the receiver side. This paper focuses on the fundamental limits of distributed cooperation,

achieved through a wired backhaul network consisting of noiseless links, through which every

pair of receivers (resp., transmitters) can interact. A natural question arising from this cooperative

communication setup is “How much backhaul capacity is required in order to achieve a given

communication rate?” or, equivalently “What is the best communication rate that one can achieve

for a given constraint on the total backhaul capacity?”

We first focus on receiver cooperation. In this case, for the two-user case the communication

vs cooperation tradeoff has been characterized within a constant gap in [1]. From a degrees of

freedom (DoF) perspective, if the average (per user) rate scales as R = DoF · log(P ) + o(log(P ))

and the average (per user) backhaul cooperation load scales as L = α · log(P ) + o(log(P )), the

results of [1] can be used to show that the optimal communication vs cooperation tradeoff for

the two-user interference channel is given by DoF∗(α) = min{1, 1+α2 }. This is a very intuitive

result in terms of the achievable DoF; when α = 0, one can achieve DoF(0) = 1/2 by orthogonal

user scheduling and when α = 1, DoF(1) = 1 can easily be achieved by exchanging the user’s

(appropriately quantized) received observations over the backhaul, such that each receiver has two

observations and can eliminate (e.g., by simple linear processing) the unintended signal interference.

However, we can immediately see that following the same approach for the K-user case is not

optimal in general. To begin with, it is well-known that transmission schemes based on interference

alignment [2]–[4] are still able to achieve DoF(0) = 1/2 no matter how many users are interfering

in the network. The fundamental question that we aim to answer in this work is whether the same

holds for all values of α ≥ 0; or, to put it in other words, whether the entire communication vs

cooperation tradeoff remains unaffected by the presence of more than two interfering links.

Surprisingly, our results show that this is indeed the case for the three-user interference channel.

This result is shown in this paper by developing the new idea of cooperation alignment that has
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the same effect on the backhaul load as interference alignment has on the “wireless” degrees

of freedom; from each receiver’s perspective, it appears as if a single user jointly processes the

observations of the entire network and only shares the necessary information over the backhaul.

In order to explain the idea of cooperation alignment let us focus on the case of α = 1 with

DoF(1) = 1 in the noiseless case, which captures the essence of degrees of freedom. In the three-

user interference channel, receivers one, two, and three, observe the interfering terms h12x2+h13x3,

h21x1+h23x3, and h31x1+h32x2, respectively. If each receiver had access to its own interference,1

then it would be able cancel it out, and decode its own message with DoF of one. Given that

the transmit power is P , this knowledge itself would require about 3 log(P ) + o(log(P )) bits

of information and each receiver would need to receive at least log(P ) + o(log(P )) bits from

the backhaul. However, the challenge is that these exact interfering signals are not available at

any of the receivers. For example, none of the receivers has access to the particular combination

of h12x2 + h13x3 that receiver one needs in order to decode its message. Therefore, it would

seem impossible to achieve one DoF per user in the wireless channel, with a (per user) backhaul

load of log(P ) + o(log(P )). In this paper, however, we show that with cooperation alignment,

the receivers are able to create these combinations in a distributed manner, through an iterative

process in which they sequentially decode small parts of their original messages and share “carefully

chosen” interfering combinations over the backhaul.

For the case of transmitter cooperation, we consider the same backhaul connectivity model as

in the case of receiver cooperation but with the role of transmitters and receivers being exchanged.

Namely, the transmitters are allowed to cooperate by exchanging backhaul messages with the

purpose of jointly encoding their transmitted signals to mitigate interference, while the receivers

will attempt to decode their intended messages solely based on their received observations.2 For

this case, we show that the optimal tradeoff DoF∗(α) in the case of three users is the same as for

the case of transmitter cooperation.

The main contributions of this papers are as follows.

1It is sufficient that the interference term is known within a distortion with bounded mean-square error as the signal

power increases.
2While in this paper we consider the problem from a purely information-theoretic viewpoint, it is clear that, in practice,

receiver and transmitter cooperation are relevant to the uplink and downlink of a cellular/wireless network, respectively,

where the cooperation through the backhaul network is implemented in both cases at the base-station side.
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• We propose an information theoretic channel model that reveals the fundamental challenges

of decentralized (over the cloud) backhaul cooperation in wireless networks.

• We characterize the optimum communication vs cooperation tradeoff for three-user interfer-

ence channels.

• We exhibit a new form of alignment – that we term cooperation alignment – that is able to

achieve the optimal tradeoff.

Related Work: Several results, that have developed and used techniques that are closely related to

our achievable schemes, can be found in [4]–[8]. In particular, [5], [6] proposed a lattice coding

scheme for compute-and-forward [8] based on techniques developed for interference alignment

[3], [4], [9] to show that K relays can reliably decode a (jointly) invertible function of the K

interfering messages sent by the transmitters and achieve a computation rate with K degrees of

freedom. More recently, [7] focused on a K × K × K (two-hop) wireless relay network and

used similar techniques to design a novel aligned network diagonalization scheme that is able to

distributedly invert the corresponding decoded functions of the K transmitted messages, over the

second wireless channel from the K relays to the K receivers. It is important also to note that

distributed interference management techniques have been considered in [10]–[12] in the context

of cellular networks, under different backhaul cooperation models.

This paper is organized as follows. For ease of exposition and in order to avoid overly repetitive

definitions, we first focus on receiver cooperation and then extend the problem definition to the case

of transmitter cooperation. In Section II we provide the basic definitions and formally describe the

proposed channel model. Then, in Section III we outline our main results for the communication

vs cooperation tradeoff and in Section IV and Appendix A we give the corresponding proofs.

In Section V we focus on transmitter cooperation, where we develop the corresponding problem

definition and provide analogous results (i.e., the characterization of the optimal communication

vs cooperation) for this case. Finally, we conclude this paper with Section VI.

II. COOPERATION AT THE RECEIVER SIDE: PROBLEM STATEMENT

A. Distributed Cooperation Channel Model

The channel model considered in this paper is illustrated in Fig. 1. Each transmitter i ∈ {1, ...,K}
has a message Wi (intended for receiver i) which is encoded into a block length-n codeword
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[xi(t)]
n
t=1 satisfying the average power constraint 1

n

∑n
t=1 |xi(t)|2 ≤ P. The received signal at the

ith receiver at time t = 1, ..., n is given by

yi(t) =

K∑

j=1

hijxj(t) + zi(t), (1)

where hij ∈ C is the (complex) channel gain between the jth transmitter and the ith receiver, and

zi(t) is the additive circularly-symmetric complex Gaussian noise observed at receiver i with zero

mean and unit variance.

Encoder 1

Encoder 2

Encoder K

...

W1

W2

WK
ŴK

Ŵ1

Ŵ2

...

Decoder 1
x1

x2

xK yK

y1

y2

z2

z1

zK

hij
Decoder 2

Decoder K Ba
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ha
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w
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[m12, m13, ..., m1K ]

[m21, m23, ..., m2K ]

[mK1, mK2, ..., mK,K�1]

[m1K , m2K , ..., mK�1,K ]

[m21, m31, ..., mK1]

[m12, m32, ..., mK2]

...

Fig. 1: Channel model

The decoders are able to collaborate over the backhaul in order to produce their estimates, Ŵi,

i ∈ {1, ...,K}. We assume that the backhaul network consists of directed noiseless links [i, î],

between every pair of decoders i 6= î ∈ {1, ...,K}, and the rate from decoder i to decoder î is

denoted by R[i,̂i]
b . The backhaul message from decoder i to decoder î, that passes through the link

[i, î] at time t, is denoted by mi→î(t) and is given as a function of all the previously received

signals [yi(τ)]t−1τ=1 at receiver i and all the previously received messages [m`→i(τ)]t−1τ=1 from all

decoders ` ∈ {1, ...,K}, ` 6= i.

The rate of each backhaul link R[i,̂i]
b is therefore determined by the average joint entropy of the

messages [mi→î(τ)]nτ=1 that pass through it and is given by

R
[i,̂i]
b =

1

n
H
(
[mi→î(τ)]nτ=1

)
. (2)

An important quantity that will be used in the rest of this paper is the average (per user) backhaul
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cooperation rate given by

Rb ,
1

K

K∑

i=1

∑

î 6=i

R
[i,̂i]
b . (3)

B. Achievable Rates, Capacity, and Degrees of Freedom

The rate tuple (R1, R2, ..., RK) is called achievable under an average backhaul cooperation rate

constraint Rb ≤ L, if for any ε > 0 and sufficiently large n, there exist a length-n coding scheme

defined by:

• The message sets Wi = {1, 2, ..., 2nRi}, i = 1, ...,K.

• The encoding functions fi :Wi → Cn, i = 1, ...,K.

• The backhaul relaying functions g[i,̂i]t that generate mi→î(t) such that

mi→î(t) = g
[i,̂i]
t

(
[yi(τ)]t−1τ=1,M

t−1
i

)
∈ B[i,̂i],

where M t
i ,

{
[m`→i(τ)]tτ=1 : ` = 1, . . . ,K, ` 6= i

}
is the collection of all the backhaul

messages m`→i(τ) received at decoder i up to time t, and B[i,̂i] is a finite set that denotes the

message alphabet used for the backhaul link [i, î].

• The decoding functions

ηi : Cn ×
∏

`=1,...,K
6̀=i

(
B[`,i]

)n
→Wi, that give Ŵi , ηi ([yi(τ)]nτ=1,M

n
i ) ,

such that the corresponding probability of error given by P (n)
e , P

(⋃K
i=1{Ŵi 6= Wi}

)
is less than ε,

and the average backhaul cooperation rate satisfies the backhaul load constraint

Rb =
1

K

K∑

i=1

∑

î 6=i

1

n
H
(
[mi→î(τ)]nτ=1

)
≤ L.

Definition 1 (Capacity Region) The capacity region CL is defined as the closure of the set of all

the rate tuples (R1, R2, ..., RK) that are achievable with an average backhaul cooperation rate

Rb ≤ L.

Remark 1 The region C0 coincides with the capacity region of the K-user Gaussian interference

channel (no cooperation) and the region C∞ with the capacity region of the K-user Gaussian MIMO

multiple access channel with K receive antennas (full cooperation).
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As the transmit power P increases, it is reasonable to let also the backhaul rate constraint L

increase as some function L(P ). Then, for an achievable scheme we are interested in characterizing

the tradeoff between the average (per user) backhaul cooperation load given by

α , lim
P→∞

L(P )

log(P )
, (4)

and the average (per user) achievable degrees of freedom (DoF) given by

DoF(α) , lim inf
P→∞

1

K log(P )

K∑

k=1

RK . (5)

The average DoF (per user) of the channel is denoted by DoF∗(α) and defined as the supremum

of DoF(α).

Remark 2 Notice that when α = 0, the average degrees of freedom DoF(0) = 1/2 can be

achieved (without any cooperation) by interference alignment. On the other hand, when α = ∞
(full cooperation) the average degrees of freedom is DoF(∞) = 1 can be achieved by jointly

decoding the K received observations.

C. Example: Centralized processing

Under this framework, we can designate a specific receiver, say receiver 1, to take the role of

the centralized processor and let all the other receivers quantize (within a constant distortion) and

forward their observations to it. Now receiver 1 can jointly process all the observations to decode

both its own message and the other the K − 1 messages and subsequently forward the K − 1

decoded messages back to their intended receivers (see Fig. 2). As we can see this scheme is able

to achieve the full DoF of 1 with backhaul cooperation load α = 2 (K−1)
K . If we time-share between

this scheme and the asymptotic interference alignment scheme that can achieve DoF(0) = 1/2, we

can obtain the boundary shown with the dashed line in Fig. 3.

III. COOPERATION AT THE RECEIVER SIDE: MAIN RESULTS

Our main results on the communication vs cooperation tradeoff for the channel model introduced

in the previous section, are described in the following theorems.

Theorem 1 (Upper Bound) In the K-user interference channel with average backhaul load α,

we have that
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Encoder 1
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Encoder K

...

W1

W2

WK

...

x1

x2

xK yK

y1
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z2

z1

zK

hij Quantizer 2

Quantizer K
ŴK

Ŵ1

Ŵ2

central processor

Decoder 2

Decoder K

...

Q(yK)

Q(y2)
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H�1

...
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Fig. 2: A simple scheme to achieve 1 DoF per user with α = 2 (K−1)
K

DoF∗(α) ≤ min

{
1,

1 + α

2

}
. (6)

This outer-bound is derived based on considering every pair of links in the network, and

developing a bound on communication versus cooperation tradeoff between these two, while the

remaining links are effectively eliminated from the system (by a genie giving their messages to

both receivers). We refer the reader to Appendix A for the detailed proof.

Remark 3 Notice that Theorem 1 shows that for the K-user interference channel with average

backhaul load α = lim
P→∞

L(P )/log(P ) = 0, the per user DoF are bounded by DoF∗(0) ≤ 1/2.

This matches the well known DoF outer bound for the K-user interference channel (without

cooperation), and implicitly shows that even when cooperation rates are allowed to scale as

L(P ) = o(log(P )), there is no cooperation scheme that can increase the DoF achievable by

interference alignment.

Theorem 2 (Achievability) In the three-user interference channel with average backhaul load α,

we have that

DoF∗(α) ≥ min

{
1,

1 + α

2

}
. (7)

Theorems 1 and 2 characterize DoF∗(α) for the three-user interference channel as DoF∗(α) =

min
{

1, 1+α2
}

. Recall that, as observed in the introduction, for two-user interference channels, the

optimum DoF per user is again DoF∗(α) = min
{

1, 1+α2
}

, and it is achievable by time-sharing

orthogonal access (for α = 0) and quantize and forward (α = 1).
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Fig. 3: Achievable DoF vs α: The dashed line corresponds to the achievable tradeoff for K-user channels by

centralized processing (Section II-C) and the yellow region shows the corresponding gap from the K-user

outer bound of Theorem 1. In Theorem 2 we show that cooperation alignment is able to close this gap and

achieve the optimal communication vs cooperation tradeoff for K = 3.

The question is why for the three-user case, we are able to achieve the same tradeoff. For α = 0,

the answer is well-understood. We can achieve 1/2 DoF per user with interference alignment.

However, it seems surprising that the DoF per user is the same for other values of α. This result

basically says that not only in the wireless channel, the extra link does not affect the DoF per user

(due to interference alignment), but also in the backhaul, the load of collaboration per user does

not scale with the number of users. The reason is that in the backhaul, we implement another form

of alignment, which we call cooperation alignment, that is able to hide the additional collaboration

load that is due to the extra link.

Illustrating Example:

To describe the main idea behind cooperation alignment that we will later use in our achievability

proof, we consider here a specific, yet illustrating, three-user interference channel with h31 = γh21
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and h33 = γh23, γ ∈ C, given by

y1 = h11x1 + h12x2 + h13x3 + z1,

y2 = h21x1 + h22x2 + h23x3 + z2,

y3 = γh21x1 + h32x2 + γh23x3 + z3.

This example is constructed such that the channel coefficients of x1 and x3 are aligned at receivers

two and three, which allows us to implement and explain the cooperation alignment scheme in a

simple way.

Let us assume that each transmitter uses a Gaussian codebook, carrying one DoF. We aim to

show that each receiver is able to decode its own message, with backhaul load of α = 1. In the

above example, receiver 3 can first form the backhaul message m3→2 as the quantized version of y3

(with a constant distortion) and send it to receiver 2. Since x1 and x3 are aligned in m3→2 and y2,

receiver 2 is able to decode x2 at full rate3 by subtracting m3→2 from γy2. Notice that at this point

receiver 2 can also extract the term h21x1 +h23x3 from its observation. In order to help receiver 1

decode x1, receiver 2 can now combine x2 and h21x1 +h23x3 into a single message m2→1 as the

quantized version of h12x2 + h13

h23
(h21x1 + h23x3). This combination is formed such that x2 and

x3 in y1 and m2→1 are aligned. Sharing m2→1 over the backhaul will therefore help receiver 1

decode x1 at full rate and subsequently extract the interfering term h12x2 + h13x3. In a similar

fashion, receiver 1 can recombine the newly available terms x1 and h12x2+h13x3 into the message

m1→3 as the quantized version of γh21x1 + h32

h12
(h12x2 + h13x3) to help receiver 3 decode x3 as

well. This cooperative process, in which receivers iteratively decode desired messages, recombine

interfering terms and share aligned backhaul messages that help another receiver decode, is what

we refer to as cooperation alignment. ♦

In the above example, we could start the iteration because the combination of the signals observed

at receiver 3 (γh21x1 + γh23x3) was already aligned with the interference observed at receiver 2.

Therefore, by quantizing and forwarding y3 to receiver 2, the latter could immediately eliminate

its interference and decode x2 with 1 DoF. The major challenge in the three-user IC with generic

channel coefficients is that it would have been impossible to find a starting point for the above

3Here we assume that a lattice vector quantizer with dither is used, thus quantization can be modeled with an additive

independent quantization noise.
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process since the corresponding channel coefficients are distinct in all receivers with probability 1.

However – as we will see in the next section– we are able to create this form of alignment

asymptotically by splitting the data streams into many sub-streams, each carrying a small fraction

of the total DoF. The iterative approach is then started from a vanishing fraction of sub-streams

that do not have any interference.

IV. COOPERATION ALIGNMENT (PROOF OF THEOREM 2)

In order to show that DoF(α) = min{1, 1+α2 }, it suffices to show the achievability of the

two corner points that give DoF(0) = 1/2 and DoF(1) = 1. Then, by time-sharing between the

achievable schemes for DoF(0) and DoF(1) we can obtain the entire boundary DoF(α) = (1−α)12+

α = 1+α
2 , for any α ∈ [0, 1]. Further, for any α > 1, the point DoF(1) is trivially achievable and

hence one can show that DoF(α) = min{1, 1+α2 } for all α ≥ 0. Since the point DoF(0) = 1/2 can

be achieved asymptotically – without any cooperation – by interference alignment [3], [4], for the

rest of this proof we will focus on the achievability of the point DoF(1) = 1, i.e., the achievability

of 1 DoF per user with average backhaul load α = 1.

A. The achievability of DoF(1) = 1

We first define some short-hand notations. For a natural number N ∈ N, let sij ∈ {1, ..., N},
i, j ∈ {1, 2, 3}, and

s , [s11, s12, s13, s21, s22, s23, s31, s32, s33].

Then, clearly s ∈ SN , {1, .., N}9. In addition, for s ∈ SN , we define the monomial νs, as

νs =
∏
i,j h

sij
ij . Furthermore, for a positive real number Q, we define ZQ , Z ∩ [−Q,Q], i.e. the

integer numbers between −Q and Q.

To form the transmit signals, we use the methodology proposed in [4] for real interference

alignment, and its extension for complex channels in [13]. In addition, here, we follow the

modulation technique used in [6] to achieve DoF of K for compute and forward (but with different

encoding and decoding schemes). At transmitter one, the message W1 is split into N9 sub-messages,

for some N ∈ N. Each sub-message is then coded, with a rate that will be specified later, and

modulated over the integer constellation ZQ , Z∩ [−Q,Q] to form a sub-stream. Each sub-stream
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of message W1 is indexed by a unique s ∈ SN and denoted by {as(t)}nt=1. The transmitter one at

time t sends a weighted linear combination of sub-streams as(t), and scaled by Γ, as

x1(t) = Γ ·∑s∈SN νsas(t). (8)

Recall that νs =
∏
i,j h

sij
ij . The scaling factor Γ guarantees that the power constraint is satis-

fied and will be determined later. We apply the same scheme at transmitters two and three to

respectively form sub-streams {bs(t)}nt=1 and {cs(t)}nt=1, s ∈ SN , and transmit signals x2(t) =

Γ ·∑s∈SN νsbs(t) and x3(t) = Γ ·∑s∈SN νscs(t). For simplicity of exposition, in the rest of the

proof we drop the time index t, unless it is required for clarification. One can see that, at time t,

the corresponding received observations for i ∈ {1, 2, 3} are given by

yi = Γ ·∑s∈SN+1
νs · ri,s + zi, (9)

where
r1,s , a(s11−1),s12,s13,s21,s22,s23,s31,s32,s33

+bs11,(s12−1),s13,s21,s22,s23,s31,s32,s33

+cs11,s12,(s13−1),s21,s22,s23,s31,s32,s33 , (10)

r2,s , as11,s12,s13,(s21−1),s22,s23,s31,s32,s33

+bs11,s12,s13,s21,(s22−1),s23,s31,s32,s33

+cs11,s12,s13,s21,s22,(s23−1),s31,s32,s33 , (11)

r3,s , as11,s12,s13,s21,s22,s23,(s31−1),s32,s33

+bs11,s12,s13,s21,s22,s23,s31,(s32−1),s33

+cs11,s12,s13,s21,s22,s23,s31,s32,(s33−1). (12)

In addition, for simplicity, in (9), (10), (11), and (12), for any s /∈ SN , we assume that as =

bs = cs = 0, and we follow this assumption throughout the proof. We further note that ri,s ∈
Z3Q for i ∈ {1, 2, 3} and s ∈ SN+1. If we let I = (N + 1)9, Q = 1

3P
(1−ε)/(I+2ε), and Γ =

c1P
(I−2+4ε)/(2(I+2ε)), for some positive constant c1 and ε, we can show that the power constant

at each transmitter is satisfied [13]. At time t, in each receiver i, we apply Maximum Likelihood

(ML) detection to estimate ri,s(t), for all s ∈ SN+1 from the received signal yi(t). Notice that the

above detection could be erroneous for some receivers. For now, let us focus on a specific time t,

where ri,s(t), s ∈ SN+1 are correctly detected for all receivers and we will discuss the probability

of error and its effect on the achievable rates later.
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In the rest of this proof we aim to show that the receivers one, two, and three can respectively

resolve desired symbols as, bs and cs for all s ∈ SN based on the already individually detected sums

ri,s by successively exchanging and processing information over the backhaul. For convenience,

in the notation to follow, we will denote addition in the sub-message vector indices s ∈ SN with

corresponding superscripts; e.g, a(s11−1),s12,...,s33 in (10) will be written as as−1
11 ,s12,...,s33

.

To start unraveling ri,s for all s ∈ SN+1, i ∈ {1, 2, 3}, and resolve the desired symbols at each re-

ceiver, we start from the boundaries as follows. Notice that for all s′ ∈ {s ∈ SN+1 : s31 = N + 1},
we have that r3,s′ = as11,s12,s13,s21,s22,s23,N,s32,s33 , and hence receiver 3 has resolved some of the

symbols of receiver 1 without interference. Hence receiver 3 can give these symbols to receiver

1 directly over the backhaul. The result of this message passing step is that receiver 1 knows its

desired symbols as, for all s ∈ SN with s31 = N . The corresponding backhaul rate that has been

used for this step is given by N8 log(2bQc+ 1).

Now receiver 1 can subtract as11,s12,s13,s21,s22,s23,N,s32,s33 from its corresponding observations in

(10) and obtain the interference terms

bs11,s12,s13,s21,s22,s23,N,s32,s33 + cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s32,s33

, (13)

for all s ∈ SN with s31 = N . In order to help receiver 2, receiver 1 will form the sums

bs11,s12,s13,s21,s22,s23,N,s32,s33

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s32,s33

+as11,s+1
12 ,s

−1
13 ,s

−1
21 ,s22,s

+1
23 ,N,s32,s33

, (14)

by adding the symbols as11,s+1
12 ,s

−1
13 ,s

−1
21 ,s22,s

+1
23 ,N,s32,s33

to the interference terms in (13), and give

them to receiver 2 over the backhaul. From (11) we can see that receiver 2 has already detected

the sums

as11,s+1
12 ,s

−1
13 ,s

−1
21 ,s22,s

+1
23 ,N,s32,s33

+bs11,s+1
12 ,s

−1
13 ,s21,s

−1
22 ,s

+1
23 ,N,s32,s33

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s32,s33

(15)

and hence subtracting them from (14) will create the terms

bs11,s12,s13,s21,s22,s23,N,s32,s33− bs11,s+1
12 ,s

−1
13 ,s21,s

−1
22 ,s

+1
23 ,N,s32,s33

, (16)
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from which receiver 2 can successively resolve its desired symbols bs for all s ∈ SN with s31 = N .4

The backhaul load for this step is equal to N8 log(6bQc+ 1).

Now we can already see that since receiver 2 knows bs11,s12,s13,s21,s22,s23,N,s32,s33 , it can extract

from (11) the interference terms

cs11,s12,s13,s21,s22,s23,N,s32,s33 + as11,s12,s13,s−1
21 ,s22,s

+1
23 ,N,s32,s33

, (17)

for all s ∈ SN with s31 = N . Giving the above terms to receiver 3 over the backhaul, will help it

to decode cs for all s ∈ SN with s31 = N , because receiver 3 already has as for all s ∈ SN with

s31 = N . Since the number of symbols that have been exchanged in (17) is N8, the backhaul rate

used for this step is equal to N8 log(4bQc+ 1).

Knowing cs11,s12,s13,s21,s22,s23,N,s32,s33 , receiver 3 can extract from (12) the interference terms

as11,s12,s13,s21,s22,s23,(N−1),s32,s33 + bs11,s12,s13,s21,s22,s23,N,s−1
32 ,s33

(18)

and subsequently create the terms

as11,s12,s13,s21,s22,s23,(N−1),s32,s33

+bs11,s12,s13,s21,s22,s23,N,s−1
32 ,s33

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s

−1
32 ,s33

(19)

by adding cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s

−1
32 ,s33

to (18) . Giving (19) to receiver 1 will help it to resolve

the symbols as for all s ∈ SN with s31 = N − 1, because receiver 1 already knows the interfering

sums bs11,s12,s13,s21,s22,s23,N,s−1
32 ,s33

+ cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,N,s

−1
32 ,s33

from (13). Similarly, as in (14)

and (16), receiver 1 will help receiver 2 to resolve bs for all s ∈ SN with s31 = N − 1. Now that

receiver 2 knows bs11,s12,s13,s21,s22,s23,(N−1),s32,s33 , it can extract from (11) the interference terms

cs11,s12,s13,s21,s22,s23,(N−1),s32,s33 + as11,s12,s13,s−1
21 ,s22,s

+1
23 ,(N−1),s32,s33

and create the terms

cs11,s12,s13,s21,s22,s23,(N−1),s32,s33

+as11,s12,s13,s−1
21 ,s22,s

+1
23 ,(N−1),s32,s33

+bs11,s12,s13,s−1
21 ,s22,s

+1
23 ,N,s

−1
32 ,s33

(20)

4The corresponding recursion can be performed in N iterations on the index s23; letting i = 1, ..., N and setting

s23 = N − i+1, we can see that in the ith step, receiver 2 can successfully resolve bs11,s12,s13,s21,s22,N−i+1,N,s32,s33 ,

for all s ∈ SN with s23 = N − i+ 1 and s31 = N .
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by adding the symbols bs11,s12,s13,s−1
21 ,s22,s

+1
23 ,N,s

−1
32 ,s33

(that are already known to receiver 2) in order

to match the interference terms in (18) that are known to receiver 3. Now from (20) and (18)

receiver 3 can extract cs for all s ∈ SN with s31 = N − 1 and create as in (19) the terms

as11,s12,s13,s21,s22,s23,(N−2),s32,s33

+bs11,s12,s13,s21,s22,s23,(N−1),s−1
32 ,s33

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,(N−1),s−1

32 ,s33
(21)

to help receiver 1 resolve as for all s ∈ SN with s31 = N − 2.

Following the same pattern we can see that the backhaul communication will require N rounds,

where in each round r ∈ {0, ..., N − 1}, the receivers can resolve their desired symbols as, bs and

cs for all s ∈ SN with s31 = N − r. In round r we have the following message passing steps:

• Receiver 3 gives to receiver 1

M[r]
3→1=

{
bs11,s12,s13,s21,s22,s23,(N−r+1),s−1

32 ,s33
(22)

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,(N−r+1),s−1

32 ,s33

+as11,s12,s13,s21,s22,s23,(N−r),s32,s33 |sij ∈ {1, ..., N}
}
,

• Receiver 1 gives to receiver 2

M[r]
1→2=

{
as11,s+1

12 ,s
−1
13 ,s

−1
21 ,s22,s

+1
23 ,(N−r),s32,s33 (23)

+cs11,s+1
12 ,s

−1
13 ,s21,s22,s23,(N−r),s32,s33

+bs11,s12,s13,s21,s22,s23,(N−r),s32,s33 |sij ∈ {1, ..., N}
}
,

• Receiver 2 gives to receiver 3

M[r]
2→3=

{
as11,s12,s13,s−1

21 ,s22,s
+1
23 ,(N−r),s32,s33 (24)

+bs11,s12,s13,s−1
21 ,s22,s

+1
23 ,(N−r+1),s−1

32 ,s33

+cs11,s12,s13,s21,s22,s23,(N−r),s32,s33 |sij ∈ {1, ..., N}
}
.

The above set of symbols M[r]
i→j are carefully created in each round r based on the available

observations and symbols at receiver i in the previous rounds such that the interfering terms match

exactly the interference terms observed at receiver j. The recipient of M[r]
i→j is therefore enabled

to extract its desired symbol by subtracting the sum of the interfering symbols without knowing

their individual values.
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The total number of symbols that have been exchanged over the backhaul in the above scheme

is given by

#msg =

N−1∑

r=0

(∣∣M[r]
1→2

∣∣+
∣∣M[r]

2→3

∣∣+
∣∣M[r]

3→1

∣∣
)

(25)

where each symbol is in Z3Q. Therefore, the average (per user) backhaul rate that has been used

can be calculated as Rb ≤ #msg·log(6Q+1)
3 . Since

∣∣M[r]
1→2

∣∣ =
∣∣M[r]

2→3

∣∣ =
∣∣M[r]

3→1

∣∣ = N8, for all

r = 0, 1, ..., N − 1, we have that #msg = 3N9. Then limP→∞
Rb

log(P ) ≤ N9 1−ε
(N+1)9+2ε , which is

arbitrary close to one, given large enough N and small enough ε.

For each time slot t such that the ML detection of ri,s(t), ∀s ∈ SN+1 at all three receivers is

performed without an error, the above unraveling process guarantees that receivers one, two, and

three will be able to obtain respectively the correct as(t), bs(t), and cs(t), for all s ∈ SN . On the

other hand, for the time slots t such that error occurs in the ML detection at any of the receivers,

the above unraveling process will most likely deliver incorrect symbols for some of the receivers.

Notice however that error propagation occurs across the users, because of the unraveling process,

but it is confined to symbols transmitted in the same time slot, i.e., symbol detection errors do

not propagate across time. Such detection errors can be handled by using standard outer coding

on each data stream. Using the union bound, we can show that at each time t the probability

of error in detecting ri,s(t), for some s ∈ SN+1 and some i ∈ {1, 2, 3}, is upper-bounded by

pe , 3(N + 1)9 exp(−c2P ε/2), for some constant c2 [13]. Using Fano’s inequality (see [4, Eq.

(14)]), the achievable rate of each sub-stream can be lower-bounded by (1− pe) log(2Q+ 1)− 1,

yielding the DoF of 1−ε
(N+1)9+2ε . Therefore, the DoF of each message can be at least N9 1−ε

(N+1)9+2ε ,

which is arbitrary close to one, given large enough N and small enough ε.

V. COOPERATION AT THE TRANSMITTER SIDE

In this section we are going to extend our results for an interference channel model in which

cooperation is available between the transmitters instead of receivers. More specifically, we will

consider the same backhaul connectivity model as in the previous sections but with the role of

transmitters and receivers being exchanged; that is, the transmitters will be allowed to cooperate by

exchanging backhaul messages in an effort to jointly encode their transmitted signals to mitigate

interference, while the receivers will attempt to decode their intended messages solely based on

their received observations.
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As a first example one can consider again the two-user interference channel with transmitter

cooperation that has been studied in [14]. It can be shown (using the constant gap capacity

approximation of [14]) that the optimal communication vs cooperation tradeoff for the transmitter

cooperation case with two users is again given by DoF∗(α) = min{1, 1+α2 }, and hence it matches

exactly the corresponding tradeoff that we have seen for the receiver cooperation; DoF(0) = 1/2

can again be achieved by orthogonal user scheduling and DoF(1) = 1 can be achieved the if the

two transmitters exchange their messages Wi and precode to zero-force interference. Our results

on transmitter cooperation are given by the following theorems, which are pleasingly symmetric

to Theorems 1 and 2, respectively:

Theorem 3 (Upper Bound) In the K-user interference channel with transmitter cooperation and

average backhaul load α, we have that

DoF∗(α) ≤ min

{
1,

1 + α

2

}
. (26)

Theorem 4 (Achievability) In the three-user interference channel with transmitter cooperation

and average backhaul load α, we have that

DoF∗(α) ≥ min

{
1,

1 + α

2

}
. (27)

Obviously, the immediate consequence is that for the case of K = 3 users, the optimal com-

munication vs cooperation tradeoff curves for cooperation at the transmitters or at the receivers

are identical, and given by DoF∗(α) = min
{

1, 1+α2
}

. Theorem 3 is proved in Appendix B, while

Theorem 4 is proved in Section V-B, after formally defining the channel model for transmitter

cooperation.

A. Cooperation at the Transmitters: Channel Model

The channel model considered in this section is illustrated in Fig. 4. As in the case of receiver

cooperation, we assume that each transmitter i ∈ {1, ...,K} has a message Wi that is intended

for receiver i and we restrict each codeword [xi(t)]
n
t=1 to satisfy the average power constraint

1
n

∑n
t=1 |xi(t)|2 ≤ P.

The received signal at the ith receiver at time t = 1, ..., n is given by

yi(t) =

K∑

j=1

hijxj(t) + zi(t), (28)
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where hij ∈ C is the (complex) channel gain between the jth transmitter and the ith receiver, and

zi(t) is the additive circularly-symmetric complex Gaussian noise observed at receiver i with zero

mean and unit variance.

Encoder 1

Encoder 2

Encoder K

...

ŴK

Ŵ1

Ŵ2

...

Decoder 1
x1

x2

xK yK

y1

y2

z2

z1

zK

hij
Decoder 2

Decoder K

Backhaul N
etw

ork

[m12, m13, ..., m1K ]

[m21, m23, ..., m2K ]

[mK1, mK2, ..., mK,K�1]

[m1K , m2K , ..., mK�1,K ]

[m21, m31, ..., mK1]

[m12, m32, ..., mK2]

...

W1

W2

WK

Fig. 4: Channel model for transmitter cooperation

Further we assume that, in order to create [xi(t)]
n
t=1, the encoders can collaborate over the

backhaul by exchanging messages through directed noiseless links. We assume that there is a

backhaul link [i, î], between every pair of encoders i 6= î ∈ {1, ...,K}, and we denote the rate

from encoder i to encoder î as R[i,̂i]
b . The backhaul message from decoder i to decoder î, that

passes through the link [i, î] at time t, is denoted by mi→î(t) and is given as a function of Wi and

all the previously received messages [m`→i(τ)]t−1τ=1 from all encoders ` ∈ {1, ...,K}, ` 6= i. Hence,

R
[i,̂i]
b is again given by (2), and the total average backhaul rate Rb is defined as in (3).

The rate tuple (R1, R2, ..., RK) is called achievable under an average backhaul cooperation rate

constraint Rb ≤ L, if for any ε > 0 and sufficiently large n, there exist a length-n coding scheme

defined by:

• The message sets Wi = {1, 2, ..., 2nRi}, i = 1, ...,K.

• The backhaul relaying functions g[i,̂i]t that generate mi→î(t) such that

mi→î(t) = g
[i,̂i]
t

(
Wi,M

t−1
i

)
∈ B[i,̂i],

where M t
i ,

{
[m`→i(τ)]tτ=1 : ` = 1, . . . ,K, ` 6= i

}
is the collection of all the backhaul

messages m`→i(τ) received at decoder i up to time t, and B[i,̂i] is a finite set that denotes the

message alphabet used for the backhaul link [i, î].
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• The encoding functions

fi :Wi ×
∏

`=1,...,K` 6=i

(
B[`,i]

)n
→ Cn, that give [xi(t)]

n
t=1 , fi (Wi,M

n
i ) ,

• The decoding functions ηi : Cn →Wi, that give Ŵi , ηi ([yi(τ)]nτ=1),

such that the corresponding probability of error given by P (n)
e , P

(⋃K
i=1{Ŵi 6= Wi}

)
is less than ε,

and the average backhaul cooperation rate satisfies the backhaul load constraint

Rb =
1

K

K∑

i=1

∑

î 6=i

1

n
H
(
[mi→î(τ)]nτ=1

)
≤ L.

Finally, the definitions of the capacity region CL, the average (per user) backhaul cooperation

load α and the average (per user) achievable degrees of freedom DoF(α) follow directly from the

corresponding definitions in Section II-A.

B. Achievability (Proof of Theorem 4)

In order to prove Theorem 4 it suffices to show the achievability of the corner point DoF(1) = 1.

Here we will consider the same modulation scheme as in Section IV-A for the receiver cooperation;

first, the transmitters are going to split their own messages W1, W2 and W3 into N9 sub-messages,

for some N ∈ N and then modulate each one of them over the integer constellation ZQ , Z ∩
[−Q,Q] to form the corresponding sub-streams. Following the notation introduced in Section IV-A,

the sub-streams intended for user one, two and three, will be indexed by s ∈ SN and will be denoted

by {as(t)}nt=1, {bs(t)}nt=1 and {cs(t)}nt=1, respectively. For the rest of the proof we will drop the

time index t (unless it is required for clarification) and focus on a single time slot.

Notice that without any cooperation, after using the above scheme, each transmitter will have

access only to its own sub-streams as, bs and cs, respectively, for all s ∈ SN . In the first part of

the proof we aim to show that it is possible for the transmitters to cooperate over the backhaul

(with average backhaul rate Rb ≤ 1) and create the combinations,

r1,s , a(s11−1),s12,s13,s21,s22,s23,s31,s32,s33

+bs11,(s12−1),s13,s21,s22,s23,s31,s32,s33

+cs11,s12,(s13−1),s21,s22,s23,s31,s32,s33 ,
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r2,s , as11,s12,s13,(s21−1),s22,s23,s31,s32,s33

+bs11,s12,s13,s21,(s22−1),s23,s31,s32,s33

+cs11,s12,s13,s21,s22,(s23−1),s31,s32,s33 ,

and

r3,s , as11,s12,s13,s21,s22,s23,(s31−1),s32,s33

+bs11,s12,s13,s21,s22,s23,s31,(s32−1),s33

+cs11,s12,s13,s21,s22,s23,s31,s32,(s33−1),

for all s ∈ SN+1. Recall that these combinations are the same with the ones defined in (10), (11)

and (12) in Section IV-A.

First, notice that for all s ∈ SN+1 with s21 = 1, r2,s is given by bs11,s12,s13,1,s−1
22 ,s23,s31,s32,s33

+

cs11,s12,s13,1,s22,s−1
23 ,s31,s32,s33

, and hence transmitter 2 only needs to obtain over the backhaul the

corresponding cs sub-streams from transmitter 3. Therefore in the first step, transmitter 3 will give

cs11,s12,s13,1,s22,s−1
23 ,s31,s32,s33

to transmitter 2 over the backhaul, so that transmitter 2 can combine

it with the its own bs11,s12,s13,1,s−1
22 ,s23,s31,s32,s33

sub-streams in order to create r2,s for all s ∈ SN+1

with s21 = 1. Observe that in this first backhaul step transmitter 3 has sent the backhaul messages

M[1]
3→2 = {cs11,s12,s13,1,s22,s−1

23 ,s31,s32,s33
|sij ∈ {1, ..., N + 1}} which can be equivalently written as

M[1]
3→2 = {cs11,s12,s13,1,s22,s23,s31,s32,s33 |sij ∈ {1, ..., N}}, (29)

since, by convention, as = bs = cs = 0, for any s /∈ SN .

Recombining the newly acquired cs11,s12,s13,1,s22,s23,s31,s32,s33 sub-streams from transmitter 3, with

the a different choice of its own sub-streams, transmitter 2 can create the backhaul messages

M[1]
2→1=

{
bs11,s−1

12 ,s13,1,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,1,s22,s23,s31,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (30)

and send it to transmitter 1 over the backhaul. Transmitter 1 can now add its own sub-streams

as−1
11 ,s12,s13,1,s22,s23,s31,s32,s33

to the newly acquired sub-streams

bs11,s−1
12 ,s13,1,s22,s23,s31,s32,s33

+ cs11,s12,s−1
13 ,1,s22,s23,s31,s32,s33

, (31)

and create r1,s for all s ∈ SN+1 with s21 = 1.
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Now, based on this information, transmitter 1 can also create the backhaul messages

M[1]
1→3=

{
as11,s−1

12 ,s13,1,s22,s23,s
−1
31 ,s

+1
32 ,s33

+bs11,s−1
12 ,s13,1,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,1,s22,s23,s31,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (32)

by adding as11,s−1
12 ,s13,1,s22,s23,s

−1
31 ,s

+1
32 ,s33

to the sub-streams that have been obtained from transmit-

ter 2 in (31). Giving M[1]
1→3 to transmitter 3 over the backhaul is able to help transmitter 3 create

as11,s−1
12 ,s13,1,s22,s23,s

−1
31 ,s

+1
32 ,s33

+bs11,s−1
12 ,s13,1,s22,s23,s31,s32,s33

+cs11,s−1
12 ,s13,1,s22,s23,s31,s

+1
32 ,s

−1
33
, (33)

for all sij ∈ {1, ..., N + 1} by adding cs11,s−1
12 ,s13,1,s22,s23,s31,s

+1
32 ,s

−1
33
− cs11,s12,s−1

13 ,1,s22,s23,s31,s32,s33
to

the sub-streams in (32). Notice that (33) can be equivalently written as

as11,s12,s13,1,s22,s23,s−1
31 ,s32,s33

+bs11,s12,s13,1,s22,s23,s31,s−1
32 ,s33

+cs11,s12,s13,1,s22,s23,s31,s32,s−1
33
, (34)

and hence we can see that transmitter 3 can also create the required combinations r3,s for all

s ∈ SN+1 with s21 = 1.

For the next step, transmitter 3 can substitute cs11,s12,s13,1,s22,s23,s31,s32,s−1
33

with cs11,s12,s13,2,s22,s−1
23 ,s

−1
31 ,s32,s33

in (34) in order to create the backhaul messages

M[2]
3→2=

{
as11,s12,s13,1,s22,s23,s−1

31 ,s32,s33

+bs11,s12,s13,1,s22,s23,s31,s−1
32 ,s33

+cs11,s12,s13,2,s22,s−1
23 ,s

−1
31 ,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (35)

and give it to transmitter 2 over the backhaul. After obtaining M[2]
3→2, transmitter 2 can create

as11,s12,s13,1,s22,s23,s−1
31 ,s32,s33

+bs11,s12,s13,2,s−1
22 ,s23,s

−1
31 ,s32,s33

+cs11,s12,s13,2,s22,s−1
23 ,s

−1
31 ,s32,s33

(36)
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for all sij ∈ {1, ..., N+1}, simply by adding bs11,s12,s13,2,s−1
22 ,s23,s

−1
31 ,s32,s33

−bs11,s12,s13,1,s22,s23,s31,s−1
32 ,s33

.

Notice that (36) can equivalently be written as

as11,s12,s13,1,s22,s23,s31,s32,s33

+bs11,s12,s13,2,s−1
22 ,s23,s31,s32,s33

+cs11,s12,s13,2,s22,s−1
23 ,s31,s32,s33

(37)

which is equal to r2,s for all s ∈ SN+1 with s21 = 2. Based on this information, now transmitter 2

can create the backhaul messages

M[2]
2→1=

{
as11,s12,s13,1,s22,s+1

23 ,s31,s32,s33

+bs11,s−1
12 ,s13,2,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,2,s22,s23,s31,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (38)

that will allow transmitter 1 to create the combinations

as−1
11 ,s12,s13,2,s22,s23,s31,s32,s33

+bs11,s−1
12 ,s13,2,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,2,s22,s23,s31,s32,s33

, (39)

for all sij ∈ {1, ..., N + 1} and hence also acquire r1,s for all s ∈ SN+1 with s21 = 2.

Following the same pattern, before each round r, the transmitters 1, 2 and 3 will have available

the combinations r1,s, r2,s and r3,s for all s ∈ SN+1 with s21 = r−1, respectively, and will create

the backhaul messages

M[r]
3→2=

{
as11,s12,s13,(r−1),s22,s23,s−1

31 ,s32,s33

+bs11,s12,s13,(r−1),s22,s23,s31,s−1
32 ,s33

+cs11,s12,s13,r,s22,s−1
23 ,s

−1
31 ,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (40)

M[r]
2→1=

{
as11,s12,s13,(r−1),s22,s+1

23 ,s31,s32,s33

+bs11,s−1
12 ,s13,r,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,r,s22,s23,s31,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (41)
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and

M[r]
1→3=

{
as11,s−1

12 ,s13,r,s22,s23,s
−1
31 ,s

+1
32 ,s33

+bs11,s−1
12 ,s13,r,s22,s23,s31,s32,s33

+cs11,s12,s−1
13 ,r,s22,s23,s31,s32,s33

|sij ∈ {1, ..., N + 1}
}
, (42)

in order to obtain r1,s, r2,s and r3,s for all s ∈ SN+1 with s21 = r. Therefore, after N + 1 rounds

of backhaul cooperation all the transmitters will have obtained r1,s, r2,s and r3,s for all s ∈ SN+1

as required. In order to measure the amount of backhaul cooperation that is needed for the above

message passing scheme we can argue that the total number of messages that have been exchanged

is bounded by

#msg =

N+1∑

r=1

(∣∣M[r]
1→2

∣∣+
∣∣M[r]

2→3

∣∣+
∣∣M[r]

3→1

∣∣
)
≤ 3(N + 1)9, (43)

and since each symbol is in Z3Q, the average (per user) backhaul rate that has been used can

be calculated as Rb ≤ #msg·log(6bQc+1)
3 ≤ (N + 1)9 log(6bQc + 1). Hence, choosing the same

parameter Q as in Section IV-A, we have that limP→∞
Rb

log(P ) ≤
(1−ε)(N+1)9

(N+1)9+2ε , which is arbitrary

close to one, given large enough N and small enough ε.

After the above cooperation alignment step over the backhaul, for each time slot t, each trans-

mitter will form its transmitted signals from r1,s(t), r2,s(t) and r3,s(t), respectively, following a

scheme similar to the aligned network diagonalization scheme that has been introduced in [7].

The main idea is that the transmitters will effectively diagonalize the channel matrix by choosing

to transmit specific linear combinations of their own ri,s(t), for all s ∈ SN+1, with monomial

coefficients generated from the inverse of the channel matrix.

Let us first define

H ,




h11 h12 h13

h21 h22 h23

h31 h32 h33


 and




ĥ11 ĥ12 ĥ13

ĥ21 ĥ22 ĥ23

ĥ31 ĥ32 ĥ33


 , H−1

and let ν̂s =
∏
i,j ĥ

sij
ij . The transmitted signal from transmitter i = 1, 2, 3 at time t is given by

xi(t) = Γ′ ·
∑

s∈SN+1

ν̂s · ri,s(t), (44)

where the scaling factor Γ′ guarantees that the power constraint is satisfied. The corresponding

received signals at time t are given by

yi(t) = hi1x1(t) + hi2x2(t) + hi3x3(t) + zi(t), i = 1, 2, 3. (45)
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If we rewrite (44) as a sum over all s ∈ SN instead of SN+1 (by factoring out the corresponding

channel coefficients) as

xi(t) = Γ′ ·
∑

s∈SN

ν̂s ·
(
ĥi1as(t) + ĥi2bs(t) + ĥi3cs(t)

)
, (46)

and further define

x(t) , [x1(t), x2(t), x3(t)]
T, (47)

y(t) , [y1(t), y2(t), y3(t)]
T, (48)

z(t) , [z1(t), z2(t), z3(t)]
T, (49)

u(t) , [as(t), bs(t), cs(t)]
T, (50)

we can rewrite the transmitted signals at time t in matrix form as

x(t) = Γ′ ·
∑

s∈SN

ν̂s ·H−1 · u(t), (51)

and the corresponding received signal observations as

y(t) = H · x(t) + z(t) (52)

= H ·
(

Γ′ ·
∑

s∈SN

ν̂s ·H−1 · u(t)

)
+ z(t) (53)

= Γ′ ·
∑

s∈SN

ν̂s · u(t) + z(t). (54)

Therefore, as we can directly see from (54), the received signal observations at users one, two

and three, are given by

y1(t) = Γ′ ·
∑

s∈SN

ν̂s · as(t) + z1(t), (55)

y2(t) = Γ′ ·
∑

s∈SN

ν̂s · bs(t) + z2(t), (56)

and

y3(t) = Γ′ ·
∑

s∈SN

ν̂s · cs(t) + z3(t), (57)

respectively, and hence, the above transmission scheme is able to effectively inverting the chan-

nel matrix and eliminate all interference; each receiver will only observe the sub-streams that

correspond to its own desired message.

To finalize the proof, following the same ML detection scheme that we have used for the receiver

cooperation in Section IV-A and the corresponding results in [7], we can show that for each time t,
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all the sub-streams as(t), bs(t) and cs(t) can be successfully detected at their intended receivers,

with the corresponding message DoF being arbitrarily close to one for large enough N .5

VI. CONCLUSIONS

In multiuser interference channel models, cooperation – either at the receivers’ or at the trans-

mitters’ side – is often considered to be available in the network through some form of centralized

processing. This modeling approach is rather appealing, as it allows the entire cooperative network

to be seen as a single MIMO multiple access or broadcast channel. Hence, a common theme

in cooperative interference management techniques has been, up to now, the use the backhaul

links primarily as a means to offload baseband processing to a single central node. However, this

barely takes into account the inherent distributed nature of such systems; cooperative networks often

consist of several distributed processors (e.g., receivers connected to the cloud) and inter-processor

communication is a precious and limited resource that should also be quantified.

Motivated by this consideration, our first goal in this paper has been to challenge the above

current centralized approach and consider the extension to more than two users of the classical

information-theoretic model of interference channels with receiver or transmitter cooperation pio-

neered in [1], [14]. We considered a multiuser interference network under a general cooperation

model that does not impose any specific, a priori structure in the backhaul architecture. When

receiver cooperation is available for example, every receiver can first process its observations

locally and then potentially share information with any other receiver in the network in order

to help in the decoding process. Of course, a centralized approach can be implemented within

this framework as a special case, by restricting all receivers to just quantize and forward their

observations to a single node within the network. Overall, the “interactive” approach adopted in

this paper allows to consider a more general class of interference management strategies.

For this model, we were able to quantify the fundamental tradeoff between the achievable

communication rates and the corresponding backhaul cooperation rate in wireless networks in

terms of degrees of freedom. In particular, we showed that if the average (per user) rate scales

as R = DoF · log(P ) + o(log(P )) and the average (per user) backhaul cooperation load scales as

5Also in this case, to go from vanishing symbol-error probability to block-error probability the approach of per-stream

outer coding and the argument based on Fano inequality as in [4, Eq. (14)] can be used.
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L = α · log(P ) + o(log(P )), the optimal communication vs cooperation tradeoff for the K-user

interference channel is upper bounded by DoF∗(α) ≤ min{1, 1+α2 }, regardless whether cooperation

is available at the transmitters’ or at receivers’ side. The corner points of this tradeoff region, namely

DoF(0) = 1
2 and DoF(1) = 1, are easily achievable in the case of K = 2 by orthogonal user

scheduling and centralized processing, respectively, and the optimal tradeoff in this case is given

by DoF∗(α) = min{1, 1+α2 }. However, following the same approach for K > 2 is not optimal in

general. This is expected – at least for the case where there is no cooperation – since interference

alignment can still achieve the corner point DoF(0) = 1
2 , no matter how many interfering users are

in the network. On the other hand, as the number of users increases, centralized processing can

only achieve DoF(2(K − 1)/K) = 1, and hence it seems that more backhaul capacity is required

to maintain the full DoF.

Surprisingly, this paper shows that this is not true. We developed the new idea of cooperation

alignment and showed that it can have an analogous effect on the backhaul cooperation load

as interference alignment has on the “wireless” degrees of freedom. That is, under cooperation

alignment, from each receiver’s (resp. transmitter’s) perspective it appears as if a single user jointly

processes the observations (resp. messages) of the entire network and only shares the necessary,

minimal information over the backhaul. Focusing on the K = 3 users interference channel case, we

proposed a new interference management scheme based on cooperation alignment and proved that

it is able to achieve the corner point DoF(1) = 1, in both the receiver cooperation and transmitter

cooperation cases. This implies that, for K = 3, cooperation alignment over the backhaul, together

with interference alignment over the wireless channel, can achieve the entire cooperation vs

cooperation tradeoff, DoF∗(α) = min{1, 1+α2 }, which surprisingly remains unchanged as we move

from two to three users.

An interesting open question that arises from this work is whether this behavior continues to hold

for cooperative interference networks with more than three transmit-receive pairs. For example,

when K = 4, centralized processing can achieve DoF(3/2) = 1, but it is not known whether the

same full DoF can be achieved with an average per user backhaul load α < 3/2. More importantly,

proving the achievability of the corner point DoF(1) = 1 for networks with K ≥ 4, combined

with the upper bounds presented in this work, would immediately yield a characterization of the

optimal cooperation vs cooperation tradeoff in these cases. Even though such a generalization of

our schemes can be very challenging – mainly due to the constructive nature of our achievability
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proofs – we believe that techniques based on cooperation alignment will eventually be able to

break the “centralized processing” barrier in cooperative interference networks and provide a better

understanding of the design of more efficient interference management schemes.



27

APPENDIX A

PROOF OF THEOREM 1: RECEIVER COOPERATION UPPER BOUND

First we are going to bound the rates R1 +R2 by following an approach similar to the two-user

bound developed in [1]. Consider a genie that gives

yn[2:K] , [y2(τ), y3(τ), ..., yK(τ)]nτ=1 and xn2 , [x2(τ)]nτ=1

to receiver one, and the messages

W[3:K] , [W3,W4, ...,WK ]

to both receivers one and two, as side information. Starting from Fano’s inequality we have that

n(R1 +R2 − εn)

= I
(
W1; y

n
1 ,M

[n]
1

)
+ I
(
W2; y

n
2 ,M

[n]
2

)

(a)

≤ I
(
W1; y

n
1 ,M

[n]
1

∣∣W[3:K]

)
+ I
(
W2; y

n
2 ,M

[n]
2

∣∣W[3:K]

)

(b)

≤ I
(
xn1 ; yn1 ,M

[n]
1

∣∣W[3:K]

)
+ I
(
xn2 ; yn2 ,M

[n]
2

∣∣W[3:K]

)

(c)

≤ I
(
xn1 ; yn1 ,M

[n]
1 , xn2 , y

n
[2:K]

∣∣W[3:K]

)
+ I
(
xn2 ; yn2 ,M

[n]
2

∣∣W[3:K]

)

(d)
= I

(
xn1 ; yn[1:K]

∣∣xn2 ,W[3:K]

)
+ I
(
xn2 ; yn2 ,M

[n]
2

∣∣W[3:K]

)
, (58)

where (a) follows from the fact that Wi are independent, (b) from the data processing inequality,

(c) from the chain rule by adding I
(
xn1 ;xn2 , y

n
[2:K]

∣∣yn1 ,M
[n]
1 ,W[3:K]

)
≥ 0, and (d) from the fact

that xn1 and xn2 are independent and that M [n]
1 is a function of yn[1:K].

The second term in (58) can be further bounded as

I
(
xn2 ; yn2 ,M

[n]
2

∣∣W[3:K]

)

= I
(
xn2 ; yn2

∣∣W[3:K]

)
+ I
(
xn2 ;M

[n]
2

∣∣yn2 ,W[3:K]

)

≤ I
(
xn2 ; yn2

∣∣W[3:K]

)
+H(M

[n]
2 )

(e)

≤ I
(
xn2 ; yn2

∣∣W[3:K]

)
+
∑

i 6=2H([mi→2(τ)]nτ=1)

= I
(
xn2 ; yn2

∣∣W[3:K]

)
+ n

∑
i 6=2R

[i,2]
b , (59)
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where (e) follows from the definition of M [n]
2 , {[mi→2(τ)]nτ=1, i ∈ {1, ...,K}, i 6= 2}, the chain

rule and the fact that conditioning reduces entropy. Hence,

n(R1 +R2 − εn) ≤ I
(
xn1 ; yn[1:K]

∣∣xn2 ,W[3:K]

)
+ I
(
xn2 ; yn2

∣∣W[3:K]

)
+ n

∑
i 6=2R

[i,2]
b . (60)

The remaining two terms in the RHS of (60) can be further bounded as

I
(
xn1 ; yn[1:K]

∣∣xn2 ,W[3:K]

)
+ I
(
xn2 ; yn2

∣∣W[3:K]

)

= h
(
yn1 , y

n
[3:K]

∣∣yn2 , xn2 ,W[3:K]

)
− h
(
zn[1:K]

)
+ h
(
yn2
∣∣W[3:K]

)

= h
(
h11x

n
1 + zn1 , h31x

n
1 + zn3 , ..., hK1x

n
1 + znK

∣∣h21xn1 + zn2
)

+h
(
h21x

n
1 + h22x

n
2 + zn2

)
− h
(
zn[1:K]

)

(a′)

≤
∑

i 6=2

h
(
hi1x

n
1 + zni

∣∣h21xn1 + zn2
)

+h
(
h21x

n
1 + h22x

n
2 + zn2

)
− h
(
zn[1:K]

)

(b′)
=
∑

i 6=2

h
(
hi1x

n
1 + zni − hi1h−121 (h21x

n
1 + zn2 )

∣∣h21xn1 + zn2
)

+h
(
h21x

n
1 + h22x

n
2 + zn2

)
− h
(
zn[1:K]

)

≤
∑

i 6=2

h
(
zni − hi1h−121 z

n
2

)
+h
(
h21x

n
1 + h22x

n
2 + zn2

)
− h
(
zn[1:K]

)

(c′)

≤ n
∑

i 6=2

log(1 + |hi1|2/|h21|2) + n log(1 + P (|h21|2 + |h22|2)),

where (a′) follows from the chain rule and the fact that conditioning reduces entropy, (b′) follows

from the translational invariance property, and (c′) from the fact that the Gaussian distribution

maximizes entropy for a given variance. Putting everything together, we conclude that

R1 +R2 ≤ log(1 + P (|h21|2 + |h22|2)) +
∑

i 6=2

R
[i,2]
b + o(log(P )). (61)

In a similar way, we can obtain bounds of the same form for the pairs R2 + R3, R3 + R4, up

to RK−1 +RK and RK +R1 which we can add together to show that

2

K∑

k=1

Rk ≤
K+1∑

`=2

log(1 + P (|h`,`−1|2 + |h``|2)) +KRb + o(log(P )). (62)
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Since Rb ≤ L(P ) for any achievable scheme, dividing by log(P ) and taking the limit as P →∞
yields 2DoF(α) ≤ 1 + α as required. Further, by considering each user separately (single user

bound) we can trivially obtain that DoF(α) ≤ 1, and hence conclude that

DoF(α) ≤ min

{
1,

1 + α

2

}
, α ≥ 0

as stated by Theorem 1.
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APPENDIX B

PROOF OF THEOREM 3: TRANSMITTER COOPERATION UPPER BOUND

Here, following similar steps as in the receiver cooperation case, we will first bound all the

rate pairs Ri + Rj and then sum them up to obtain the corresponding result for
∑
Rk. Let

M̃
[n]
i , {[mi→`(τ)]nτ=1, ` ∈ {1, ...,K}, ` 6= i} denote all the backhhaul messages that originate

from transmitter i. In order to bound R1 +R2 we will consider a genie that gives

W2, M̃
[n]
1 and yn2 , [y2(τ)]nτ=1

to receiver one, and the messages

W[3:K] , [W3,W4, ...,WK ]

to both receivers one and two, as side information. Notice that the encoded signals (xn2 , x
n
3 , ..., x

n
K)

are fully determined as a function of (M̃
[n]
1 ,W[2:K]), and hence, with this side information,

receiver 1 will eventually be able to eliminate all interference.

Starting from Fano’s inequality we have that

n(R1 +R2 − εn)

= I
(
W1; y

n
1

)
+ I
(
W2; y

n
2

)

≤ I
(
W1; y

n
1 , y

n
2 , M̃

[n]
1

∣∣W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)

= I
(
W1; M̃

[n]
1

∣∣W2,W[3:K]

)
+ I
(
W1; y

n
1 , y

n
2

∣∣M̃ [n]
1 ,W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)

≤ H(M̃
[n]
1 ) + I

(
W1; y

n
1 , y

n
2

∣∣M̃ [n]
1 ,W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)

≤
∑

j 6=1

H([m1→j(τ)]nτ=1) + I
(
W1; y

n
1 , y

n
2

∣∣M̃ [n]
1 ,W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)

= n
∑

j 6=1

R
[1,j]
b + I

(
W1; y

n
1 , y

n
2

∣∣M̃ [n]
1 ,W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)
(63)
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The last two terms in (63) can be further bounded as

I
(
W1; y

n
1 , y

n
2

∣∣M̃ [n]
1 ,W2,W[3:K]

)
+ I
(
W2, M̃

[n]
1 ; yn2

∣∣W[3:K]

)

= h
(
yn1
∣∣yn2 , M̃ [n]

1 ,W[2:K]

)
− h
(
yn1 , y

n
2

∣∣M̃ [n]
1 ,W[1:K]

)
+ h
(
yn2
∣∣W[3:K]

)

≤ h
(
h11x

n
1 + zn1

∣∣h21xn1 + zn2
)
− h
(
zn1 , z

n
2

)
+ h
(
yn2
)

(64)

≤ n log
(
1 + |h11|2/|h21|2

)
+ n log

(
1 + P

∑
i,j |h2i||h2j |

)
(65)

where (64) follows from the fact that xn[2:K] is a function of (M̃
[n]
1 ,W[2:K]) and (65) from the

fact that the Gaussian distribution maximizes the differential entropy for a given variance and by

applying Lemma 1 that is stated below.

Lemma 1 Let xk ∈ Cn, k ∈ {1, 2, ...,K}, be any random vectors satisfying 1
nE[xH

k xk] ≤ Pk, ∀k,

and let s ,
∑K

k=1 xk and Ks , E
[
(s− E[s])(s− E[s])H

]
. We have that

det(I + Ks)
1/n ≤ 1 +

K∑

k=1

K∑

`=1

√
PkP`.

Proof: Since I + Ks is positive definite, we have (from the Hadamard’s inequality followed

by the arithmetic-geometric mean inequality) that

det(I + Ks)
1/n ≤ 1

n
tr(I + Ks). (66)

Further, we can rewrite

1

n
tr(I + Ks) =

1

n

n∑

i=1

(1 + Var[s(i)]) (67)

= 1 +
1

n

n∑

i=1

Var

[
K∑

k=1

xk(i)

]
(68)

= 1 +
1

n

n∑

i=1

K∑

k=1

K∑

`=1

Cov [xk(i),x`(i)] (69)

= 1 +

K∑

k=1

K∑

`=1

1

n

n∑

i=1

Cov [xk(i),x`(i)] (70)
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Now we can bound
n∑

i=1

Cov [xk(i),x`(i)] ≤
n∑

i=1

√
Var[xk(i)] · Var[x`(i)] (71)

≤

√√√√
(

n∑

i=1

Var[xk(i)]

)
·
(

n∑

i=1

Var[x`(i)]

)
(72)

≤

√√√√
(

n∑

i=1

E [|xk(i)|2]
)
·
(

n∑

i=1

E [|x`(i)|2]
)

(73)

=
√(

E[xH
k xk]

)
·
(
E[xH

` x`]
)

(74)

≤ n
√
PkP`. (75)

And hence, substituting (75) in (70) and (66) yields the desired result and completes the proof.

Putting everything together we have that

R1 +R2 ≤ log
(
1 + |h11|2/|h21|2

)
+ log

(
1 + P

∑
i,j |h2ih∗2j |

)
+
∑

j 6=1R
[1,j]
b . (76)

In a similar way, we can obtain bounds of the same form for the pairs R2 + R3, R3 + R4, up

to RK−1 +RK and RK +R1 which we can add together to show that

2

K∑

k=1

Rk ≤
K∑

k=1

log
(
1 + P

∑
i,j |hkih∗kj |

)
+KRb + o(log(P )). (77)

Since Rb ≤ L(P ) for any achievable scheme, dividing by log(P ) and taking the limit as P →∞
yields 2DoF(α) ≤ 1 + α as required. Further, by considering each user separately (single user

bound) we can trivially obtain that DoF(α) ≤ 1, and hence conclude that

DoF(α) ≤ min

{
1,

1 + α

2

}
, α ≥ 0

as stated by Theorem 3.
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