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Abstract—An array low-density parity-check (LDPC) code is a
quasi-cyclic LDPC code specified by two integersq and m, where
q is an odd prime and m ≤ q. The exact minimum distance, for
small q and m, has been calculated, and tight upper bounds
on it for m ≤ 7 have been derived. In this work, we study the
minimum distance of the spatially-coupled version of thesecodes.
In particular, several tight upper bounds on the optimal minimum
distance for coupling length at least two andm = 3, 4, 5, that
are independent ofq and that are valid for all values of q ≥ q0

where q0 depends onm, are presented. Furthermore, we show by
exhaustive search that by carefully selecting theedge spreading
or unwrapping procedure, the minimum distance (whenq is not
very large) can be significantly increased, especially form = 5.

I. I NTRODUCTION

In this paper, we consider array-based spatially-coupled
low-density parity-check (SC-LDPC) codes as introduced in
[1] and subsequently studied in [2] from the perspective of
absorbing sets. Array LDPC codes were originally proposed
by Fan in [3] and are specified by two integersq andm, where
q is an odd prime andm ≤ q.

Spatial coupling was first introduced in the coding theory
literature by Felström and Zigangirov in [4], where they pro-
posed convolutional LDPC or SC-LDPC codes. These codes
have very good belief propagation (BP) decoding thresholds
due to the phenomenon ofthreshold saturation. For instance,
in [5], it was shown that for binary memoryless channels, the
BP decoding thresholdsaturates to the maximuma posteriori
decoding threshold of the underlying ensemble.

Since the original work by Fan [3], several authors have
considered thestructural properties (including the minimum
distancedmin) of array LDPC codes (see, e.g., [6–11]). For
high rate and moderate length, these codes perform well under
iterative decoding, and they are also well-suited for practical
implementation due to their regular structure [12, 13].

In this work, we present several tight upper bounds on the
optimal minimum distance of array-based SC-LDPC codes
for coupling length at least two andm = 3, 4, 5, that are
independent ofq and that are valid for all values ofq ≥ q0
whereq0 depends onm. Also, these bounds (and intermediate
results in their proofs) can in some cases be used to quickly
remove large parts of the search space when searching for
optimal cutting vectors. For small values ofq (m = 3, 4, 5)
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we present the results of an exhaustive search over all cutting
vectors, showing that a careful selection can increase the
minimum distance significantly, especially form = 5.

We remark that the iterative decoding performance of these
codes, for instance, on additive white Gaussian noise channels,
is typically dominated by minimum absorbing sets and their
multiplicities. However, improved decoding methods and ulti-
mately maximum-likelihood decoding will not be trapped in
absorbing sets and thus overcome the shortcomings of standard
iterative decoding, in which case the minimum distance (and
its multiplicity) will become an important performance metric.

II. A RRAY LDPC CODES

The array LDPC codeC(q,m), with parametersq andm,
has lengthq2 and can be defined by the parity-check matrix

H(q,m) =










I I I · · · I

I P P 2 · · · P q−1

I P 2 P 4 · · · P 2(q−1)

...
...

I Pm−1 P 2(m−1) · · · P (m−1)(q−1)










(1)
whereI is theq×q identity matrix andP theq×q permutation
matrix

P =










0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0

...
...

0 0 · · · 1 0










.

Since the number of ones in each row of the matrix in (1)
is q and the number of ones in each column ism, the array
LDPC codes are(m, q)-regular codes. Furthermore, its rank
is qm −m + 1, from which it follows that the dimension of
C(q,m) is q2 − qm+m− 1.

In [7], a new representation forH(q,m) was introduced.
In particular, since each column of the parity-check matrix
H(q,m) hasm blocks and each block is a permutation of
(1, 0, 0, . . . , 0, 0)T , where (·)T denotes the transpose of its
argument, we can represent each column as a vector of integers
between0 andq − 1, where

i ,





i
︷ ︸︸ ︷

0, . . . , 0, 1,

q−i−1
︷ ︸︸ ︷

0, . . . , 0





T

(2)
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i.e., the1-positions are associated with the integers moduloq.
Furthermore, it follows from (1) and the integer representation
in (2) that any column in an array LDPC code parity-check
matrix is of the form

(x, x + y, x+ 2y, . . . , x+ (m− 1)y)T mod q (3)

where (x, y) ∈ [q]2 and, for notational convenience, for any
positive integerL, [L] , {0, 1, . . . , L − 1}. Thus, a column
can be specified by two integersx andy. Also, note that since
there areq2 distinct columns in an array LDPC code parity-
check matrix, any pair(x, y) ∈ [q]2 specifies a valid column.

In the following, it is also convenient to consider the parity-
check matrix in (1) as anm × q array of q × q permutation
matrices withrow group indices i ∈ [m] and column group
indicesj ∈ [q], from which it follows that each column can
be uniquely indexed by the pair(j, k), wherej ∈ [q] is the
index of the column group andk ∈ [q] is the index within a
column group. Likewise, each row can be uniquely indexed
by the pair(i, k), wherei ∈ [m] is the index of the row group
andk ∈ [q] is the index within a row group.

III. A RRAY-BASED SC-LDPC CODES

Array-based SC-LDPC codes can be constructed from ar-
ray LDPC codes by a special type ofedge spreading or
unwrapping procedure [4, 14] specified by a “cutting” vector
ζ = (ζ0, . . . , ζm−1), where0 ≤ ζ0 < ζ1 < · · · < ζm−1 ≤ q.
The purpose of the cutting vector is to generate two parity-
check matricesH0 andH1, each of sizemq×q2 and initially
filled with zeros, as follows:

• For eachζi, i ∈ [m], the q × q permutation matrices in
row groupi and column groupj, j < ζi, of H(q,m) are
copied into the corresponding positions inH0.

• Similarly, for eachζi, i ∈ [m], the q × q permutation
matrices in row groupi and column groupj, ζi ≤ j < q,
of H(q,m) are copied into the corresponding positions
in H1.

Example 1: If q = 5, m = 3, andζ = (1, 2, 4), the matrices
H0 andH1 become

H0 =





I 0 0 0 0

I P 0 0 0

I P 2 P 4 P 0





and

H1 =





0 I I I I

0 0 P 2 P 3 P 4

0 0 0 0 P 3



 .

For a given positive integerL (the coupling length) and a
cutting vectorζ, an array-based SC-LDPC code is defined by
the parity-check matrix

H(q,m,L, ζ) =









H0

H1 H0

H1
. . .
. . . H0

H1









(4)

of size (L + 1)mq × Lq2.

As for the uncoupled case, it is convenient to consider the
convolutional parity-check matrix in (4) as a(L + 1)m× Lq

array ofq× q permutation and all-zero matrices in whichmq

consecutive rows (resp.q2 consecutive columns) are referred
to as a row (resp. column)section. Within each row (resp.
column) section, the rows (resp. columns) correspond to a
row (resp. column) group. In summary, each column can be
indexed by a triple(l, j, k), wherel ∈ [L] is the column section
index,j ∈ [q] is the column group index within column section
l, andk ∈ [q] is the column index within column groupj in
column sectionl. Similarly, each row can be indexed by a
triple (l, i, k), where l ∈ [L + 1] is the row section index,
i ∈ [m] is the row group index within row sectionl, and
k ∈ [q] is the row index within row groupi in row sectionl.

Note that as for the uncoupled matrix in (1), all columns in
H(q,m,L, ζ) contain exactlym ones and each row in row
sections1, 2, . . . , L− 1 contains exactlyq ones. However, the
rows in row sections0 andL can have fewer thanq ones.

In the following, we will denote the binary linear code
defined by the coupled parity-check matrixH(q,m,L, ζ) in
(4) by C(q,m,L, ζ) and its corresponding minimum (resp.
stopping) distance byd(q,m,L, ζ) (resp.h(q,m,L, ζ)).

It was shown in [2, Theorem 5] that the minimum distance
d(q,m,L, ζ) of C(q,m,L, ζ) is bounded below by the mini-
mum distanced(q,m) of C(q,m) for all cutting vectorsζ.

Now, let us define the optimal minimum distance of an
array-based SC-LDPC code as the highest minimum distance
over all possible cutting vectors as the coupling lengthL tends
to infinity, i.e.,

dopt(q,m) , lim
L→∞

dopt(q,m,L)

where
dopt(q,m,L) , max

ζ
d(q,m,L, ζ).

IV. U PPERBOUNDS ONdopt(q,m,L)

In this section, we derive upper bounds ondopt(q,m,L)
for L ≥ 2 andm = 3, 4, 5, that are independent ofq and that
hold for all values ofq ≥ q0 whereq0 depends onm.

Now, define therange of a sorted (in nondecreasing order)
sequence of column group indicesjgr = (jgr0 , . . . , j

gr
n−1) of

lengthn as

min
l∈[n]

(

j
gr
l −

(

j
gr
(l+1) mod n

− q

⌈
n− 1− l

n− 1

⌉))

+ 1.

Furthermore, define

ǫ(ζ) , max
j∈[m−1]

((
ζ(j+1) mod m − ζj

)
mod q

)

jmax(ζ) , argmax
j∈[m−1]

((
ζ(j+1) mod m − ζj

)
mod q

)

for a given cutting vectorζ.
Example 2: Let n = 4, q = 7, andjgr = (0, 1, 2, 5). Then,

the range ofjgr is

min (0− (1 − 7 · 1), 1− (2− 7 · 1), 2− (5− 7 · 1),

5− (0− 7 · 0)) + 1 = min(6, 6, 4, 5) + 1 = 5.



A. The Case m = 3

Lemma 1: The minimum distancedopt(q, 3, L), for L ≥ 2
andq ≥ 13, is upper-bounded by6.

Proof: The proof is based on the template codeword from
[7, Theorem 4]. For convenience of the reader, we restate the
correspondingtemplate support matrix below

[
0 0 2i−2k 2i−2k −2i −2i
0 −2i+k 0 −i −i −2i+k
0 −4i+2k −2i+2k −4i+2k 0 −2i+2k

]

(5)

where q ≥ 5, i ∈ [q] \ {0}, and k ∈ [q] with k 6= i, 2i,
and where all operations are taken moduloq. The template
support matrix is obtained by extracting the columns of
the parity-check matrix corresponding to the support set of
the underlying codeword. When constructing this matrix, the
integer representation of the columns from (3) is used.

Now, a column of the general form(x, x+y, x+2y)T mod
q, x, y ∈ [q], in this matrix has column group index ofy.
Thus, the sequence of column group indices corresponding to
the template matrix in (5) is

(0,−2i+ k,−2i+ 2k,−3i+ 2k, i, k) mod q.

For i = 1 andk = 0, we get the following sorted sequence

(−3,−2,−2, 0, 0, 1) mod q. (6)

Since array LDPC codes are quasi-cyclic with periodq,
cyclically incrementing a sequence of column group indices
jgr = (jgr0 , . . . , j

gr
n−1) of lengthn of a codeword in an array

LDPC code by an integerκ ≥ 1 results in the valid sequence
(jgr0 + κ, . . . , j

gr
n−1 + κ) mod q of column group indices of

a codeword that is obtained by cyclically shifting the given
codeword byκq positions to the right.

If the range of a sorted (in nondecreasing order) sequence
of column group indices corresponding to a codeword in
the uncoupled array LDPC code is at mostǫ(ζ), it can
always be cyclically incremented so that the corresponding
codeword has coordinates with column group indexj within
[
ζjmax(ζ), ζjmax(ζ)+1

)
when jmax(ζ) < m − 1 = 2, and

within [ζm−1, q) ∪ [0, ζ0) when jmax(ζ) = m − 1 = 2.
Consequently, there will exist a codeword in the coupled code
(for all L ≥ 2) with all coordinates within the same column
section whenjmax(ζ) < m−1 = 2, or within two consecutive
column sections whenjmax(ζ) = m − 1 = 2. Thus, since
minζ ǫ(ζ) =

⌈
q

m

⌉
=

⌈
q

3

⌉
, there will exist a codeword in the

SC-LDPC code of weight6 for all cutting vectorsζ as long
as

⌈ q

m

⌉

=
⌈ q

3

⌉

≥ range ((−3,−2,−2, 0, 0, 1) mod q) .

Sincerange((−3,−2,−2, 0, 0, 1) mod q) = 5 for q ≥ 7 and4
for q = 5, the smallestq that satisfies this inequality isq = 13,
and the result follows since the range of (6) forq ≥ 13 is
constant.

Example 3: Consider the case ofq = 7, m = 3, and the
template support matrix in (5) fori = 1 and k = 0. The
sorted (in nondecreasing order) sequence of column group
indices is (0, 0, 1, 4, 5, 5) which has range5. By cyclically

incrementing this sequence by two, we get(0, 0, 2, 2, 3, 6). The
corresponding support matrices (both of which correspond to
codewords) are

[
0 0 2 2 5 5
0 5 0 6 6 5
0 3 5 3 0 5

]

and
[
0 0 2 2 5 5
2 0 2 1 1 0
4 0 2 0 4 2

]

respectively. For the cutting vectorζ = (4, 5, 6), we have
jmax(ζ) = m− 1 = 2, ǫ(ζ) = 5, [ζm−1, q)∪ [0, ζ0) = [6, 7)∪
[0, 4) = {0, 1, 2, 3, 6}, and

[
H0

H1 H0

H1

]

=











I I I I 0 0 0

I P P 2 P 3 P 4
0 0

I P 2 P 4 P 6 P P 3
0

0 0 0 0 I I I I I I I 0 0 0

0 0 0 0 0 P 5 P 6 I P P 2 P 3 P 4
0 0

0 0 0 0 0 0 P 5 I P 2 P 4 P 6 P P 3
0

0 0 0 0 I I I
0 0 0 0 0 P 5 P 6

0 0 0 0 0 0 P 5











.

From the highlighted blue columns in the matrix above we can
identify a weight-6 codeword corresponding to the sequence
(0, 0, 2, 2, 3, 6) of column group indices mentioned above. For
other cutting vectors likeζ = (3, 4, 6), we getǫ(ζ) = 4, which
is less than the range, and there will be no codewords of the
type in (5) with i = 1 and k = 0 (there are fori = 2 and
k = 0) in the coupled code.

By combining Lemma 1 with [2, Corollary 6], we get the
following theorem.

Theorem 1: For L ≥ 2 andq ≥ 13, the minimum distance
dopt(q, 3, L) = 6.

B. The Case m = 4

Lemma 2: The minimum distancedopt(q, 4, L), for L ≥ 2
andq ≥ 41, is upper-bounded by10.

Proof: The proof follows the same main idea of the proof
of Lemma 1 above using the template support matrix (q ≥ 11)

[ 0 0 −16 −16 −13 −13 −9 −9 −1 −1
0 −2 −10 −8 −10 −6 −8 −6 0 −2
0 −4 −4 0 −7 1 −7 −3 1 −3
0 −6 2 8 −4 8 −6 0 2 −4

]

which we have found using the algorithm from [10]. The
remaining technical details are omitted for brevity.

Note that the template support matrix form = 4 given in
Fig. 3 in [8] will fail to prove the above result, since the sorted
(in nondecreasing order) sequence of column group indices has
range19 for q ≥ 23. As a consequence, the template matrix in
Fig. 3 in [8] can only prove an upper bound of10 for q ≥ 73.

Proposition 1: There is a codeword of weight10 in
C(q, 4, L, ζ), q ≥ 13, for all positive integersL ≥ 2 and
cutting vectorsζ if one of the following conditions are true.

1) ζ1 − ζ0 ≥ 2 andζ2 − ζ1 ≥ 9.
2) ζ1 − ζ0 ≥ 9 andζ2 − ζ1 ≥ 2.
3) ζ3 − ζ2 ≥ 2 andq + ζ0 − ζ3 ≥ 9.
4) ζ3 − ζ2 ≥ 9 andq + ζ0 − ζ3 ≥ 2.
5) max(ζ1 − ζ0, ζ2 − ζ1, ζ3 − ζ2, q + ζ0 − ζ3) ≥ 11.

Proof: The proof is omitted due to lack of space.
Lemma 3: The minimum distancesdopt(31, 4, L) and

dopt(37, 4, L), for L ≥ 2, are both upper-bounded by10.
Proof: For the caseq = 31, the number of cutting vectors

that satisfy none of the five conditions in Proposition 1 is only



35, while the total number of possible cutting vectors is35 960.
Thus, by running the algorithm from [15], adapted to the case
of SC codes, on these35 cases we have verified that there are
indeed codewords of weight10 for all cutting vectors, and the
result follows.

For q = 37, there are no cutting vectors that satisfy none
of the five conditions in Proposition 1, from which it follows
that dopt(37, 4, L) ≤ 10 for all positive integersL ≥ 2.

By combining Lemmas 2 and 3, [2, Theorem 5], and [8,
Corollary 4.2], we get the following theorem.

Theorem 2: For L ≥ 2 andq ≥ 31, the minimum distance
dopt(q, 4, L) = 10.

C. The Case m = 5

Theorem 3: The minimum distancedopt(q, 5, L), for L ≥ 2
andq ≥ 59, is upper-bounded by12.

Proof: The proof follows the same main idea of the proofs
of Lemmas 1 and 2 above using the template support matrix
from Fig. 4 in [8], and is omitted for brevity.

Note that there appears to be no equivalent to Proposition 1
(except for the last condition) form = 5, since the template
support matrix from Fig. 4 in [8] (which is used for the proof
of Theorem 3) does not have the required structure. Also, the
algorithm from [10] was not able to identify other nonequiv-
alent template support matrices with a suitable structure.This
has also been “confirmed” by the fact that forq = 53 we have
been able to identify a cutting vector that gives a minimum
distance of14 (see Table III).

Theorem 4: The minimum distancedopt(q, 5, L), for L ≥ 2
andq ≥ 29, is upper-bounded by16.

Proof: The proof follows the same main idea of the proofs
of Lemmas 1 and 2 and Theorem 3 above using a template
support matrix which was found using the algorithm from [10].
Due to lack of space, the actual template support matrix and
the technical details of the proof are omitted.

V. NUMERICAL RESULTS

In this section, we present some numerical results for the
casesm = 3, 4, and5.

A. The Case m = 3

By performing an exhaustive search over all cutting vectors
ζ the optimal minimum distancedopt(q, 3) was determined
for 5 ≤ q ≤ 11 (see Table III). For each of these values of
q, thedmin-optimal cutting vector is not unique, i.e., there are
several cutting vectors that give the best minimum distance.
For instance, forq = 5, we found (forL = 10) the hmin-
optimal (wherehmin denotes stopping distance) cutting vectors
displayed in Table I. For each cutting vector, in the second
and fourth columns we have tabulated the corresponding min-
imum and stopping distance, respectively. The corresponding
multiplicities are tabulated in the third (minimum distance)
and fifth (stopping distance) columns. Note that theoptimal
cutting vectorζ = (2, 3, 5) for (3, 3) and(4, 2) absorbing sets
from [2] is also optimal when it comes to minimum/stopping
distance, since it gives the optimal minimum/stopping distance

TABLE I
M INIMUM /STOPPINGDISTANCE RESULTS FORARRAY-BASED SC-LDPC

CODES FORq = 5, m = 3, L = 10, AND DIFFERENThmin-OPTIMAL

CUTTING VECTORS

ζ d(5, 3, 10, ζ) Mult. h(5, 3, 10, ζ) Mult.

(0, 1, 3) 10 20 10 65
(0, 2, 3) 10 20 10 65
(1, 2, 4) 10 19 10 59
(1, 3, 4) 10 19 10 59
(2, 3, 5) 10 20 10 65
(2, 4, 5) 10 20 10 65

TABLE II
M INIMUM /STOPPINGDISTANCE RESULTS FORARRAY-BASED SC-LDPC

CODES FORq = 7, m = 4, L = 10, AND DIFFERENThmin-OPTIMAL

CUTTING VECTORS

ζ d(7, 4, 10, ζ) Mult. h(7, 4, 10, ζ) Mult.

(0, 2, 3, 5) 14 30 14 401
(0, 2, 4, 6) 14 30 14 695
(1, 3, 4, 6) 14 29 14 393
(1, 3, 5, 7) 14 30 14 695
(2, 4, 5, 7) 14 30 14 401

of 10. However, it gives slightly more stopping sets of size
10 (see Table I). On the other hand, forq = 7, the optimal
cutting vectorζ = (2, 4, 6) for (3, 3) and(4, 2) absorbing sets
from [2] is not optimal when it comes to minimum distance,
since it gives a minimum distance of only6 (the optimal
minimum distance is8). For q = 5, 7, dmin-optimal cutting
vectors that also give the lowest possible minimum distance
multiplicity, denoted as(dmin, Ndmin

)-optimal cutting vectors,
are displayed within the parentheses in the sixth column of
Table III (first and second row, respectively).

For q ≥ 13, it follows from Theorem 1 that the optimal min-
imum distance is6. Also, all cutting vectors give a minimum
distance of6, but possibly with different multiplicities.

B. The Case m = 4

By performing an exhaustive search over all cutting vectors
ζ (with the help of Proposition 1 to reduce the search space
when q > 11) the optimal minimum distancedopt(q, 4) was
determined for5 ≤ q ≤ 29. For each of these values ofq,
the dmin-optimal cutting vector is not unique, i.e., there are
several cutting vectors that give the best minimum distance.
For instance, forq = 7, we found (forL = 10) the hmin-
optimal cutting vectors displayed in Table II. For each cutting
vector, in the second and fourth columns we have tabulated the
corresponding minimum and stopping distance, respectively.
The corresponding multiplicities are tabulated in the third
(minimum distance) and fifth (stopping distance) columns. For
5 ≤ q ≤ 29, the optimal minimum distance and corresponding
(dmin, Ndmin

)-optimal cutting vectors (displayed within the
parentheses) are given in the fourth column of Table III (the
first eight rows, respectively). Forq ≥ 31, it follows from
Theorem 2 thatdopt(q, 4) = 10.

C. The Case m = 5

For q = 7, we have performed an exhaustive search over
all possible cutting vectors. The optimal minimum distance
dopt(7, 5) is 14 and a (dmin, Ndmin

)-optimal cutting vector
is displayed within the parentheses in the second column of



TABLE III
OPTIMAL M INIMUM DISTANCE RESULTS FORARRAY-BASED SC-LDPC CODES FORDIFFERENTVALUES OFq AND m. VALUES IN BOLD ARE NEW

RESULTS, WHILE NON-BOLD VALUES ARE TAKEN FROM THE L ITERATURE. THE RESULTSARE COMPAREDWITH THOSE OFARRAY-BASED

UNCOUPLEDLDPC CODESTAKEN FROM [7, 8, 10]. WITHIN THE PARENTHESES THECORRESPONDINGCUTTING VECTORSARE DISPLAYED. CUTTING
VECTORS INITALICS ARE dmin-OPTIMAL , WHILE CUTTING VECTORS INBOLD ARE (dmin, Ndmin

)-OPTIMAL

q dopt(q, 5) d(q, 5) dopt(q, 4) d(q, 4) dopt(q, 3) d(q, 3)

5 10 (1, 2,3, 4) 8 10 (1, 2, 4) 6
7 14 (1, 2, 3,4, 6) 12 14 (1, 3,4, 6) 8 8 (1,2, 5) 6
11 22 (0 , 1 , 2 , 5 ,8 ) 10 14 (1, 3,6, 8) 10 6 6
13 24 (0 , 2 , 5 , 7 ,10 ) 12 12 (0, 3,7, 9) 10 6 6
17 20, 22, or 24 (0, 4, 7, 11, 14) 12 12 (2, 5,10, 13) 10 6 6
19 20 or 22 (0, 4, 8, 12, 16) 12 12 (3, 7,12, 16) 10 6 6
23 20 (5 , 10 , 15 , 19 ,23 ) 12 12 (4, 8,15, 19) 10 6 6
29 16 (8 , 11 , 18 , 26 ,29 ) 12 12 (4, 11,18,25) 10 6 6
31 16 (9 , 15 , 21 , 24 ,31 ) 12 10 10 6 6
37 16 (0 , 10 , 19 , 28 ,30 ) 12 10 10 6 6
41 16 (0 , 9 , 18 , 25 ,32 ) 12 10 10 6 6
43 16 (0 , 8 , 19 , 24 ,33 ) 12 10 10 6 6
47 16 (7 , 16 , 26 , 36 ,47 ) 12 10 10 6 6
53 14 (0, 11,22,33, 42) 12 10 10 6 6

59 − 79 12 12 10 10 6 6
> 79 10 or 12 10 or 12 10 10 6 6

Table III (second row). Forq = 11 and 13, the optimal
minimum distance is as high as22 and24, respectively, and
dmin-optimal cutting vectors are shown within the parentheses
in the second column of Table III (third and fourth row,
respectively). Forq = 17 and19, upper and lower bounds on
the optimal minimum distance, tabulated in the second column
of Table III, have been established from an exhaustive search
over all cutting vectors. The displayed values are bounds since
we were not able to exhaustively enumerate all codewords of
weight at mostτ , whenτ ≥ 20, for a given cutting vector, for
these two values ofq. Within the parentheses a corresponding
cutting vector (which establishes the upper bound) is also
tabulated. The lower bounds were determined by running the
algorithm from [15], adapted to the case of SC codes, for the
specific cutting vectors displayed within the parentheses.For
23 ≤ q ≤ 53, the tabulated values (in the second column of
Table III) are again the exact values ofdopt(q, 5) and also
(within the parentheses)dmin-optimal ((dmin, Ndmin

)-optimal
for q = 53) cutting vectors are displayed. For59 ≤ q ≤ 79,
dopt(q, 5) = 12, which follows from Theorem 3, [10, Table I],
and Theorem 5 in [2]. Forq > 79, it follows from Theorem 3,
Corollary 4.4 in [8], and Theorem 5 in [2] thatdopt(q, 5) is
either10 or 12, although we conjecture it to be12.

VI. CONCLUSION AND FUTURE WORK

In this work, we have studied in detail the minimum distance
of array-based SC-LDPC codes. Several tight upper bounds
on the optimal minimum distance for coupling lengthL ≥
2 and m = 3, 4, 5, that are independent ofq and that are
valid for all values ofq ≥ q0 whereq0 depends onm, have
been presented. Furthermore, we have conducted an exhaustive
search over all cutting vectors for small values ofq (m =
3, 4, 5) which shows that by carefully selecting the cutting
vector, the minimum distance (whenq is not very large) can
be significantly increased, especially form = 5.

An interesting topic for future work is to consider the corre-
lation with absorbing sets. In particular, will a(dmin, Ndmin

)-
optimal cutting vector also beclose-to-optimal when it comes
to problematic absorbing sets, and/or vice-versa?
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