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Abstract—An array low-density parity-check (LDPC) code is a
quasi-cyclic LDPC code specified by two integerg and m, where
g is an odd prime and m < ¢. The exact minimum distance, for
small ¢ and m, has been calculated, and tight upper bounds
on it for m < 7 have been derived. In this work, we study the
minimum distance of the spatially-coupled version of theseodes.
In particular, several tight upper bounds on the optimal minimum
distance for coupling length at least two andm = 3,4, 5, that
are independent ofg and that are valid for all values of ¢ > o
where go depends onm, are presented. Furthermore, we show by
exhaustive search that by carefully selecting thedge spreading
or unwrapping procedure, the minimum distance (wheng is not
very large) can be significantly increased, especially forn = 5.

we present the results of an exhaustive search over alhgutti
vectors, showing that a careful selection can increase the
minimum distance significantly, especially fot = 5.

We remark that the iterative decoding performance of these
codes, for instance, on additive white Gaussian noise @isnn
is typically dominated by minimum absorbing sets and their
multiplicities. However, improved decoding methods antit ul
mately maximum-likelihood decoding will not be trapped in
absorbing sets and thus overcome the shortcomings of sthnda
iterative decoding, in which case the minimum distance (and
its multiplicity) will become an important performance met

|. INTRODUCTION Il. ARRAY LDPC CoDES

In this paper, we consider array-based spatially-coupledThe array LDPC codé€(q,m), with parametergy andm,
low-density parity-check (SC-LDPC) codes as introduced Iras length;? and can be defined by the parity-check matrix

[1] and subsequently studied in [2] from the perspective of T I I I
absorbing sets. Array LDPC codes were originally proposed I P P2 pa-1
by Fan in [3] and are specified by two integerandm, where gom) = I P2 pt Pp2a-1)

q is an odd prime andh < q.

Spatial coupling was first introduced in the coding theory :
literature by Felstrom and Zigangirov in [4], where theyppr pim=1(=1)
posed convolutional LDPC or SC-LDPC codes. These codes (1)
have very good belief propagation (BP) decoding thresholgerel is theq x ¢ identity matrix andP the ¢ x ¢ permutation
due to the phenomenon tireshold saturation. For instance, Matrix

I pm1 P2(r.n—1)

in [5], it was shown that for binary memoryless channels, the (1) 8 8 (1)

BP decoding thresholshturates to the maximunma posteriori

decoding threshold of the underlying ensemble. p=|0 1 00
Since the original work by Fan [3], several authors have : :

considered thestructural properties (including the minimum 0 0 1 0

distanced,,;,) of array LDPC codes (see, e.g., [6—11]). Fo§
high rate and moderate length, these codes perform wellrun

iterative decoding, and they are also well-suited for peatt
implementation due to their regular structure [12, 13].

In this work, we present several tight upper bounds on t
optimal minimum distance of array-based SC-LDPC codes

for coupling length at least two anth = 3,4,5, that are
independent of; and that are valid for all values af > ¢

whereq, depends omn. Also, these bounds (and intermediat
results in their proofs) can in some cases be used to quic
remove large parts of the search space when searching

optimal cutting vectors. For small values of; (m = 3,4,5)
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ience the number of ones in each row of the matrix in (1)
IS¢ and the number of ones in each colummis the array
LDPC codes ardm, g)-regular codes. Furthermore, its rank
is gm —m + 1, from which it follows that the dimension of
q,m) is ¢*> — qgm +m — 1.
In [7], a new representation faH (¢, m) was introduced.
In particular, since each column of the parity-check matrix
H (q,m) hasm blocks and each block is a permutation of
} 0,0,...,0,0)7, where ()T denotes the transpose of its
|y ument, we can represent each column as a vector of isteger
ween) andg — 1, where

i q—i-1\ T

A S N—
i210,...,0,1,0,...,0

)
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i.e., thel-positions are associated with the integers modqulo As for the uncoupled case, it is convenient to consider the
Furthermore, it follows from (1) and the integer represgate. convolutional parity-check matrix in (4) as(& + 1)m x Lqg
in (2) that any column in an array LDPC code parity-checérray ofg x ¢ permutation and all-zero matrices in whigky
matrix is of the form consecutive rows (resg? consecutive columns) are referred
to as a row (resp. columrgection. Within each row (resp.
column) section, the rows (resp. columns) correspond to a
where (z,y) € [¢]? and, for notational convenience, for anyow (resp. column) group. In summary, each column can be
positive integerL, [L] £ {0,1,...,L — 1}. Thus, a column indexed by a triplél, j, k), wherel € [L] is the column section
can be specified by two integersandy. Also, note that since index,;j € [g¢] is the column group index within column section
there areg? distinct columns in an array LDPC code parity{, andk € [¢] is the column index within column groupin
check matrix, any paitz,y) € [q]* specifies a valid column. column sectionl. Similarly, each row can be indexed by a
In the following, it is also convenient to consider the parit triple (1,4, k), wherel € [L + 1] is the row section index,
check matrix in (1) as am x g array of g x ¢ permutation @ € [m] is the row group index within row sectioh and
matrices withrow group indicesi € [m] and column group & € [¢] is the row index within row group in row section.
indicesj € [q], from which it follows that each column can Note that as for the uncoupled matrix in (1), all columns in
be uniquely indexed by the paiy, k), wherej € [q] is the H(q,m,L,¢) contain exactlym ones and each row in row
index of the column group and € [¢] is the index within a sectionsl, 2,..., L —1 contains exactly; ones. However, the
column group. Likewise, each row can be uniquely indexegdws in row section$) and L can have fewer than ones.
by the pair(i, k), wherei € [m] is the index of the row group In the following, we will denote the binary linear code
andk € [q] is the index within a row group. defined by the coupled parity-check matd#(q, m, L,¢) in
(4) by C(¢q,m, L,¢) and its corresponding minimum (resp.
[1l. ARRAY-BASED SC-LDPC @DES stoppingg distance)by(q,m,L,C) (resp.h(g,m, L, C)).
Array-based SC-LDPC codes can be constructed from ar{t was shown in [2, Theorem 5] that the minimum distance
ray LDPC codes by a special type efige spreading or d(q,m, L, ¢) of C(q,m, L,¢) is bounded below by the mini-
unwrapping procedure [4, 14] specified by a “cutting” vectomum distancei(q, m) of C(q,m) for all cutting vectors¢.
¢ =(Cos-++sGm—1), Where0 < (o < (1 < - < (-1 < q. Now, let us define the optimal minimum distance of an
The purpose of the cutting vector is to generate two paritgrray-based SC-LDPC code as the highest minimum distance
check matriced, and H;, each of sizeng x ¢* and initially  over all possible cutting vectors as the coupling lengtiends
filled with zeros, as follows: to infinity, i.e.,
« For each(;, i € [m], the ¢ x ¢ permutation matrices in
row group: and column groug, j < ¢;, of H(q,m) are

(x,x+y,a:+2y,...,a:—|—(m—l)y)Tmodq 3)

dopt (Qa m) é ngr;o dopt (Q7 m, L)

copied into the corresponding positions H. where

« Similarly, for each(;, i € [m], the ¢ x ¢ permutation dops(q,m, L) 2 maxd(g,m, L, ).
matrices in row group and column groug, ¢; < j < q, PR ¢ U
of H(q,m) are copied into the corresponding positions IV. UPPERBOUNDS ONdop(q, m, L)
in H;.

In this section, we derive upper bounds ag(q, m, L)
r L >2andm = 3,4,5, that are independent gfand that
hold for all values ofg > gy whereqy, depends onn.

Example 1. If ¢ =5, m = 3, and¢ = (1, 2,4), the matrices fo
H, and H; become

I 0 O o0 O Now, define therange of a sorted (in nondecreasing order)
Hy=|I P 0 0 O sequence of column group indicg§" = (5§',...,j5_ ) of
I P* P* P 0] lengthn as
and - ) or ar n—1-1
oI I I I min (G5 = {38 mean — 4| T | ) ) T
H, =|0 0 P> P P*|.
Oo0 0 o P Furthermore, define
For a given positive integek (the coupling length) and a €(¢) £ max  ((Cy41) mod m — ¢j) mod q)
cutting vector¢, an array-based SC-LDPC code is defined by . N j€m=1]
the parity-check matrix Jmax(€) = %r% mfﬂﬁi ((¢+1) mod m — ¢j) mod q)
JjeEmMm—
go H for a given cutting vectog.
1 0 .
. Example 2: Letn =4, ¢ =7, andj% = (0,1,2,5). Then,
HgmLO=| H () | ampleZ Letn=d.q ¥ =01,25
. H, ge ofj&" is
H, min(0—(1—-7-1),1-(2-7-1),2—(5-7-1),

of size (L + 1)mgq x Lq?. 5—(0—-7-0))+1=min(6,6,4,5) + 1 =5.



A. TheCase m =3 incrementing this sequence by two, we (&0, 2,2, 3,6). The
Lemma 1: The minimum distance,p (q, 3, L), for L > 2 corresponding support matrices (both of which correspond t

andg > 13, is upper-bounded b§. codewords) are
Proof: The proof is basgd on the template codeword from {8 0225 g} and {g 0225 g}
[7, Theorem 4]. For convenience of the reader, we restate the 035305 402042
correspondingemplate support matrix below respectively. For the cutting vectaf = (4,5,6), we have
0 0  2i-2k 2-2k -2 —2i ) Jmax(€) =m —1=2,¢€(¢) =5, [(m-1,9)U[0,() =[6,7)U
0 —2i+k 0 —1 —i —2i+k —
0 —dit2k —2i42k —d4i42k O —Dit2k [0,4) = {0,1,2,3,6}, and
) . o I'1T I I 0 0 O]
whereq > 5,4 € [¢] \ {0}, andk € [q] with k& # i,24, I PP PP 0 0|
; IP>2P*PS P P? o |
and where all operations are taken modugloThe template
support matrix is obtained by extracting the columns of HO} O - T U
the parity-check matrix corresponding to the support set of H: 00 0 0 0 0 PPIIP2P*P° P P 0
the underlying codeword. When constructing this matrix th 100 0 0 I I I
integer representation of the columns from (3) is used. |00 0 0 0B D

Now, a column of the general for, z +y, z+2y)” mod
q, z,y € [q], in this matrix has column group index af.
Thus, the sequence of column group indices correspondin
the template matrix in (5) is

From the highlighted blue columns in the matrix above we can
identify a weighté codeword corresponding to the sequence
g( ?O, 2,2,3,6) of column group indices mentioned above. For
other cutting vectors liké = (3,4, 6), we gete(¢) = 4, which
(0, —2i + k, —2i + 2k, —3i + 2k, 4, k) mod ¢. is less than the range, and there will be no codewords of the
_ type in (5) withi = 1 and k = 0 (there are fori = 2 and
Fori =1 andk = 0, we get the following sorted sequence . _ 0) in the coupled code.
(—3,-2,-2,0,0,1) mod q. 6 By pombining Lemma 1 with [2, Corollary 6], we get the
following theorem.
Since array LDPC codes are quasi-cyclic with perigd  Theorem 1: For L > 2 and¢ > 13, the minimum distance
cyclically incrementing a sequence of column group indices,,(q, 3, L) = 6.
7% = (4§, ..., 75 ,) of lengthn of a codeword in an array
LDPC code by an integer > 1 results in the valid sequenceB: The Case m = 4
(38" + K,y ..., 35" + k) mod ¢ of column group indices of Lemma 2: The minimum distancé,y(g, 4, L), for L > 2
a codeword that is obtained by cyclically shifting the giveandq > 41, is upper-bounded byo0.

codeword bykq positions to the right. Proof: The proof follows the same main idea of the proof
If the range of a sorted (in nondecreasing order) sequerafd_emma 1 above using the template support matrix (11)

of column group indices corresponding to a codeword in 00 —16 —16 —13 —13 -9 -9 —1 —1

the uncoupled array LDPC code is at magt), it can Soa T o p e 80 -2

always be cyclically incremented so that the corresponding 0-6 2 8 -4 8 —60 2 —4

codeword has coordinates with column group ingewxithin  which we have found using the algorithm from [10]. The

[Cman(€)s Cman (€)+1) WheN jmay(¢) < m — 1 = 2, and remaining technical details are omitted for brevity. [

within [¢m—1,¢) U [0,¢0) When jpn.x(¢) = m —1 = 2. Note that the template support matrix for = 4 given in

Consequently, there will exist a codeword in the coupledecodFig. 3 in [8] will fail to prove the above result, since the war
(for all L > 2) with all coordinates within the same column(in nondecreasing order) sequence of column group indiaes h
section wherj,.x({) < m—1 = 2, or within two consecutive rangel9 for ¢ > 23. As a consequence, the template matrix in
column sections whefin.x(¢) = m — 1 = 2. Thus, since Fig. 3 in [8] can only prove an upper bound 4f for ¢ > 73.
min¢ €(¢) = [£] = [Z], there will exist a codeword in the Proposition 1: There is a codeword of weight0 in
SC-LDPC code of weigh6é for all cutting vectors¢ as long C(q,4,L,¢), ¢ > 13, for all positive integersL > 2 and

as cutting vectorsC if one of the following conditions are true.
a1 _ 14 1) =G =2and¢ — ¢ > 9.
=l =|z|> -3,—-2,-2,0,0,1 dg).
| L] = |5] = range (-3, -2,-2,0,0,1) mod g) 2 ¢ O ande C 2o

Sincerange((—3,—2,—2,0,0,1) mod ¢) = 5 for ¢ > 7 and4 3) 3—¢=>2andq+ (o — (3 > 9.

for ¢ = 5, the smallesy that satisfies this inequality is= 13, 4) 3—CG>9andg+ (o — (3> 2.

and the result follows since the range of (6) fpr> 13 is 5) max(C1 — Co,C2 — C1,¢3 — C2,9 + Go — ¢3) > 11.

constant. ] Proof: The proof is omitted due to lack of space. ®
Example 3: Consider the case of = 7, m = 3, and the Lemma 3: The minimum distancesd,(31,4,L) and

template support matrix in (5) foir = 1 andk = 0. The d.,:(37,4, L), for L > 2, are both upper-bounded h1y.

sorted (in nondecreasing order) sequence of column group Proof: For the casg = 31, the number of cutting vectors

indices is (0,0,1,4,5,5) which has ranges. By cyclically that satisfy none of the five conditions in Proposition 1 ityon



. . . TABLE |
35, while the total number of possible cutting vector83960. v nimum /StoPPINGDISTANCE RESULTS FORARRAY-BASED SC-LDPC

Thus, by running the algorithm from [15], adapted to the caseCobpes Forg = 5, m = 3, L = 10, AND DIFFERENTApmin-OPTIMAL
of SC codes, on thests cases we have verified that there are CUTTING VECTORS

indeed codewords of weight for all cutting vectors, and the < d(5,3,10,¢) Mult  h(5,3,10,¢) Mult

result follows. Eg: 5 gg v 2 o &
For ¢ = 37, there are no cutting vectors that satisfy none (1,2,4) 10 19 10 59

of the five conditions in Proposition 1, from which it follows ggg; I 2 o o

that dop4 (37,4, L) < 10 for all positive integerd > 2. [ | (2,4,5) 10 20 10 65
By combining Lemmas 2 and 3, [2, Theorem 5], and [8, TABLE I

Corollary 4.2], we get the following theore_m' . MINIMUM /STOPPINGDISTANCE RESULTS FORARRAY-BASEDSC-LDPC
Theorem 2: For L > 2 andg > 31, the minimum distance  CopesFoRrg =7, m = 4, L = 10, AND DIFFERENThyin-OPTIMAL

dopt(Q74aL) =10. CUTTING VECTORS
¢ d(7,4,10,¢) Mult.  h(7,4,10,¢)  Mult.
C. TheCasem =5 (0,2,3,5) 14 30 14 401
Theorem 3: The minimum distancé,(q,5, L), for L > 2 E?jg:i 2; ij 38 13 ggg
andq > 59, is upper-bounded by2. (1,3,5,7) 14 30 14 695
(2,4,5,7) 14 30 14 401

Proof: The proof follows the same main idea of the proofs
of Lemmas 1 and 2 above using the template support matrix

from Fig. 4 in [8], and is omitted for brevity. B of 10. However, it gives slightly more stopping sets of size
Note that there appears to be no equivalent to Proposition ¢ (see Table 1). On the other hand, for= 7, the optimal

(except for the last condition) for, = 5, since the template cutting vector¢ = (2,4, 6) for (3, 3) and (4, 2) absorbing sets
support matrix from Fig. 4 in [8] (which is used for the proofrom [2] is not optimal when it comes to minimum distance,
of Theorem 3) does not have the required structure. Also, t8gce it gives a minimum distance of only (the optimal
algorithm from [10] was not able to identify other nonequiviyinimum distance i8). For g = 5,7, dmi-optimal cutting
alent template support matrices with a suitable structlités  yectors that also give the lowest possible minimum distance
has also been “confirmed” by the fact that for= 53 we have  ytiplicity, denoted agdum, N4, ., )-optimal cutting vectors,
been able to identify a cutting vector that gives a minimunge displayed within the parentheses in the sixth column of

distance Oﬂ‘_l (see Tf']‘t_’le ). _ Table llI (first and second row, respectively).
Theorem 4: The minimum distancé.y (¢, 5, L), for L > 2 Forg > 13, it follows from Theorem 1 that the optimal min-
andq > 29, is upper-bounded byo6. imum distance i$. Also, all cutting vectors give a minimum

Proof: The proof follows the same main idea of the proofgjsiance ofs, but possibly with different multiplicities.
of Lemmas 1 and 2 and Theorem 3 above using a template

support matrix which was found using the algorithm from [10B. The Case m = 4
Due to lack of space, the actual template support matrix andBy performing an exhaustive search over all cutting vectors
the technical details of the proof are omitted. B ¢ (with the help of Proposition 1 to reduce the search space
when ¢ > 11) the optimal minimum distancé,,(q,4) was
determined for5 < ¢ < 29. For each of these values of

In this section, we present some numerical results for thge d,,;,-optimal cutting vector is not unique, i.e., there are
casesn = 3, 4, and5. several cutting vectors that give the best minimum distance

For instance, fory = 7, we found (for L = 10) the hAyj,-

A The Casem =3 optimal cutting vectors displayed in Table Il. For each iogit

By performing an exhaustive search over all cutting vecto{gctor, in the second and fourth columns we have tabulaged th
¢ the optimal minimum distancé,(q,3) was determined corresponding minimum and stopping distance, respeytivel
for 5 < ¢ < 11 (see Table Ill). For each of these values ofhe corresponding multiplicities are tabulated in the dhir
q, thedmin-optimal cutting vector is not unique, i.e., there argminimum distance) and fifth (stopping distance) columms. F
several cutting vectors that give the best minimum distange< ¢ < 29, the optimal minimum distance and corresponding
For instance, forg = 5, we found (for L = 10) the hmin-  (d,,;,, Ny, )-optimal cutting vectors (displayed within the
optimal (whereh.,i, denotes stopping distance) cutting vectorigarentheses) are given in the fourth column of Table Iil (the

displayed in Table I. For each cutting vector, in the seconfist eight rows, respectively). Fay > 31, it follows from
and fourth columns we have tabulated the corresponding mirheorem 2 thatl,p (g, 4) = 10.

imum and stopping distance, respectively. The correspandi

multiplicities are tabulated in the third (minimum distapc C- The Case m =5

and fifth (stopping distance) columns. Note that tptimal For ¢ = 7, we have performed an exhaustive search over
cutting vector¢ = (2, 3,5) for (3, 3) and(4, 2) absorbing sets all possible cutting vectors. The optimal minimum distance
from [2] is also optimal when it comes to minimum/stopping,,(7,5) is 14 and a (dmin, Na,,;, )-Optimal cutting vector
distance, since it gives the optimal minimum/stoppingatise is displayed within the parentheses in the second column of

V. NUMERICAL RESULTS



TABLE Il

OPTIMAL MINIMUM DISTANCERESULTS FORARRAY-BASED SC-LDPC @DES FORDIFFERENTVALUES OF g AND m. VALUES IN BOLD ARENEW
RESULTS, WHILE NON-BOLD VALUES ARE TAKEN FROM THE LITERATURE. THE RESULTSARE COMPAREDWITH THOSE OFARRAY-BASED
UNCOUPLEDLDPC CODESTAKEN FROM [7,8,10]. WITHIN THE PARENTHESES THECORRESPONDINGCUTTING VECTORSARE DISPLAYED. CUTTING
VECTORS INITALICS ARE dpyin-OPTIMAL, WHILE CUTTING VECTORS INBOLD ARE (dmin; Ng,;,, )-OPTIMAL

q dopt (g, 5) d(g,5)  dopt(g,4) d(q,4)  dopt(q,3) d(q, 3)
5 10 (1,2,3,4) 8 10 (1,2,4) 6
7 14 (1,2,3,4,6) 12 14 (1,3,4,6) 8 8 (1,2,5) 6
11 22 (0,1,2,5,8) 10 14 (1,3,6,8) 10 6 6
13 24 (0,2,5,7,10) 12 12 (0,3,7,9) 10 6 6
17 20, 22, or 24 (0,4,7,11,14) 12 12 (2,5,10,13) 10 6 6
19 20 or 22 (0,4,8,12,16) 12 12 (3,7,12,16) 10 6 6
23 20 (5,10, 15,19, 23) 12 12 (4,8,15,19) 10 6 6
29 16 (8,11, 18,26, 29) 12 12 (4,11,18,25) 10 6 6
31 16 (9, 15,21, 24,81) 12 10 10 6 6
37 16 (0, 10, 19, 28, 30) 12 10 10 6 6
41 16 (0,9, 18,25, 32) 12 10 10 6 6
43 16 (0,8,19,24,83) 12 10 10 6 6
47 16 (7, 16, 26, 36, 47) 12 10 10 6 6
53 14 (0,11,22,33,42) 12 10 10 6 6
59 —T79 12 12 10 10 6 6
> 79 10 or 12 10or12 10 10 6 6

Table 1l (second row). Fory = 11 and 13, the optimal REFERENCES

minimum distance is as high & and 24, respectively, and [1]
dmin-optimal cutting vectors are shown within the parentheses
in the second column of Table Il (third and fourth row, 2l
respectively). Fog = 17 and 19, upper and lower bounds on
the optimal minimum distance, tabulated in the second colum
of Table Ill, have been established from an exhaustive bearfs]
over all cutting vectors. The displayed values are bounitsesi

we were not able to exhaustively enumerate all codewords of
weight at mostr, whenr > 20, for a given cutting vector, for [l
these two values aof. Within the parentheses a corresponding
cutting vector (which establishes the upper bound) is alsp]
tabulated. The lower bounds were determined by running the
algorithm from [15], adapted to the case of SC codes, for thg]
specific cutting vectors displayed within the parentheBes.

23 < ¢ < 53, the tabulated values (in the second column 0{7]
Table Ill) are again the exact values @f.(¢,5) and also
(within the parenthese)y,i,-optimal (dmin, Na,,,, )-optimal
for ¢ = 53) cutting vectors are displayed. F69 < ¢ < 79,
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either10 or 12, although we conjecture it to bE2.

(8]
El

[10]
VI. CONCLUSION AND FUTURE WORK

In this work, we have studied in detail the minimum distancé!
of array-based SC-LDPC codes. Several tight upper bounds
on the optimal minimum distance for coupling lengkth >
2 and m = 3,4,5, that are independent of and that are (12
valid for all values ofg > ¢o whereqy, depends onn, have
been presented. Furthermore, we have conducted an exteau$tB]
search over all cutting vectors for small valuesq{m =
3,4,5) which shows that by carefully selecting the cutting
vector, the minimum distance (whenis not very large) can [14]
be significantly increased, especially far= 5.

An interesting topic for future work is to consider the cerrejs)
lation with absorbing sets. In particular, will(@yin, Nag,,., )-
optimal cutting vector also belose-to-optimal when it comes
to problematic absorbing sets, and/or vice-versa?
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