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Abstract—To be considered for a 2015 IEEE Jack Keil Wolf
ISIT Student Paper Award. In this paper, a modified extrin-
sic information transfer (EXIT) chart analysis that takes into
account the relation between mutual information (MI) and bit-
error-rate (BER) is presented to study the convergence behavior
of block Markov superposition transmission (BMST) of short
codes (referred to as basic codes). We show that the threshold
curve of BMST codes using an iterative sliding window decoding
algorithm with a fixed decoding delay achieves a lower bound in
the high signal-to-noise ratio (SNR) region, while in the low SNR
region, due to error propagation, the thresholds of BMST codes
become slightly worse as the encoding memory increases. We
also demonstrate that the threshold results are consistentwith
finite-length performance simulations.

I. I NTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes are constructed by coupling together a series of
L disjoint Tanner graphs of an underlying LDPC block
code (LDPC-BC) into a single coupled chain and can be
viewed as a type of LDPC convolutional code [1]. It was
shown in [2, 3] that the belief propagation (BP) decoding
thresholds of SC-LDPC code ensembles are numerically in-
distinguishable from the maximuma posteriori (MAP) de-
coding thresholds of their underlying LDPC-BC ensembles.
Subsequently, it was proven analytically that SC-LDPC code
ensembles exhibitthreshold saturationon memoryless binary-
input symmetric-output channels under BP decoding [4]. Due
to their excellent performance, SC-LDPC codes have received
a great deal of attention recently (see, e.g., [5–10] and the
references therein).

The concept of spatial coupling is not limited to LDPC
codes. Block Markov superposition transmission (BMST) of
short codes [11, 12], for example, is equivalent to spatial
coupling of the subgraphs that specify the generator matrices
of the short codes. From this perspective, BMST codes are
similar to braided block codes [13], staircase codes [14], and
spatially coupled turbo codes [15]. A BMST code can also
be viewed as a serially concatenated code with a structure
similar to repeat-accumulate-like codes [16]. The outer code
is a short code, referred to as thebasic code(not limited to
repetition codes), that introduces redundancy, while the inner
code is a rate-one block-oriented feedforward convolutional
code (instead of a bit-oriented accumulator) that introduces
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memory between transmissions. Hence, BMST codes typically
have very simple encoding algorithms. To decode BMST
codes, a sliding window decoding algorithm with a tunable
decoding delay can be used, as with SC-LDPC codes. The
construction of BMST codes is flexible [17], in the sense thatit
applies to all code rates of interest in the interval (0,1). Further,
BMST codes have near-capacity performance (observed by
simulation) in the waterfall region of the bit-error-rate (BER)
cruve and an error floor (predicted by analysis) that can be
controlled by the encoding memory.

On an additive white Gaussian noise channel (AWGNC),
the well-known extrinsic information transfer (EXIT) chart
analysis [18] can be used to obtain the threshold of LDPC-
BC ensembles. In [19], a novel EXIT chart analysis was
used to evaluate the performance of protograph-based LDPC-
BC ensembles, and a similar analysis was used to find the
thresholds ofq-ary SC-LDPC codes with sliding window
decoding in [9]. Unlike LDPC codes, the asymptotic BER
of BMST codes with window decoding cannot be better
than a corresponding genie-aided lower bound [11]. Thus,
conventional EXIT chart analysis cannot be applied directly
to BMST codes. In this paper, we propose a modified EXIT
chart analysis, that takes into account the relation between
mutual information (MI) and BER, to study the convergence
behavior of BMST codes and to predict the performance in
the waterfall region of the BER curve. We also show that the
modified EXIT chart analysis of BMST codes is supported by
finite-length performance simulations.

II. SC-LDPC CODES VS. BMST CODES

In this section, both SC-LDPC codes and BMST codes are
described in terms of matrices for the purpose of showing their
similarities (dualities) and differences.

A. Protograph-Based SC-LDPC Codes

A protograph-based SC-LDPC code ensemble can be con-
structed from a protograph-based LDPC-BC code ensemble
using the edge spreading technique [3], described here in
terms of thebase (parity-check) matrixrepresentation of code
ensembles. LetB be a(N−K)×N base matrix representing
an LDPC-BC ensemble with design rateR = K/N . A
terminated SC (convolutional) base matrixBSC with coupling
width (syndrome former memory)m and coupling lengthL
can be constructed by applying the edge spreading technique
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to B, resulting in
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, (1)

where them + 1 component submatricesB0,B1, . . . ,Bm,

each of size(N − K) × N , satisfy
m∑

i=0

Bi = B. The graph

lifting operation is then applied toBSC by replacing each
nonzero entry inBSC with a randomly selectedM ×M per-
mutation matrix1 and each zero entry inBSC with theM×M
all-zero matrix, resulting in a terminated SC-LDPC code with
constraint lengthvs = (m + 1)MN , whereM (typically a
large integer) is thelifting factor. The resulting SC-LDPC
parity-check matrixHSC of size(L+m)(N−K)M×LNM
is given by
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where the blank spaces inHSC correspond to zeros and the
submatricesH i(t) have size(N − K)M × NM , ∀i, t. The
design rate of the terminated SC-LDPC code ensemble is given
by

RSC = 1− (L +m)(N −K)

LN
= 1− L+m

L
(1 −R), (2)

which is slightly less than the design rateR = K/N of
the uncoupled LDPC-BC ensemble due to the termination.
However, this rate loss becomes vanishingly small asL → ∞.

B. BMST Codes

In contrast to SC-LDPC codes, it is convenient to describe
BMST codes using generator matrices. To describe a BMST
code ensemble with coupling width (encoding memory)m and
coupling lengthL, we start with anL× (L+m) matrix

A =









1 1 · · · 1
1 1 · · · 1

. . .
. . .

. . .
. . .

1 1 · · · 1
1 1 · · · 1









, (3)

1If the nonzero entryBi,j > 1, it is replaced by a summation ofBi,j

nonoverlapping randomly selected permutation matrices ofsizeM ×M .

which has constant weightm+1 in each row. Now assuming
that we want to construct a rateR = k/n code, we select a
basic code with ak×n generator matrixG. Let Π i (0 ≤ i ≤
m) bem+ 1 randomly selectedn× n permutation matrices.
Then each nonzero entryAi,j in A is replaced with ak × n
matrix GΠj−i and each zero entry inA is replaced with the
k × n all-zero matrix, resulting in a BMST code of length
(L+m)n and dimensionLk. The resulting generator matrix
GBMST of the BMST code is given by

GBMST =






GΠ0 GΠ1 ··· GΠm

GΠ0 GΠ1 ··· GΠm

...
...

...
...

GΠ0 GΠ1 ··· GΠm

GΠ0 GΠ1 ··· GΠm






.

The rate of the BMST code is

RBMST =
Lk

(L+m)n
=

L

L+m
R, (4)

which is slightly less than the rateR = k/n of the basic code.
However, similar to SC-LDPC codes, this rate loss becomes
vanishingly small asL → ∞.

Though any code (linear or nonlinear) with a fast encoding
algorithm and an efficient soft-in soft-out (SISO) decoding
algorithm can be taken as the basic code, in this paper we focus
on the use of theM -fold Cartesian product of a repetition
code (RC) or a single parity-check (SPC) code as the basic
code, resulting in a BMST-RC code or a BMST-SPC code,
respectively. LetG0 be theK×N generator matrix of an RC
code or an SPC code. Thek × n generator matrixG of the
basic code is then given by

G = diag{G0, · · · ,G0
︸ ︷︷ ︸

M

}, (5)

where diag{G0, · · · ,G0} is a block diagonal matrix withG0

on the diagonal,n=NM , andk=KM .

C. Similarities and Differences

From the previous two subsections, we see that both SC-
LDPC codes and BMST codes can be derived from a small
matrix by replacing the entries with properly-defined sub-
matrices. We also see that the generator matrixGBMST of
BMST codes is similar in form to the parity-check matrix
HSC of SC-LDPC codes. SC-LDPC codes introduce memory
by spatially coupling the parity-check matrices of the under-
lying LDPC-BCs, while BMST codes introduce memory by
spatially coupling the generator matrices of the basic code.
Thus, BMST codes can be viewed as a type of spatially
coupled code. Similar to SC-LDPC codes, where increasing
the lifting factor M improves waterfall region performance,
increasing the Cartesian product orderM of BMST codes also
improves waterfall region performance. But the error floors,
which are solely determined by the encoding memorym (see
Section III-A), cannot be lowered by increasingM .

III. PERFORMANCEANALYSIS OF BMST CODES

Throughout the paper, we consider binary phase-shift key-
ing (BPSK) modulation over the binary-input AWGNC. In this
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Fig. 1. Example of a window decoder with decoding delayd = 2 operating
on the normal graph of a BMST code ensemble withm = 2 at timest =
0 (solid blue), andt = 1 (dotted red). For each window position/time instant,
the first decoding layer is called the target layer.

section, we first discuss the problem that prevents the use
of conventional EXIT chart analysis for BMST codes, and
then we provide a modified EXIT chart analysis to study the
convergence behavior of BMST codes with window decoding.

A. Genie-Aided Lower Bound on BER

Let pb = fBMST(γb) be the BER performance function
corresponding to a BMST code with encoding memory (cou-
pling width) m and coupling lengthL, wherepb is the BER
and γb , Eb/N0 is in dB. Let pb = fBasic(γb) be the BER
performance function of the basic code. By assuming a genie-
aided decoder, we have [11]

fBMST(γb)≥fBasic

(

γb+10 log10 (m+1)−10 log10

(

1+
m

L

))

,

(6)
where the term10 log10 (m+ 1) depends on the encoding
memorym and the term10 log10 (1 +m/L) is due to the rate
loss. In other words, a maximum coding gain over the basic
code of10 log10(m + 1) dB in the low BER (high signal-to-
noise ratio (SNR)) region is achieved for largeL. Intuitively,
this bound can be understood by assuming that a codeword in
the basic code is transmittedm+1 times without interference.

B. A Modified EXIT Chart Analysis

To describe density evolution, it is convenient to assume the
all-zero codeword is transmitted and to represent the messages
as log-likelihood ratios. The threshold of protograph-based
LDPC codes can be obtained based on a protograph-based
EXIT chart analysis [9, 19] by determining the minimum
value of the SNREb/N0 such that the MI between the
a posteriori message at a variable node and an associated
codeword bit (referred to as thea posteriori MI for short)
goes to 1 as the number of iterations increases, i.e., the BER
at the variable nodes tends to zero as the number of iterations
tends to infinity. However, as shown in (6), the high SNR
performance of BMST codes with window decoding cannot be
better than the corresponding genie-aided lower bound, which
means that thea posterioriMI of BMST codes does not tend
to 1 as the number of iterations tends to infinity. Thus, the
conventional EXIT chart analysis cannot be applied directly
to BMST codes.

For convenience, the MI between thea priori input and the
corresponding codeword bit is referred to as thea priori MI ,
the MI between theextrinsic output and the corresponding
codeword bit is referred to as theextrinsic MI, and the

MI between the channel observation and the corresponding
codeword bit is referred to as thechannelMI. The analysis
assumes that the interleaversΠ i (0 ≤ i ≤ m) are arbitrarily
large and random.

BMST code ensembles can be represented by a Forney-style
factor graph, also known as a normal graph [20], where edges
represent variables and vertices (nodes) represent constraints.
All edges connected to a node must satisfy the specific
constraint of the node. A full-edge connects to two nodes,
while a half-edge connects to only one node. A half-edge is
also connected to a special symbol, called a “dongle”, that
denotes coupling to other parts of the transmission system (say,
the channel or the information source) [20]. There are three
types of nodes in the normal graph of BMST codes.2

• Node + : All edges (variables) connected to node+
must sum to zero. The message updating rule at node+
is similar to that of the check node in the factor graph
of a binary LDPC code. The only difference is that the
messages on the half-edges are obtained from the channel
observations.

• Node = : All edges (variables) connected to node=
must take the same (binary) value. The message updating
rule at node = is the same as that of the variable node
in the factor graph of a binary LDPC code.

• Node C : All edges (variables) connected to nodeC
must satisfy the constraint specified by the basic code.
The message updating rule at nodeC can be derived
accordingly, where the messages on the half-edges are
associated with the information source.

The normal graph of a BMST code ensemble can be divided
into layers, where each layer typically consists of a node of
type C , a node of type= , and a node of type+ . Similar to
SC-LDPC codes, an iterative sliding window decoding EXIT
chart analysis algorithm with decoding delayd working over
a subgraph consisting ofd + 1 consecutive layers can be
implemented to study the convergence behavior of BMST
codes.3 The first layer in any window is called thetarget layer.
An example of a window decoder with decoding delayd = 2
operating on the normal graph of a BMST code ensemble with
m = 2 is shown in Fig. 1. In our modified EXIT chart analysis,
the convergence check at nodeC is performed as follows.

Algorithm 1: Convergence Check at NodeC
• Let IA denote thea priori MI and IE denote theextrinsic

MI. Then thea posterioriMI IAP is given by

IAP = J(
√

[J−1(IA)]2 + [J−1(IE)]2), (7)

where theJ(·) andJ−1(·) functions are given in [21],IA
is thea priori MI, andIE is theextrinsicMI. Suppose that
thea posterioriMI is Gaussian. As shown in Section III-
C of [18], an estimate of the BERpest is then given by

pest = Q
(
J−1(1 − IAP)/2

)
, (8)

2For more details on the normal realization of BMST codes, we refer the
reader to [11, 12].

3As with SC-LDPC codes, the decoding delayd must be chosen several
times as large as the encoding memorym in order to achieve good perfor-
mance.



where

Q(x) =
1√
2π

∫
∞

x

exp

{

− t2

2

}

dt. (9)

• If the estimated BERpest is less than the preselected tar-
get BER, a local decoding success is declared; otherwise,
a local decoding failure is declared.

Given a channel parameterEb/N0, the channel MI is given
by

Ich = J

(√

8RBMST

Eb

N0

)

. (10)

The modified EXIT chart analysis algorithm of BMST codes
can now be described as follows.

Algorithm 2: EXIT Chart Analysis of BMST Codes with
Window Decoding

• Initialization: All messages over those half-edges (con-
nected to the channel) at nodes+ are initialized asIch
according to (10), all messages over those half-edges
(connected to the information source) at nodesC are
initialized as 0, and all messages over the remaining
(inter-connected) full-edges are initialized as 0. Set a
maximum number of iterationsImax > 0.

• Sliding window decoding: For each window position,
the d+ 1 decoding layers perform MI message process-
ing/passing layer-by-layer according to the schedule

+ → Π → = → C → = → Π → + .

After a fixed number of iterationsImax, make a con-
vergence check at nodeC using Algorithm 1. If a
local decoding failure is declared, then window decod-
ing terminates; otherwise, a local decoding success is
declared, the window position is shifted, and decoding
continues. A complete decoding success for a specific
channel parameterEb/N0 and target BER is declared if
and only if all target layers declare decoding successes.

Now we can denote the iterative decoding threshold
(Eb/N0)

∗ of BMST code ensembles for a preselected target
BER as the minimum value of the channel parameterEb/N0

which allows the decoder of Algorithm 1 to output a decoding
success, in the limit of large code lengths (i.e.,M → ∞).

IV. N UMERICAL RESULTS

In the simulations to compute the window decoding thresh-
olds of BMST codes, we set a maximum number of iterations
Imax = 1000.

Example 1: In Fig. 2, we display the thresholds of several
families of BMST code ensembles with increasing coupling
length L, m ≤ L ≤ 1000, for a preselected target BER of
10−7. The decoding delay4 is set tod = 3m. Fig. 2(a) plots
the thresholds in terms of the standard deviationσ∗

ch of the
noise against the ensemble code rateRBMST. We observe that,
as L increases, the rate also increases while the threshold
σ∗

ch remains constant. The same thresholds are depicted in
Fig. 2(b) in terms of the SNR(Eb/N0)

∗. SinceEb/N0 takes
into account the code rate, the thresholds(Eb/N0)

∗ improve

4The threshold does not improve further beyond a decoding delay d = 3m.
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Fig. 2. AWGNC BP thresholds in terms of (a) standard deviation σ∗

ch
and

(b) SNR(Eb/N0)
∗ (dB) for several families of BMST code ensembles with

increasing coupling lengthL, m ≤ L ≤ 1000, for a preselected target BER
of 10−7.

monotonically with increasingL. However, in both plots, we
can see that the gap to capacity decreases asL increases.

Example 2: For the coupling lengthL = 1000, we cal-
culated BP thresholds for several families of BMST code
ensembles with different preselected target BERs. The cal-
culated thresholds in terms of the SNR(Eb/N0)

∗ versus the
preselected target BERs together with the lower bounds are
shown in Fig. 3, where we observe that

1) For a fixed encoding memorym, the thresholds remain
constant at a value near capacity. Once a critical target
BER is reached, however, the thresholds degrade rapidly
as the target BER decreases further.

2) For a high target BER (roughly above10−3), the
threshold increases slightly as the encoding memory
m increases, due to errors propagating to successive
decoding windows.

3) For a small decoding delay (sayd = m), the thresholds
do not achieve the lower bounds even in the high SNR
region.

4) For a larger decoding delay (sayd = 3m), the thresholds
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Fig. 3. AWGNC BP thresholds in terms of(Eb/N0)
∗ (dB) for several

families of BMST codes ensembles with different target BERs. The finite-
length performance of BMST codes with RC[2, 1]5000 and SPC[4, 3]2500

as basic codes is also included. The coupling lengthL = 1000.

correspond to the lower bounds in the high SNR region,
suggesting that the window decoding algorithm is near
optimal for BMST codes.

5) The error floor can be lowered by increasing the encod-
ing memorym (and hence the decoding delayd).

In Fig. 3, the window decoding performance of BMST codes
with RC [2, 1]5000 and SPC [4, 3]2500 as basic codes is
also plotted. By comparing the thresholds to the finite-length
code performance, we conclude that the modified EXIT chart
analysis for BMST codes is supported by the finite-length
performance simulations. Note also that the gap between the
simulated curves and the thresholds increases as the Cartesian
product orderM of BMST codes decreases, as expected.

V. CONCLUSIONS

In this paper, we have proposed a modified EXIT chart
analysis, that takes into account the relation between the MI
and the BER, to calculate the window decoding thresholds of
BMST codes. In this analysis, a BP algorithm is performed on
the corresponding high-level normal graph of a BMST code

ensemble. Using the modified EXIT chart analysis, we can
predict the performance of BMST codes in the waterfall region
of the BER curve. Finally, we showed that the EXIT chart
analysis results are consistent with finite-length performance
simulations.
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