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Abstract—The capacity region of the index coding prob- 1
lem is characterized through the notion of confusion
graph and its fractional chromatic number. Based on this
multiletter characterization, several structural properties
of the capacity region are established, some of which are
already noted by Tahmasbi, Shahrasbi, and Gohari, but
proved here with simple and more direct graph-theoretic
arguments. In particular, the capacity region of a given
index coding problem is shown to be simple functionals @)
of the capacity regions of smaller subproblems when the 000 001
interaction between the subproblems is none, one-way, or
complete.
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I. INTRODUCTION 111 010

Suppose that a sender wishes to communicate a tuple
of n messagesz™ = (z1,...,z,), z; € {0,1}%, to 110 011
their corresponding receivers using a shared noiseless
channel. Receivef € [1 : n] := {1,2,...,n} has prior
knowledge of a subset(A;) := {z;: i € A;}, A; C 101 100
[1:n]\ {5}, of the messages and wishes to recowgr (b)
It is assumed that the sender is awareAf,..., A,,. Fig. 1. (a) The graph representation for the index codinghlern
The goal is to minimize the amount of information thafith A1 = {2,3}, 4> = {1}, and A3 = {1,2}. (b) The confusion
. graph corresponding to the integer tugte, t2,¢3) = (1,1,1). Each
should be broadcast from the sender to the receivers e is labeled with the a message tuple.
that every receiver can recover its desired message.
Any instance of this problem, referred to collectively,qex code such that
as theindex coding problemis fully specified by the
side information setsA, ..., A,,. Equivalently, it can R; < _J" jell:n]
be specified by a side information gragh with n r
nodes, in which a directed edge— j represents that The capacity region% of the index coding problem is
receiverj has messageas side information, i.ei,€ A;  defined as the closure of the set of achievable rate tuples.
(see Fig. 1(a)). Thus, we often identify an index coding Since Birk and Kol [1] introduced the index coding
problem with its side information graph and simply writeyroblem in 1998, this simple yet fundamental problem
“index coding problent.” attracted several research communities (see [2]-[5] for a
A (t1,...,tn,r) index code is defined by subset of recent contributions). The capacity region has
e an encoder : [ ,{0,1}" — {0,1}" that maps been established for all 9,608 index coding problems of
n-tuple of messages™ to anr-bit index and n = 5 messages [6] (which includes all index coding
o n decodersy; : {0,1}" x J[;c4,{0,1}** — problemsup to five messages by taking projections).
{0, 1}% that maps the received indexz") and the However, the coding schemes developed for small
side informationz(A;) back tox; for j € [1:n]. prove to be suboptimal when becomes large and
Thus, for everyz™ € [T, {0, 1}", there is no known computable characterization for the
n . capacity region of a general index coding problem. On
vi(@(a"), 2(4;)) = x5, j € [L:n]. the theoretical side, there is no known algorithm even
Arate tuple(Ry, ..., R,) is said to beachievabldor the to approximate the capacity region within a factor of
index coding probleng if there exists aty,...,t,,7) O(n'=¢) for ¢ € (0,1). On the computational side, the
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number of index coding problems blows up quickly in [I. MATHEMATICAL PRELIMINARIES
n (for example, there are 1,540,944 distinct instances gf confusion Graphs

index coding problems fon = 6) and it also becomes We generalize the notion of confusion graph, which
quite challenging to compare existing inner and outer 9 grapn,

bounds on the capacity region of each problemnas was originally introduced in [8] for equal-length mes-

increases. Sages. . .

As an intermediate step towards characterizing the Glven an |r711dez COd'n% probler;(j?, two tuples of
capacity region (analytically, approximately, or numeri?, Messagesrs, == < _Hi:l{o’l} L are said to be
cally), we study some structural properties of the capatonusable at receivey € 1 : n]if 2; # 2 and

ity region. In particular, we show that the side informa®¢ ~ % for all i € A;. We simply sayz™ and »

tion graphG can be partitioned into two vertex—induceoar.eConfu?ablenc they are confusable at some receiyer
subgraphs; and G, then the capacity regiof of Given an index coding probledd and a tuple of message

the index coding problends can be characterized as alengthst = (t1,...,1n), the confusion graphl’(G)

. . n tl H
simple functional of the capacity regiofi§ and %, of Iti ?n und|rectted graph W'tg_[itzl 2% vertices ;suclh
G, and Gy, respectively, provided that at every vertex corresponds to a message tufile

1) there is no edge betweed, and Gy, or and two vertices are connected iff (if and only if) the

; corresponding message tuples are confusable.
2) (r)r:ore generally, there is no edge fraf to G, The confusion graph of the index coding problem
. : ._with side information graph in Fig. 1(a) corresponding
3) every node inG'; is connected to every node in _ . : I
G, and vice versa, to (t1,t2,t3) = (1,1,1) is depicted in Fig. 1(b).

The immediate utility of these structural properties igthd. Graph Coloring
one can reduce the number of index coding problems thata (vertex) coloring of an undirected graph is a
need to be studied. For example, we can check (deta#igpping that assigns a color to each vertex such that
not shown) that 1,366,783 (89%) out of 1,540,944 inde&xo two adjacent vertices share the same color. The
coding problems fom = 6 fall into one of the three chromatic numbery(T') is the minimum number of
aforementioned criteria or another simple case (Propogblors such that a coloring of the graph exists.
tion 4 in Section Ill), significantly narrowing the set of More generally, a-fold coloring assigns a set df
problems that are worth further investigation. colors to each vertex such that no two adjacent vertices
We must note that the first two properties have beefhare the same color. Thiefold chromatic number
already established by Tahmasbi, Shahrasbi, and Gohgifi) () is the minimum number of colors such that a
[7, Th. 2] using a somewhat convoluted argument basgdold coloring exists. Théractional chromatic number

on joint typicality encoding and covering. In comparisonyf the graph is defined as
our approach is more direct and based on the defini- ®) ®)
K@) (D)
b

tion of the capacity region itself. As discussed more xf(T) = lim 7

precisely in Section Ill, our starting point is a graph- b—oo b

theoretic characterization of the index coding capacityhere the limit exists sincey®(I') is subadditive.
region using the notion ofonfusion graphThis notion  Consequently,

was introduced by Alon, Hassidim, Lubetzky, Stav, and xs(T) < x(D). )
Weinstein [8], who characterized the optimal broadcast '

rate (the reciprocal of the symmetric capacity) using tHeet Z be the collection of all independent setsliri.e.,
chromatic number of the confusion graph. We generalifgts of vertices such that no two vertices are adjacent).
and tighten their approach by connecting the capaciT)he chromatic number and the fractional chromatic
region with thefractional chromatic number of the con-number are also characterized as the solution to the
fusion graph. This allows us to utilize well-known resultdollowing optimization problem

from fractional graph theory [9] such as the identities minimize Zps

on fractional chromatic numbers for graph products (see

; ) ) Sez
Section Il) to establish several structural propertiedef t i < .
capacity region. Our approach based on confusion graph subject to Z ps 21, jell:n].

S€eZT:jes

and fractional chromatic number seems to be broadly

applicable beyond these structural results. Although \When the optimization variablgss, S € Z, take integer

is not presented here, a similar method generalizes aralues{0, 1}, then the (integral) solution is the chromatic

tightens the recent result by Mazumdar [10] on theumber. If this constraint is relaxed apgd € [0, 1], then

duality between index coding and distributed storage.the (rational) solution is the fractional chromatic number
Throughout the paper, the base of logarithm is 2. [9].



C. Graph Products [1l. M AIN RESULTS

Generally speaking, a graph product is a binary opera: Capacity Region via the Confusion Graph
tion on two (undirected) grapts, andT'; that produces e first state a simple generalization of the result by
a graphl’ on the Cartesian product of the original vert®on. et al. [8, Th. 1.1].
sets with the edge set constructed from the original edge
sets according to certain rules. In this section, we revigdfoposition 1. A rate tuple(R, ..., R,) is achievable
a few definitions of graph products and their (fractionafpr the index coding probler iff there exists an integer
chromatic numbers. In the following;, ~ v, denotes tuplet = (ti,....t,) such that
that there exists an edge betwegrandwvs. The notation t; _
V(T') means the vertex set of a graph R; < Tog(x(Ts (G))]’ jel:n]. (4)
The disjunctive productl’ = I'; * I's is defined as . . . .
V(T) = V(I1) x V(T'2) and (ur, us) ~ (v1,v2) iff Proof: Sufﬁmency (achlevabll_lty}:.or a given _tuple
t = (t1,...,t,), consider a coloring of the vertices of
up ~ vy Or ug ~ vo. the confusion grapi’ = T'¢(G) with x(T") colors. This
Jeartitions the vertices of into x(g) independent sets.
Now by the definition of the confusion graph, no two
message tuples in each independent set are confusable
Lemma 1 (Scheinerman and Ullman [9, Cor. 3.4.2]) and therefore assigning an index to each independent
_ set yields a valid index code. The total number of
X(TrxT2) =X (T)xs (). codewords of this index code ig(I"), which requires
Note that the chromatic number satisfies the following = [log((I"))] bits to be broadcast. This proves the
relationship [9, Prop. 3.4.4]: existence of dt,, . .., t,, [log(x(I'+(G)))]) index code.
Necessity (converseonsider any(ty,...,t,,r) in-
X(T1*T2) < x(I'1)x(T2). @ dex code, which assigns at maxt }é(istinct indic)es to
The chromatic and fractional chromatic numbers of thﬁessage tuples. By definition, all the message tuples
power of a graph scale in the same exponential rate. mapped to an index form an independent set of the

Lemma 2 (Scheinerman and Ullman [9, Cor. 3.4.3])confusion graph® = I'y(G). Moreover, every message
Let I* be thek-th power of" in disjunctive product. tuple is mapped to some index so that these indepen-

The fractional chromatic number of the disjunctive pro
uct is multiplicative.

Then dent sets partitiori/(T'). Thus, x(I') < 27, or equiv-
alently, » > [log(x(T"))]. Therefore, any achievable
xf(T) = klim \/x(TF) = ir;f v/ x(TF). (Ry,...,R,) must satisfy
—00
The lexicographic product’ =T'; e Ty is defined as R; < b . jelin],
V() = V(1) x V(I'y) and (ug, ug) ~ (v, vs) iff [log(x(T'¢(G)))]
up~v; OF (ug =v;, andug ~ vs). for somet = (t1,...,tn). [ ]

_ . . The ceiling operation in (4), which results from the
Note that the lexicographic product of graphs is not comiact that the index is communicated in bits, is not es-
mutative. Nonetheless, its fractional chromatic number &ential. By using the code that maps e [/, {0,1}%
J: )

still multiplicative. to [1 : x(T'+(G))] repeatedlyk times, one can easily

Lemma 3 (Scheinerman and Ullman [9, Cor. 3.4.5]) construct a code that maps" < [17-.{0,1}* to
[1: x(T+(G))]*, thus achieving rates
xr(T1el2) =xp(T1)xys(I2).

kt;
. - . R. = J
Note th:_:\t the chromat.lc number satisfies the following 17 Flog(x(Te(@))) + 1
relationship [11, Th. 1] Lt
< J , jeEl:n]. 5
(1 #T2) < x(T)X(T2). @ = Troetneyy /<t ©

The Cartesian productG = G; A G, is defined as Letting & — oo in (5) establishes the following.

V(L) = V(I'h) x V(I'2) and (uy, uz) ~ (v1,v2) iff Proposition 2. The capacity region# of the index
(u1 = v andug ~vy) or (up = vy andu; ~vy).  coding problemG is the closure of all rate tuples
. . i (R1,...,R;) such that
This product does not increase the chromatic number. ;
idussi Ri<—2 ___ jel:n], 6
Lemma 4 (Sabidussi [12, Lemma 2.6]) IS e @y [1:n] (6)

x(I'1 AT2) = max{x(T'1), x(T'2)}. for somet = (t1,...,t,).



We now state a stronger result, in terms of frec- G;, i = 1,2. By the definition of confusabilityz"
tional chromatic number, which will prove to be useful inand 2™ are confusable iff they are confusable at some
establishing structural properties of the capacity regioreceiverj € V(G;) or confusable at some receiver
j € V(G2). Since there is no edge betwe6h and G,

Theorem 1. The capacity regiort” of the index coding these local confusability conditions are equivalent to the

Eaiili?a? Is the closure of all rate tuplegf, ..., Fin) confusability ofx; andz; for the subproblenG; and
the confusability ok, andz, for the subproblendss, re-

;< #7 e[l:n], (7) spectively. In other words;™ andz" are confusable for
log(x¢(I'¢(@))) G iff x, andz, are confusable fo€; or x, andz, are
for somet = (t1,...,t,). confusable forGs. Thus,T'¢(G) = T't, (G1) * I'¢,(G2)

and by Lemma 1 for disjunctive product,
Proof: The necessity follows by (1) and Proposi-

tion 1. log(x ¢ (I'¢(G)))
Let ¢ > 0. For eacht = (t1,...,t,) and the =log(x (T, (G1))) + log(x (T, (G2))) =: l1 + I
corresponding confusion graph (G), Lemma 2 implies

that there exists an integérsuch that We now leta = 11/(li + l2) and apply Theorem 1.

Before closure, any rate tuple #i should satisfy
X(TE(G)) < xs(Te(@)) +e. (8) R b _ af, j € V(G),
It can be also checked that the set of edgesf¢ty) con- T+l (1—a)f, jeV(Ga).

tains the set of edges % (G wh|ch when comblned But agai .

gain by Theorem 1¢;/l; : j € V(G1)) € ¢ and
with (8), implies thaty/x F’Ct ) = xs(Te(G)) + e (tj/ly - j € V(G2)) € %, which completes the proof.
or equivalently, -

| We now state a stronger version of Proposition 3, orig-
inally established by Tahmasbi, Shahrasbi, and Gohari

[7]; see also [5, Th. 8] for a related but much weaker
statement.

t; < kt;
log(xf(I'e(G)) +€) ~ log(x(T'kt(G)))’
Thus, by Proposition 2, ifRy,..., R,) satisfies
< s
"7 log(xs (Te(G)) +€)
then it must be in the capacity region. Siri€ds closed,

taking e — 0 completes the proof. m 9= |J {(eRi,(1-)R2): R € G, Ry € G}
agl0,1]

Once again the capacity region is achieved by time
Throughout this subsection, we assume thatand gjyision. Moreover, in light of Proposition 3 and the
G2 are two vertex-induced subgraphs @f such that F5rkas lemma [13, Th. 2.2] (that is, each edge in a
V(G1) = [1:m] andV(G2) = [n1 + 1 : n] partition gjrected graph either lies on a directed cycle or belongs
V(G) = [1: n]. We denote the capacity regions of thgy 5 directed cut but not both), Theorem 2 implies that

index coding problemé&:, G, andG by ¢, 1 and%s,  yemoving edges of: that do not lie on a directed cycle

jeEl:n

Jje[l:n], Theorem 2 (Tahmasbi, Shahrasbi, and Gohari [7,
Th. 2]). If G has no edge frondss to G4, then

B. Capacity Region via Confusion Graph Products

respectively. does not change the capacity region.
Proposition 3. If G has no edge betweef; and G, Proof: Assume without loss of generality that there
then exists an edge from every node @ to every node

in G2. Now, since every node iz, has every node
¢ = |J {(aR1,(1-a)R2): R1 € 61,R2 € %2}.  (message) inG; as side information and no node in
a€0,1] G has any node inGy as side informationg™ and
In other words, the capacity region 6f is achieved =" are confusable fotz iff x, andz, are confusable
by time division between the optimal coding schemd§r G1, or x; = z, andx, andz, are confusable for
for two disjoint subproblems&?; and Go. G (recall the notation in the proof of Proposition 3).
Proof: It suffices to show that Thus,I'¢(G) =T't, (G1) ®T', (G2) and by Lemma 3 for
U { ) } lexicographic product,
% C (aRl,(l—a)Rg :R1 €%, R €%t
et log(xs(Te(G)))

Let 2" = (x1,x2) andz" = (z1,2;) be two message = log(xs (T (G1))) + log(xs (Tt (G2))-

tuples, andt = (t1,t2) be their common length tuple, The rest of the proof follows the identical steps to that
where x;, z;, and t; correspond to the subproblemof Proposition 3. [ |



The only difference between Propposition 3 and Th&. Capacity Region via Degraded Side Information Sets
orem 2 lies with which prodl_Jc_t of gonfusion subgraphs Here we consider the index coding probleinwith
needs to be taken—the disjunctive product for twgge information setsts, ..., A,.
separate subproblems, while the lexicographic product N )
for two subproblems dependent in only one directiof,"oPosition 4. If A; C Aj, then removing: from A;
Note that the main tool we use from fractional grapHO€s not decrease the capacity region.

theory (cf. Lemmas 1 and 3) is The proof is intuitively clear. Given any index code,
receiverj can first recoverr; using A; and then uses
x; along with (A4, \ {i}) to recoverz;. Here is an

Xf(Ce(G@)) = x5 (Ley (G1))xs (e (G2)). (9)
L . . alternative proof based on the notion of confusion graph.
This implies that as long as an index coding problem Proof: Assume that there exist” and =" confus-

can be patrtitioned into two subproblems and the COMEhie for the new problen@’, but not for the original

sponding (nonstandard) graph product of the COmcus'(ﬂ)rpoblemG. Then, they must be confusable at receiyer

subgraphs satisfies (9), the capacity region has the s
form as in Proposition 3 and Theorem 2. Also note th

with the (integral) chromatic number, an inequality like ,, and ="
(9) holds in the opposite direction (cf. (2) and (3))Alternativel
This shows the major advantage of Theorem 1 OVEY 4,)

Proposition 2.

HEC (e, z; # 2z andz(A; \ {i}) = 2(4; \ {i})).

ow if x; = z;, then it contradicts the assumption that
are not confusable (at receivg) for G.

y, if x; # z;, then since4; C A; and hence
= z(A;), it again contradicts the assumption that

z™ and z™ are not confusable (at receive) for G.

~ Next, we consider index coding problems with sidgperefore, the confusion graphs must be the same and,
information graphs that contain a complete b|part|t8y Theorem 1, so must be the capacity regions. m

graph as an edge-induced subgraph.

Theorem 3. If there are edges from every node @y
to every node inG, and vice versa, then

C = {(Rl,RQ): R; € Cgl,RQ S %2}

In other words, the capacity region 6f is achieved

by simultaneously using the optimal coding schemes fo[rS]

two disjoint subproblems/; and Gs.

Proof: Since every node idi7; has every message
in G as side information and every node @ has
every message id7; as side informationg™ and 2™
are confusable fol7 iff x; = z; andxy and z, are
confusable forGa, or xs zo and x; and z; are
confusable forG;. Thus,T'y(G) = I'y, (G1) A T't,(G2)
and by Lemma 4 for cartesian product,

X(Ft(G)) = maX{X(Ftl (Gl))7 X(th (GQ))}

By Proposition 2, before closure, any rate tuple4h
should satisfy

(10)

t:

= T @))’

j€l:n],
for somet = (¢4, ..
have fori = 1,2

I = logx(Te,(G) 1

By applying Proposition 2 once agail;/l1 : j €
V(G1)) € € and (tj/ls - j € V(G2)) € 6, which
completes the proof. ]

j e V(Gy).

3
3

., t,,). Combining this with (10), we [19]
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