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Abstract—The capacity region of the index coding prob-
lem is characterized through the notion of confusion
graph and its fractional chromatic number. Based on this
multiletter characterization, several structural proper ties
of the capacity region are established, some of which are
already noted by Tahmasbi, Shahrasbi, and Gohari, but
proved here with simple and more direct graph-theoretic
arguments. In particular, the capacity region of a given
index coding problem is shown to be simple functionals
of the capacity regions of smaller subproblems when the
interaction between the subproblems is none, one-way, or
complete.

I. I NTRODUCTION

Suppose that a sender wishes to communicate a tuple
of n messages,xn = (x1, . . . , xn), xj ∈ {0, 1}tj , to
their corresponding receivers using a shared noiseless
channel. Receiverj ∈ [1 : n] := {1, 2, . . . , n} has prior
knowledge of a subsetx(Aj) := {xi : i ∈ Aj}, Aj ⊆
[1 : n] \ {j}, of the messages and wishes to recoverxj .
It is assumed that the sender is aware ofA1, . . . , An.
The goal is to minimize the amount of information that
should be broadcast from the sender to the receivers so
that every receiver can recover its desired message.

Any instance of this problem, referred to collectively
as theindex coding problem, is fully specified by the
side information setsA1, . . . , An. Equivalently, it can
be specified by a side information graphG with n
nodes, in which a directed edgei → j represents that
receiverj has messagei as side information, i.e.,i ∈ Aj

(see Fig. 1(a)). Thus, we often identify an index coding
problem with its side information graph and simply write
“index coding problemG.”

A (t1, . . . , tn, r) index code is defined by
• an encoderφ :

∏n

i=1{0, 1}
ti → {0, 1}r that maps

n-tuple of messagesxn to anr-bit index and
• n decodersψj : {0, 1}r ×

∏

k∈Aj
{0, 1}tk →

{0, 1}tj that maps the received indexφ(xn) and the
side informationx(Aj) back toxj for j ∈ [1 : n].

Thus, for everyxn ∈
∏n

i=1{0, 1}
ti,

ψj(φ(x
n), x(Aj)) = xj , j ∈ [1 : n].

A rate tuple(R1, . . . , Rn) is said to beachievablefor the
index coding problemG if there exists a(t1, . . . , tn, r)
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Fig. 1. (a) The graph representation for the index coding problem
with A1 = {2, 3}, A2 = {1}, andA3 = {1, 2}. (b) The confusion
graph corresponding to the integer tuple(t1, t2, t3) = (1, 1, 1). Each
node is labeled with the a message tuple.

index code such that

Rj ≤
tj
r
, j ∈ [1 : n].

The capacity regionC of the index coding problem is
defined as the closure of the set of achievable rate tuples.

Since Birk and Kol [1] introduced the index coding
problem in 1998, this simple yet fundamental problem
attracted several research communities (see [2]–[5] for a
subset of recent contributions). The capacity region has
been established for all 9,608 index coding problems of
n = 5 messages [6] (which includes all index coding
problemsup to five messages by taking projections).
However, the coding schemes developed for smalln
prove to be suboptimal whenn becomes large and
there is no known computable characterization for the
capacity region of a general index coding problem. On
the theoretical side, there is no known algorithm even
to approximate the capacity region within a factor of
O(n1−ǫ) for ǫ ∈ (0, 1). On the computational side, the
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number of index coding problems blows up quickly in
n (for example, there are 1,540,944 distinct instances of
index coding problems forn = 6) and it also becomes
quite challenging to compare existing inner and outer
bounds on the capacity region of each problem asn
increases.

As an intermediate step towards characterizing the
capacity region (analytically, approximately, or numeri-
cally), we study some structural properties of the capac-
ity region. In particular, we show that the side informa-
tion graphG can be partitioned into two vertex-induced
subgraphsG1 and G2, then the capacity regionC of
the index coding problemG can be characterized as a
simple functional of the capacity regionsC1 andC2 of
G1 andG2, respectively, provided that

1) there is no edge betweenG1 andG2, or
2) more generally, there is no edge fromG2 to G1,

or
3) every node inG1 is connected to every node in

G2 and vice versa.
The immediate utility of these structural properties is that
one can reduce the number of index coding problems that
need to be studied. For example, we can check (details
not shown) that 1,366,783 (89%) out of 1,540,944 index
coding problems forn = 6 fall into one of the three
aforementioned criteria or another simple case (Proposi-
tion 4 in Section III), significantly narrowing the set of
problems that are worth further investigation.

We must note that the first two properties have been
already established by Tahmasbi, Shahrasbi, and Gohari
[7, Th. 2] using a somewhat convoluted argument based
on joint typicality encoding and covering. In comparison,
our approach is more direct and based on the defini-
tion of the capacity region itself. As discussed more
precisely in Section III, our starting point is a graph-
theoretic characterization of the index coding capacity
region using the notion ofconfusion graph. This notion
was introduced by Alon, Hassidim, Lubetzky, Stav, and
Weinstein [8], who characterized the optimal broadcast
rate (the reciprocal of the symmetric capacity) using the
chromatic number of the confusion graph. We generalize
and tighten their approach by connecting the capacity
region with thefractional chromatic number of the con-
fusion graph. This allows us to utilize well-known results
from fractional graph theory [9] such as the identities
on fractional chromatic numbers for graph products (see
Section II) to establish several structural properties of the
capacity region. Our approach based on confusion graph
and fractional chromatic number seems to be broadly
applicable beyond these structural results. Although it
is not presented here, a similar method generalizes and
tightens the recent result by Mazumdar [10] on the
duality between index coding and distributed storage.

Throughout the paper, the base of logarithm is 2.

II. M ATHEMATICAL PRELIMINARIES

A. Confusion Graphs

We generalize the notion of confusion graph, which
was originally introduced in [8] for equal-length mes-
sages.

Given an index coding problemG, two tuples of
n messagesxn, zn ∈

∏n

i=1{0, 1}
ti are said to be

confusable at receiverj ∈ [1 : n] if xj 6= zj and
xi = zi for all i ∈ Aj . We simply sayxn and zn

areconfusableif they are confusable at some receiverj.
Given an index coding problemG and a tuple of message
lengths t = (t1, . . . , tn), the confusion graphΓt(G)
is an undirected graph with

∏n

i=1 2
ti vertices such

that every vertex corresponds to a message tuplexn

and two vertices are connected iff (if and only if) the
corresponding message tuples are confusable.

The confusion graph of the index coding problem
with side information graph in Fig. 1(a) corresponding
to (t1, t2, t3) = (1, 1, 1) is depicted in Fig. 1(b).

B. Graph Coloring

A (vertex) coloring of an undirected graphΓ is a
mapping that assigns a color to each vertex such that
no two adjacent vertices share the same color. The
chromatic numberχ(Γ) is the minimum number of
colors such that a coloring of the graph exists.

More generally, ab-fold coloring assigns a set ofb
colors to each vertex such that no two adjacent vertices
share the same color. Theb-fold chromatic number
χ(b)(Γ) is the minimum number of colors such that a
b-fold coloring exists. Thefractional chromatic number
of the graph is defined as

χf (Γ) = lim
b→∞

χ(b)(Γ)

b
= inf

b

χ(b)(Γ)

b
,

where the limit exists sinceχ(b)(Γ) is subadditive.
Consequently,

χf (Γ) ≤ χ(Γ). (1)

Let I be the collection of all independent sets inΓ (i.e.,
sets of vertices such that no two vertices are adjacent).
The chromatic number and the fractional chromatic
number are also characterized as the solution to the
following optimization problem

minimize
∑

S∈I

ρS

subject to
∑

S∈I:j∈S

ρS ≥ 1, j ∈ [1 : n].

When the optimization variablesρS , S ∈ I, take integer
values{0, 1}, then the (integral) solution is the chromatic
number. If this constraint is relaxed andρS ∈ [0, 1], then
the (rational) solution is the fractional chromatic number
[9].



C. Graph Products

Generally speaking, a graph product is a binary opera-
tion on two (undirected) graphsΓ1 andΓ2 that produces
a graphΓ on the Cartesian product of the original vertex
sets with the edge set constructed from the original edge
sets according to certain rules. In this section, we review
a few definitions of graph products and their (fractional)
chromatic numbers. In the following,v1 ∼ v2 denotes
that there exists an edge betweenv1 andv2. The notation
V (Γ) means the vertex set of a graphΓ.

The disjunctive productΓ = Γ1 ∗ Γ2 is defined as
V (Γ) = V (Γ1)× V (Γ2) and (u1, u2) ∼ (v1, v2) iff

u1 ∼ v1 or u2 ∼ v2.

The fractional chromatic number of the disjunctive prod-
uct is multiplicative.

Lemma 1 (Scheinerman and Ullman [9, Cor. 3.4.2]).

χf (Γ1 ∗ Γ2) = χf (Γ1)χf (Γ2).

Note that the chromatic number satisfies the following
relationship [9, Prop. 3.4.4]:

χ(Γ1 ∗ Γ2) ≤ χ(Γ1)χ(Γ2). (2)

The chromatic and fractional chromatic numbers of the
power of a graph scale in the same exponential rate.

Lemma 2 (Scheinerman and Ullman [9, Cor. 3.4.3]).
Let Γk be thek-th power ofΓ in disjunctive product.
Then

χf (Γ) = lim
k→∞

k

√

χ(Γk) = inf
k

k

√

χ(Γk).

The lexicographic productΓ = Γ1 • Γ2 is defined as
V (Γ) = V (Γ1)× V (Γ2) and (u1, u2) ∼ (v1, v2) iff

u1 ∼ v1 or (u1 = v1 andu2 ∼ v2).

Note that the lexicographic product of graphs is not com-
mutative. Nonetheless, its fractional chromatic number is
still multiplicative.

Lemma 3 (Scheinerman and Ullman [9, Cor. 3.4.5]).

χf (Γ1 • Γ2) = χf (Γ1)χf (Γ2).

Note that the chromatic number satisfies the following
relationship [11, Th. 1]:

χ(Γ1 • Γ2) ≤ χ(Γ1)χ(Γ2). (3)

The Cartesian productG = G1 ∧ G2 is defined as
V (Γ) = V (Γ1)× V (Γ2) and (u1, u2) ∼ (v1, v2) iff

(u1 = v1 andu2 ∼ v2) or (u2 = v2 andu1 ∼ v1).

This product does not increase the chromatic number.

Lemma 4 (Sabidussi [12, Lemma 2.6]).

χ(Γ1 ∧ Γ2) = max{χ(Γ1), χ(Γ2)}.

III. M AIN RESULTS

A. Capacity Region via the Confusion Graph

We first state a simple generalization of the result by
Alon, et al. [8, Th. 1.1].

Proposition 1. A rate tuple(R1, . . . , Rn) is achievable
for the index coding problemG iff there exists an integer
tuple t = (t1, . . . , tn) such that

Rj ≤
tj

⌈log(χ(Γt(G)))⌉
, j ∈ [1 : n]. (4)

Proof: Sufficiency (achievability).For a given tuple
t = (t1, . . . , tn), consider a coloring of the vertices of
the confusion graphΓ = Γt(G) with χ(Γ) colors. This
partitions the vertices ofΓ into χ(G) independent sets.
Now by the definition of the confusion graph, no two
message tuples in each independent set are confusable
and therefore assigning an index to each independent
set yields a valid index code. The total number of
codewords of this index code isχ(Γ), which requires
r = ⌈log(χ(Γ))⌉ bits to be broadcast. This proves the
existence of a(t1, . . . , tn, ⌈log(χ(Γt(G)))⌉) index code.

Necessity (converse).Consider any(t1, . . . , tn, r) in-
dex code, which assigns at most2r distinct indices to
message tuples. By definition, all the message tuples
mapped to an index form an independent set of the
confusion graphΓ = Γt(G). Moreover, every message
tuple is mapped to some index so that these indepen-
dent sets partitionV (Γ). Thus,χ(Γ) ≤ 2r, or equiv-
alently, r ≥ ⌈log(χ(Γ))⌉. Therefore, any achievable
(R1, . . . , Rn) must satisfy

Rj ≤
tj

⌈log(χ(Γt(G)))⌉
, j ∈ [1 : n],

for somet = (t1, . . . , tn).
The ceiling operation in (4), which results from the

fact that the index is communicated in bits, is not es-
sential. By using the code that mapsxn ∈

∏n

j=1{0, 1}
tj

to [1 : χ(Γt(G))] repeatedlyk times, one can easily
construct a code that maps̃xn ∈

∏n
j=1{0, 1}

ktj to
[1 : χ(Γt(G))]

k, thus achieving rates

Rj =
ktj

k log(χ(Γt(G))) + 1

≤
ktj

⌈k log(χ(Γt(G)))⌉
, j ∈ [1 : n]. (5)

Letting k → ∞ in (5) establishes the following.

Proposition 2. The capacity regionC of the index
coding problemG is the closure of all rate tuples
(R1, . . . , Rn) such that

Rj ≤
tj

log(χ(Γt(G)))
, j ∈ [1 : n], (6)

for somet = (t1, . . . , tn).



We now state a stronger result, in terms of thefrac-
tional chromatic number, which will prove to be useful in
establishing structural properties of the capacity region.

Theorem 1. The capacity regionC of the index coding
problemG is the closure of all rate tuples(R1, . . . , Rn)
such that

Rj ≤
tj

log(χf (Γt(G)))
, j ∈ [1 : n], (7)

for somet = (t1, . . . , tn).

Proof: The necessity follows by (1) and Proposi-
tion 1.

Let ǫ > 0. For eacht = (t1, . . . , tn) and the
corresponding confusion graphΓt(G), Lemma 2 implies
that there exists an integerk such that

k

√

χ(Γk
t
(G)) ≤ χf (Γt(G)) + ǫ. (8)

It can be also checked that the set of edges ofΓk
t
(G) con-

tains the set of edges ofΓkt(G), which, when combined
with (8), implies that k

√

χ(Γkt(G)) ≤ χf (Γt(G)) + ǫ,
or equivalently,

tj
log(χf (Γt(G)) + ǫ)

≤
ktj

log(χ(Γkt(G)))
, j ∈ [1 : n].

Thus, by Proposition 2, if(R1, . . . , Rn) satisfies

Rj ≤
tj

log(χf (Γt(G)) + ǫ)
, j ∈ [1 : n],

then it must be in the capacity region. SinceC is closed,
taking ǫ→ 0 completes the proof.

B. Capacity Region via Confusion Graph Products

Throughout this subsection, we assume thatG1 and
G2 are two vertex-induced subgraphs ofG such that
V (G1) = [1 : n1] andV (G2) = [n1 + 1 : n] partition
V (G) = [1 : n]. We denote the capacity regions of the
index coding problemsG, G1 andG2 by C , C1 andC2,
respectively.

Proposition 3. If G has no edge betweenG1 andG2,
then

C =
⋃

α∈[0,1]

{

(αR1, (1− α)R2) : R1 ∈ C1,R2 ∈ C2

}

.

In other words, the capacity region ofG is achieved
by time division between the optimal coding schemes
for two disjoint subproblemsG1 andG2.

Proof: It suffices to show that

C ⊆
⋃

α∈[0,1]

{

(αR1, (1− α)R2) : R1 ∈ C1,R2 ∈ C2

}

.

Let xn = (x1,x2) and zn = (z1, z2) be two message
tuples, andt = (t1, t2) be their common length tuple,
where xi, zi, and ti correspond to the subproblem

Gi, i = 1, 2. By the definition of confusability,xn

and zn are confusable iff they are confusable at some
receiver j ∈ V (G1) or confusable at some receiver
j ∈ V (G2). Since there is no edge betweenG1 andG2,
these local confusability conditions are equivalent to the
confusability ofx1 and z1 for the subproblemG1 and
the confusability ofx2 andz2 for the subproblemG2, re-
spectively. In other words,xn andzn are confusable for
G iff x1 andz1 are confusable forG1 or x2 andz2 are
confusable forG2. Thus,Γt(G) = Γt1

(G1) ∗ Γt2
(G2)

and by Lemma 1 for disjunctive product,

log(χf (Γt(G)))

= log(χf (Γt1
(G1))) + log(χf (Γt2

(G2))) =: l1 + l2.

We now let α = l1/(l1 + l2) and apply Theorem 1.
Before closure, any rate tuple inC should satisfy

Rj ≤
tj

l1 + l2
=

{

α
tj
l1
, j ∈ V (G1),

(1− α)
tj
l2
, j ∈ V (G2).

But again by Theorem 1,(tj/l1 : j ∈ V (G1)) ∈ C1 and
(tj/l2 : j ∈ V (G2)) ∈ C2, which completes the proof.

We now state a stronger version of Proposition 3, orig-
inally established by Tahmasbi, Shahrasbi, and Gohari
[7]; see also [5, Th. 8] for a related but much weaker
statement.

Theorem 2 (Tahmasbi, Shahrasbi, and Gohari [7,
Th. 2]). If G has no edge fromG2 to G1, then

C =
⋃

α∈[0,1]

{

(αR1, (1− α)R2) : R1 ∈ C1,R2 ∈ C2

}

.

Once again the capacity region is achieved by time
division. Moreover, in light of Proposition 3 and the
Farkas lemma [13, Th. 2.2] (that is, each edge in a
directed graph either lies on a directed cycle or belongs
to a directed cut but not both), Theorem 2 implies that
removing edges ofG that do not lie on a directed cycle
does not change the capacity region.

Proof: Assume without loss of generality that there
exists an edge from every node inG1 to every node
in G2. Now, since every node inG2 has every node
(message) inG1 as side information and no node in
G1 has any node inG2 as side information,xn and
zn are confusable forG iff x1 and z1 are confusable
for G1, or x1 = z1 andx2 and z2 are confusable for
G2 (recall the notation in the proof of Proposition 3).
Thus,Γt(G) = Γt1

(G1) •Γt2
(G2) and by Lemma 3 for

lexicographic product,

log(χf (Γt(G)))

= log(χf (Γt1
(G1))) + log(χf (Γt2

(G2))).

The rest of the proof follows the identical steps to that
of Proposition 3.



The only difference between Propposition 3 and The-
orem 2 lies with which product of confusion subgraphs
needs to be taken—the disjunctive product for two
separate subproblems, while the lexicographic product
for two subproblems dependent in only one direction.
Note that the main tool we use from fractional graph
theory (cf. Lemmas 1 and 3) is

χf (Γt(G)) ≥ χf (Γt1
(G1))χf (Γt2

(G2)). (9)

This implies that as long as an index coding problem
can be partitioned into two subproblems and the corre-
sponding (nonstandard) graph product of the confusion
subgraphs satisfies (9), the capacity region has the same
form as in Proposition 3 and Theorem 2. Also note that
with the (integral) chromatic number, an inequality like
(9) holds in the opposite direction (cf. (2) and (3)).
This shows the major advantage of Theorem 1 over
Proposition 2.

Next, we consider index coding problems with side
information graphs that contain a complete bipartite
graph as an edge-induced subgraph.

Theorem 3. If there are edges from every node inG1

to every node inG2 and vice versa, then

C =
{

(R1,R2) : R1 ∈ C1,R2 ∈ C2

}

.

In other words, the capacity region ofG is achieved
by simultaneously using the optimal coding schemes for
two disjoint subproblemsG1 andG2.

Proof: Since every node inG1 has every message
in G2 as side information and every node inG2 has
every message inG1 as side information,xn and zn

are confusable forG iff x1 = z1 and x2 and z2 are
confusable forG2, or x2 = z2 and x1 and z1 are
confusable forG1. Thus,Γt(G) = Γt1

(G1) ∧ Γt2
(G2)

and by Lemma 4 for cartesian product,

χ(Γt(G)) = max{χ(Γt1
(G1)), χ(Γt2

(G2))}. (10)

By Proposition 2, before closure, any rate tuple inC

should satisfy

Rj ≤
tj

log(χ(Γt(G)))
, j ∈ [1 : n],

for somet = (t1, . . . , tn). Combining this with (10), we
have fori = 1, 2

Rj ≤
tj

log(χ(Γti
(Gi))

=:
tj
li
, j ∈ V (Gi).

By applying Proposition 2 once again,(tj/l1 : j ∈
V (G1)) ∈ C1 and (tj/l2 : j ∈ V (G2)) ∈ C2, which
completes the proof.

C. Capacity Region via Degraded Side Information Sets

Here we consider the index coding problemG with
side information setsA1, . . . , An.

Proposition 4. If Ai ⊆ Aj , then removingi from Aj

does not decrease the capacity region.

The proof is intuitively clear. Given any index code,
receiverj can first recoverxi usingAi and then uses
xi along with x(Aj \ {i}) to recoverxj . Here is an
alternative proof based on the notion of confusion graph.

Proof: Assume that there existxn and zn confus-
able for the new problemG′, but not for the original
problemG. Then, they must be confusable at receiverj
for G′ (i.e., xj 6= zj and x(Aj \ {i}) = z(Aj \ {i})).
Now if xi = zi, then it contradicts the assumption that
xn and zn are not confusable (at receiverj) for G.
Alternatively, if xi 6= zi, then sinceAi ⊆ Aj and hence
x(Ai) = z(Ai), it again contradicts the assumption that
xn and zn are not confusable (at receiveri) for G.
Therefore, the confusion graphs must be the same and,
by Theorem 1, so must be the capacity regions.
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