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Abstract—The connection between index coding and matroid
theory have been well studied in the recent past. El Rouayheb
et al. established a connection between multi linear represen-
tation of matroids and wireless index coding. Muralidharan
and Rajan showed that a vector linear solution to an index
coding problem exists if and only if there exists a representable
discrete polymatroid satisfying certain conditions. Recently index
coding with erroneous transmission was considered by Dau et
al.. Error correcting index codes in which all receivers are able
to correct a fixed number of errors was studied. In this paper
we consider a more general scenario in which each receiver is
able to correct a desired number of errors, calling such index
codes differential error correcting index codes. We show that vector
linear differential error correcting index code exists if and only if
there exists a representable discrete polymatroid satisfying certain
conditions.

I. INTRODUCTION

The index coding problem introduced by Birk and Kol
[1] involves a source which generates a set of messages and
set of receivers which demand messages. Each receiver has
prior knowledge of a portion of the message called side-
information. The source uses the side-information available at
all the receivers to find a transmission scheme of minimum
number of transmissions, which satisfies all the demands of
the receivers. Bar-Yossef et al. [2] studied the index coding
problem and found that the length of the optimal linear index
code is equal to the minrank of a related graph. Lubetzky
and Stav [3] showed that non-linear scalar codes are better
than linear scalar ones. The connection between multi-linear
representation of matroids and index coding was studied by El
Rouayheb, Sprinston and Georghiades [4]. It was shown in [5]
that a vector linear solution to an index coding problem exists
if and only if there exists a representable discrete polymatroid
satisfying certain conditions which are determined by the index
coding problem.

The problem of index coding with erroneous transmissions
was studied by Dau et al. [6]. An index code capable of
correcting at most δ-errors at all its receivers is defined as a δ-
error correcting index code. The necessary and sufficient con-
ditions for a scalar linear index code to have δ-error correcting
capability was found. Linear network error-correcting codes
were introduced earlier by Yeung and Cai [7], [8]. The link
between network error correcting codes and certain matroids
was established by Prasad and Rajan in [9].

In this paper we consider differential error correcting index
codes which allows receivers to have different error correcting
capability. We establish a link between vector linear differential
error correcting index codes and discrete polymatroids. We

show that a vector linear solution to an error correcting index
coding problem exists if and only if there exists a representable
discrete polymatroid satisfying certain conditions which are
determined by the index coding problem considered. Error
correction at a subset of receivers and δ-error correcting
index codes are also considered and the representable discrete
polymatroids associated with these cases are identified.

The organization of the paper is as follows. In Section II
we review error correcting index codes and also establish a
lemma which is used to prove our main result. In Section III,
basic results of discrete polymatroids are reviewed. Finally in
Section IV, we establish the connection between vector error
correcting index codes and discrete polymatroids. We conclude
and summarize our results in Section V.

Notations: The set {1, 2, . . . ,m} is denoted as dmc. For
two sets S1 and S2 the set subtraction S1 \ S2 is denoted by
S1 − S2. Z≥0 denotes the set of non-negative integer. For a
positive integer n, 0n denotes all zero vector of length n. For a
vector v of length m and A ⊆ dmc, vA is the vector obtained
by taking only the components of v indexed by the elements of
A. The vector of length m whose ith component is one and all
other components are zeros is denoted as εi,m. For u, v ∈ Zm≥0,
u ≤ v if all the components of v − u are non-negative and,
u < v if u ≤ v and u 6= v. For u, v ∈ Zm≥0, u∨ v is the vector
whose ith component is the maximum of the ith components
of u and v. A vector u ∈ Zm≥0 is called an integral sub-vector
of v ∈ RZm≥0 if u ≤ v. For a vector u ∈ Zm≥0, (u)>0 denotes
the set of indices corresponding to the non-zero components
of u. The magnitude of a vector v ∈ Zr≥0, is the sum of the
components of v and is denoted by |v|. The support of vector
x ∈ Fnq is defined to be the set supp(x) = {i ∈ dnc : xi 6= 0}.
The Hamming weight of a vector x, denoted by wt(x), is
defined to be the |supp(x)|. The rank of a matrix A over Fq
is denoted by rank(A). For some positive integer c, identity
matrix of size c×c over Fq is denoted by Ic. The vector space
spanned by columns of a matrix A over Fq is denoted by 〈A〉.
For some matrix A, A(i) denotes the ith column of A. For a
set of column indices I, AI denotes the submatrix of A with
columns indexed by I. Similarly A(j) denotes the jth row of
A and for a set of row indices J , AJ denotes the submatrix
of A with rows indexed by J .

II. ERROR CORRECTING INDEX CODES AND A USEFUL
LEMMA

An index coding problem I(X,R) includes

• a set of messages X = {x1, x2, . . . , xm} and
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• a set of receiver nodes R ⊆ {(x,H);x ∈ X,H ⊆
X \ {x}}.

For a receiver node Ri = (xf(i), Hi) ∈ R, xf(i) denotes the
message demanded by receiver Ri and Hi ⊆ X − {xf(i)}
denotes the side information possessed by Ri. Note that f
is a mapping from d|R|c to dmc. Each one of the messages
xi, i ∈ {1, 2, . . . ,m}, are assumed to be row vectors of length
n, over an alphabet set, which in this paper is assumed to be
a finite field Fq of size q. Let y = [x1 x2 . . . xm] denote the
row vector of length nm obtained by the concatenation of the
m message vectors.

An index coding solution (also referred to as an index
code) over Fq of length c and dimension n for the index
coding problem I(X,R) is a function C : Fmnq → Fcq, c an
integer, which satisfies the following condition: For every Ri =
(xf(i), Hi) ∈ R, there exists a function ψRi : F

n|Hi|+c
q → Fnq

such that ψRi(Hi,C(y)) = xf(i),∀y ∈ Fmnq . The function ψRi
is referred to as the decoding function at receiver Ri.

An index coding solution for which n = 1 is called a
scalar solution; otherwise it is called a vector solution. An
index coding solution is said to be linear if the encoding and
decoding functions are linear. When the index coding solution
is linear it can be described as C(y) = yL, ∀ y ∈ Fmnq , where
L is a mn × c matrix over Fq . The matrix L is called the
matrix corresponding to the linear index code C. The code C
is referred to as the linear index code based on L.

Error correcting index code considers the scenario in which
the symbols received by receivers may be subject to errors.
The source S broadcasts a vector C(y) ∈ Fcq . Consider a
receiver Ri = (xf(i), Hi) ∈ R. The error affecting receiver
Ri is considered as an additive error represented by εi ∈ Fcq .
Then, receiver Ri actually receives the vector

y′i = C(y) + εi ∈ Fcq.

An error correcting index code should be able to satisfy the
demands of all the receivers in the presence of these additive
errors. Consider an instance of the index coding problem
described by I(X,R). A δ-error correcting index code (δ-
ECIC) over Fq for this instance is an encoding function

C : Fmnq → Fcq
such that for every receiver Ri = (xf(i), Hi) ∈ R, there exists
a decoding function ψRi : F

n|H|+c
q → Fnq satisfying

ψRi(C(y)+εi, Hi) = xf(i), ∀ y ∈ Fmnq ,∀ εi ∈ Fcq, wt(εi) ≤ δ.

Similar to the index coding solution, if the functions C
and ψRi are linear then it is said to be a linear δ-error
correcting index code. A linear error correcting index code
can also be described by a matrix. Dau et al. in [6] identify
a necessary and sufficient condition which a matrix L has
to satisfy to correspond to a δ-error correcting index code.
However the index coding solution considered in that paper is
a scalar solution. It was observed in [10] that if the block
length is fixed one can model a vector index code as a
scalar index code applied to another instance of the index
coding problem. If the block length is n, the number of
messages is m, and the number of receivers is |R| in the
vector index coding problem, then the equivalent scalar index

coding problem will have mn messages and n|R| receivers.
Using this observation a necessary and sufficient conditions
which matrix L has to satisfy to correspond to a vector δ-
error correcting index code can be found. We consider a
more general error correcting index coding problem in which
the receivers have different error correcting capability. Each
receiver Ri = (xf(i), Hi) ∈ R should be able to correct δi
errors. Such index codes are referred to as differential error
correcting index codes.

Consider an instance of the index coding problem described
by I(X,R). Let δi be the maximum number of errors receiver
Ri wants to correct. A differential error correcting index code
over Fq for this instance is an encoding function

C : Fmnq → Fcq
such that for every receiver Ri = (xf(i), Hi) ∈ R, there exists
a decoding function ψRi : F

n|H|+c
q → Fnq satisfying

ψRi(C(y)+εi, Hi) = xf(i), ∀ y ∈ Fmnq ,∀ εi ∈ Fcq, wt(εi) ≤ δi.

A linear differential error correcting index code can also be
described by a matrix. We identify the necessary and sufficient
conditions which a matrix L has to satisfy to correspond to
a differential error correcting index code. Consider a receiver
Ri = (xf(i), Hi) ∈ R of the index coding problem I(X,R).
Let

Ĥi = ∪
k:xk∈Hi

{(k − 1)n+ 1, (k − 1)n+ 2, . . . , kn},

ˆxf(i) = {(f(i)− 1)n+ 1, (f(i)− 1)n+ 2, . . . , f(i)n}.

Let Hi = dmc−{j : xj ∈ Hi} and Ĥi denote the set dmnc−
Ĥi. A matrix L corresponds to a differential error correcting
index code if and only if the following condition is satisfied :
for every receiver Ri = (xf(i), Hi) ∈ R and for all y ∈ Fmnq
such that y ˆxf(i) 6= 0| ˆxf(i)| and yĤi = 0|Ĥi|,

yL+ ε 6= 0, ∀ε ∈ Fcq, wt(ε) ≤ 2δi. (1)

In the rest of the paper, the subscripts under the zero vector
is removed, and the appropriate size of the zero vector is
understood from the context. This equation can be rewritten
in matrix form in the following way. For each receiver Ri,

(y ε)

(
L
Ic

)
6= 0, (2)

for all y ∈ Fmnq such that yĤi = 0, y ˆxf(i) 6= 0, and for all
ε ∈ Fcq such that wt(ε) ≤ 2δi.

The error pattern corresponding to an error vector ε is
defined as its support set supp(ε). Let Isupp(ε) denote the
submatrix of Ic consisting of those rows of Ic indexed by
supp(ε). For a receiver Ri, the error correcting condition (2)
can be rewritten as

(y ε)

(
L

Isupp(ε)

)
6= 0,∀ y ∈ Fmnq : yĤi = 0, y ˆxf(i) 6= 0,

∀ ε ∈ F2δi
q ,∀ supp(ε) ∈ {F ⊆ dcc : |F| = 2δi}.

(3)

So the matrix L corresponds to a δ-error correcting index
code if and only if (3) is satisfied at all receivers. Since at a



particular receiver we consider only those y ∈ Fmnq for which
yĤi = 0, condition (3) can be rewritten as

(y
Ĥi

ε)

(
L
Ĥi

Isupp(ε)

)
6= 0,∀ y

Ĥi
∈ F|Ĥi|q : y ˆxf(i) 6= 0,

∀ ε ∈ F2δi
q ,∀ supp(ε) ∈ {F ⊆ dcc : |F| = 2δi}.

(4)

We now present a lemma which will be used in Section IV
to prove the main result of this paper.

Lemma 1: Let ID(Ri) denote the (|Ĥi|+ 2δi)× n matrix
with the n × n identity submatrix in n rows of the first
|Ĥi| rows corresponding to the demand xf(i) of the receiver
Ri = (xf(i), Hi), with all other elements being zero. For some
supp(ε) ∈ {F ⊆ dcc : |F| = 2δi} the condition

(y ε)

(
L

Isupp(ε)

)
6= 0,∀ y ∈ Fmnq : yĤi = 0, y ˆxf(i) 6= 0,

∀ ε ∈ F2δi
q ,∀ supp(ε) ∈ {F ⊆ dcc : |F| = 2δi}.

(5)

holds if and only if the following condition holds

I(k)D(Ri)
⊆
〈(

L
Ĥi

Isupp(ε)

)〉
, ∀ k ∈ dnc. (6)

Proof: The if part is proved first. Since the columns of

the matrix ID(Ri) is in the subspace
〈(

L
Ĥi

Isupp(ε)

)〉
, linear

combinations of columns of
(

L
Ĥi

Isupp(ε)

)
should generate

ID(Ri). There should be some c× n matrix X such that,(
L
Ĥi

Isupp(ε)

)
X = ID(Ri).

Now suppose for some (y ε), with y ˆxf(i) 6= 0, yĤi = 0 and
some ε ∈ F2δ

q we have

(y ε)

(
L

Isupp(ε)

)
= 0.

Since yĤi = 0, the above equation reduces to

(y
Ĥi

ε)

(
L
Ĥi

Isupp(ε)

)
= 0.

Multiplying both sides by X , we get y ˆxf(i) = 0, which is a
contradiction. This completes the if part.
Now we prove the “only if” part. Let L ˆxf(i) denote the rows
of L corresponding to the message demanded by receiver Ri.
Let ri denote the set dmnc − Ĥi − ˆxf(i). Let Lri denote the
submatrix of L with rows indexed by the set ri. Because (4)

holds, we have

rank

(
L
Ĥi

Isupp(ε)

)
= rank

 L ˆxf(i)

Lri
Isupp(e)


= rank

(
L ˆxf(i)

)
+ rank

(
Lri

Isupp(e)

)
= n+ rank

(
Lri

Isupp(e)

)
.

Consider the concatenated matrix

 L
Ĥi

ID(Ri)

Isupp(e)

, de-

noted by Y . We have,

rank (Y ) = rank
(
L ˆxf(i) In

)
+ rank

(
Lri

Isupp(e)

)
= n+ rank

(
Lri

Isupp(e)

)
.

The concatenated matrix Y has the same rank as the matrix(
LHi

Isupp(e)

)
. This proves the “only if” part.

Lemma 1 gives an equivalent condition for equation (3).
Therefore a given index code is differential error correcting if
and only if (6) holds for all supp(e) ∈ {F ⊆ dcc : |F| = 2δi}
and at all receivers Ri ∈ R.

III. DISCRETE POLYMATROID

In this section we review the definitions and results from
discrete polymatroids. A discrete polymatroid D is defined as
follows:

Definition 1 ( [11]): A discrete polymatroid D on the
ground set dmc is a non-empty finite set of vectors in Zm≥0
satisfying the following conditions:

• If u ∈ D and v < u, then v ∈ D.
• For all u, v ∈ D with |u| < |v|, there exists w ∈ D

such that u < w ≤ u ∨ v.

Let 2dmc denote the power set of the set dmc. For a discrete
polymatroid D, the rank function rD : 2dmc → Z≥0 is defined
as rD(A) = max{|u(A)|, u ∈ D}, where ∅ 6= A ⊆ dmc and
rD(∅) = 0. Alternatively, a discrete polymatroid D can be
written in terms of its rank function as D = {x ∈ Zm≥0 :

|x(A)| ≤ rD(A),∀A ⊆ dmc}. In the rest of the paper,
the superscript D in rD is dropped. A discrete polymatroid
is completely described by the rank function. So discrete
polymatroid D on dmc is also denoted by (dmc, r). The ground
set of discrete polymatroid is also denoted by E(D).

A function r : 2dmc → Z≥0 is the rank function of a
discrete polymatroid iff it satisfies the following conditions
[12]:

(D1) For A ⊆ B ⊆ dmc, r(A) ≤ r(B).
(D2) ∀A,B ⊆ dmc, r(A ∪ B) + r(A ∩ B) ≤ r(A) +

r(B).
(D3) r(∅) = 0.

A vector u ∈ D for which there does not exist v ∈ D such
that u < v, is called a basis vector of D. Let B(D) denote



the set of basis vectors of D. The sum of the components of
a basis vector of D is referred to as the rank of D, denoted
by rank(D). Note that for all the basis vectors, sum of the
components will be equal [14]. A discrete polymatroid is
nothing but the set of all integral subvectors of its basis vectors.

Example 1: Consider the discrete polymatroid D on the
ground set d3c with rank function r given by r({1}) =
r({2}) = r({2, 3}) = 2, r({3}) = 1 and r({1, 2}) =
r({1, 3}) = r({1, 2, 3}) = 3. The set of basis vec-
tors for this discrete polymatroid is given by B(D) =
{(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.

Definition 2 ( [12]): A discrete polymatroid D is said to
be representable over Fq if there exists vector subspaces
V1, V2, . . . , Vm of a vector space E over Fq such that
dim(

∑
i∈X Vi) = r(X), ∀X ⊆ dmc. The set of vector

subspaces Vi, i ∈ dmc, is said to form a representation of
D. A discrete polymatroid is said to be representable if it is
representable over some field.

D(V1, V2, . . . , Vm) denotes a representable discrete poly-
matroid on dmc with V1, V2, . . . , Vm as its representation.
Each vector space Vi can be described by a matrix Ai whose
columns span Vi.

Example 2: Let A1 =

[
1 0
0 1
0 0

]
, A2 =

[
0 1
0 1
1 1

]
and

A3 =

[
0
0
1

]
be matrices over F2. Let Vi, i ∈ d3c denote the

column span of Ai. The vector subspaces Vi, i ∈ d3c forms a
representation over F2 of the discrete polymatroid in Example
1.

Example 3: Let A1 =

[
1
0
0

]
, A2 =

[
0
1
0

]
, A3 =

[
0
0
1

]

and A4 =

[
1 0
0 1
0 1

]
be matrices over Fq . Let Vi denote

the column span of Ai, i ∈ d4c. The rank function r
of the discrete polymatroid D(V1, V2, V3, V4) is as follows:
r(X) = 1, if X ∈ {{1}, {2}, {3}}; r(X) = 2 if X ∈
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4} and r(X) = 3 otherwise.
The set of basis vectors for this discrete polymatroid is given
by,

{(0, 0, 1, 2), (0, 1, 0, 2), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 0)}.

Example 4: Let r : 2d4c → Z≥0 be a function given by
r({1}) = r({2}) = r({3}) = r({4}) = 2, r({1, 2}) =
r({1, 3}) = r({1, 4}) = r({2, 3}) = r({2, 4}) = 3 and
r({3, 4}) = r({1, 2, 3}) = r({1, 2, 4}) = r({1, 3, 4}) =
r({2, 3, 4}) = r({1, 2, 3, 4}) = 4. The rank function r does
not satisfy the Ingleton inequality [13] which is a necessary
condition for discrete polymatroid to be representable. Hence
this discrete polymatroid is not representable. The set of basis
vectors for this discrete polymatroid is given by

{(0, 0, 2, 2), (2, 1, 1, 0), (2, 1, 0, 1), (2, 0, 1, 1), (0, 2, 1, 1),
(1, 2, 0, 1), (1, 2, 1, 0), (1, 1, 2, 0), (1, 0, 2, 1), (1, 1, 0, 2),

(1, 0, 1, 2), (0, 1, 1, 2), (1, 1, 1, 1)}.

Lemma 2: Consider a discrete polymatroid D on the
ground set dmc, with a representation V1, V2, . . . , Vm. Each
Vi can be expressed as the column span of a r(dmc) × r(i)
matrix Ai. Let A be the concatenated matrix [A1 A2 . . . Ar].
The following operations on A does not change the discrete
polymatroid D : (i) Interchange two rows, (ii) Multiply a row
by a non-zero member of Fq , (iii) Replace a row by the sum
of that row and another, (iv) Delete a zero row (unless it is the
only row), and (v) Multiply a column by a non-zero member
of Fq .

Proof: Refer Appendix A.

Definition 3: Consider a discrete polymatroid D =
(dmc), r). For T ⊆ dmc, the contraction of T from D is
D/T = (dmc − T, rD/T ), with rD/T (X) = r(X ∪ T )− r(T ).

Example 5: Let D be the discrete polymatroid in Example
1. The ground set of D = E(D) = d3c. The contraction of
the set T = {3} from D is the discrete polymatroid D/T =
({1, 2}, rD/T ) where rD/T is as follows: rD/T ({2}) = 1 and
rD/T ({1}) = rD/T ({1, 2}) = 2.

Example 6: Consider the discrete polymatroid D of Ex-
ample 3. Let T1 = {3} and T2 = {4} be the substets of
ground set E(D). The contraction of T1 from D is the discrete
polymatroid D/T1 = ({1, 2, 4}, rD/T1

) where rD/T1
is as

follows: rD/T1
(X) = 1 if X ∈ {{1}, {2}} and rD/T1

(X) = 2
otherwise. The contraction of T2 from D is the discrete
polymatroid D/T2 = ({1, 2, 3}, rD/T2

) where rD/T2
(X) = 0

if X = {1} and rD/T2
(X) = 1 otherwise.

Lemma 3: For disjoint subsets T1 and T2 of ground set of
D, (D/T1)/T2 = (D/T2)/T1 = D/(T1 ∪ T2).

Proof: Refer Appendix A.

Next we consider the contraction of an F-representable discrete
polymatroid.

Lemma 4: Consider a discrete polymatroid D on ground
set E = dmc. Consider an element e ∈ E. There exists a
representation V1, V2, . . . , Vm, such that the vector space Ve
corresponding to the representation of e can be expressed as
the column space of a r(E)× r(e) matrix Ae which has only
unit vectors in its columns. Let Ai be the r(E)× r(i) matrix
having Vi as its column space. For all i ∈ E − {e} obtain
the matrix A′i from Ai by deleting the rows corresponding to
the non-zero entries in Ae. Let V ′i be the column space of
the matrix A′i. The vector spaces V ′i , i ∈ E − e forms the
representation of the discrete polymatroid D/e.

Proof: Refer Appendix A.

Example 7: Consider the discrete polymatroid D of Ex-
ample 1. In Example 5, the rank function of the contracted
matroid D/{3} is obtained. The representation of D is given

in Example 2. Note that the matrix A3 =

[
0
0
1

]
has only unit

vector in its column. By deleting the third column from A1

and A2 we obtain A′1 =

[
1 0
0 1

]
and A′2 =

[
0 1
0 1

]
. Let

V ′1 and V ′2 be the column spaces of the matrix A′1 and A′2.
It can be verified that the vector spaces V ′1 and V ′2 form the
representation of the discrete polymatroid D/{3}.



Example 8: Consider the discrete polymatroid D of Ex-
ample 3. The contraction of {3} and {4} from D is obtained
in Example 6. In the representation of D given in Example
3, element {3} is represented by unit vector. The representa-
tion for D/{3} is obtained by removing third row from the
matrices representing other elements. The matrices obtained

are A′1 =

[
1
0

]
, A′2 =

[
0
1

]
and A′4 =

[
1 0
0 1

]
. It

can be verified that the column spaces of the matrices above
forms a representation of the matroid D/{3}. The element {4}

of E(D) is represented by A4 =

[
1 0
0 1
0 1

]
. Note that the

element is not represented by unit vectors alone. However by
performing a row operation we can obtain a new representation
in which the representation of {4} is made up of unit vectors.
An alternate representation for the discrete polymatroid D is
given by the column spaces of the following matrices : A1 =[

1
0
0

]
, A2 =

[
0
1
1

]
, A3 =

[
0
0
1

]
and A4 =

[
1 0
0 1
0 0

]
.

The representation of the discrete polymatroid D/{4} can be
obtained by removing the first two rows. Consider the matrices
A′1 = [0], A′2 = [1] and A′3 = [1]. The matrices A′1, A

′
2 and

A′3 forms a representation of the discrete polymatroid D/{4}.

IV. ERROR CORRECTING INDEX CODES AND DISCRETE
POLYMATROIDS

In this section, we establish a connection between vector
linear differential error correcting index codes and repre-
sentable discrete polymatroids. Consider a vector linear differ-
ential error correcting index code C of length c and dimension
n for an index coding problem I(X,R). The error correcting
index code C should be able to correct δi errors for receiver
Ri. The discrete polymatroid which we obtain has a ground
set dm+ 2cc. Let the set dm+ 2cc − dm+ cc be denoted by
S(C).

The following theorem gives a set of necessary and suffi-
cient conditions for the existence of a vector linear differential
error correcting index code of length c and dimension n for
an index coding problem I(X,R).

Theorem 1: A vector linear differential error correcting
index code over Fq of length c and dimension n exists for an
index coding problem I(X,R), iff there exists a discrete poly-
matroid D representable over Fq on the ground set dm+ 2cc
with rank(D) = mn+ c satisfying the following conditions.

(A) r({i}) = n,∀i ∈ dmc, r(dm+cc) = mn+c, r({m+
i}) = 1,∀ i ∈ d2cc .

(B)r(dmc ∪ {m+ i,m+ c+ i}) = r(dmc ∪ {m+ i})
= r(dmc ∪ {m+ c+ i})

(C) For each receiver Ri = (xf(i), Hi) and for each error
pattern F = {ei1 , ei2 , . . . , ei2δi}, let

TF,i = dm+ cc −Hi − {m+ i1,m+ i2, . . . ,m+ i2δi}.

Let DF,i be the |Hi|+ c+ 2δi element matroid D/TF,i.
Then at every receiver Ri = (xf(i), Hi) and for each valid

error pattern F we must have

rDF,i({f(i)} ∪ S(C)) = rDF,i(S(C)).

Proof: First we prove the “only if” part. Suppose there
exists a vector linear differential error correcting index code C
of length c over Fq for the index coding problem I(X,R).
For k ∈ dmc, let Ak be the (mn + c) × n matrix with
the (i, j)th entry being one for i = (k − 1)n + t, j = t,
where t ∈ dnc and all other entries being zero. For i ∈ dcc,
let Am+i be the vector εmn+i,mn+c. Since the index code
C is linear it can be represented by a mn × c matrix L.

Let ζ be the concatenated matrix
(

L
Ic

)
. Note that order

of ζ is (mn + c) × c. Let Am+c+i = ζ(i), for i ∈ dcc.
Define Vi to be the column span of Ai. We can verify that
the discrete polymatroid D(V1, V2, . . . , Vm+2c) satisfies the
conditions of theorem. Condition (A) holds as the vector spaces
V1, V2, . . . , Vm+c are linearly independent. Also the vector
spaces Vm+i for i ∈ d2cc are one dimensional.

The element m + c + i of the discrete polymatroid is

represented by Vm+c+i =< ζi >. Note that ζ(i) =
(
L(i)

I
(i)
c

)
.

The vector L(i) corresponds to a transmission of the index code
and hence should be a linear combination of messages. The
vector space Vm+i is the column span of the vector Am+i

which has a 1 in the (mn + i)th position. From this we
can conclude that the vector ζ(i) lies in the linear span of
V1, V2, . . . , Vm and Vm+i.

Consider a receiver Ri = (xf(i), Hi) and an error pattern
Fk = {ei1 , ei2 , . . . , ei2δi}. Let I(Fk) = {i1, i2, . . . i2δi} be the
set of indices corresponding to the error pattern and let the set
{n+i1, n+i2, . . . n+i2δi} be denoted as n+I(Fk). From the
definition of DFk,i we note that it is a representable discrete
polymatroid with |Hi|+ c+ 2δi elements. The representation
can be obtained by the method in Lemma 4. Note that the
representation of {f(i)} in the contracted discrete polymatroid
DFk,i is the vector space spanned by the columns of ID(Ri).
The representation of m+ c+ i in the discrete polymatroid
DFk,i is the space spanned by the column

Zi = ζi
Ĥi∪(n+I(F))

=

(
Li
Ĥi

IiI(Fj)

)
.

Since we have a vector linear differential error correcting index
code, from Lemma 1, we have

I(k)D(Ri)
⊆
〈(

L
Ĥi

Isupp(ε)

)〉
, ∀ k ∈ dnc.

Note that the matrix
(

L
Ĥi

Isupp(ε)

)
is the concatenated matrix

[Z1 Z2 . . . Zc]. So we have ID(Ri) lies in the linear span
of [Z1 Z2 . . . Zc] and Condition (C) holds for error pattern
Fk and receiver Ri. Since the receiver and error pattern was
chosen arbitrarily this completes the “only if” part of the proof.

Now we have to prove the if part. Let D be the Fq
representable discrete polymatroid of rank mn + c which
satisfies conditions (A), (B) and (C). From (A), it follows
that there exists vector subspaces Vi, i ∈ dmc which can be



written as the column span of (mn+ c)× n matrices Ai over
Fq , with rank(Ai) = n. Also there exists vector subspaces
Vm+i, i ∈ d2cc which can be written as the column span of
non-zero (mn+c)×1 vector. Consider the concatenated matrix
A = [A1 A2 . . . Am+2c]. Since rank(dm + cc) = mn + c,
the concatenated matrix A can be written as [Imn+c ζ]. First
we prove that there exists an mn × c matrix L such that

ζ =

(
L
Ic

)
. From Condition (B) we have that the column

vector representing m+ c+ i lies in the linear span of vector
spaces representing dmc and m + i. The vector representing
m+ c+ i is ζi. We have

ζi =
∑
j∈dmc

AjYi,j + diAm+i,

for some Yi,j ∈ Fnq and dj in Fq . Condition (B) also ensures
that di 6= 0,∀ i ∈ dcc. This also ensures that Am+c+i 6=
Am+c+j for distinct i, j ∈ dcc. Arranging all ζi, we get

ζ =

(
Lmn×c
Kc×c

)
,

where each column of L, L(i) is the concatenated vector
[Yi,1 Yi,2 . . . Yi,m]′ and K is a diagonal matrix with di, 1 ≤
i ≤ c as its diagonal entries. The discrete polymatroid D does
not change if some row or some column of its representation is
multiplied by a non-zero element of Fq . The matrix A is now of
the form A = ( Imn+c ζ ). Consider the matrix A′ obtained
from A by multiplying the rows {mn+1,mn+2, . . . ,mn+c}
by the elements {d−11 , d−12 , . . . , d−1c } respectively and then
multiplying columns {mn + 1,mn + 2, . . . ,mn + c} by
{d1, d2, . . . , dc} respectively.The matrix A′ is of the form

( Imn+c ζ ′ ) where ζ ′ =

(
Lmn×c
Ic

)
. The matrix A′ is

a representation for the discrete polymatroid D proving our
claim. In the last part of the proof we show that the matrix
L corresponds to a linear differential error correcting index
code.
Consider a receiver Ri = (xf(i), Hi) and an arbitrary error
pattern Fk. The representation of the discrete polymatroid
DFk,i can be obtained by using Lemma 4. Note that the
representation of {f(i)} in the contracted discrete polymatroid
DFk,i is the vector space spanned by columns of ID(Ri).
The representation of m+ c+ i in the discrete polymatroid

DFk,i is the space spanned by column Zi =

(
Li
Ĥi

IiI(Fk)

)
.

Consider the matrix Z obtained by concatenating the repre-
sentations of the elements in S(C). The matrix Z is equal to

[Z1 Z2 . . .Zc] =
(

L
Ĥi

II(Fk)

)
. From Condition (C) we have

rDF,i({f(i)} ∪ S(C)) = rDF,i(S(C)). Hence the columns of

ID(Ri) lies in the linear span of
(

L
Ĥi

II(Fk)

)
. As the choice of

receiver and the error pattern was arbitrary, using Lemma 1 it
is seen that the index code given by the matrix L is differential
error correcting. This completes the proof of the theorem.

Theorem 1 establishes a link between vector linear differ-
ential error correcting index codes and a representable discrete
polymatroid satisfying certain properties. In Example 9 below,
we consider an example of a differential error correcting

index coding problem with vector linear solution and show
the representable discrete polymatroid associated with it.

Example 9: Consider an index coding problem I(X,R),
with X = {x1, x2, x3}, xi ∈ F2

2 and with R = {R1, R2, R3}.
Let R1 = (x1, H1 = {x2}), R2 = (x2, H2 = {x1, x3}) and
R3 = (x3, H3 = {x1, x2}). Let δ1 = 2 and δ2 = δ3 = 1.
Consider the vector linear error correcting index code of length
13 over Fq described by the 6× 13 matrix

L =


1 0 1 0 1 0 1 0 0 1 0 0 0
0 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 0 0 1 0
1 1 0 1 0 0 0 0 1 0 1 1 1

 .

Construct the concatenated matrix ζ =

(
L
I13

)
. Let Al, l ∈

d3c denote the 6× 2 matrix with the (i, j)th entry being one
for i = (l−1)2+t, j = t and all other entries being zeros. For
i ∈ d13c, let A3+i be the column vector of length 19 with one
in the (6 + i)th entry and all other entries zero. For i ∈ d13c,
let A16+i = ζ(i). Let Vi, i ∈ d29c denote the column span
of Ai over F2. The discrete polymatroid D(V1, V2, . . . , V29)
satisfies the conditions of Theorem 1.

A. δ-Error Correcting Index Codes

Here we consider δ-error correcting index codes in which
all the receivers have the ability to correct δ number of errors.
This is a special case of differential error correcting index code
in which δi = δ for all receivers Ri ∈ R. We consider a single
error correcting index coding problem and show the matroids
associated with it in Example 10 below.

Example 10: Consider an index coding problem I(X,R),
with X = {x1, x2, x3}, xi ∈ F2

2 and with R = {R1, R2, R3}.
Let R1 = (x1, H1 = {x2, x3}), R2 = (x2, H2 = {x1, x3})
and R3 = (x3, H3 = {x1, x2}). Consider the vector linear
error correcting index code of length 6 over Fq described by
the 6× 6 matrix

L =


1 0 0 1 1 1
0 1 1 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 1 1

 .

Construct the concatenated matrix ζ =

(
L
I6

)
. Let Al, l ∈

d3c denote the 6× 2 matrix with the (i, j)th entry being one
for i = (l−1)2+t, j = t and all other entries being zeros. For
i ∈ d6c, let A3+i be the column vector of length 12 with one
in the (6+i)th entry and all other entries zero. For i ∈ d6c, let
A9+i = ζ(i). Let Vi, i ∈ d15c denote the column span of Ai
over F2. The discrete polymatroid D(V1, V2, . . . , V15) satisfies
the conditions of Theorem 1.

B. Error Correction at only a subset of Receivers

In this subsection we consider the case where only a
specific subset of receivers require error correcting capability.
Consider a subset S of R. Each receiver Ri ∈ S should be



able to correct δi errors. We can obtain error correcting only
at particular subset S of receivers, from a differential error
correcting index code by setting δi = 0,∀Ri /∈ S.

V. CONCLUSION

In this paper we consider a generalization of error correct-
ing index codes in which each receivers have different error
correcting capability. It was shown that vector linear differen-
tial error correcting index codes correspond to representable
discrete polymatroid with certain properties. Our main theo-
rem connects vector linear differential error correcting index
codes to a representable discrete polymatroids. Using a non-
representable discrete polymatroid satisfying the conditions of
the theorem the possibility of non-linear error correcting codes
could be explored.
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APPENDIX A
PROOFS OF LEMMAS IN SECTION III

Lemma 2 : Consider a discrete polymatroid D on the
ground set dmc, with a representation V1, V2, . . . , Vm. Each
Vi can be expressed as the column span of a r(dmc) × r(i)
matrix Ai. Let A be the concatenated matrix [A1 A2 . . . Ar].

The following operations on A does not change the discrete
polymatroid D.

• Interchange two rows.

• Multiply a row by a non-zero member of Fq .

• Replace a row by the sum of that row and another.

• Delete a zero row (unless it is the only row).

• Multiply a column by a non-zero member of Fq .

Proof: The columns of A are the concatenated columns
of Ai. Multiplying a column of Ai by a non-zero member
of Fq does not change the vector space Vi associated with
it. Thus the discrete polymatroid remains same. We have
dim(

∑
i∈X Vi) = r(X), ∀X ⊆ dmc. The dim(

∑
i∈X Vi) is

equal to the rank of concatenated matrix AX = [Ai], i ∈ X .
The row operations specified above does not change the rank
of AX ,∀X ⊆ dmc. Thus the dependencies among the new
vector spaces will remain the same and hence the discrete
polymatroid D remains same.

Lemma 3 : For disjoint subsets T1 and T2 of ground set of
D, (D/T1)/T2 = (D/T2)/T1 = D/(T1 ∪ T2).

Proof: We show that the discrete polymatroids have the
same rank function. For X ⊆ E − (T1 ∪ T2), we have
rD/(T1∪T2)(X) = r(X ∪ (T1 ∪ T2)) − r(T1 ∪ T2). For the
discrete polymatroid D/T1, rD/T1

(X) = r(X ∪ T1) − r(T1).
Then

r(D/T1)/T2
(X) = rD/T1

(X ∪ T2)− rD/T1
(T2)

= r(X ∪ T2 ∪ T1)− r(T2 ∪ T1)
= rD/(T1∪T2)(X).

Similarly we can prove that the polymatroid (D/T2)/T1 has
the same rank function.

Lemma 4: Consider a discrete polymatroid D on ground
set E = dmc. Consider an element e ∈ E. There exists a
representation V1, V2, . . . , Vm, such that the vector space Ve
corresponding to the representation of e can be expressed as
the column space of a r(E)× r(e) matrix Ae which has only
unit vectors in its columns. Let Ai be the r(E)× r(i) matrix
having Vi as its column space. For all i ∈ E − {e} obtain
the matrix A′i from Ai by deleting the rows corresponding to
the non-zero entries in Ae. Let V ′i be the column space of
the matrix A′i. The vector spaces V ′i , i ∈ E − e forms the
representation of the discrete polymatroid D/e.

Proof: Without loss of generality we can assume the
element to be contracted to be 1. Consider a set X ⊆ E−{1}.
Construct the concatenated matrix AX = [A1 Ai], i ∈ X . The

concatenated matrix AX will be of the form
[
Ir(1) B
O A′X

]
where O represents the zero matrix. From AX it is clear that
rank(A′X) = rank(AX)− r(1). For the discrete polymatroid
D/1, rD/1(X) = rD(X∪{1})−rD({1}). Since X was chosen
arbitrarily we can conclude that matrices A′i, i ∈ E −{1} is a
representation of the discrete polymatroid D/1.
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