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Sufficiently Myopic Adversaries are Blind
Bikash Kumar Dey, Sidharth Jaggi, Michael Langberg

Abstract

In this work we consider a communication problem in which a sender, Alice, wishes to communicate with a receiver, Bob,
over a channel controlled by an adversarial jammer, James, who is myopic. Roughly speaking, for blocklength n, the codeword
Xn transmitted by Alice is corrupted by James who must base his adversarial decisions (of which locations of Xn to corrupt
and how to corrupt them) not on the codeword Xn but on Zn, an image of Xn through a noisy memoryless channel. More
specifically, our communication model may be described by two channels. A memoryless channel p(z|x) from Alice to James, and
an Arbitrarily Varying Channel from Alice to Bob, p(y|x, s) governed by a state Sn determined by James. In standard adversarial
channels the states Sn may depend on the codeword Xn, but in our setting Sn depends only on James’s view Zn.

The myopic channel captures a broad range of channels and bridges between the standard models of memoryless and adversarial
(zero-error) channels. In this work we present upper and lower bounds on the capacity of myopic channels. For a number of
special cases of interest we show that our bounds are tight. We extend our results to the setting of secure communication in which
we require that the transmitted message remain secret from James. For example, we show that if (i) James may flip at most a p
fraction of the bits communicated between Alice and Bob, and (ii) James views Xn through a binary symmetric channel with
parameter q, then once James is “sufficiently myopic” (in this case, when q > p), then the optimal communication rate is that of
an adversary who is “blind” (that is, an adversary that does not see Xn at all), which is 1−H(p) for standard communication,
and H(q)−H(p) for secure communication. A similar phenomenon exists for our general model of communication.

Keywords: Arbitrarily Varying Channels, Myopic Jamming, Information Theoretic Secrecy

I. INTRODUCTION

In the study of point-to-point communication, a sender Alice wishes to transmit a message U to a receiver Bob over a
noisy channel governed by a jammer James. To do so, she encodes U into a length-n vector Xn and transmits it over the
channel, resulting in the received word Y n. Two types of channel models that have seen significant attention over the last
decades are the memoryless channel model, e.g., [2] in which the channel is governed by a conditional distribution p(y|x)
which is completely oblivious [3] (or “blind”) of the message Xn being transmitted and the adversarial (omniscient) channel
model in which James is thought of as an adversarial entity who can maliciously design the error imposed to fit the specific
codeword transmitted, [4]. While the capacity of the former model is well-understood, that of the latter encompasses numerous
open problems in coding and information theory. This state of affairs has lead to the study of several channel models that
conceptually lie between the two extreme communication models, those in which the channel is oblivious of the transmitted
codeword Xn and those in which the channel acts as an adversarial jammer. These include arbitrarily varying channels (AVCs),
e.g. [5]–[8], causal channels, e.g. [9]–[16], and computationally limited channels, e.g. [17].

Inspired by the study of Sarwate [18], in this work we consider the model of myopic adversarial jammers. In the myopic
setting, the jammer James is still a malicious entity that wishes to carefully design his error to corrupt communication, however
his view of the codeword Xn is limited in the sense that it is masked through a noisy memoryless channel p(z|x). If the
channel between Alice and James is of full rate, the myopic model reduces to that of the standard omniscient adversarial
model, and if it is of zero rate, the myopic model captures the model of a “blind” (or “oblivious”) adversary that has no
knowledge whatsoever on the codeword Xn transmitted.

Formally, the myopic model is described by two channels. A memoryless channel p(z|x) from Alice to James, and an AVC
from Alice to Bob. The AVC is modeled by a state channel p(y|x, s), where the vector of states Sn (one state for each time
step) is determined by James as a function of his masked view Zn of the transmitted codeword Xn. See Figure 1.

In this work we study the capacity of myopic adversarial channels. We start by studying a natural binary myopic channel
in which (i) James may flip at most a p fraction of the bits communicated between Alice and Bob, and (ii) James views Xn

through a binary symmetric channel with parameter q (i.e., BSC(q)). Namely, in our notation, the Hamming weight of Sn is
at most pn, p(z|x) = q for z 6= x, and p(y|x, s) = 1 iff y = x+ s (and otherwise 0). We aim to characterize the capacity of
the channel under varying values of q, our limitation on the noise level to James. When q = 0, namely when James has full
knowledge of the codeword Xn, the channel reduces to the omniscient adversarial channel for which the capacity is a central
open problem in coding theory and only upper and lower bounds on capacity exist [19]–[21]. When q = 1/2, namely when
James is blind, it is shown in [3], [7] that the capacity equals that of the channel in which James flips bits randomly, i.e. the
BSC(p), which equals 1−H(p).

The focus of this work is in the study of intermediate values of q. In a nutshell, we present a dichotomous behavior of the
channel. If James is “sufficiently myopic” then the optimal communication rate is that of a blind James, namely 1 − H(p).
Specifically, we show that an optimal rate of 1 −H(p) is achievable as long as q > p. If on the other hand q < p, then the

A preliminary version of this work appeared in [1].
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Fig. 1. The myopic channel model

capacity of the myopic channel equals that of the omniscient channel,1 which is known to be bounded away from 1−H(p)
for all p, and in fact equals 0 for all p > 1/4. We extend our results to the setting of secure communication in which one
requires that the transmitted message remain secret from James. In this extended setting we show a similar phenomena: as
long as q > p the capacity equals that obtained for blind adversaries (which is H(q)−H(p)).

We then turn to study the myopic model in its full generality, for general memoryless channels p(z|x) connecting Alice
and James, and general state channels p(y|x, s) connecting Alice and Bob. For the general setting we obtain upper and lower
bounds on capacity, both in the standard setting of communication, and in that of secure communication. As an additional case
study, we study the setting in which the channel to James is a binary erasure channel BEC(q), and James can erase up to a
fraction p of the transmitted bits observed by Bob. For this special case, through a refinement of our arguments, we show that
the capacity is 1 − p if q > p; and for q < p, the deterministic capacity is the same as that for an omniscient adversary. We
also consider some more general binary input adversarial channels to study communication rates as well as secrecy rates. In
these channels, James can erase as well as flip some fractions of bits. His own observation may be over an arbitrary binary
input channel.

As mentioned above, the work most relevant to ours is that of Sarwate [18] in which the myopic channel model is studied
under the assumption that Alice and Bob hold shared randomness that is not known to James (i.e., under the assumption of
randomized coding). In this setting, a single-letter characterization to the randomized coding capacity is obtained. As with our
study, the results in [18] bridge between the randomized capacity when the adversary James is assumed to be blind and that
when James has full knowledge of the codeword transmitted.

Although our study was inspired by, and builds on, that of [18], it differs from [18] in two important aspects. Primarily, and
most importantly, we study the case of deterministic codes (in which there is no shared randomness between Alice and Bob).
The study of deterministic codes introduces many challenges that do not exist in the case of randomized codes, and involves
a new set of analytical tools in its analysis. Secondly, we study the general case in which the codewords Xn of Alice and the
state space Sn of James are constrained. Our enhanced setting was explicitly left open in [18].

Another model related to our work is the study of the wiretap channel of type II with an active eavesdropper. Aggarwal et
al. [22] considers a model with an adversary who can choose a p fraction of bits to observe and also erase these bits. They
showed that any rate upto 1− p−H(2p) can be achieved. In our notation, their model has q = 1− p fraction of erasures in
James’ channel. If James experiences random erasures, then Theorem III.10 guarantees a secrecy rate upto (1−p)−p = 1−2p.
However, in [22] James has the additional power of choosing which bits to observe. As a special case of Theorem III.13, we
are able to obtain rate 1 − 2p on the model of [22] as well (see Remark V.4). Additional works that address the action of
myopic adversaries include [23] which considers the study of the wiretap channel of type II with an active eavesdropper that
can flip bits. Theorem III.13 generalizes their main result to an active eavesdropper who can erase as well as flip bits. The work
in [24], studies a different model of active myopic adversaries in which there are two non-cooperating adversarial entities, the
Eavesdropper and the Jammer. In a nice sequence of works by Boche2 et al [25]–[27] the problem of secure communication
in the presence of a myopic jammer is also considered, but in general in the models considered either common randomness
between the transmitter and the receiver is necessary, or only multi-letter capacity characterizations are derived (or both). Also,
[28], [29] consider myopicity in the context of AWGN channels. For specific channels over sufficiently large alphabets on
which the attacks are either additive (e.g., [30]–[35], summarized in [36]), or “overwrite” (e.g., [37], [38], summarized in [39]),
more is known; computationally efficient codes meeting information-theoretic bounds are known. See Table I for a summary
of previous related work.

Our paper is structured as follows. In Section II we give a precise model for the myopic setting. In Section III we state
our main results (which are also summarized in Table I). Our results are first presented for the special binary symmetric error
case discussed above and then in full generality. We also discuss a refinement of the general arguments to an erasure-erasure
channel, and other binary input channels with erasing and flipping adversary. Section IV presents the proof of the main result
for the binary case. Section V presents the proof of the lower bound for the general model.

1To be precise, the above dichotomous behavior is proven to hold for deterministic codes. For codes that allow randomness at encoder (which is not shared
with the receiver), known as stochastic codes, we leave open the question whether one can obtain rates higher than those of the omniscient adversary for the
case q < p.

2From whom we also borrow the idea of calling the jammer James.
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Fig. 2. The binary symmetric error channel C(q, p)

II. MODEL

The myopic channel is defined by its input alphabet X , output alphabet to James Z , state alphabet S , output alphabet to
Bob Y , probability distribution for the channel connecting Alice and James p(z|x), probability distribution p(y|x, s) for the
channel connecting Alice and Bob, the state constraint W , and the input constraint V . The three parties of the channel, Alice,
Bob, and James are described below (see Figure 1).
Alice’s encoder: Alice has a message U uniformly distributed in {0, 1}nR that she wants to transmit to Bob; R denotes the
rate of her message, and n the block-length of Alice’s transmissions. To effect this communication, Alice encodes her message
using an encoder Enc : {0, 1}nR → Xn to output a transmitted vector Xn = Enc(u). We emphasize that Alice’s encoder is
deterministic. The encoder has to satisfy the constraint type(Xn) ∈ V , where V is a set of types over the alphabet X .
Channel from Alice to James: James observes the output of Xn passing through a memoryless channel p(z|x). More precisely,
the channel law is given as Pr(Zn|Xn) =

∏
t p(zt|xt). Based on James’s non-causal observation Zn, he chooses a length-n

state vector Sn. The state vector Sn is restricted to have type(Sn) ∈ W , where W is a set of types over the alphabet S.
Channel from Alice to Bob: Bob observes the output Y n obtained through the channel p(y|x, s). More precisely, for state
Sn = (s1, . . . , sn) the channel law is given as Pr(Y n|Xn, Sn) =

∏
t p(yt|xt, st).

Successful communication: Given Y n, Bob decodes a message û ∈ {0, 1}Rn. Communication is considered successful if
the transmitted message u equals û. The average error in communication is defined as ε = 1

2Rn

∑
u Pr(u 6= û).3 Rate R is

achievable over the myopic channel if for any ε > 0 there exists a block length n such that the average error in communication
is at most ε. The channel capacity is the supremum of all achievable rates.
Secrecy: At times we will study the secrecy (i.e., secure) capacity between Alice and Bob. In this setting, in addition to correct
decoding, we require that James’s view Zn be almost independent of Alice’s message u, namely that 1

nI(Zn;U) < ε.

III. OUR RESULTS

In what follows we present our results. The results are presented first for the special binary symmetric error myopic channel
(Sec. III-A) discussed in the Introduction, and then in generality (Sec. III-B). We also present refinements of our general results
for a binary erasure-erasure model, and more general binary AVC where James can erase and flip some fractions of transmitted
bits in Subsection III-C and Subsection III-D respectively. 4

A. The myopic binary C(q, p) channel

Our studies begin with the binary channel C(q, p) (Fig. 2) characterized by the pair of parameters (q, p) in which (i) James
views Xn through a binary symmetric channel with parameter q (i.e., BSC(q)), and (ii) James may flip at most a fraction p
of the bits communicated between Alice and Bob. Namely, in our notation, we set X = Z = Y = S = {0, 1}, p(z|x) = q
for z 6= x, p(y|x, s) = 1 iff y = x + s (and otherwise 0), and W = {(1 − p′, p′)|p′ ≤ p} (i.e., type(Sn) ∈ W if and only if
‖Sn‖ ≤ pn} where ‖ · ‖ denotes the Hamming weight).

We first study the case q > p:

Theorem III.1. For q > p, the capacity of the binary myopic adversarial channel C(q, p) is 1−H(p). The capacity is achieved
by random codes with input distribution Ber(1/2).

To prove Theorem III.1 we must present both an upper and a lower bound on capacity. The upper bound is relatively simple
and follows from the fact that James may roughly mimic a memoryless BSC(p) (no matter what q is). Specifically, James
can completely neglect his view Zn and just construct a state vector uniformly at random among those with type (1− p, p).

3Notice that in the setting of deterministic code design the average error criteria is essential for the study of the myopic model (in which we assume that
James bases his decisions on a corrupted view of Xn), as otherwise, in the study of maximum error, James may neglect Zn and focus his strategy on a
single transmitted codeword, yielding the channel p(z|x) irrelevant to the study of capacity. This state of affairs does not hold once stochastic coding is
considered. Connections exist between the study of deterministic codes under the average error criteria and stochastic codes under the maximum error criteria
in the context of AVCs, e.g., [6]. In this work we focus on deterministic codes (which we prove are optimal for several of the settings we study).

4All our results on bit-flip and/or erasure channels can be generalized to q-ary additive and erasure channels, i.e., where James can erase some fraction
of symbols and/or add arbitrary symbols of his choice to some fraction of symbols. In the interest of brevity we do not present these straightforward
generalizations.
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The converse of the channel coding theorem now shows that the rate in this case is bounded above by 1 −H(p). Our main
contribution in the study of C(q, p) is in the achievability part of Theorem III.1 in which we show that one can obtain rates
arbitrarily close to 1−H(p). The technical proof as well as a proof outline are given in Section IV.

We next study the case of q < p. Here, we show that the capacity equals that of the omniscient adversary.

Theorem III.2. For q < p, the deterministic coding capacity of the binary myopic adversarial channel C(q, p) is the same as
that of the binary adversarial channel with an omniscient adversary.

Proof: We assume successful communication at rate R over C(q, p) and show that R is achievable in the omniscient
channel model as well. Consider the code that allows communication at rate R. The same code must also allow communication
at rate R over BSC(q) (this follows from the fact that q < p and thus James can roughly mimic BSC(q), just as described
above in the converse to Theorem III.1). Since for such an adversarial action, Bob can still decode Xn, this implies that James,
who views Xn through a BSC(q) is able to decode Xn as well, implying, in turn, that James is actually omniscient.

We finally turn to study the context of secure communication. Here, we first consider the binary symmetric broadcast channel
with independent BSC to Bob and James with cross-over probabilities p and q respectively. Then it is well known [41] that
the message transmission capacity to Bob under the secrecy condition is H(q)−H(p). An achievability scheme in this case is
to append the nR bits of message with n(1−H(q)) bits of private randomness and encode the resulting string with a random
channel code of rate 1−H(p).

In our channel C(q, p), for q > p, the secrecy capacity is also H(q) − H(p). The encoding can be done in the same
way as before: appending random bits to the message and then encoding using a random code. James can not learn anything
about the message by the secrecy results in the random channel case discussed above. Since James is sufficiently myopic, by
Theorem III.1, Bob can decode the message and the private randomness irrespective of James’s strategy. So, we have

Theorem III.3. For q > p, the binary myopic channel C(q, p) has secrecy capacity H(q)−H(p).

B. General myopic channels

We now turn to present our results for the myopic model in full generality. We consider the setup where James’s channel is
given by pZ|X , and his state Sn is constrained to have a type in the set W . We denote this channel by C(pZ|X ,W). To obtain
single letter upper and lower bounds on the capacity of myopic channels we consider the types of the vectors Xn, Zn, Sn, and
Y n, and certain distributions on them. Our achievability scheme uses a random code governed by the single letter distribution
pX ∈ V . Let pZ|X be James’s channel law (we now explicitly specify the channel as a subscript to avoid confusion). The
distributions, pX and pZ|X give rise to a joint distribution pXZ and a marginal distribution pZ . Recall that W is the set of
state types of Sn which James may impose. Let WS|Z be the set of conditional distributions pS|Z which results in a marginal
distribution pS in the set W . Namely, pS|Z is in WS|Z if and only if

pS(·) =
∑
x,z

pX(x)pZ|X(z|x)pS|Z(·|z) ∈ W

Finally, we use pY |XS(y|x, s) which is given as part of the channel definition. Note that pX and pS|Z define a joint single
letter distribution over random variables X,Z, S, Y defined by pXpZ|XpS|ZpY |XS .

We are now ready to present our results for the general model. Our first theorem addresses achievability. For technical
reasons, we focus only on “state-deterministic channels”, i.e. where Y n is a deterministic function of (Xn, Sn). We elaborate
on channels which are not state-deterministic in Section V.

Theorem III.4. For state-deterministic pY |XS a rate R is achievable if there exists a pX ∈ V such that

(a) ∀pS|Z ∈ WS|Z : R < I(X;Y ).

(b) ∀pS|Z ∈ WS|Z : I(X;Z) < I(X;Y ).

(c) max
pS|Z∈WS|Z

H(X|Y, S) + max
pS|Z∈WS|Z

H(Y |X) < H(X|Z).

Such a rate is achievable using random codes generated using the input distribution pX .

Our proof of Theorem III.4 is along similar lines as that of Theorem III.1, and is presented in Sec. V. The theorem guarantees
the maximum rate I(X;Y ) (condition (a)) against an oblivious adversary with state constraint, provided the state constraint
satisfies the two myopicity conditions (b) and (c). Here condition (b) says that James’s channel should be worse than Bob’s
channel, i.e., James’s view should be less ‘informative’ than Bob’s. This corresponds to the condition q > p in the binary case
in Theorem III.1. Though condition (c) also says something similar in nature, its exact form is not intuitive. It comes due to
a technical requirement in the proof (see Remark V.4).

We now give an upper bound obtained by considering only memoryless feasible jamming strategies. The proof is obvious,
and is omitted.
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Theorem III.5. A rate R is achievable only if there exists a pX ∈ V such that ∀pS|Z ∈ WS|Z : R < I(X;Y ).

Using a similar argument as in the binary case (Theorem III.3), we obtain the following achievability result for secrecy
rates.

Theorem III.6. For state-deterministic pY |XS a secrecy rate R is achievable if there exists a pX ∈ V such that

(a) ∀pS|Z ∈ WS|Z : R < I(X;Y )− I(X;Z).

(b) max
pS|Z∈WS|Z

H(X|Y, S) + max
pS|Z∈WS|Z

H(Y |X) < H(X|Z).

Remark III.7. The proof of secrecy for rates under I(X;Y )− I(X;Z) is following similar encoding and arguments as that
for wiretap channels. For wiretap channels, it is known that this can be improved to the maximum of I(U ;Y ) − I(U ;Z)
over all p(u)p(x|u). However, our proof (of Theorem III.6) uses a state-deterministic pY |XS . Introducing an auxiliary random
variable U will result in an effective probabilistic AVC pY |US , for which our present proof does not hold. Please also see
footnote 5.

C. Binary erasure-erasure channels

Communicating securely in the presence of an active eavesdropper has attracted some attention in the recent literature
(e.g. [22], [23]). Hence in this and the next subsection we remark on the implications of our techniques/results for some
binary-input channels. One of the challenges is that unlike in the binary symmetric case (Theorem III.1), for general myopic
channels, our lower bound (Theorem III.4) does not meet the upper bound (Theorem III.5). This is due to the difficulty of
finding a single-letter expression for a counting argument in the proof of Lemma V.2.

For an erasure-erasure channel (referred to as CE(q, p)) where James’s channel is a BEC(q), and he can erase at most a
p fraction of the transmitted bits, Theorem III.4 guarantees rates upto 1− p only if q > p+H(p), whereas the upper bound
of 1− p in Theorem III.5 is valid whenever q > p. This gap can be eliminated by careful analysis using specific properties of
erasure channels. As a result, we have the capacity results as given below.

Alice BobY =

{
X; if S = 0

⊥; if S = 1

BEC(q) James

xn

zn

sn, ‖sn‖ ≤ pn

yn

Fig. 3. The binary erasure-erasure adversarial channel CE(q, p)

Theorem III.8. For q > p, the capacity of the binary erasure-erasure channel CE(q, p) is 1− p. The capacity is achieved by
random codes with input distribution Ber(1/2).

The proof of this result follows as a special case of (Theorem III.4) with a specific refinement in Lemma V.2 as discussed
in Remark V.4.

The next two theorems follow using similar arguments as those of Theorem III.2 and Theorem III.3 respectively. The proofs
are thus omitted.

Theorem III.9. For q < p, the deterministic coding capacity of the binary erasure-erasure adversarial channel CE(q, p) is
the same as that of the binary erasing adversarial channel with an omniscient adversary.

Theorem III.10. For q > p, the binary erasure-erasure myopic channel CE(q, p) has secrecy capacity q − p.

D. More general binary input channels

Similar to the binary erasure-erasure channel CE(q, p), we may improve on Theorems III.4, III.6 for other channels as well.
A number of examples are given below.

1) Erasing and flipping adversary, CEF (pZ|X , pe, pw): Let us consider a binary input setup CEF (pZ|X , pe, pw) where
James’s channel is given by pZ|X , and James can erase upto a fraction pe and flip upto a fraction pw of the transmitted
bits (pe + pw ≤ 1). The corresponding random channel (binary symmetric error and erasure channel) has a capacity (1 −
pe)
(

1−H
(

pw
1−pe

))
.

Theorem III.11. For CEF (pZ|X , pe, pw), if

1−H(X|Z) < (1− pe)
(

1−H
(

pw
1− pe

))
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Alice BobY =

{
X ⊕ S; if S = 0 or 1

⊥; if S =⊥

pZ|X James

xn

zn

sn : #1(sn) ≤ npw
# ⊥ (sn) ≤ npe

yn

Fig. 4. The binary input channel with erasing and flipping adversary, CEF (pZ|X , pe, pw)

then the capacity is (1− pe)
(

1−H
(

pw
1−pe

))
.

The proof is similar to the general myopic results, and the key element in the proof is outlined in Remark V.4.
2) Secrecy capacity for erasing and flipping adversary, CEF (pZ|X , pe, pw): We now consider the secrecy capacity of

CEF (pZ|X , pe, pw), i.e., when James’s channel is pZ|X , and the James can erase upto a fraction pe and flip upto a fraction
pw of the transmitted bits. Using a randomly constructed code to encode the message and private randomness we obtain (see
Remark V.4 for details).

Theorem III.12. For the channel CEF (pZ|X , pe, pw), the secrecy rate H(X|Z)+peH
(

pw
1−pe

)
−pe−H

(
pw

1−pe

)
is achievable.

In particular, for the channel CEF (BEC(q), pe, pw), the secrecy rate q + peH
(

pw
1−pe

)
− pe −H

(
pw

1−pe

)
is achievable.

3) Wiretap channel of type II with erasing and flipping adversary, WCEF -II(pr, pe, pw): We denote the wiretap channel
of type II with active adversary who can erase and flip bits as WCEF -II(pr, pe, pw). Here instead of James’s channel being
a random erasure channel, James can also choose a pr = 1− q fraction of the transmitted bits to view/read, and he can erase
upto a fraction pe and flip upto a fraction pw of the transmitted bits. This is a generalization of the models studied in [22],
[23] for Wiretap channel of type II with active adversaries.

Theorem III.13 (Wiretap channel of type II with erasing and flipping adversary). For WCEF -II(pr, pe, pw), the rate 1 −
pr + peH

(
pw

1−pe

)
− pe −H

(
pw

1−pe

)
is achievable.

This result is of independent interest as it generalizes results on the wiretap channel of type II with active adversary [22],
[23]. Our general proof technique together with the argument in Remark V.4 implies this result. As a special case, in the
model WCEF -II(p, p, 0), James can observe upto a p fraction of bits of his choice and he can also erase a p fraction
of bits. For a more restricted James (who has to erase the same bits that he observes), Aggarwal et al. [22] showed that
rates upto 1 − p − H(p) can be achieved. Theorem III.13 improves this to 1 − 2p. As another special case, in the model
WCEF -II(pr, 0, pw), Theorem III.13 gives an achievable rate of 1 − pr −H(pw), which is same as the achievable rate in
[23].

IV. PROOF OF THEOREM III.1

The converse follows using the converse for BSCp(as discussed in Section III). We first present a sketch of the achievability
in Subsection IV-A, and then in Subsection IV-B we give a formal proof. Our proof is summarized in Figure 6.

A. Proof sketch for Theorem III.1

We now sketch the proof for the achievability of rates arbitrarily close to 1−H(p) over C(q, p) when q > p (Theorem III.1).
For a precise proof, and also for the precise definition of some of the ideas, we refer the reader to the technical proof appearing
in Subsection IV-B.

Our code construction uses a uniformly chosen codebook over {0, 1}n and our decoder associates with each received
word Y n its closest codeword Xn. We now show that with high probability over code design, such codes are sufficient for
communication at any rate R = 1−H(p)− ε and average error ε where ε > 0 is arbitrarily small. In what follows, many of
the statements we make occur with high probability over code design (and not necessarily with probability 1) even though at
times we do not state so explicitly.

Consider a codeword Xn transmitted by Alice. This codeword passes through the channel to James, and James receives the
corrupted version Zn of Xn. The fact that q > p (or more precisely that 1 −H(q) < 1 −H(p)) now implies that there are
approximately 2n(H(q)−H(p)) codewords that are consistent with James’s view Zn (Lemma IV.2). Namely, that there are an
exponential number of codewords X ′n, that from James’s perspective, may have been transmitted by Alice that would have
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(Oracle-given set) etc 

(Codewords outside         ) 

(Calvin’s observation) 

(Calvin’s error vector) 

(Bob’s observation) 

Shell of radius d≈qn 
(Ambient space for 
                ) 

Balls of radius pn 
(Bob’s decoding balls) 

Y n = Xn + Sn

Sn

Zn

ZnSn

Y n

Xn

Xn

X 0n

X 0n

X 00n

X 000n

d ⇡ qn

Mog

Mog

Mog

C \ Mog

Fig. 5. Relationship between important notation: Alice transmits Xn, James observes Zn. The oracle informs James that Alice’s transmission is one of Mog =
{Xn, X′n, X′′n, X′′′n}, each of which is d ≈ qn away from Zn. James imposes the error vector Sn, and Bob receives Y n = Xn + Sn. Bob decodes to the hopefully
unique codeword in a ball of radius pn around Y n. In this example, the ball around X′n +Sn contains a codeword from C \Mog , and the ball around X′′′n +Sn contains a
codewords fromMog , and therefore if James imposes the error-vector Sn an error may result in these cases. In our proof, we show that for any Sn the fraction of Xn ∈ Mog

whose decoding balls contain any other codewords is “very small”.

resulted in the same Zn. These consistent codewords (depicted in Figure 5) are exactly those that lie in a ball around Zn of
radius ≈ qn.

James doesn’t know what Xn is and he even doesn’t know what d = ‖Xn−Zn‖ is exactly (other than the fact that d ≈ qn),
however in our analysis we slightly help James by revealing d and by choosing a small yet exponential set of codewords (of
size 2nδ for an appropriately small δ) from Alice’s codebook C chosen from the set of all codewords at distance d from
Zn, with the additional guarantee that it also contains the true Xn. We refer to this set as the oracle-given set Mog . The
advantage of defining such a set is purely for ease of analysis using a two-stage counting as elaborated later. Revealing this
information to James only makes him stronger and thus a coding scheme that succeeds here will also succeed against the
original James. Conditioned on James’s view Zn and Mog , each of the codewords in Mog is equally likely to have been
transmitted. Nonetheless, James still has a reasonable amount of uncertainty about which of the 2nδ codewords was actually
transmitted – indeed, this is the uncertainty that we leverage in our analysis.

We now show that, no matter what action James takes, Bob will be able to correctly decode with high probability over the
transmitted codeword Xn of Alice. First consider any codeword Xn in the set Mog which is consistent with James’s view
Zn. A decoding error occurs for Xn if after James chooses the state vector Sn it holds that Y n = Xn + Sn is closer to a
codeword X̂n ∈ C than it is to the transmitted word Xn. In such a case we say that Xn is confusable with X̂n. In Figure 5
this is expressed by the shaded region around Y n = Xn + Sn, if it is empty then decoding is successful and if it includes a
X̂n then a decoding error may occur. Conditioned on James’s view Zn, we show that no matter what action James takes, for
most codewords in Mog there will not be a decoding error. We stress that, indeed, for every action Sn there may be some
codewords in Mog that will have a decoding error, but for the vast majority of them their corresponding shaded region in
Figure 5 will be empty. This will imply successful decoding with high probability.

We now fix any specific action Sn for James and show that only a small fraction of codewords inMog will be corrupted by
Sn, or equivalently, only a small fraction of codewords Xn will be confusable with some X̂n ∈ C. We consider two cases: the
case that X̂n ∈ C \Mog (Lemma IV.6) and the case in which X̂n ∈ Mog (Lemma IV.7). Roughly speaking, using a careful
analysis based on the Principle of Deferred Decisions [42] in this case we may assume that the codewords in C \Mog are
independent of those in Mog . This allows us to bound the number of codewords in Mog that are confusable with codewords
in C \Mog using certain list decoding arguments and in particular using a novel “double-list-decoding argument”.

Recall that Xn is confusable with X̂n iff the latter lies in the ball of radius pn around Xn + Sn. Let Λ be the union
of all such balls for Xn ∈ Mog . Since C \ Mog is independent of Mog , it follows from standard list decoding arguments
(and our setting of parameters) that the number of codewords X̂n ∈ C \ Mog that lie in Λ is small, specifically of size at
most some polynomial in n. This is a first step towards our proof, which shows that the number of X̂n that may confuse
some Xn ∈ Mog is small. However, each such X̂n potentially may confuse many Xn ∈ Mog . To bound the number of Xn

that may be confused by a single X̂n, we use a second list-decoding argument. As before, we use the independence between
C \Mog and Mog to bound this number by a polynomial in n. All in all, we conclude that at most a polynomial number of
codewords Xn in Mog are confusable with a codeword X̂n in C \Mog , which concludes the first case we considered.

For the second case, we bound the number of codewords Xn ∈Mog that are confusable with X̂n which are also inMog . In
this case, we may no longer naı̈vely rely on the list decoding arguments used previously. This is due to the fact that the previous
arguments were strongly based on the independence between codewords that were potentially being confused (denoted by Xn)
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and those that were confusing them (denoted by X̂n). To overcome this difficulty, we partition the set Mog into disjoint sets
and study the effect of one set in the partition on another. Then by a combination of similar list decoding arguments and
additional counting arguments, we can show that only an exponentially small fraction of codewords Xn ∈Mog are confused
by a codeword X̂n ∈ C. The claimed list decoding properties above hold with extremely high probability of 1 − 2−βn

2

on
code design. This allows us to use the union bound on several assumptions made throughout the discussion (e.g., the values
of d, zn and sn).

B. Achievability proof of Theorem III.1

We now prove that any rate R < 1−H(p) can be achieved. Without loss of generality, we assume that R = 1−H(p)− ε >
1−H(q). We also assume, without loss of generality, that ε is sufficiently small.

Code construction: The code consists of 2nR vectors Xn(w);w = 1, 2, · · · , 2nR, all selected independently with i.i.d.
∼ Bernoulli(1/2) components.

Encoding: Alice encodes message W with Xn(W ) and transmits.
Decoding: Let the vector received by Bob be Y n. If Bob finds a unique Ŵ such that Xn(Ŵ ) is within distance (p+ ε1)n

from Y n, then he declares Ŵ as the decoded message. Otherwise he declares error. Here ε1 is a predetermined constant (that
is set to be sufficiently small).

For any subset of messages M ⊆ {1, 2, · · · , 2nR}, we define its codewords as

Xn(M) := {Xn(w)|w ∈M}.
After observing Zn, James can find all the codewords which are jointly typical with it. With high probability, the transmitted

codeword belongs to that set. We define, for any zn, d, the ball and the shell

B(zn, d) := {xn ∈ {0, 1}n : dH(xn, zn)) ≤ d))},
Sh(zn, d) := {xn ∈ {0, 1}n : dH(xn, zn)) = d))}.

Let D denote the random variable dH(Xn(W ), Zn). Let ε2 be a sufficiently small constant. We define the following events

EC1(zn, d) :=
{

2n(H(d/n)+R−1+ε2) ≥ |{w : Xn(w) ∈ Sh(zn, d)}| ≥ 2n(H(d/n)+R−1−ε2)
}

EC1 := ∩zn,d:|d−qn|≤ε1n EC1(zn, d)

ED :={(q − ε1)n ≤ D ≤ (q + ε1)n},
Sh(Zn, D) is the spherical shell around James’s received vector where the transmitted codeword lies. The code satisfies EC1

with high probability according to Lemma IV.2 below. We assume that an oracle reveals to James some additional information,
and prove our achievability under this stronger adversary. For every possible zn, and d satisfying (q − ε1)n ≤ d ≤ (q + ε1)n,
the oracle partitions the set of messages

Ms(z
n, d) = {w : Xn(w) ∈ Sh(zn, d)}

with codewords on the shell Sh(zn, d) into disjoint subsets M (1)
og (zn, d),M

(2)
og (zn, d), · · · ,M (λ(zn,d))

og (zn, d) of size 2nδ , except
possibly the last subset with smaller size. Here δ is chosen to be small enough to satisfy some requirements to be mentioned
later. This partitioning is done deterministically by taking the messages in order of their value, that is, satisfying w < w′ for
each w ∈M (i)

og (zn, d), w′ ∈M (i+1)
og (zn, d).

Additional information to James from the oracle: The oracle reveals D and the particular subset Mog = M
(i)
og (Zn, D) of

Ms(Z
n, D) that contains the encoded message W .

We denote the sets

Ms := Ms(Z
n, D)

Mo :=Ms \Mog

We make a few observations prior to our analysis.
O.1 James’s view (oracle aided) consists of Zn received over his channel, and Mog, D received from the oracle.
O.2 Given James’s view, the encoded message W is uniformly distributed in Mog .
O.3 Over the random code construction, given the values of D,Zn,Mog,Ms,Mo, the codewords {Xn(w)|w ∈ Mog},
{Xn(w)|w ∈ Mo}, and {Xn(w)|w ∈ Mc

s} are independently and uniformly distributed in respectively Sh(Zn, D),
Sh(Zn, D), and Sh(Zn, D)

c.
First we give three standard lemmas showing that w.h.p., D has a typical value (Lemma IV.1), the spherical shell around Zn

has a typical number of codewords (Lemma IV.2), and that among the partitions of these codewords, the transmitted message
is not in the last one - with a smaller size than 2nδ(Lemma IV.3).
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Lemma IV.1. There exists h1(ε1) with h1(ε1)→ 0 as ε1 → 0 s.t. Pr(ED) ≥ 1− 2−nh1(ε1) for large enough n.

Proof: The proof follows from standard typicality arguments.

Lemma IV.2. There exists h2(ε1, ε2) s.t. Pr(EC1) ≥ 1− 2−2nh2(ε1,ε2)

, where h2(ε1, ε2)→ H(q)−H(p) as ε2, ε1 → 0.

Proof: Note that there are at most n + 1 possible values of d satisfying the condition in EC1. Further, there are 2n

possible values of zn. Let us fix a pair zn, d. For large enough n, clearly, 2n(H(d/n)+R−1+ε2/2) ≥ E|{w : Xn(w) ∈
Sh(zn, d)}| ≥ 2n(H(d/n)+R−1−ε2/2). Thus by Chernoff bound and by taking the union bound over zn, d, we have Pr(EcC1) ≤
2−(1/6)2n(H(q−ε1)+R−1−ε2) ≤ 2−2nh2(ε1,ε2)

for a suitable h2(ε1, ε2).
Given EC1, ED, the messages in Ms are partitioned into exponentially many subsets. Only at most one of those subsets is

of smaller size than 2nδ . Let us define the event

EO := {Mog 6= M (λ(Zn,D))
og (Zn, D)}

that the oracle given set to James is not the last subset (which has possibly smaller size than 2nδ) in the partition of Ms(z
n, d).

Since given EC1, ED, Ms, the encoded message W is uniformly distributed in Ms, we have

Lemma IV.3.
Pr(EO|EC1, ED) > 1− 2−nh3(ε1,ε2)

where h3(ε1, ε2) = H(q − ε1) +R− 1− ε2 − δ.

Let us fix zn, sn and d satisfying |d − qn| ≤ nε1. Let us now define an event EC2(zn, d, sn) over the code construction
that every subset of size 2nδ in the ordered partition of Ms(z

n, d) has at most only 2n(3δ/4) messages which will undergo
decoding error for the respective realizations of D,Zn, Sn,W . We also define

EC2 = ∩zn,d,snEC2(zn, d, sn),

where the intersection is over all d satisfying |d− qn| ≤ nε1, all feasible sn, and all zn.
We will show in the subsequent analysis that the random code construction guarantees

Pr(EcC2 ∪ EcC1) ≤ 2−cn
2

(1)

for a positive constant c. Hence, with very high probability over the code construction, the code satisfies the good event
EC1 ∩ EC2. We will study such codes satisfying EC1, EC2. For such a code, the probability of error is bounded as

Pr(Error|EC1, EC2) ≤ Pr(EcD|EC1, EC2) + Pr(EcO|EC1, ED, EC2)

+ Pr(Error|EC1, ED, EO, EC2)

≤ 2−nh1(ε1) + 2−nh3(ε1,ε2) + 2−nδ/4 (2)

Here the first term follows from Lemma IV.1 by noting that ED is depends on the noise realization in James’s channel, and
so it does not depend on the code events EC1, EC2. The second term follows from Lemma IV.3 as the same result holds even
when conditioned on EC2 (Conditioned on EC1, ED, it is independent of EC2.) This is because, EO depends on the oracle’s
random choice, and it’s probability does not change even if the code satisfies the additional property EC2. Finally, the third
term follows from the definition of EC2.

Hence once (1) is proved, it will imply that with high probability, the randomly generated code will have exponentially
small probability of error as guaranteed by (2). This will complete the proof of Theorem III.1.

We now proceed to prove (1). Now,

Pr(EcC1 ∪ EcC2) = Pr(EcC1) + Pr(EC1 ∩ EcC2)
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The first term is small by Lemma IV.2. Now, the second term is

Pr(EC1 ∩ EcC2) = Pr(∪zn,d,sn(EC1 ∩ EcC2(zn, d, sn)))

≤
∑

zn,d,sn

Pr(EC1 ∩ EcC2(zn, d, sn))

≤
∑

zn,d,sn

Pr(EC1(zn, d) ∩ EcC2(zn, d, sn))

=
∑

zn,d,sn

Pr(EC1(zn, d))Pr(EcC2(zn, d, sn)|EC1(zn, d))

≤
∑

zn,d,sn

Pr(EcC2(zn, d, sn)|EC1(zn, d))

=
∑

zn,d,sn

∑
M

Pr(Ms(z
n, d) = M |EC1(zn, d))Pr(EcC2(zn, d, sn)|EC1(zn, d),Ms(z

n, d) = M)

=
∑

zn,d,sn

∑
M

Pr(Ms(z
n, d) = M |EC1(zn, d))Pr(EcC2(zn, d, sn)|Ms(z

n, d) = M)

where all the above summations are over d satisfying |d − qn| ≤ nε1, and over M satisfying 2n(H(d/n)+R−1+ε2) ≥ |M | ≥
2n(H(d/n)+R−1−ε2). In the last line, we have used the fact that Ms(z

n, d) = M implies EC1(zn, d). Thus to show (1), it is
sufficient to show that for some β > 0, for every such M ,

Pr(EcC2(zn, d, sn)|Ms(z
n, d) = M) ≤ e−βn2

. (3)

We note that for a given M , the partitioning is in increasing order of the message value, and is thus deterministic. There are
only exponentially many subsets in its ordered partition as used by the oracle.

We now proceed to prove (3). The messages in M which contribute to EcC2(zn, d, sn) are classified into two categories.
Lemma IV.6 bounds the number of codewords which are decoded wrongly due to confusion with another codeword outside the
same partition (revealed by the oracle). These codewords include those in the shell (but in another partition) as well as those
outside the shell. Lemma IV.7 bounds the number of codewords which are decoded wrongly due to confusion with another
codeword in the same partition that is revealed by the oracle.

First, we give a basic list-decoding result that will be used in Lemmas IV.6 and IV.7.

Lemma IV.4. Let A be a set with 2αn elements for some α > 0, c be a sufficiently large constant, ν > 0, and let
X1, X2, · · · , XN be chosen uniformly at random from A where N = 2nR. If V ⊂ A with |V | ≤ 2n(α−R−ν), then
Pr{|{i : Xi ∈ V }| > cn2} ≤ e−cn2/6.

The proof follows using the same argument as [3, Lemma A.3].

Corollary IV.5. With probability at least 1 − 2−βn
2

, the code satisfies the property that in every Hamming sphere of radius
(p+ ε1)n, there are at most cn2 codewords.

Lemma IV.6. There exists β > 0 such that, for every zn, d satisfying |d − nq| ≤ nε1, error sn introduced by James, for
every subset M of messages with 2n(H(d/n)+R−1+ε2) ≥ |M | ≥ 2n(H(d/n)+R−1−ε2), conditioned on Ms(z

n, d) = M , with
probability at least 1− e−βn2

over the code, for every i < λ(zn, d), there are at most c2n4 codewords Xn(w) in M (i)
og (zn, d)

for which there is a different codeword Xn ∈M c
s (zn, d) ∪ (Ms(z

n, d) \M (i)
og (zn, d)) with

dH(Xn(w) + sn, Xn) ≤ (p+ ε1)n. (4)

Proof: We first prove the statement for codewords in M c
s (zn, d). Note that the codewords in each of M (i)

og (zn, d), (Ms(z
n, d)\

M
(i)
og (zn, d)), and M c

s (zn, d) are uniformly distributed in the respective spaces. We have two key steps using Lemma IV.4.
1. For every realization of Xn(M

(i)
og (zn, d)), by considering V = ∪

w∈M(i)
og (zn,d)

B(Xn(w) + sn, (p+ ε1)n) in Lemma IV.4,

with probability at least 1− e−βn2

, there are at most cn2 messages in M c
s (zn, d) with codewords Xn satisfying (4) for some

w ∈M (i)
og (zn, d). So the same statement is also true over the random choice of Xn(M

(i)
og (zn, d)).

2. Now, by Corollary IV.5, with probability at least 1−e−βn2

, for every xn, there are at most cn2 codewords Xn(M
(i)
og (zn, d))∩

B(xn + sn, (p+ ε1)n). This ensures that there are at most cn2 codewords from Xn(M
(i)
og (zn, d)) for which xn ∈ B(Xn(w) +

sn, (p+ ε1)n).
So, for every zn, r, and sn, with high probability over the code, there are at most c2n4 codewords from Xn(M

(i)
og (zn, d))

which satisfy the condition in the lemma. Finally, taking the union bound over all i < λ(zn, d), we have the result for
M c
s (zn, d).
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The same proof steps also work for Ms(z
n, d) \M (i)

og (zn, d). We take V =
(
∪
w∈M(i)

og (zn,d)
B(Xn(w) + sn, (p+ ε1)n)

)
∩

Sh(zn, d) in the first step. We note that |V | ≤ 2n(H(p+ε1)+ε2/2+δ) (for large enough n), |Sh(zn, d)| ≥ 2n(H(q−ε1)−ε2/2),
and the number of messages in Ms(z

n, d) \M (i)
og (zn, d) is at most 2n(H(q+ε1)+R−1+ε2). So, the expected number of these

codewords in V is at most 2n(H(p+ε1)+H(q+ε1)−H(q−ε1)+R−1+2ε2+δ). The exponent is < 0 for small enough ε2, ε1, δ. Thus
the first step follows using the same arguments. The second step is the same as before.

In the following, we consider the codewords in M (k)
og (zn, d) arranged in a square and indexed by a set A×A with |A| = 2nδ/2,

before being randomly associated to the messages. With abuse of notation, for i, j ∈ A, we will denote the (i, j)-th codeword
in this arrangement as Xn(i, j) (note that this omits the global association of the codewords to the actual messages; to avoid
this, we may further index these with (zn, d, k).)

Lemma IV.7. There exists β > 0 such that, for every zn, d satisfying |d − nq| ≤ nε1, error sn introduced by James, for
every subset M of messages with 2n(H(d/n)+R−1+ε2) ≥ |M | ≥ 2n(H(d/n)+R−1−ε2), conditioned on Ms(z

n, d) = M , with
probability at least 1− e−βn2

over the code, for every k < λ(zn, d), (i) for every i, there are at most c2n4 codewords in the
i-th row {Xn(i, j)|j ∈ A} for which {Xn(i′, j′)|i′ 6= i, j′ ∈ A} ∩ B(Xn(i, j) + sn, (p + ε1)n) is non-empty, (ii) there are
at most 2n(3δ/4) messages w ∈ M (k)

og (zn, d) for which {Xn(w′)|w′ ∈ M (k)
og (zn, d), w′ 6= w} ∩ B(Xn(w) + sn, (p + ε1)n) is

non-empty.

Proof: We fix a k and prove both parts; a union bound over all k at the end proves the lemma. Part (i): Recall that the
codewords in Xn(M

(k)
og (zn, d)) are drawn independently and uniformly from Sh(zn, d). The proof of this part then follows

using a two-step argument similar to the proof of Lemma IV.6.
Part (i) implies that with high probability, there are at most c2n4 codewords in each row of M (k)

og (zn, d) which will be
confused, under the error vector sn, with some codeword in another row. The same statement also holds for columns by the
same arguments.

Part (ii): By part (i), with high probability over the code, there are at most c2n4 codewords in any row (and column) which
are confusable, under the error vector sn, with a codeword in another row. Let us now define a directed graph with vertices A2,
and there is an edge from Xn(i, j) to Xn(i′, j′) if dH(Xn(i, j)+sn, Xn(i′, j′)) ≤ n(p+ ε1), that is, if the codeword Xn(i, j)
is confusable under the error vector sn with Xn(i′, j′). We define the non-horizontal out-degree of a node as the number of
edges coming out of that node to another node in a different row. The non-vertical out-degree is similarly defined. Clearly the
out-degree of a node is at most the sum of the non-horizontal and non-vertical out-degree. Under the high probability event
of part (i), each row of vertices in the graph has at most c2n4 vertices with non-zero non-horizontal out-degree. So in the
graph, there are at most c2n4|A| nodes with non-zero non-horizontal out-degree. Similarly there are at most c2n4|A| nodes
with non-zero non-horizontal out-degree. So there are at most 2c2n4|A| ≤ 2n(3δ/4) nodes with non-zero out-degree.

Lemma IV.6 and IV.7 prove (3) for some β > 0, for all zn, d, s,M satisfying |d − qn| ≤ ε1n and 2n(H(d/n)+R−1+ε2) ≥
|M | ≥ 2n(H(d/n)+R−1−ε2). This in turn proves (1). Thus with high probability, the code satisfies EC1, EC2. Such a code then
achieves exponentially small probability of error by (2). This completes the achievability proof of Theorem III.1.

V. GENERAL MYOPIC CHANNEL AND THE PROOF OF THEOREM III.4

A. Intuition for general myopic jamming channels

For general pairs of channels (a stochastic channel pZ|X and the AVC pY |XS), many of the ideas used in the achievability
proofs for the bit-flipping channel also go through to result in the Theorems III.4, III.5, III.6. We highlight the major differences
here.

Model: To begin with, we borrow heavily from the problem formulation in [18] to model the relationship between the
n-letter tuple (Xn, Zn, Sn, Y n) in terms of single-letter distributions pXpZ|XpS|ZpY |XS . More precisely:
• In our achievability proofs we focus on codebooks generated i.i.d. according to the distribution pX (subject to the constraint
pX ∈ V).

• The channels pZ|X and pY |XS are specified as part of the problem statement, in which they are assumed to be memoryless.
• While James is free to choose any n-letter state-vector (subject to the constraint that the type-class of Sn be in W)

as a function of his full n-letter observation Zn, any such choice can be “reverse engineered” as a particular length-n
instantiation of a conditional distribution pS|Z , where the pS|Z corresponds to the conditional type-class of Sn given the
observed vector Zn.

• Further, as defined in the myopic jamming problem statement, James’s state vector Sn must be conditionally independent
of Xn given his observation Zn.

Putting these together, we note that the n-letter tuple (Xn, Zn, Sn, Y n) can be thought of as a tuple of length-n sequences
generated according to the single-letter distribution pXpZ|XpS|XpY |XS (subject, of course, to the corresponding input and
state constraints V and W).

Results: It is then natural to conjecture that the corresponding “capacity” of the problem equals I(X;Y ), maximized over
all valid encoder profiles corresponding to pX , and minimized over all valid attacks by James corresponding to pS|Z , as long
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(a) Lemmas IV.1 

“Confusing”  
codewords 

Codewords     ,        confused 
 by the codeword 

(b) Lemmas IV.4, IV.6 (c) Lemma IV.7 

Zn

Sn

Xn

X 0n
X 000n

X 00n

X̄n

X̂n

X̄n
X 0nX 00n

d ⇡ qn

Mog

Fig. 6. Intuition about proof techniques: Fig (a): Lemma IV.1 uses “standard” concentration inequalities to argue that the value of d (the amount of noise James sees) is “close”
to qn. Lemma IV.2 argues that for every shell with such d, the number of codewords on a shell of radius d centred at Zn is close to 2n(H(q)−H(p)) – from James’s perspective,
each of these codewords is equally likely to have been transmitted. Fig (b): Lemmas IV.4 and IV.6 are “list-decoding” lemmas. Lemma IV.4 argues that regardless of the shape of
the volume being considered, as long as it is smaller than the “average volume per codeword”, for a super-exponentially large fraction of codes the number of codewords in the
volume is not large (at most O(n2)). Lemma IV.6 then uses this result to show that there are not too many codewords inMog “confused by Sn with codewords in C \Mog”
(at most O(n4)). It does this in two steps – it first uses Lemma IV.4 to show that there are not too many “confuse-ing” codewords from C \ Mog (e.g. X̂n and X̄n in the
figure), and then it re-uses Lemma IV.4 to show that each “confuse-ing” codeword does not lead to too many “confus-ed” codewords (X̄n only confuses X′n and X′′n in the
figure). Fig (c): Lemma IV.7 analogously proves that there are not too many codewords inMog “confused by Sn with other codewords inMog”. To do so, the 2nδ codewords
in Mog are arranged in a square grid. Using Lemma IV.4 one can show that in any column (respectively row) of this grid there are not too many (at most O(n2)) codewords
in that column (respectively row) that are confused by Sn with any other codeword in any other column (respectively row) – the red-arrows in the figure indicate codewords that
are confused by Sn with another codeword in a different row or column. This allows one to demonstrate that the total fraction of codewords inMog that are confused by Sn is
an exponentially small fraction, and hence the probability of error is small. Since the preceding statements are true with probability super-exponentially close to 1, one may take a
union bound over all possible values of d, Zn, and Sn.

as the channel pZ|X is “sufficiently myopic” compared to the channel pY |XS . And indeed both our achievability and converse
expressions (in Theorems III.4, III.5) take this form. However, there is a gap between the tightest converse we can prove in
Theorem III.5, and the achievability we can prove in Theorem III.4. Specifically, our achievability requires us to maximize
over pX such that two “myopicity” conditions (given by (b) and (c) in the statement of Theorem III.4) are satisfied.

For a wide variety of other myopic channel-pairs our approach results in non-trivial achievability results. This includes
problems in which the channels from Alice to James, and from Alice to Bob, are of different “forms” (for instance, a BSC(q)
from Alice to James, and an AVC from Alice to Bob in which James can erase a fraction p of bits). However, we are by no
means convinced that the achievability result we present is optimal in general. In particular, while the first myopicity condition
(Theorem III.4 (b)), I(X;Z) < I(X;Y ) is “somewhat natural” (corresponding to James having a weaker channel than any
channel he can impose on Bob), the second condition (Theorem III.4 (c)) arises from somewhat technical considerations in
“reverse list-decoding” described below.

Proof Techniques: Given the problem formulation described above, many (but not all) of the ideas described in the
achievability proof of the channel C(q, p) carry through. Specifically:
• The oracle-given set is defined in an analogous manner to how it is defined for the channel C(q, p). Specifically, as long

as I(X;Z) < I(X;Y ), one can demonstrate via standard combinatorial arguments that all “typical type-classes” have
exponentially many codewords in them – one then constructs the corresponding oracle-given set by choosing sufficiently
many codewords with the same empirical conditional distribution pX|Z as the “true” (Xn, Zn).

• One can then show that over the randomness in which codeword Xn in the oracle-given set was actually transmitted,
with high probability the tuples (Xn, Sn, Y n) are jointly typical according to the joint distribution pXpZ|XpS|XpY |XS .

• For state-deterministic channels 5 pY |XS one can show an “Xn”-list-decoding argument. Namely, one can show that with
probability super-exponentially close to one over code design, the number of codewords from the oracle-given set that are
translated under the action of a feasible state vector Sn into the conditionally typical set w.r.t. any typical Y n is “small”
(at most O(n2)).

• We also use a “Y n”-list-decoding argument, that demonstrates that the number of Y n resulting from the action by a fixed
feasible state vector Sn acting on any Xn from the oracle-given set is at most O(n2). Again, for technical reasons, to
prove this list-decoding result we need to impose some additional constraints on the class of permissible states W – these
are precisely the constraints in Theorem III.4(c).

5The restriction to state-deterministic channels is a technical condition required by our proof, so as to be able to achieve the claimed rate. Removing this
restriction is possible, but then with our current proof techniques our achievable rates reduce to I(X;Y ) −H(Y |X,S) rather than I(X;Y ), and also we
need to further restrict the class of state constraints W for which such a result is possible. Attempting to remove this restriction is a direction of ongoing
research. Nonetheless, the class of state-deterministic channels already contains many interesting myopic channels problems, such as the channel C(q, p)
discussed in length above, the channel CE(q, p) discussed in Sec. III-C, and a variety of other “mixed” channels.
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• Finally, the square-grid argument described in the proof of the C(q, p) is essentially unchanged in this general setting.
• As in the C(q, p) case, the interplay between the problems of jamming-resilient and eavesdropping-resilient code-designs

is natural. As in the general wiretap-channel case, one can indeed use our codes, as outlined in Theorem III.4, and
transmit over them messages that themselves comprises of the “true message”, padded with random bits, and encoded
via wiretap-channel codes, so as to guarantee communication that is both reliable against James’s jamming, and secure
against his eavesdropping.

B. Proof of Theorems III.4

Let T (xn, zn) denote the joint type of the vectors xn, zn. Our achieability scheme is using a random code. Let pX be the
input distribution used to construct the code. We assume that it satisfies the condition in Theorem III.4. Recall that pZ|X is
Calvin’s channel law. These give a joint distribution pXZ and a marginal distribution pZ . The channel law to Bob is given by
pY |XS . Note that every i.i.d. jamming strategy pS|Z results in a joint distribution pXpZ|XpS|ZpY |XS . We define

WS|Z :=
{
pS|Z |

(
pXpZ|XpS|Z

)
S
∈ W

}
,

where
(
pXpZ|XpS|Z

)
S

denotes the marginal of pXpZ|XpS|Z on S. In the following, we assume the distributions pX , pZ|X , pY |XS
to be fixed.

For any yn, let us define BX|Y (yn,W) as the set of xn which are jointly ε1-typical with yn for some pS|Z ∈ WS|Z . The
volume of BX|Y (yn,W) can be bounded as

1

n
log2 |BX|Y (yn,W)| ≤ max

pS|Z∈WS|Z
H(X|Y ) + f1(ε1)

for some f1(ε1)→ 0 as ε1 → 0. Similarly, BY |X(xn,W) is defined, and it has a volume ≤ maxpS|Z∈WS|Z H(Y |X) + f1(ε1).
Drawing similarity with the proofs for C(q, p), these sets take the role of balls of radius p around xn and yn respectively.

Decoding: On receiving yn, if Bob finds a unique codeword in BX|Y (yn,W), then he decodes this codeword. Otherwise
he declares error.

The overall proof argument is the same as in the bit-flip case. So we only give the relevant modified lemmas and definitions
in the following, in addition to any extra arguments which are required for the general case.

Let τ denote a joint type of xn, zn. In the following, for a given zn, τ denotes a joint type that is consistent with zn.

Sh(zn, τ) := {xn ∈ Xn : T (xn, zn) = τ}.
Let T denote the type of (Xn(W ), Zn). We also denote by T µ(X,Z), the set of joint types which are µ-typical. Here
µ = µ(ε1) (it is a function of pX , pZ|X , though we do not mention it explicitly).

We define events, similar to those in the proof for the C(q, p),

EC1(zn, τ) :=
{

2n(Hτ (X|Z)+R−H(X)+ε2) ≥ |{w : Xn(w) ∈ Sh(zn, τ)}| ≥ 2n(Hτ (X|Z)+R−H(X)−ε2)
}

EC1 := ∩zn,τ∈T µ(X,Z)EC1(zn, τ)

ED := {T ∈ T µ(X,Z)}.

Here Hτ (X|Z) denotes the conditional entropy for the joint distribution τ . For every zn, and τ ∈ T µ(X,Z), the oracle
partitions the set of messages

Ms(z
n, τ) = {w : Xn(w) ∈ Sh(zn, τ)}

with codewords on the shell Sh(zn, τ) into disjoint subsets M (1)
og (zn, τ),M

(2)
og (zn, τ), · · · ,M (λ(zn,τ))

og (zn, τ) of size 2nδ , except
possibly the last subset with smaller size. The oracle reveals T and the particular subset Mog = M

(i)
og (Zn, T ) of Ms(Z

n, T )
that contains the encoded message W .

In the general case under consideration, τ, T respectively take the role of d and D in the binary case. Like in the binary case,
Lemmas IV.1 and IV.2 also hold here with the changed definitions of ED and EC1. h2 now depends on pZ|X ,W, ε, ε1, ε2. With
D replaced by T , and the changed definition of Sh(Zn, D) := Sh(Zn, T ), the observations O.1, O.2, O.3, and Lemma IV.3
in the previous section still hold.

Suppose τ ∈ T µ(X,Z). The event EC2(zn, τ, sn) is defined, similarly as before, over the code construction that every subset
of size 2nδ in the ordered partition of Ms(z

n, τ) has at most only 2n(3δ/4) messages which will undergo decoding error for
the respective realizations of D,Zn, Sn,W . The event EC2 is defined, also similarly as before, as

EC2 = ∩zn,τ,snEC2(zn, τ, sn)

where the intersection is over τ ∈ T µ(X,Z), all feasible sn, and all zn.
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We need to show the counterpart of (3):

Pr(EcC2(zn, τ, sn)|Ms(z
n, τ) = M) ≤ e−βn2

. (5)

for every M satisfying 2n(Hτ (X|Z)+R−H(X)+ε2) ≥ |M | ≥ 2n(Hτ (X|Z)+R−H(X)−ε2). The overall proof argument is the same
as in the binary case. We first note the fact that for large enough n, for any Xn ∈ Sh(zn, τ) and sn satisfying W , Xn ∈
BX|Y (sn(Xn),W). So the transmitted codeword always satisfies the decoding condition. This is because, (i) X − Z − S
forms a Markov chain, (ii) (Xn, zn) is ε1/2-typical, (iii) (zn, sn) is ε1/2-typical for some pS|Z ∈ WS|Z . To see why the third
statement is true, we note that zn is µ-typical, and sn satisfies W . The conditional distribution pS|Z := T (zn)T (sn|zn)/pZ
(at all points with pZ(z) 6= 0) is in WS|Z , and (zn, sn) is ε1/2-typical for this pS|Z if µ is small enough.

We now give the counterparts of Lemma IV.6 and Lemma IV.7 below. Together, they imply (5). But first we give a
generalization of Lemma IV.4:

Lemma V.1. Let V ⊂ Xn be a subset of ε1-typical sequences w.r.t. the distribution pX with cardinality |V | ≤ 2nc. Then (i)
the probability PrpX (V ) ≤ 2−n(H(X)−c−f2(ε1)) for some f2(ε1) → 0 as ε1 → 0, (ii) if R < H(X) − c − f2(ε1), and 2nR

vectors Xn(w);w = 1, 2, · · · , 2nR are chosen independently with i.i.d. ∼ pX components, then for a sufficiently large constant
α, Pr(|{w : Xn(w) ∈ V }| > cn2) ≤ e−αn2/6.

Proof: Part (i) follows as the probability of each ε1-typical sequence is ≤ 2−n(H(X)−f2(ε1)). Part (ii) follows using part
(i) in a similar way as Lemma IV.4 using the Chernoff bound.

Lemma V.2. There exists β > 0 such that for every zn, τ ∈ T µ(X,Z), state vector sn introduced by Calvin, for every subset
M of messages with 2n(Hτ (X|Z)+R−H(X)+ε2) ≥ |M | ≥ 2n(Hτ (X|Z)+R−H(X)−ε2), conditioned on Ms(z

n, τ) = M , with
probability at least 1− e−βn2

over the code, for every i < λ(zn, τ), there are at most c2n4 codewords from Xn(M
(i)
og (zn, τ))

for which there is a codeword from Xn((M
(i)
og (zn, τ))c) which lies in BX|Y (sn(Xn(w)),W).

Proof: Clearly, (M
(i)
og (zn, τ))c = M c

s (zn, τ) ∪ (Ms(z
n, τ) \ M (i)

og (zn, τ)). Note that the codewords in (Ms(z
n, τ) \

M
(i)
og (zn, τ)) are uniformly distributed in Sh(zn, τ). The codewords of M c

s (zn, τ) are chosen according to pnX conditioned on
the subset (Sh(zn, τ))c. We first prove the statement for codewords in M c

s (zn, τ). We have two key steps:
1. For every realization of Xn(M

(i)
og (zn, τ)), we consider V = ∪

w∈M(i)
og (zn,τ)

BX|Y (sn(Xn(w)),W). This satisfies (1/n) log2 |V | ≤
δ + f1(ε1) + maxpS|Z∈WS|Z H(X|Y ). Since Sh(zn, τ) contains only a subset of one type of xn, for large enough n, under
the probability measure pnX , Pr(Sh(zn, τ)) ≤ 1/2. Thus by Lemma V.1(i), for the codeword of any message w ∈M c

s (zn, τ),
the probability of it being chosen from V is

Pr(V |(Sh(zn, τ))c)

≤ 2 · 2−n(H(X)−δ−f1(ε1)−f2(ε1)−maxpS|Z∈WS|Z H(X|Y ))

= 2 · 2−n(minpS|Z∈WS|Z I(X;Y )−δ−f1(ε1)−f2(ε1))

Thus, by the same proof as that of Lemma V.1 (ii), with probability at least 1 − e−βn2

, there are at most cn2 codewords
from Xn(M c

s (zn, τ)) in V for sufficiently small δ, ε1. Here we have used the fact that R < minpS|Z∈WS|Z I(X;Y ) − δ −
f1(ε1)−f2(ε1). So the same statement is also true over the whole random code, that is, when Xn(M

(i)
og (zn, τ)) is also chosen

randomly.
2. Now, over the random choice of Xn(M

(i)
og (zn, τ)) from the vectors in Sh(zn, τ), with probability at least 1− e−βn2

, for
every xn, there are at most cn2 codewords from Xn(M

(i)
og (zn, τ)) in (sn)−1(BY |X(xn,W)). Here (sn)−1(BY |X(xn,W)) :=

{xn′ : sn(xn′) ∈ BY |X(xn,W)}. This follows using Lemma V.1 because, for every feasible sn, (1/n) log2 |(sn)−1(BY |X(xn,W))| ≤
maxpS|Z∈WS|Z H(X|Y, S) + maxpS|Z∈WS|Z H(Y |X) < H(X|Z).

Now the proof follows by taking the union bound over all i < λ(zn, τ) as in the binary case (Lemma IV.6). A similar proof
also works for Ms(z

n, τ) \M (i)
og (zn, τ) by noting that the volume of the shell is ≥ 2n(Hτ (X|Z)−ε2/2) (for large enough n),

and the number of codewords on the shell is |M | ≤ 2n(Hτ (X|Z)+R−H(X)+ε2).
Similar to the binary case, let us consider the codewords in M (k)

og (zn, τ) arranged in a square and indexed by a set A×A
with |A| = 2nh2(ε1,ε2)/2.

Lemma V.3. There exists β > 0 such that, for every zn, τ ∈ T µ(X,Z), state sn introduced by Calvin, for every subset M of
messages with 2n(Hτ (X|Z)+R−H(X)+ε2) ≥ |M | ≥ 2n(Hτ (X|Z)+R−H(X)−ε2), conditioned on Ms(z

n, τ) = M , with probability
at least 1 − e−βn2

over the code, for every k < λ(zn, τ), (i) for every i, there are at most c2n4 codewords in the i-th row
{Xn(i, j)|j ∈ A} for which {Xn(i′, j′)|i′ 6= i, j′ ∈ A} ∩BX|Y (sn(Xn(i, j)),W) is non-empty, (ii) there are at most 2n(3δ/4)

messages w ∈M (k)
og (zn, τ) for which {Xn(w′)|w′ ∈M (k)

og (zn, τ), w′ 6= w} ∩ BX|Y (sn(Xn(w)),W) is non-empty.
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Proof: The proof of the first part follows using a two-step argument similar to the proof of Lemma V.2. The proof of
the second part follows using similar arguments as the second part of Lemma IV.7.
Lemma V.2 and V.3 prove (5), and then by the same arguments as in the bit-flip case, the achievability of Theorem III.4
follows.

Remark V.4 (Improvements for bit erasing and flipping adversaries). Condition (c) on an achievable rate in Theorem III.4 is
due to the bound

(1/n) log2 |(sn)−1(BY |X(xn,W))| ≤ max
pS|Z∈WS|Z

H(X|Y, S) + max
pS|Z∈WS|Z

H(Y |X) (6)

used in the second part of the proof of Lemma V.2. In general, (6) is the best bound we have in single-letter expression
for (1/n) log2 |(sn)−1(BY |X(xn,W))|. We suspect this to be quite loose, and expect the result (Theorem III.4) for general
channels to hold under weaker conditions than (c).

(i) Binary erasure-erasure channel: For the erasure-erasure channel CE(q, p), this condition gives p+H(p) < q, which is
stronger than the natural ‘sufficiently myopic’ condition p < q. For this channel, it is possible to get a tighter bound which
results in the condition p < q, that is the same as condition (b). We first note that |(sn)−1(BY |X(xn,W))| counts the number
of vectors xn′ for which sn(xn′) can also be obtained by erasing some components of xn. The components of xn erased in
this process must be the same as those indicated by sn, that is, sn′(xn) = sn(xn′) only if sn = sn′. Thus,

(1/n) log2 |(sn)−1(BY |X(xn,W))| ≤ p,
as the number of erasures in sn is at most np. Thus under condition (b) alone, i.e., p < q, the capacity of CE(q, p) is 1− p.
This proves Theorem III.8.

(ii) Bit erasing and flipping adversary, CEF (pZ|X , pe, pw): We note that the counting of |(sn)−1(BY |X(xn,W))| only
involves the channel between Alice to Bob (the AVC), and not the channel between Alice to James. So similar improved
counting as for the erasure-erasure channel works as long as James can only erase and flip transmitted bits. For such
adversaries, irrespective of James’s own channel, Theorem III.4 holds without the extra condition (c).

In particular, let us consider the setup CEF (pZ|X , pe, pw) where James can erase upto pe fraction of the transmitted bits,
and he can flip upto pw fraction of the transmitted bits. For such a valid state vector sn, let sne denote the action of erasing
the same positions that are erased by sn. Now clearly,

(sn)−1(BY |X(xn,W)) = {xn′|dH(sn(xn′), sne (xn)) ≤ pwn}.
Thus

(1/n) log2 |(sn)−1(BY |X(xn,W))| ≤ pe + (1− pe)H
(

pw
1− pe

)
.

This gives an achievable rate upto

1−
(
pe + (1− pe)H

(
pw

1− pe

))
=(1− pe)

(
1−H

(
pw

1− pe

))
under the sufficient myopicity condition that

1−H(X|Z) ≤ (1− pe)
(

1−H
(

pw
1− pe

))
(iii) Secrecy capacity for the erasing and flipping adversary, CEF (pZ|X , pe, pw): Using a standard stochastic encoding

technique for wiretap channels, the above also gives a secrecy rate of

(1− pe)
(

1−H
(

pw
1− pe

))
− (1−H(X|Z))

=H(X|Z) + peH

(
pw

1− pe

)
− pe −H

(
pw

1− pe

)
.

For the special case of CEF (BEC(q), pe, pw), this gives the secrecy rate

(1− pe)
(

1−H
(

pw
1− pe

))
− (1− q)

=q + peH

(
pw

1− pe

)
− pe −H

(
pw

1− pe

)
.



17

(iv) Secrecy against a type II wiretapper adversary: We now elaborate on the erasure-erasure setting and explicitly on
extending Theorem III.10 to the model of Aggarwal et al. [22]. In general, the proof of Theorem III.10 follows that of
Theorem III.6 when one considers the channel CE(q, p). Specifically, the proof of secrecy for rates under q−p follows roughly
by appending 1 − q bits of private randomness r to the message u, and applying our code on the concatenated pair (u, r)
(which is of length (1 − p)n). To prove that our random code construction satisfies the secrecy requirement 1

nI(Zn;U) < ε
in the model of [22] (when James can pick which qn bits are erased) one must show that with high probability over code
design, for every view Zn of James, for every u ∈ U there are approximately the same number of random strings r such that
the encoding of (u, r) is consistent with Zn (i.e., the corresponding codeword agrees with Zn on all the un-erased entries).
Indeed, in this case, the amount of information James has on U is limited. Let ε > 0. Taking the size of r to be 1 − q + ε
and the rate of u to be q− p− 2ε, we have (via the Chernoff bound) with doubly exponential probability of 1− 2−2Ω(εn)

over
code design that for every view Zn of James and every u ∈ U the number of different random r such that the encoding of
(u, r) is consistent with Zn is in the range [2εn(1 − ε), 2εn(1 + ε)]. Bounding entropy by variational distance we conclude
that 1

nI(Zn;U) < O(ε).
(v) Wiretap channel of type II with erasing and flipping adversary, WCEF -II(pr, pe, pw): If James can choose a pr = 1−q

fraction of transmitted bits to observe, then using the lines of argument outlined above, it can be seen that the secrecy rate
q + peH

(
pw

1−pe

)
− pe −H

(
pw

1−pe

)
= 1− pr + peH

(
pw

1−pe

)
− pe −H

(
pw

1−pe

)
is still achievable.

VI. CONCLUSIONS

In this work we study the secure and standard capacity of adversarial myopic channels. For the bit-flipping adversarial
channel C(q, p), for the binary erasure-erasure adversarial channel CE(q, p), and more generally for binary input channels
where the adversary can both erase and flip some fractions of bits, we characterize these capacities as the capacity under
random noise when the adversary’s own channel is more noisy than the worst noise it can impose on Bob, in terms of mutual
information. For these models, we also consider analogs of the wiretap channel of type II. For general myopic channels,
we prove similar achievability results under a stricter condition of myopicity. A tight characterization of capacity for general
myopic channels is left open and subject of future work.
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