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Abstract

In this paper, we study the notion of codes with hierarchical locality that is identified as another approach to local recovery
from multiple erasures. The well-known class of codes with locality is said to possess hierarchical locality with a single level.
In a code with two-level hierarchical locality, every symbol is protected by an inner-most local code, and another middle-level
code of larger dimension containing the local code. We first consider codes with two levels of hierarchical locality, derive an
upper bound on the minimum distance, and provide optimal code constructions of low field-size under certain parameter sets.
Subsequently, we generalize both the bound and the constructions to hierarchical locality of arbitrary levels.
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I. INTRODUCTION

An important desirable attribute in a distributed storage system is the efficiency in carrying out repair of failed nodes. Among
many others, two important metrics to characterize efficiency of node repair are repair bandwidth, i.e., the amount of data
download in the case of a node failure and repair degree, i.e., the number of helper nodes accessed for node repair. While
regenerating codes [1] aim to minimize the repair bandwidth, codes with locality [2] seek to minimize the repair degree. The
focus of the present paper is on codes with locality.

A. Codes with Locality

An [n, k, d] linear code C can possibly require to access k symbols to recover one lost symbol. The notion of locality of
code symbols was introduced in [2], with the aim of designing codes in such a way that the number of symbols accessed
to repair a lost symbol is much smaller than the dimension k of the code. The code C is said to have locality r if the i-th
code symbol ci, 1 ≤ i ≤ n can be recovered by accessing r << k other code symbols. In [2], authors proved an upper bound
on the minimum distance of codes with locality, and showed that an existing family of pyramid codes [3] can achieve the
bound. In [4], authors extended the notion to (r, δ)-locality, where each symbol can be recovered locally even in the presence
of an additional (δ − 2) erasures. In [2], authors introduced categories of information-symbol and all-symbol locality. In the
former, local recoverability is guaranteed for symbols from an information set, while in the latter, it is guaranteed for every
symbol. Explicit constructions for codes with all-symbol locality are provided in [5], [6], respectively based on rank-distance
and Reed-Solomon (RS) codes. Improved bounds on the minimum distance of codes with all-symbol locality are provided in
[7], [8], along with certain optimal constructions. Families of codes with all-symbol locality with small alphabet size (low field
size) are constructed in [9]. Locally repairable codes over binary alphabet are constructed in [10]. A new approach of local
regeneration, where in repair is both local and in addition bandwidth-efficient within the local group, achievable by making
use of a vector alphabet is considered in [4], [11], [12].

Recently, many approaches are proposed in literature [4], [7], [9], [13], [14] to address the problem of recovering from
multiple erasures locally. The notion of (r, δ)-locality introduced in [4] is one such. In [13], an approach of protecting a single
symbol by multiple support-disjoint local codes of the same length is considered. An upper bound on the minimum distance
is derived, and existence of optimal codes is established under certain constraints. A similar approach is considered in [9]
also. In [9], authors allow multiple recovering sets of different sizes, and also provide constructions requiring field-size only
in the order of block-length. Quite differently, authors of [7] consider codes allowing sequential recovery of two erasures,
motivated by the fact that such a family of codes allow a larger minimum distance. An upper bound on the minimum distance
and optimal constructions for restricted set of parameters are provided.

B. Our Contributions

In the present paper, we study the notion of hierarchical locality that is identified as another approach to local recovery from
multiple erasures. In consideration of practical distributed storage systems, Duminuco et al. in [15] had proposed the topology
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Fig. 1: Illustration of [16, 12, 4]-code used in Windows Azure.
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Fig. 2: Illustration of [24, 14, 6]-code having 2-level hierarchical locality.

of hierarchical codes earlier. They compared hierarchical codes with RS codes in terms of repair-efficiency using real network-
traces of KAD and PlanetLab networks. Their work was focused on collecting empirical data for performance improvements,
rather than undertaking a theoretical study of such a topology. In the present paper, we study codes with hierarchical locality,
first considering the case of two-level hierarchy. We derive an upper bound on the minimum distance and provide optimal code
constructions under certain parameter-sets. This is further generalized to a setting of h-hierarchy in a straightforward manner.

II. CODES WITH HIERARCHICAL LOCALITY

The Windows Azure Storage solution employs a [16, 12, 4]-pyramid code with a locality parameter r = 6. In the code,
as illustrated in Fig. 1, every code symbol except the global parities P1, P2 can be recovered accessing r = 6 other code
symbols. While the code performs well in systems where single node-failure remains the dominant event, it requires to connect
to k = 12 symbols to recover a failed under certain erasure-patterns consisting of 2 node-failures. We consider an example of
[24, 14, 6]-code from the family of codes with hierarchical locality in an attempt to reduce such an overhead. The structure of
the code is depicted in Fig. 2 as a tree in which each node represents a constituent code. The code contains two support-disjoint
[n1 = 12, r1 = 8, d2 = 3] codes, each of them in turn comprised of three support-disjoint [n2 = 4, r2 = 3, d1 = 2] codes.
Making use of [4, 3, 2]-code, all single-erasures can be repaired accessing r2 = 3 symbols, which is half the number of symbols
required in the Windows Azure code in a similar situation. We can recover a lost symbol connecting to r1 = 8 symbols in the
case of erasure-pattern involving 2 erasures. This is in contrast to the Windows Azure code where we had to download the
entire message of 12 symbols. While the Windows Azure code offers a storage overhead of 1.3x with a minimum distance of
4, our code has a larger overhead of 1.7x with a better minimum distance d = 6. The example of [24, 14, 6]-code can indeed
be constructed, and it will be shown that the minimum distance is optimal among the class of codes.

A. Preliminaries

Definition 1: [4] An [n, k, d] linear code C is a code with (r, δ)-locality if for every symbol ci, 1 ≤ i ≤ n, there exists a
punctured code Ci such that ci ∈ Supp(Ci) and the following conditions hold: 1) dim(Ci) ≤ r, 2) dmin(Ci) ≥ δ.

Codes with locality were first defined in [2] for the case of δ = 2, and the class was generalized for arbitrary δ in [4]. In the
definition given in [4], the authors imposed constraints on the length and the dmin of Ci. We replace the constraint on length
with a constraint on dim(Ci), and it may be noted that it does not introduce any loss in generality. The code Ci associated
with the i-the symbol is referred to as its local code. If it is sufficient to have local codes only for symbols belonging to some
fixed information set I , such codes are referred to as codes with information-symbol (r, δ)-locality. The general class in Def. 1
is also referred to as codes with all-symbol (r, δ)-locality, in order to differentiate them from the former. In this paper, unless
otherwise mentioned, we consider codes with all-symbol locality.

Definition 2: An [n, k, d] linear code C is a code with hierarchical locality having locality parameters [(r1, δ1), (r2, δ2)] if
for every symbol ci, 1 ≤ i ≤ n, there exists a punctured code Ci such that ci ∈ Supp(Ci) and the following conditions hold:
1) dim(Ci) ≤ r1, 2) dmin(Ci) ≥ δ1, 3) Ci is a code with (r2, δ2)-locality.

The punctured code Ci associated with ci is referred to as its middle code. Since the middle code is a code with locality,
each of its symbols will in turn be associated with a local code.

B. An Upper Bound On the Minimum Distance

Theorem 2.1: Let C be an [n, k, d]-linear code with hierarchical locality having locality parameters [(r2, δ2), (r1, δ1)]. Then

d ≤ n− k + 1−
(⌈

k

r2

⌉
− 1

)
(δ2 − 1)−

(⌈
k

r1

⌉
− 1

)
(δ1 − δ2). (1)

Proof: We extend the techniques introduced in [2] in proving the theorem. A punctured code Cs of C having dimension
k − 1, is identified first. Then we will use the fact that
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d ≤ n− |Supp(Cs)|. (2)

The Algorithm 1 (see flow chart in App. A) in is used to find Cs with a large support. In each iteration indexed by j, the
algorithm identifies a middle code from C, that accumulates additional rank. Then it picks up local codes from within the
middle code that accumulate additional rank. Clearly, the algorithm terminates as the total rank is bounded by k. Let iend and
jend respectively denote the final values of the variables i and j before the algorithm terminates. Let ai denote the incremental
rank and si denote the incremental support while adding a local code Li. Then we have si ≥ ai + (δ2 − 1), 1 ≤ i ≤ iend,
since we have ai > 0 in every iteration. The set Si denotes the support of Li, and Vi denotes the space Column-Space(G|Si

),
where G is the generator matrix of the code. If no more local codes can be added from the middle code Mj , then the support
of the last local code added from Mj is removed and an additional support Tj of Mj is added to Ψ. Let i(j) denote the index
of the last local code added from Mj . Since the middle code has a minimum distance of δ1, and every rank accumulating
local code brings at least one new information symbol, it follows that

tj := |Tj | ≥ ai(j) + (δ1 − 1),

= ai(j) + (δ2 − 1) + (δ1 − δ2) 1 ≤ j ≤ jend.

Algorithm 1 For the proof of Thm. 2.1

1: Let j = 0, i = 0,W = φ,Ψ = φ.
2: while (∃ a middle code Mj ∈ C such that rank(G|Ψ∪Mj ) > rank(G|Ψ)) do
3: while (∃ a local code Li ∈Mj such that Vi (W ) do
4: W = W + Vi
5: Ψ = Ψ ∪ Si
6: i = i+ 1
7: end while
8: Ψ = (Ψ \ Si−1) ∪ Tj
9: j = j + 1

10: end while

The rank accumulates to k after adding the last local code Liend . We would also have visited jend middle codes by then.
Hence,

iend ≥
⌈
k

r2

⌉
, jend ≥

⌈
k

r1

⌉
. (3)

After adding Liend−1 local codes, we would have accumulated rank that is less than or equal to (k− 1). Hence we can always
pick se := (k− 1)−

∑iend−1
i=1 ai columns from Liend so that the total rank accumulated becomes (k− 1). Note that se ≥ 0. The

resultant punctured code is identified as Cs. Let E = {i(j) | 1 ≤ j ≤ jend}. Then

|Supp(Cs)| ≥
iend−1∑
i/∈E,i=1

si + se +

jend−1∑
j=1

tj . (4)

In (4), the last term
∑jend−1
j=1 tj includes a sum of only jend − 1 terms because we could have possibly accumulated a rank of

(k − 1) after adding Liend−1, i.e., se = 0. Thus we have,

|Supp(Cs)| ≥
iend−1∑
i/∈E,i=1

si + (k − 1)−
iend−1∑
i=1

ai +

jend−1∑
j=1

tj

≥
iend−1∑
i/∈E,i=1

(ai + (δ2 − 1)) + (k − 1)−
iend−1∑
i=1

ai

+

jend−1∑
j=1

(ai(j) + (δ2 − 1) + (δ1 − δ2))

=

iend−1∑
i=1

(δ2 − 1) + (k − 1) +

jend−1∑
j=1

(δ1 − δ2)
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Substituting values of iend and jend from (3) and using (2), we obtain the bound.
It may be noted that the theorem holds good even for codes with information-symbol hierarchical locality.

C. Code Constructions For Information-Symbol Locality

A straightforward extension of pyramid codes [3] is possible to construct optimal codes with information-symbol hierarchical
locality. They achieve the bound in (1) if r2 | r1 | k. In this section, we illustrate the construction with an example, assuming
δ2 = 2. The two-level hierarchical code described here extends naturally to multiple-level hierarchy and yields optimal codes
if rh | rh−1 | · · · | r1 | k.

The construction is built on a systematic MDS code with parameters [k + d− 1, k, d] with a generator matrix Gmds. Let

Gmds = [Ik×k | Qk×(d−1)]

k = αr1 + βr2 + γ, 0 ≤ βr2 + γ < r1

r1 = µr2 + ν, 0 ≤ ν < r2.

Partition Q as

Q =


Q1

Q2

...
Qα+1

Q′

 ,
where Qi, 1 ≤ i ≤ α is of size r1 × (δ1 − 1), Qα+1 is of size (βr2 + γ)× (δ1 − 1) and Q′ is of size (k × (d− δ1)). Further
partition Qi, 1 ≤ i ≤ α as

Qi =


Ri1
Ri2

...
Ri,µ+1

R′i

 ,
where Rij , 1 ≤ j ≤ µ is of size r2 × 1, Ri,µ+1 is of size ν × 1 and R′i is of size (r1 × (δ1 − 2)). At the same time Qα+1 is
partitioned as

Qα+1 =


Rα+1,1

Rα+1,2

...
Rα+1,β+1

R′α+1

 ,
where Rα+1,j , 1 ≤ j ≤ β is of size r2 × 1, Rα+1,β+1 is of size γ × 1 and R

′

α+1 is of size ((βr2 + γ)× (δ1 − 2)). Next, we
can construct matrices

Q̂i =


Ri1

Ri2
. . .

Ri,µ+1

R′i



Q̂α+1 =


Rα+1,1

Rα+1,2

. . .
Rα+1,β+1

R
′

α+1



Q̂ =


Q̂1

Q̂2

. . .
Q̂α+1

Q′


Let J be defined as

J =


Ir2

. . .
Ir2

Iν

 .
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where Ir2 is repeated µ times. Finally we construct the generator matrix G of the pyramid code as,

G =



J
. . .

J
Ir2

. . .
Ir2

Iγ

Q̂


,

with J being repeated α times, and Ir2 repeated β times. The resultant code has length

n = k + d− 1 +

(⌈
k

r1

⌉⌈
r1

r2

⌉
− 1

)
+

(⌈
k

r1

⌉
− 1

)
(δ1 − 2).

Clearly, minimum distance of the code corresponding to G is greater than or equal to that of Gmds, which is d. Also, G satisfies
the property of information-symbol hierarchical locality by construction. Using the bound in (1), the code is optimal if⌈

k

r1

⌉⌈
r1

r2

⌉
=

⌈
k

r2

⌉
.

D. Code Constructions For All-Symbol Locality

We assume a divisibility condition n2 | n1 | n. The construction is described in three parts. The first part involves identification
of a suitable finite field Fpm , a partition of F∗pm and a set of polynomials in Fpm [X] that satisfy certain conditions. We require
that every polynomial evaluates to a constant within one subset in the partition, and evaluates to zero in all the remaining
subsets. In the second part, we construct a code polynomial c(X) from the message symbols with the aid of the suitably
chosen polynomials. The code polynomial c(X) is formed in such a way that the locality constraints are satisfied. This part
also involves precoding of message symbols in such a way that the dimension of the middle codes and the global code are
kept to the desired values. Finally, the third part involves evaluation of the code polynomial at n points of F∗pm , that are chosen
in the first part.

1) Identification of Fpm , a partition of F∗pm and a set of polynomials: Let the finite field Fpm be such that n1 | pm − 1,
and n < pm. Existence of such a pair (p,m) is shown in App. B. We define the integers

n0 = pm − 1, µ0 = 1, µ1 =
n0

n1
, µ2 =

n1

n2
.

Let α denote the primitive element of Fpm , and hence F∗pm = {1, α, α2, . . . , αp
m−2}. Set β0 = α and β1, β2 be elements of

order n1 and n2 respectively. Then we have the following subgroups:

H0 = F∗pm
H1 = {1, β1, β

2
1 , . . . , β

n1−1
1 }

H2 = {1, β2, β
2
2 , . . . , β

n2−1
2 .

We can further write

H0 = H1 ] β0H1 ] · · · ] βµ1−1
0 H1

H1 = H2 ] β1H1 ] · · · ] βµ2−1
1 H2.

Having set up a subgroup chain, we proceed to define a family of subsets of H0. These subsets are indexed by a tuple (i, t)
with i ∈ {0, 1, 2}. For a given value of i, t takes values from the set Ti = {(t0, t1, t2) | 1 ≤ tj ≤ µj for j ≤ i; tj = 0 for j > i}.
For a given tuple (i, t), let us define a coset A(i,t) of the subgroup Hi as follows:

γ(i,t) =

i−1∏
j=0

β
tj+1−1
j , A(i,t) = γ(i,t)Hi.

The set of possible indices has a tree-structure with each index (i, t) associated with a unique vertex of the tree. A vertex (i, t)
belongs to the i-th level of the tree, and the 3-tuple t describes the unique path from the vertex to the root of the tree. The
parent of a vertex (i, t) is denoted by π(i, t), and the set of its siblings, i.e, other vertices having the same parent, is denoted
by ψ(i, t). The tree structure of {A(i,t) | i ∈ {0, 1, 2}, t ∈ Ti} is depicted in Fig. 3. Since each vertex at i-th level is associated
with a coset of Hi, we refer to this tree as the coset-tree.
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Fig. 3: Illustration of the coset-tree.

Next, we define the polynomials p(i,t)(X), q(i,t)(X) ∈ Fpm [X] as,

p(i,t)(X) =
∏

θ∈A(i,t)

(X − θ), q(i,t)(X) =
∏

s∈ψ(i,t)

p(i,s)(X).

The polynomial p(i,t)(X) is the annihilator of A(i,t). Furthermore, the polynomials in {q(i,t)(X) | 1 ≤ ti ≤
µi, tj is fixed for j 6= i} are relatively prime collectively. Thus for i = 1, 2 there exists {a(i,t)(X) | 1 ≤ ti ≤
µi, tj is fixed for j 6= i} such that

µi∑
ti=1

tjfixed forj 6=i

a(i,t)(X)q(i,t)(X) = 1 mod (Xni−1 − γni−1

(i−1,s)), (5)

where s = π(i, t). Next, we define E(i,t)(X) = a(i,t)(X)q(i,t)(X), and determine a valid candidate for E(i,t)(X) in the next
Lemma such that (5) holds. Subsequently in Lem. 2.3, we will list down certain useful properties of these polynomials. The
proof is relegated to Appendix.

Lemma 2.2:

E(i,t)(X) =
∏

s∈ψ(i,t)

[
Xni − (γ(i,s))

ni

(γ(i,t))ni − (γ(i,s))ni

]
. (6)

Lemma 2.3: Let i ∈ {1, 2}, t, s ∈ Ti and t ∈ ψ(i, s). Let τ = (τ0, τ1, τ2) = π(i, t). Then

E(i,t)(X) = g(Xni) for some polynomial (7)
g(.), deg(g) = µi − 1

E(i,t)(θ) =

{
1 θ ∈ A(i,t)(X)
0 θ ∈ γ(i−1,τ)Hi−1 \A(i,t)

(8)

E(i,s)(X)E(i,t)(X) ≡ 0 mod (Xni−1 − γni−1

(i−1,τ)) (9)

E2
(i,t)(X) = E(i,t)(X) mod (Xni−1 − γni−1

(i−1,τ)). (10)

Proof: The property (7) is clear from the definition of E(i,t)(X). The properties (8), (9) are clear from the proof of
Lemma 2.2. Hence (10) follows by (5).

2) Construction of c(X): We start with associating message polynomials of degree (r2 − 1) with certain leaves of the
coset-tree. The total number of leaves of the coset-tree equals µ1µ2. However, we will only consider a suitable subtree of the
coset-tree such that the number of leaves equals µ̄1µ2 where µ̄1 = n

n1
. The required subtree is obtained by removing the last

(µ1 − µ̄1) branches emanating from the root of the tree. Every leaf that is retained in the subtree has an index (2, t) where t
belongs to the set

T ′2 = {t ∈ T2 | 1 ≤ t1 ≤ µ̄1}.

This subtree is referred to as the relevant coset-tree. A vertex from the i-th level, i > 0 of the relevant coset-tree will have an
index (i, t) where t ∈ T ′i = {t ∈ Ti | 1 ≤ t1 ≤ µ̄1}.

Consider a set U = {ut(X) = ut,0 +ut,1X + . . .+ut,r2−1X
r2−1 | t ∈ T ′2} of message polynomials of size µ̄1µ2. The code

polynomial c(X) is built from U in an iterative manner. In every iteration, we take as input a set of polynomials corresponding
to vertices of the i-th level of the relevant coset-tree, and output another set of polynomials corresponding to vertices of
the (i − 1)-th level. As noted earlier, each leaf of the relevant coset-tree is uniquely mapped to a polynomial in U . In the
end, we will identify a polynomial c(0,(1,0,0))(X) associated with the root of the relevant coset-tree. The code polynomial
c(X) = c(0,(1,0,0))(X). It may be noted that the polynomials in U is made up of µ̄1µ2r2 message symbols in total. However,
the desired dimension k can be less than µ̄1µ2r2. Hence in every iteration, a precoding of message symbols is carried out
causing a reduction in the number of independent message symbols. The dimension would be reduced to the desired value k
at the end of the final iteration.
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Let us now start the iteration by setting c(2,t)(X) = ut(X) ∀t ∈ T ′2. Evaluations of c(2,t)(X) at n2 points in A(2,t)(X) give
rise to an [n2, r2]-codeword. Recognizing this correspondence, we refer to c(2,t)(X), t ∈ T ′2 as a second level code polynomial.
In the next iteration, for every t ∈ T ′1

d(1,t)(X) =
∑

s:π(2,s)=(1,t)

c(2,s)(X)E(2,s)(X).

By (7) in Lemma 2.3, the coefficient of X` is zero in E(2,t)(X) whenever ` 6= 0 (mod n2). Hence for every t ∈ T ′1, there are of
µ2r2 monomials in d(1,t)(X). Evaluations of d(1,t)(X) at n1 points in A(1,t)(X) give rise to an [n1, µ2r2]-codeword. Since the
desired dimension of the middle code is r1, we precode the message symbols such that the coefficients of (r2µ2− r1) highest
degree monomials in d(1,t)(X) vanishes to zero. The polynomials c(1,t)(X) thus obtained corresponds to an [n1, r1]-middle
code, and hence referred to as a first level code polynomial. We can write

c(1,t)(X) =
∑

s:π(2,s)=(1,t)

P1(c(2,s)(X))E(2,s)(X), t ∈ T ′1,

where P1(·) denotes the precoding transformation at the first level. In the next iteration, we compute d(0,(1,0,0))(X) and
subsequently precode the message symbols by P0(·) to reduce the dimension from µ̄1r1 to k to obtain the zeroth level code
polynomial c(0,(1,0,0))(X):

d(0,(1,0,0))(X) =
∑

s:π(1,s)=(0,(1,0,0))
s∈T ′1

c(1,s)(X)E(1,s)(X)

c(0,(1,0,0))(X) =
∑

s:π(1,s)=(0,(1,0,0))
s∈T ′1

P0(c(1,s)(X))E(1,s)(X),

The code polynomial c(X) is identified as
c(X) = c(0,(1,0,0))(X). (11)

3) Evaluation of c(X): The codeword c = (c(θ) | θ ∈ A) is obtained by evaluating the polynomial c(X) at n points
taken from

A =
⋃
t∈T ′1

A(1,t).

This completes the description of the construction. By the construction, it is clear that the dimension and the minimum distance
of the code are given by

k = |{` | coefficient of X` in c(X) 6= 0}|
d ≥ n− deg(c(X)).

Remark 1: A principal construction in [9] for codes with all-symbol locality, relies on a partitioning of the roots of unity
contained in a finite field into a subgroup and its cosets. The construction then identifies polynomials that are constant on each
coset and makes use of these polynomials in the construction. The approach adopted here is along similar lines.

Example 1: In this example, we construct a code with [n, k] = [24, 14] having locality parameters (n1, r1) = (12, 8) and
(n2, r2) = (4, 3), satisfying the divisibility condition. We can choose the finite field Fpm = F52 . Let α be a primitive element
of F52 . We have n0 = n = 24, µ1 = µ̄1 = 2, and µ2 = 3. We set

H0 = F∗52

H1 = {1, β1, β
2
1 , . . . , β

11
1 }

H2 = {1, β2, β
2
2 , β

3
2 ,

where β0 = α, β1 = α2 and β2 = α6. The relevant coset-tree can be computed as

A(0,(1,0,0)) = H0, A(1,(1,1,0)) = H1, A(1,(1,2,0)) = β0H1

A(2,(1,t1,t2)) = βt1−1
0 βt2−1

1 H2, 1 ≤ t1 ≤ 2, 1 ≤ t2 ≤ 3.

Let us define the index sets T1 = {(t0, t1, t2) | t0 = 1, 1 ≤ t1 ≤ 2, t2 = 0}, T2 = {(t0, t1, t2) | t0 = 1, 1 ≤ t1 ≤ 2, 1 ≤ t2 ≤ 3}.
For every t = (1, t1, 0) ∈ T1, we set s1 as the unique element in {1, 2} \ {t1} and then we have

E(1,t)(X) =

(
X12 − (βs1−1

0 )12

(βt1−1
0 )12 − (βs1−1

0 )12

)
:= atX

12 + bt.
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Similarly for every t = (1, t1, t2) ∈ T2, we set {s1, s2} = {1, 2, 3} \ {t2} and then we have

E(2,t)(X) =

(
X4 − (βt1−1

0 βs1−1
1 )4

(βt1−1
0 βt2−1

1 )4 − (βt10 β
s1−1
1 )4

)(
X4 − (βt1−1

0 βs2−1
1 )4

(βt1−1
0 βt2−1

1 )4 − (βt10 β
s2−1
1 )4

)
:= etX

8 + ftX
4 + gt.

There are |T2| = 6 message polynomials denoted by {ut(X) = ut,0 + ut,1X + ut,2X
2 | t ∈ T2}, each of degree (r2− 1) = 2.

The second level code polynomial for each t ∈ T2 corresponding to a [4, 3]-local code is taken to be c(2,t)(X) = ut(X). In
the next step, the first level code polynomial {c1,s(X)} is constructed as

c1,t(X) =

s2=2∑
s:s1=t1,s2=1

P1(c(2,s)(X))(esX
8 + fsX

4 + gs).

for each of t ∈ T1. By virtue of the precoding P1(·), the term X10 vanishes and the resultant polynomial c1,t(X) corresponds
to a [12, 8]-middle code. Subsequently, the zeroth level code polynomial is constructed as

c0,(1,0,0)(X) =

s1=2∑
s:s1=1,s2=0

P0(c(1,s)(X))(asX
12 + bs).

Without precoding P0(·), we would have obtained a polynomial of degree 21 having 16 monomials. Precoding wipes out the
terms {X21, X20}, and the resultant polynomial c0,(1,0,0)(X) =: c(X) of degree 18 is the code polynomial consisting of 14
monomials. Thus k = 14, and d ≥ 6. The codeword c is given by c = (c(θ) | θ ∈ H0).

It is of interest to look at the exponents of monomials in polynomials of each level. From each level, we pick a candidate
polynomial c(X), c1(X) := c(1,(1,1,0))(X), c2(X) := c(2,(1,1,2))(X).

�3 2 1 0 ��11 ��10 9 8 �7 6 5 4 �3 2 1 0

��23 ��22 ��21 ��20 ��19 18 17 16 ��15 14 13 12

��11 ��10 9 8 �7 6 5 4 �3 2 1 0

Fig. 4: Illustration of the exponents of monomials in c2(X), c1(X) and c(X) in order. The canceled exponents are those whose
coefficients are fixed to zero by precoding.

The illustration in Fig. 4 gives an equivalent simplistic description of the [24, 14, 6] code. This works in general. Let Exp(f)
represent the ordered set of exponents of the monomials in a polynomial f(X). By ordered set, we mean that the elements
of the set are listed in the descending order. For example, Exp(X3 + αX + 1) = {3, 1, 0}. For an ordered finite set S of
non-negative integers and a positive integer r ≤ |S|, we define Trunc(S, r) as the set comprising of the last r elements of the
set. Then we have that

Exp(c2) = {r2 − 1, r2 − 2, . . . , 0} = Trunc(Zn2 , r2)

Exp(c1) = Trunc(

µ2−1⋃
j=0

(jn2 + Exp(c2)), r1)

Exp(c) = Trunc(

µ̄1−1⋃
j=0

(jn1 + Exp(c1)), k),

where Zn = {0, 1, . . . , n− 1}. The set Exp(c) is an equivalent simplistic description of the code. In terms of Exp(c), we can
write the parameters of the code as k = |Exp(c)|, d ≥ n−max(Exp(c)).

E. Locality Properties Of the Code
In this section, we will show that the code satisfies locality constraints. Consider the case c(y) is lost. We need to recover

it accessing r1 other symbols {c(y1), c(y2), . . . , c(yr1)} that along with c(y) are part of an [n1, r1] punctured code. Without
loss of generality, let us assume that y ∈ A(1,(1,1,0)). Using (9), (10) in Lemma 2.3, we can write

c(X)E(1,(1,1,0))(X) = P0(c(1,(1,1,0))(X))E(1,(1,1,0))(X).

Evaluations at r1 out of n1 points in A(1,(1,1,0)) will help reconstruct P0(c(1,(1,1,0))(X)), since deg(P0(c(1,(1,1,0))(X))) ≤
(r1 − 1). Then we can recover c(y) = P0(c(1,(1,1,0))(y))E(1,(1,1,0))(y). The same argument can be used inductively to show
that each symbol within an [n1, r1]-middle code can be recovered by r2 out of some n2 symbols. This establishes the existence
of [n2, r2]-local codes.
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F. Optimality Of the Code

Theorem 2.4: The [n, k, d]-code with [n1, r1, δ1]-middle codes and [n2, r2, δ2]-local codes constructed in Sec. II-D achieves
the optimal minimum distance if r2 | r1 | k.

Proof: Let c(X) denote the code polynomial. The proof follows from counting Zn in two different ways. We can write

n = |Zn| = |Exp(c)|+ |Zn \ Exp(c)|. (12)

We have that |Exp(c)| = k. On the other hand, since r2 | r1 | k, we can count the number of exponents that are truncated
while forming c as,

|Zn \ Exp(c)| =

(
k

r2
− 1

)
(δ2 − 1)

+

(
k

r1
− 1

)
(δ1 − δ2) + (d− 1)

Substituting back in (12), we conclude that the code is optimal.
Theorem 2.5: The [n, k, d]-code with [n1, r1, δ1]-middle codes and [n2, r2, δ2]-local codes constructed in Sec. II-D achieves

the optimal minimum distance if the following conditions hold:
1) d = n2 + δ2
2) n

n1
=
⌈
k
r1

⌉
, n
n2

=
⌈
k
r2

⌉
+ 1

Proof: Let c(X) denote the code polynomial. The proof is analogous to that of Thm. 2.4. The only difference lies in the
count of |Zn \ Exp(c)|. Since d = n2 + δ2, we obtain that,

|Zn \ Exp(c)| =
(
n

n2
− 1

)
(δ2 − 1) +

(
n

n1
− 1

)
(δ1 − δ2)

+((d− 1)− (δ2 − 1))

=

(
n

n2
− 2

)
(δ2 − 1) +

(
n

n1
− 1

)
(δ1 − δ2) + (d− 1).

Hence the code is optimal if the second condition in the theorem holds.
While Thm. 2.4, Thm. 2.5 provide optimality conditions that can be generalized to hierarchical locality of arbitrary levels, a
subject of discussion in Sec. III, the next theorem characterizes the conditions for optimality for two-level hierarchy without
imposing any restrictions.

Theorem 2.6: The [n, k, d]-code with [n1, r1, δ1]-middle codes and [n2, r2, δ2]-local codes constructed in Sec. II-D achieves
the optimal minimum distance if⌈

k

r2
−
(⌈

k

r1

⌉
− 1

)
r1

r2

⌉
=

⌈
k

r2

⌉
−
(⌈

k

r1

⌉
− 1

)⌈
r1

r2

⌉
. (13)

Proof: Let c(X) denote the code polynomial. The proof is analogous to that of Thm. 2.4. It is possible to count the size
of Zn \ Exp(c) as ((⌈

r1

r2

⌉
− 1

)
(δ2 − 1) + (δ1 − 1)

)(⌈
k

r1

⌉
− 1

)

+


(
k −

(⌈
k
r1

⌉
− 1
)
r1

)
r2

− 1

 (δ2 − 1) + (d− 1).

The expression can be recast into the form(⌈
k

r1

⌉
− 1

)
(δ1 − δ2) + (d− 1)+(⌈

k

r2
−
(⌈

k

r1

⌉
− 1

)
r1

r2

⌉
+

(⌈
k

r1

⌉
− 1

)⌈
r1

r2

⌉
− 1

)
(δ2 − 1),

thus leading to a value of d as in

d = n− k + 1−
(⌈

k

r1

⌉
− 1

)
(δ1 − δ2)

−
(⌈

k

r2
−
(⌈

k

r1

⌉
− 1

)
r1

r2

⌉
+

(⌈
k

r1

⌉
− 1

)⌈
r1

r2

⌉
− 1

)
(δ2 − 1).

Comparing against the upper bound in (1), we conclude that the code is optimal if (13) holds.
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III. GENERALIZATION TO h-LEVEL HIERARCHY

In Sec. II, we considered codes with hierarchical locality where the hierarchy had two levels. Here we extend the notion to
h-level hierarchy where h is an arbitrary number.

Definition 3: An [n, k, d] linear code C is a code with h-level hierarchical locality having locality parameters
[(r1, δ1), (r2, δ2), . . . (rh, δh)] if for every symbol ci, 1 ≤ i ≤ n, there exists a punctured code Ci such that ci ∈ Supp(Ci) and
the following conditions hold:

1) dim(Ci) ≤ r1 ,
2) dmin(Ci) ≥ δ1 ,
3) Ci is a code with (h− 1)-level hierarchical locality having locality parameters [(r2, δ2), (r3, δ3), . . . (rh, δh)].

Code with 1-level hierarchical locality is defined to be code with locality.
The punctured code Ci associated with ci is referred to as local code of level-1. In fact, each symbol is associated with

a bunch of local codes, each of level-i, i = 1, 2, . . . , h. In the previous section, we studied codes with 2-level hierarchical
locality.

A. An Upper Bound on The Minimum Distance

Theorem 3.1: Let C be an [n, k, d]-linear code with h-level hierarchical locality having locality parameters
[(r1, δ1), (r2, δ2), . . . , (rh, δh)]. Then

d ≤ n− k + 1−
`=h−1∑
`=1

((⌈
k

r`

⌉
− 1

)
(δ` − δ`+1)

)
−
(⌈

k

rh

⌉
− 1

)
(δh − 1). (14)

Proof: The proof is a straightforward extension of that of Thm. 2.1. The algorithm 2, (see flow chart in Fig. 5(b)) identifies
a (k− 1)-dimensional punctured code Cs of C, having large support. Then we will use the Fact in (2). The algorithm identifies
a level-1 code that accumulates rank, and subsequently visits a level-2 code from within that, and continues recursively upto
reaching a level-(h− 1) code that accumulates rank. Then it picks up all the level-h codes that accumulate rank. If no more
level-h codes can be picked up, it steps back one level up, and finds a new level-(h − 1) code that accumulates rank. This
can be viewed as a depth-first search for rank-accumulating level-h codes. At each level, incremental support is added to the
variable Ψ. Vaguely speaking, the incremental support that is added at each level depends on the minimum distance of the
code at that level. Let aih denote the incremental rank and sih denote the incremental support while adding a level-h code

Algorithm 2 For the proof of Thm. 3.1

1: Let i1 = 0, i2 = 0, . . . , ih = 0; Ψ = Φ, ` = 1;
2: M0 = C,M1 = Φ,M2 = Φ, . . . ,Mh = Φ
3: while (rank(G|Ψ) < k) do
4: if (∃ a level-` code Li` ∈M`−1 such that rank(G|Ψ∪Supp(Li`

)) > rank(G|Ψ)) then
5: M` = Li`
6: if (` equals h) then
7: Ψ = Ψ ∪ Supp(Mh)
8: Slast = Supp(Mh)
9: ih = ih + 1

10: else
11: ` = `+ 1
12: end if
13: else
14: ` = `− 1;
15: Ψ = (Ψ \ Slast) ∪ T`
16: Slast = T`
17: i` = i` + 1
18: end if
19: end while

Lih . By the algorithm, aih > 0. The set Sih denotes the support of the level-h code Lih . The set T` denotes the incremental
support of the level-` code M`, along with the columns from the last code that accumulated rank. It will contain at least
(d` − 1) columns in addition to the incremental rank. Let i`end denote the final value of the variables i`, 1 ≤ ` ≤ h before the
algorithm terminates. Since aih > 0, we can get non-trivial lower bounds on sih and t` := |T`| quite similar to the proof of



11

Thm. 2.1. The rank is accumulated to k after adding the last local code Lihend
. By this time, we would have also visited i`end

level-` codes. Hence clearly,

i`end ≥
⌈
k

r`

⌉
, 1 ≤ ` ≤ h

After adding ihend − 1 level-h codes, we would have accumulated rank that is less than or equal to (k − 1). Hence we can
always pick (k − 1) −

∑ihend−1

ih=1 aih columns from Lihend
so that the total rank accumulated becomes (k − 1). The resultant

punctured code is identified as Cs. Following a similar line of arguments as in the proof of Thm. 2.1, we can get an estimate
on Supp(Cs) as

|S| ≥ (k − 1) +

`=h−1∑
`=1

((⌈
k

r`

⌉
− 1

)
(d` − d`+1)

)
+

(⌈
k

rh

⌉
− 1

)
(dh − 1).

Hence the theorem follows.

B. Code Construction For All-Symbol Locality

The construction in Sec. II-D of the main text can be generalized to construct codes with h-level hierarchical locality
containing [ni, ri, δi] codes as i-th level code for each i = 1, 2, . . . , h. Here also, we require to satisfy a divisibility condition
nh | nh−1 | · · · | n. The generalization is straightforward, and it boils down to finding a finite field Fpm such that nh | nh−1 |
· · · | n1 | (pm − 1), and n ≤ (pm − 1). Then we can find a subgroup chain Hh ⊂ Hh−1 ⊂ · · · ⊂ H0 = F∗pm . This allows us
to create a coset-tree of depth h, and the code construction follows naturally. It can also be proved that the construction thus
obtained will be optimal in terms of minimum distance if either of the two conditions holds:

1) rh | r2 | · · · | r1 | k.
2) d = nh + δh,

n
nh

=
⌈
k
rh

⌉
+ 1, nni

=
⌈
k
ri

⌉
, ∀i = 1, 2, . . . , h− 1.
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APPENDIX A
FLOWCHARTS FOR ALGORITHMS USED TO DERIVE BOUNDS

The flow charts for algorithms 1 and 2 are shown in Fig. 5(a) and Fig. 5(b) respectively.
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START
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Yes

EXIT
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(a) Algorithm 1
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No
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(b) Algorithm 2

Fig. 5: Flowchart for algorithms uses for proving the bounds on minimum distance.

APPENDIX B
EXISTENCE OF REQUIRED FIELD

First we will show that there exists a prime p such that n1 | p − 1. By Dirichlets theorem, if a and d are two co-prime
numbers, then the sequence a, a + d, a + 2d, . . . will contain infinitely many primes. By setting a = n1 + 1 and d = n1, we
observe that there are infinitely many primes of the form (n1 + 1) + `n1, i.e. of the form (` + 1)n1 + 1. Thus we obtain a
prime p such that n1 | p− 1. If n ≤ p− 1, we are done. If not, pick a sufficiently large m such that n < pm. Since n1 | p− 1,
we must also have n1 | pm − 1.

APPENDIX C
PROOF OF LEMMA 2.2

It is sufficient to verify that

q(i,t)(X) | E(i,t)(X) (15)
µi∑
ti=1

tjfixed forj 6=i

E(i,t)(X) = 1 mod (Xni+1 − γni−1

(i−1,τ)). (16)

where τ is the unique element such that (i− 1, τ) = π(i, t) for every t participating in the summation. For every such t, the
roots of q(i,t)(X) are precisely

Λ(i,t) = γ(i−1,τ)Hi−1 \A(i,t). (17)

It can also be checked that E(i,t)(X) evaluates to zero at any point in Λ(i,t). Hence q(i,t)(X)) | E(i,t)(X). It can also be
seen that at any point y ∈ γ(i−1,τ)Hi−1, all except one term in the L.H.S. of (16) evaluates to zero, and the remaining term
evaluates to 1. Hence (16) holds, thereby completing the proof.
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