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Dept. of Electrical Eng., Princeton University, NJ 08544

{jingbo,cuff,verdu}@princeton.edu

Abstract—By developing one-shot mutual covering lemmas,
we derive a one-shot achievability bound for broadcast witha
common message which recovers Marton’s inner bound (with
three auxiliary random variables) in the i.i.d. case. The encoder
employed is deterministic. Relationship between the mutual
covering lemma and a new type of channel resolvability problem
is discussed.

I. I NTRODUCTION

While many problems in network information theory have
been successfully solved in the discrete memoryless case
using either the method of types or weak/strong typicality
(e.g., [1] or [2]), there is a gap between the i.i.d. assump-
tions underlying these methods and the nature of sources
and channels arising from real world applications. Recent
works (e.g. [3][4]) have developed new methods to derive
tight one-shot achievability bounds for specialized problems.
Meanwhile, a natural question is whether there exist general
techniques to attach non-asymptotic fundamental limits in
multiuser information theory. By developing one-shot versions
of covering and packing lemmas, [5] successfully obtained
one-shot achievability bounds for various problems (multi-
access, Slepian-Wolf, Gelfand-Pinsker, Wyner-Ziv, Ahlsede-
Körner, and broadcast of private messages) which lead to
such non-asymptotic bounds and recover known results in the
i.i.d. case. However the proof of Marton’s inner bound of
broadcast without public/common messages (the two auxiliary
version, [1, Theorem 8.3]) proceeded by showing the achiev-
ability of each corner point, which requires time sharing to
recover the full rate region in the i.i.d. case.

In this paper we develop a one-shot mutual covering lemma
so that a one-shot version of Marton’s inner bound with a
common message (the three auxiliary version originally due
to Liang et al. [6]; see also [1, Theorem 8.4]) can be obtained
without time sharing.

Time sharing may not be satisfactory since it is meaningless
in the one-shot case. This is keenly noted by the authors of
[7], who also observed that the mutual covering lemma [1,
Lemma 8.1], a technique for avoiding time sharing in the
i.i.d. case, does not seem to have a one-shot counterpart:

... This is helpful because no one-shot extension of
the mutual covering and packing lemma exists... For
this reason Verd́u’s result seems to be weaker than
ours.

The present paper gives a single-shot mutual covering lemma,
thereby filling the gap noted by the above remark. We will

provide two derivations, one of them is based on a recent
generalization of channel resolvability [8].

Partly motivated by the desirability of achievability bounds
without time sharing, [7] (see also [9]) proposed a new tech-
nique for deriving one-shot achievability bounds using stochas-
tic encoders, thus avoiding the mutual covering lemma and
yielding a one-shot bound which recovers the two auxiliary-
variable version of Marton’s inner bound. However that ver-
sion of Marton’s bound is known to not be tight, whereas
the three auxiliary-variable version (Liang-Kramer bound) is
still a candidate for the capacity region [1, Section 8.4]. In
[9] a one-shot achievability bound with three auxiliaries is
stated without a proof1, which is not easily comparable with
our bound. However the main probability terms from the two
bounds are the same, so they are equivalent in the second order
rate analysis.

II. ONE-SHOT MUTUAL COVERING LEMMA

We develop one-shot mutual covering lemma(s) in this
section, which require a different proof idea than the i.i.d. case
[1, Appendix 8A] because the empirical distribution is mean-
ingless in the non-block coding case. The main device in
our proof is the introduction of an auxiliary random variable
Ṽ , which can be viewed as being “typical” with a random
codeword from theU codebook.

To begin with, let us introduce the notations of the relative
information

ıP ||Q(x) := log
dP

dQ
(x) (1)

where P and Q are distributions on a same alphabetX
with dP

dQ (x) being the Radon-Nikodym derivative, and the
information density

ıU ;V (u; v) := ıPV |U=u||PV
(v). (2)

Lemma 1. Fix PUV and let

PUMV L := PU × · · · × PU × PV × · · · × PV (3)

1The authors of [9] announced that the proof will be included in their future
draft.
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then

P[

M,L
⋂

m=1,l=1

{(Um, Vl) /∈ F}]

≤ P[(U, V ) /∈ F ] + P [exp(ıU ;V (U ;V )) > ML exp(−γ)− δ]

+
min{M,L} − 1

δ
+ e− exp(γ). (4)

for all δ, γ > 0 and eventF .

Proof: Let (Ṽ1, . . . , ṼM ) be random variables satisfying

PUM Ṽ M = PUV × · · · × PUV , (5)

and define

Ṽ := ṼW (6)

whereW is equiprobable on{1, . . . ,M} and independent of
(UM , ṼM ). By independence,

P[

M,L
⋂

m=1,l=1

{(Um, Vl) /∈ F}] = EP[

M
⋂

m=1

{(Um, V1) /∈ F}|UM ]L.

(7)

Define the functions

AuM := P[

M
⋃

m=1

{(um, V1) ∈ F}]; (8)

π(uM ; v) := 1

{

M
⋃

m=1

{(um, v) ∈ F}

}

(9)

· 1
{

ıUM ;Ṽ (u
M ; v) ≤ logL− γ

}

. (10)

The second term in (10) will play a role in the change of
measure step. We then obtain

[1−AUM ]L (11)

=

[

1−
(L exp(−γ)AUM ) exp(γ)

L

]L

(12)

≤

[

1−
exp(γ)

L
E[π(UM ; Ṽ )|UM ]

]L

(13)

≤ 1− E[π(UM ; Ṽ )|UM ] + e− exp(γ), (14)

where

• (13) is from the fact that (by change of measure)

L exp(−γ)AUM ≥ L exp(−γ)E[π(UM ;V1)|U
M ] (15)

≥ E[π(UM ; Ṽ )|UM ]. (16)

• (14) uses the inequality

(1−
pα

M
)M ≤ 1− p+ e−α (17)

for M,α > 0 and0 ≤ p ≤ 1.

Thus

E[1−AUM ]L (18)

≤ E[1 − π(UM ; Ṽ )] + e− exp(γ) (19)

=
1

M

M
∑

w=1

E[1 − π(UM ; ṼW )|W = w] + e− exp(γ) (20)

= E[1 − π(UM ; Ṽ1)] + e− exp(γ) (21)

≤ P[(U1, Ṽ1) /∈ F , or ıUM ;Ṽ (U
M ; Ṽ1) > logL− γ] + e− exp(γ)

(22)

≤ P[(U, V ) /∈ F ]

+ P

[

1

M

M
∑

m=1

dPV |U=Um

dPV

(Ṽ1) > L exp(−γ)

]

+ e− exp(γ)

(23)

≤ P[(U, V ) /∈ F ] + P

[

dPV |U=U1

dPV

(Ṽ1) > ML exp(−γ)− δ

]

+ P

[

M
∑

m=2

dPV |U=Um

dPV

(Ṽ1) > δ

]

+ e− exp(γ) (24)

≤ P[(U, V ) /∈ F ] + P

[

dPV |U=U1

dPV

(Ṽ1) > ML exp(−γ)− δ

]

+
M − 1

δ
+ e− exp(γ) (25)

where
• (21) is because by symmetry, all summands in (20) are

equal.
• (23) is because by definition,PU1Ṽ1

= PUV .
• (24) uses the elementary inequality1{x+ y > a+ b} ≤

1{x > a}+ 1{y > b}.
• (25) uses the Markov inequality.

Remark2. Supposing thatM ≤ L, an optimal choice of(γ, δ)
is the solution to the optimization problem

minimize f(γ, δ) :=
M − 1

δ
+ e− exp(γ) (26)

subject to g(γ, δ) := ML exp(−γ)− δ = λ (27)

for some constantλ ∈ R. Using Lagrange multipliers we can
show that the optimal value ofδ for fixed γ is:

δ =
√

(M − 1)ML exp(−γ)e
1

2
exp(γ). (28)

Note that Lemma 1 recovers the covering lemma in [5]
whenmin{M,L} = 1. Also, Lemma 1 can be weakened to
the following simpler bound by settingδ = ML(exp(−γ)−
exp(−2γ)).

Lemma 3. Under the same assumptions of Lemma 1,

P[

M,L
⋂

m=1,l=1

{(Um, Vl) /∈ F}]

≤ P[(U, V ) /∈ F ] + P [ıU ;V (U ;V ) > log(ML)− 2γ]

+
min{M,L} − 1

ML(exp(−γ)− exp(−2γ))
+ e− exp(γ). (29)



for all γ > 0 and eventF .

Remark 4. In all versions of the mutual covering lemmas
given above, the sum of the two probability terms can be
strengthened to the probability of the union of two events,
if the union bound is not applied to simplify (22).

A conditional version of the mutual covering lemma
(c.f. Lemma 8.1 in [1]) also follows by averaging:

Lemma 5. Fix PUST and let

PUSMTL := PU × PS|U × · · · × PS|U × PT |U × · · · × PT |U

(30)

then

P[

M,L
⋂

m=1,l=1

{(U, Sm, Tl) /∈ F}]

≤ P[{(U, S, T ) /∈ F} ∪ {ıS;T |U(S;T |U) > log(ML)− 2γ}]

+
min{M,L} − 1

ML(exp(−γ)− exp(−2γ))
+ e− exp(γ). (31)

for all γ > 0 and eventF .

III. M UTUAL COVERING FROM RESOLVABILITY

While the mutual covering lemma in Section II suffices the
purpose of Section IV, in this section we provide a simple
alternative derivation based on a recent result on resolvability
in the excess information metric [8], which illustrates the
interesting connection between resolvability and the mutual
covering lemma2.

Lemma 6. [8] Fix PUV = PUPV |U . Let c = [c1, . . . , cM ] be
i.i.d. according toPU . Define

P̂V :=
1

M

M
∑

m=1

PV |U=cm . (32)

Then for anyλ > 2,

EP[ı
P̂V ||PV

(V̂ ) > logλ]

≤ P

[

ıV ;U (V ;U) ≥ log
Mλ

2

]

+
2

λ
(33)

where the expectation is with respect to the codebook realiza-
tion, V̂ ∼ P̂V and (U, V ) ∼ PUV .

The above lemma follows by settingγ = λ, σ = ǫ ↑ λ
2 ,

δ ↑ 1, QXU = PV U , πX = PV , L = M andPX = P̂V in [8,
Remark 3]. We then have

Lemma 7. Under the same assumptions of Lemma 1,

P[

M,L
⋂

m=1,l=1

{(Um, Vl) /∈ F}]

≤ P[(U, V ) /∈ F ] + P[ıU ;V (U ;V ) ≥ logML− γ]

+
exp(γ)

max{M,L}
+ e−

1

2
exp(γ). (34)

2Indeed, [10] uses the term “soft-covering” for the achievability part of
channel resolvability [11], an idea that traces back to Wyner [12].

Remark8. The bound in Lemma 7 appears similar to and
slightly simpler than Lemma 3. However the sum of the
two probabilities in (34) cannot be easily strengthened to the
probability of a union (see Remark 4), which is important in
the second order rate analysis.

Remark9. In both derivations of the one-shot mutual covering
lemma, the role ofU and V are asymmetric. Moreover, the
two methods are not readily extendable to obtain a one-shot
version of the multivariate covering lemma [13, Lemma 8.2].

Proof of Lemma 7: Assume without loss of generality
thatL ≥ M . Define the sets

Fu := {v : (u, v) ∈ F}, (35)

AuM :=

M
⋃

m=1

Fu. (36)

For fixedc = cM in Lemma 6,

P̂V (Ac)− λPV (Ac) ≤ sup
A

[P̂V (A) − λPV (A)] (37)

= P[
dP̂V

dPV

(V̂ ) > λ]− λP[
dP̂V

dPV

(V ) > λ]

(38)

≤ P[
dP̂V

dPV

(V̂ ) > λ] (39)

where (38) is from Neyman-Pearson lemma. Thus

λPV (Ac) ≥ P̂V (Ac)− P[
dP̂V

dPV

(V̂ ) > λ] (40)

≥
1

M

M
∑

m=1

PV |U=cm(Fcm)− P[
dP̂V

dPV

(V̂ ) > λ]

(41)

where (41) is fromFcm ⊆ Ac. Denote bypc the right hand
side of (41). Thenpc ≤ 1, and settingc = UM we obtain

P[

L
⋂

l=1

{(Um, Vl) /∈ F}|UM ] = [1− PV (AUM )]
L

≤

[

1−
pc

L
λ

L

]L

(42)

≤ 1− pc + e−
L

λ (43)

where (43) uses (17). Then the result follows by uncondition-
ing UM on both sides of (43), applying (41) and Lemma 6,
and settingλ = 2L exp(−γ).

While the derivations of the one-shot mutual covering
lemma in Sections II and III follow different routes, their
correspondences can be seen in the following ways:

1) The auxiliary random variablẽV , which is the main
device in the first proof, has the distribution̂PV as in
(32) conditioned onUM = cM .

2) The change of measure steps (16) can be related to the
Neyman-Pearson lemma (37)-(39).

3) Both derivations relies on the inequality (17) which also
appeared in the proof of the standard covering lemma.



Although Lemma 6 implies the one-shot mutual covering
lemma, the reverse implication does not seem to follow
directly. Thus resolvability in the excess information is a
stronger result than the mutual covering lemma.

IV. I NNER BOUND WITH A COMMON MESSAGE

We prove a single shot version of the asymptotic achiev-
ability result of Liang-Kramer [6, Theorem 5] (see also [1,
Theorem 8.4]). This region is equivalent to an inner bound
obtained by Gelfand and Pinsker [14] upon optimization (see
[15] or [1, Remark 8.6]).

Theorem 10. Fix arbitrary distributionsPY1Y2|X , PUST , a
mapx : U × S × T → X , and integersM0, M10, M20, N ,
L, N̂ and L̂. Set

M := M0M10M20; (44)

M1 := M10N ; (45)

M2 := M20L; (46)

Ñ := N̂N ; (47)

L̃ := L̂L. (48)

Then there exists an(M0,M1,M2, ǫ1, ǫ2) code with

max{ǫ1, ǫ2}

≤ 2 exp(−γ) + e− exp(γ) (49)

+ P[{ıUS;Y1
(US;Y1) ≤ logMÑ + γ}

∪ {ıUT ;Y2
(UT ;Y2) ≤ logML̃+ γ}

∪ {ıS;Y1|U (S;Y1|U) ≤ log Ñ + γ}

∪ {ıT ;Y2|U (T ;Y2|U) ≤ log L̃+ γ}

∪ {ıS;T |U (S;T |U) > log(N̂ L̂)− 2γ}]

+
min{N̂ , L̂} − 1

N̂ L̂(exp(−γ)− exp(−2γ))
(50)

wherePUSTXY1Y2
:= PUSTPX|USTPY1Y2|X .

As in [1, Theorem 8.4], the private messages are decom-
posed into a public part and an individual part:

Wi = (Wi0,Wii) (51)

wherei = 1, 2 andWi0 is supposed to be decodable by both
users.

Proof:

• Codebook Generation: generate

u = [u1, . . . , uM ] (52)

according to the distributionP⊗M
U . Also for each1 ≤

i ≤ M , generate

si = [si(n, n̂)]1≤n≤N,1≤n̂≤N̂
(53)

according toP⊗NN̂
S|U=ui

and

ti = [ti(l, l̂)]1≤l≤L,1≤l̂≤L̂
(54)

according toP⊗LL̂
T |U=ui

. (In other words, for eachi we
construct a codebook similar to [1, Figure 8.8], where
each small rectangle has sizeL̂× N̂ .)

• Encoding: we may assume that the public message isw0

and the private messages for the two users are(w10, a)
and (w20, b) respectively, where

w0 ∈ {1, . . . ,M0} (55)

wi0 ∈ {1, . . . ,Mi0} (56)

a ∈ {1, . . . , N} (57)

b ∈ {1, . . . , L} (58)

for i = 1, 2. Then the indexm = m(w0, w10, w20)
is selected for the lower-layer codebook wherem is a
bijection between[M0] × [M10] × [M20] and [M ]. The
encoder then findŝa ∈ {1, . . . , N̂} and b̂ ∈ {1, . . . , L̂}
that minimize

ζ(um, sm(a, â), tm(b, b̂)) (59)

where

ζ(u, s, t) := PY1Y2|X=x(u,s,t)(Yu,s,t) (60)

and

Yu,s,t := {(y1, y2) ∈ Y1 × Y2 : ıUS;Y1
(us; y1) ≤ logMÑ + γ

or ıUT ;Y2
(ut; y2) ≤ logML̃+ γ

or ıS;Y1|U (s; y1|u) ≤ log N̂ + γ

or ıT ;Y2|U (t; y2|u) ≤ log L̂+ γ} (61)

The signal transmitted is thenx(um, sm(a, â), tm(b, b̂)).
• Decoder: assume thaty1 andy2 are observed by the two

receivers, respectively. The decoder of the first receiver
(Decoder 1) finds the uniquem such that

∃d, d̂, ıUS;Y1
(umsm(d, d̂); y1) > logMÑ + γ (62)

and set(m0,m10,m20) = m−1(m), or declares an error
if not possible. Decoder 1 then finds the unique(c, ĉ)
such that

ıS;Y1|U (sm(c, ĉ); y1|um) > log Ñ + γ (63)

or declares an error if not possible. The output public
message is thenm0 and the output private message is
(m10, c).
Decoder 2 performs similar operations as Decoder 1.

• Error Analysis: By symmetry of the codebook, we may
assume without loss of generality that

w0 = w10 = w20 = w11 = w22 = 1 (64)

is sent andm(1, 1, 1) = 1. Also it suffices to prove the
bound for Decoder 1 only in view of the symmetry of
the bound (50). Assume that(â, b̂) minimizes (59) (and



is selected by the encoder). Decoder 1 fails only if one
or more of the following events occur:

E1 : ıUS;Y1
(u1s1(1, â); y1) ≤ logMÑ + γ; (65)

E2 : ∃m 6= 1, d, d̂,

ıUS;Y1
(umsm(d, d̂); y1) > logMÑ + γ; (66)

E3 : ıS;Y1|U (s1(1, â); y1|u1) ≤ log Ñ + γ; (67)

E4 : ∃n 6= 1, n̂, ıS;Y1|U (s1(n, n̂); y1|u1) > log Ñ + γ.
(68)

Denote byS∗ and T ∗ the coefficients selected by the
encoder andY ∗

1 , Y ∗
2 the corresponding outputs. Averaged

over the codebook, we can bound

P[E2]

= P[
⋃

m 6=1,d,d̂

{ıUS;Y1
(UmSm(d, d̂);Y ∗

1 ) > logMÑ + γ}]

(69)

≤ (M − 1)ÑEP[ıUS;Y1
(U2S2(1, 1);Y

∗
1 ) > logMÑ + γ|Y ∗

1 ]
(70)

≤
M − 1

M exp(γ)
(71)

by change of measure, where the joint probability of
{Um, Sm(d, d)}

m,d,d̂
and Y ∗

1 satisfiesP
UmSm(d,d̂)Y ∗

1

=
PUS × PY ∗

1
. Similarly

P[E4]

= P[
⋃

n6=1,1≤n̂≤N̂

{ıS;Y1|U (S1(n, n̂);Y
∗
1 |U1) > log Ñ + γ}]

(72)

≤ (N − 1)N̂EP[ıS;Y1|U (S1(2, 1);Y
∗
1 |U1)

> log Ñ + γ|Y ∗
1 U1] (73)

≤
(N − 1)N̂

Ñ exp(γ)
(74)

wherePS1(n,n̂)Y ∗
1
U1

= PUPS|UPY ∗
1
|U for n 6= 1. Next,

notice that

P[E1 ∪ E3] ≤ Eζ(U1, S
∗, T ∗) (75)

=

∫ 1

0

P[ζ(U1, S
∗, T ∗) > v]dv. (76)

Note that(S∗, T ∗) has a complicated distribution since
the coefficients are selected through the minimization of
(59). To tackle this, let

Fv := {(u, s, t) ∈ U × S × T : ζ(u, s, t) ≤ v}. (77)

Then we can bound

P[ζ(U1, S
∗, T ∗) > v]

= P[
⋂

1≤n̂≤N̂,1≤l̂≤L̂

{(U1, S1(1, n̂), T1(1, l̂)) /∈ Fv}]

(78)

≤ P[(U, S, T ) /∈ Fv ∪ S]

+
min{N̂, L̂} − 1

N̂ L̂(exp(−γ)− exp(−2γ))
+ e− exp(γ) (79)

where we invoked Lemma 5 in (79), and defined the set

S := {(u, s, t) : ıS;T |U (s; t|u) > log N̂ L̂− 2γ}. (80)

Combining (76) and (79) we have

P[E1
⋃

E3]

≤

∫ 1

0

P[(U, S, T ) /∈ Fv ∪ S]dv

+
min{N̂, L̂} − 1

N̂ L̂(exp(−γ)− exp(−2γ))
+ e− exp(γ) (81)

but by definitions (60) and (77),

∫ 1

0

P[(U, S, T ) /∈ Fv ∪ S]dv

=

∫ 1

0

E1{(U, S, T ) ∈ Fc
v ∪ S}dv (82)

= E[1{(U, S, T ) ∈ S} + ζ1{(U, S, T ) /∈ S}] (83)

= P[(U, S, T ) ∈ S]

+

∫

dPUSTPY1Y2|UST (YUST )1{(U, S, T ) /∈ S}

(84)

= P[(U, S, T ) ∈ S]

+

∫

dPY1Y2UST 1{(Y1, Y2) ∈ YUST ∪ (U, S, T ) /∈ S}

(85)

= P[(U, S, T ) ∈ S ∪ (Y1, Y2) ∈ YUST ] (86)

= P[{ıS;T |U (S;T |U) > log N̂ L̂− 2γ}

∪ {ıUS;Y1
(US;Y1) ≤ logMÑ + γ}

∪ {ıUT ;Y2
(UT ;Y2) ≤ logML̃+ γ}

∪ {ıS;Y1|U (S;Y1|U) ≤ log Ñ + γ}

∪ {ıT ;Y2|U (T ;Y2|U) ≤ log L̃+ γ}]. (87)

Finally, the proof is accomplished by substituting (87)
into (81) and then applying the union bound with (71),
(74) and (81).

Remark11. In the i.i.d. setting Theorem 10 readily gives the



following achievable region















Rii ≤ Ri

R̂1 + R̂2 ≥ I(U1;U2|U0)
∑

i(Ri −Rii) +R0 +Rii + R̂i ≤ I(U0Ui;Yi)

Rii + R̂i ≤ I(Ui;Yi|U0)
(88)

for someRii, R̂i > 0, i = 1, 2, PU0U1U2
and functionx :

U0 × U1 × U2 → X . Fourier-Motzkin elimination gives the
same region as in [6]; see also [1, Theorem 8.4].

V. D ISCUSSION

In contrast to the one-shot mutual covering lemma, a one-
shot version of mutualpackinglemma [1, Lemma 12.2] holds
trivially, because the key step union bound in the proof of [5,
Lemma 2] does not require independence among the pairs.

Lemma 12. Fix (PXY ,M,N, γ), then

P[max
m,n

ıX;Y (Xm;Yn) ≥ logMN + γ] ≤ exp(−γ) (89)

where for all1 ≤ m ≤ M , 1 ≤ n ≤ N , PXmYn
= PX × PY .

This can be used to derive a one-shot version of Berger-
Tung inner bound without time sharing or stochastic decoders.
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