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Abstract—By developing one-shot mutual covering lemmas, provide two derivations, one of them is based on a recent
we derive a one-shot achievability bound for broadcast witha generalization of channel resolvability [8].

common message which recovers Marton’s inner bound (with . S . s
three auxiliary random variables) in the i.i.d. case. The enoder Partly motivated by the desirability of achievability balm

employed is deterministic. Relationship between the mutda Without time sharing, [7] (see also [9]) proposed a new tech-
covering lemma and a new type of channel resolvability pro@m  nigque for deriving one-shot achievability bounds usingk#s-

is discussed. tic encoders, thus avoiding the mutual covering lemma and
yielding a one-shot bound which recovers the two auxiliary-

I. INTRODUCTION . ) .
. . . . variable version of Marton’s inner bound. However that ver-
While many problems in network information theory havgjo of Marton's bound is known to not be tight, whereas

begn sgccessfully solved in the discrete memoryles_s C3RE three auxiliary-variable version (Liang-Kramer bouisl
using either the metho?' of types or Weak/s”?,“g typmah%n a candidate for the capacity region [1, Section 8.4]. |
(e.g., [1] or [2]), there is a gap between the i.i.d. assUMRy 5 gne-shot achievability bound with three auxiliaries i
tions underlying these methods and the nature of SOUrGGSied without a prodf which is not easily comparable with
and channels arising from real world applications. Recegt, hond. However the main probability terms from the two

v_vorks (e.g. [3][4]), havelzldeveloped new m_ethods to derig, \nds are the same, so they are equivalent in the second orde
tight one-shot achievability bounds for specialized peot. rate analysis.

Meanwhile, a natural question is whether there exist génera

techniques to attach non-asymptotic fundamental limits in

multiuser information theory. By developing one-shot i@ns Il. ONE-SHOTMUTUAL COVERING LEMMA

of covering and packing lemmas, [5] successfully obtained

one-shot achievability bounds for various problems (multi We develop one-shot mutual covering lemmag(s) in this
access, Slepian-Wolf, Gelfand-Pinsker, Wyner-Ziv, Atilse section, which require a different proof idea than the.i¢ase
Korner, and broadcast of private messages) which lead [fo Appendix 8A] because the empirical distribution is mean
such non-asymptotic bounds and recover known results in thgless in the non-block coding case. The main device in
i.i.d. case. However the proof of Marton’s inner bound ofur proof is the introduction of an auxiliary random variabl
broadcast without public/common messages (the two auxilid?’, which can be viewed as being “typical” with a random
version, [1, Theorem 8.3]) proceeded by showing the achiesedeword from thdé/ codebook.

ability of each corner point, which requires time sharing to To begin with, let us introduce the notations of the relative

recover the full rate region in the i.i.d. case. information
In this paper we develop a one-shot mutual covering lemma
so that a one-shot version of Marton’s inner bound with a . (z) ==1lo Q(x) (1)
PllQ . g dQ

common message (the three auxiliary version originally due

to Liang et al. [6]; see also [1, Theorem 8.4]) can be obtained o
without time sharing. where P and @ are distributions on a same alphab#t

Time sharing may not be satisfactory since it is meaningle%4h dg(z) being the Radon-Nikodym derivative, and the

in the one-shot case. This is keenly noted by the authorsiBformation density
[7], who also observed that the mutual covering lemma [1,
Lemma 8.1], a technique for avoiding time sharing in the wiv (us ) = 1py Py (V)- )
i.i.d. case, does not seem to have a one-shot counterpart:
... This is helpful because no one-shot extension of Lemma 1. Fix Pyy and let
the mutual covering and packing lemma exists... For
this reason Verd's result seems to be weaker than Pymyr =Py X+ X Py x Py x---x Py 3)
ours.

The presgpt paper gives a Single'ShOt mutual Covering Iemr_naThe authors of [9] announced that the proof will be includethieir future
thereby filling the gap noted by the above remark. We witlraft.
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then
M,L
N {(UnV) ¢ F}
m=1,l=1
<P[(U,V) & F] +Plexp(er,v(U; V) > M Lexp(—7) — d]
+ min{M, L} —1 4+ e~ xP() (4)

)
for all §,+v > 0 and eventF.

Proof: Let (Vi,...,Vys) be random variables satisfying

PUZ\/I‘;'Z\/I:PUVX"'XPUV7 (5)

and define
Vi=Vw (6)

whereW is equiprobable oA1,...,

| M} and independent of
(UM VM), By independence,

M,L M
Pl () {(UnVi) ¢ FY] =EP[[(){(Un, V1) ¢ FHUM".

m=1,l=1 m=1
(7)

Define the functions
M

=P U {(um, V1) € FY]; ®)
t —I{U{um, 6]:}} 9)
'1{ZUM;\7(“ ;v) SlogL—v}. (10)

Thus
E[l — Ayum]” (18)
< ]E[l - W(UM- V)] + e PO (19)
=— Z E[1 — 7 (UM; Vi) )|W = w] + e~ () (20)
=E[l - W(U V)] + e” P (21)
<P[(U1, Vi) & F,0r 1ar i (UM V1) > log L — 4] + e~ P
(22)
P[(U,V) & F]
M
1 dPvv-v, v —exp(7)
+ P M 7;1 T(Vl) > Lexp(—v) +e
(23)
dPVlU:Ul ~
PI(U,V) ¢ F]+P | ——F——(V1) > MLexp(—y) — ¢
dPy
M
dPyviv=u,, & _
P VIV EYm exp(7) 24
+ mZ:Q aPy (V) >d| +e (24)
dPviv=uv, ,+
PI(U,V) ¢ F]+P | ——F—(V1) > MLexp(—y) — ¢
dPy
n M(;_ L) (25)
where
e (21) is because by symmetry, all summands in (20) are
equal.

« (23) is because by definitioy; v, = Puv.
e (24) uses the elementary inequalityz + y > a + b} <
{z > a} + 1{y > b}.
e (25) uses the Markov inequality.
|

The second term in (10) will play a role in the change dRemark2. Supposing thad/ < L, an optimal choice of, 6)

measure step. We then obtain

[ — Ayu]” (11)

B (Lexp(—7)Apn) exp(7) 1"

_ [1_ . ] (12)
exp(7y) - t

< [1 - — Elr(U"; V)lUM]] (13)

<1-E[r(UM; V)[UM] 4 e~ 20, (14)

where
e (13) is from the fact that (by change of measure)

Lexp(—7)Aym > Lexp( YNE[UM; Vi)[UM] (15)
Eln(UM; V)|UM]. (16)

o (14) uses the inequality
(-2 <1-pte (17)

for M,aa > 0and0 < p<1.

is the solution to the optimization problem
M-1

0
ML exp(—

—exp(7)

minimize f(~v,9) := +e (26)
N-s=X @)

for some constank € R. Using Lagrange multipliers we can
show that the optimal value df for fixed v is:

d=+(M-1)ML exp(—'y)e% exp(7),

subject to g¢(v,9) :=

(28)

Note that Lemma 1 recovers the covering lemma in [5]
whenmin{M, L} = 1. Also, Lemma 1 can be weakened to
the following simpler bound by settin = M L(exp(—~) —
exp(—27)).

Lemma 3. Under the same assumptions of Lemma 1,
M,L

ﬂ {Um,V> ¢ F1

< POV ¢ ) + Pl (UsV) > log(ML) — 2]
min{M,L} — 1

4 om0,
M L(exp(—y) — exp(—27))

+

(29)



for all v > 0 and eventF.

Remark4. In all versions of the mutual covering lemma
given above, the sum of the two probability terms can be
strengthened to the probability of the union of two event

if the union bound is not applied to simplify (22).

A conditional version of the mutual covering lemm

(c.f. Lemma 8.1 in [1]) also follows by averaging:
Lemma 5. Fix Pygr and let

PUSMTL ::PUXPS\UX"'XPS\UXPT\UX"'XPT|U

Remark8. The bound in Lemma 7 appears similar to and
slightly simpler than Lemma 3. However the sum of the
wo probabilities in (34) cannot be easily strengthenedchto t
robability of a union (see Remark 4), which is important in
e second order rate analysis.

Remark9. In both derivations of the one-shot mutual covering

6femma, the role of/ and V' are asymmetric. Moreover, the

two methods are not readily extendable to obtain a one-shot
version of the multivariate covering lemma [13, Lemma 8.2].

Proof of Lemma 7: Assume without loss of generality

(30) thatL > M. Define the sets
then Fu:={v: (u,v) € F}, (35)
M,L M
Pl () {USm,T) ¢ F}] At = | Fu. (36)
m=1,l=1 m=1
<PH(U,S,T) ¢ F}U {us,ru(S;T|U) >log(ML) —2v}] For fixedec = ¢™ in Lemma 6,
min{M, L} — 1 _ 3 [P
+ ) + e~ ep(), 31) Pv(Ac) — APy (Ac) < sup[Py(A) — APy (A)] (37)
M L(exp(—7) — exp(—27)) (1) A X
dPy , - d P
for all v > 0 and eventF. _ P[dp“j (V) > )\] _ /\P[dp“j (V) > /\]
[1l. MUTUAL COVERING FROMRESOLVABILITY (38)
While the mutual covering lemma in Section Il suffices the APy -
purpose of Section 1V, in this section we provide a simple < P[ﬁ(v) > Al (39)
alternative derivation based on a recent result on restiityab _ v
in the excess information metric [8], which illustrates th&/nere (38) is from Neyman-Pearson lemma. Thus
interesting connection between resolvability and the miutu . dPy -
covering lemma APy (Ac) > Py(Ac) — P[—dPV (V) >\ (40)
Lemma 6. [8] Fix Pyy = PUPV|U- Letc = [Cl, .. .,C]u] be 1 M dPV N
i.i.d. according toP, . Define i Z Pyiv=c,,(Fe,) — P[—dPV (V) > A
m=1
M
. 1 (41)
Py = — Pyiy—c. . 32
VT M Zl ViU=em (32) where (41) is fromF,,, C A.. Denote byp. the right hand
m= . . < H — M i
Then for any\ > 2, side of (41). Them. < 1, and settinge = U we obtain
L
EP[tp, ) p, (V) > log A P {(Un, Vi) & FHUM] = [1 = Py (Apas)]
=1
S P |:Zv;U(V; U) 2 log ?} + ; (33)

where the expectation is with respect to the codebook eealiz

tion, V ~ Py and (U, V) ~ Pyy.

The above lemma follows by setting= A\, ¢ = ¢ 1 %
011, Qxv = Pvy, nx = Py, L =M andPx = Py in [8,
Remark 3]. We then have

Lemma 7. Under the same assumptions of Lemma 1,
M,L
Pl () {(Un, VD) ¢ F}]
m=1,l=1
<P(U,V) ¢ F]+Phy,v(U; V) > log ML — ~]
+

exp(7)

_ SNV L g exp(v)
max{M, L} e '

(34)

2Indeed, [10] uses the term “soft-covering” for the achiégbpart of
channel resolvability [11], an idea that traces back to WAj&a].

(43)

where (43) uses (17). Then the result follows by uncondition
ing UM on both sides of (43), applying (41) and Lemma 6,
and settingh = 2L exp(—7). [ |
While the derivations of the one-shot mutual covering
lemma in Sections Il and Ill follow different routes, their
correspondences can be seen in the following ways:
1) The auxiliary random variabl&, which is the main
device in the first proof, has the distributidn, as in
(32) conditioned orUM = M,
2) The change of measure steps (16) can be related to the
Neyman-Pearson lemma (37)-(39).
3) Both derivations relies on the inequality (17) which also
appeared in the proof of the standard covering lemma.



Although Lemma 6 implies the one-shot mutual covering
lemma, the reverse implication does not seem to follow
directly. Thus resolvability in the excess information is a

stronger result than the mutual covering lemma.

IV. INNER BOUND WITH A COMMON MESSAGE

We prove a single shot version of the asymptotic achiev-
ability result of Liang-Kramer [6, Theorem 5] (see also [1,
Theorem 8.4]). This region is equivalent to an inner bound
obtained by Gelfand and Pinsker [14] upon optimization (see

[15] or [1, Remark 8.6]).

Theorem 10. Fix arbitrary distributions Py, y,|x, Pust, @
mapz : U x S x T — X, and integersMy, My, Moy, N,
L, N and L. Set

M := MoMioMazo; (44)
My := MygN; (45)
My := MsoL; (46)
N := NN; (47)
L:=LL. (48)

Then there exists aWy, M;, M, €1, €2) code with

max{ey, €2}
< 2exp(—7)+e” exp(7) (49)
+ P[{ws.v, (US; Y1) <log MN +~}
U {wr.y, (UT;Ys) <log ML + v}
U {15,y (S Y1|U) < log N + 7}
U {2y, (T Y2|U) < log L +~}
U {es;rio (S5 T|U) > log(NL) — 273]
L min{N,L} -1 (50)
N L(exp(—y) — exp(—27))

where Pystxyv,yv, = PustPx|ustPy,vs|x

As in [1, Theorem 8.4], the private messages are decom-

posed into a public part and an individual part:

Wi = (Wio, Wis) (51)
wherei = 1,2 and W, is supposed to be decodable by both
users.

Proof:

« Codebook Generation: generate
u:[ulv"'auM] (52)

according to the distributiorP[?M. Also for eachl <
1 < M, generate

si = [8i(n, )], e n1<nen (53)
according tong’fui and
t;, = [ti(lai)hgszJgigi (54)

according toP5." . (In other words, for eachi we
construct a codebook similar to [1, Figure 8.8], where
each small rectangle has sizex N.)

Encoding: we may assume that the public messagg is
and the private messages for the two users(arg, a)

and (wz0, b) respectively, where

wo € {1, .. .,Mo} (55)

wip € {17 o '7M'L'0} (56)

ae{l,...,N} (57)

be{l,...,L} (58)

for ¢ = 1,2. Then the indexm = mwy,wo,wa)

is selected for the lower-layer codebook whends a
bijection betweer[My] x [Mig] x [Mao] and [M]. The
encoder then findé € {1,...,N} andb € {1,...,L}
that minimize

C(Up, S (@, @), ty (b, b)) (59)

where

C(ua S, t) = PY1Y2|X:m(u,s,t) (yu,s,t) (60)

and

Vst = {(W1,y2) €1 X Vo 1 ws.vy (us; y1) < log MN + ~
or 1.y, (ut; y2) < log ML+~
OF 155, v (8 y1|u) < log N+
Or iryy, v (t; yalu) < log L + 7} (61)

The signal transmitted is them(U,,,, Sy (a, @), tm (b, b)).
Decoder: assume thgt andy, are observed by the two
receivers, respectively. The decoder of the first receiver
(Decoder 1) finds the unigue such that

3d,d, wsy;, (UnSm(d,d);y1) >log MN +~ (62)

and set(mg, m1g, mag) = M 1(m), or declares an error
if not possible. Decoder 1 then finds the uniguec)
such that

15y, U (Sm(c, €)1 |Um) > log N + 7y (63)

or declares an error if not possible. The output public
message is themy and the output private message is
(mlo, C).

Decoder 2 performs similar operations as Decoder 1.
Error Analysis: By symmetry of the codebook, we may
assume without loss of generality that

Wy = Wi = Wap = W11 = Waz = 1 (64)

is sent andn(1,1,1) = 1. Also it suffices to prove the
bound for Decoder 1 only in view of the symmetry of
the bound (50). Assume thét, b) minimizes (59) (and



is selected by the encoder). Decoder 1 fails only if one
or more of the following events occur:

&1 wsy,(Ws1(1,a);51) <log MN +; (65)
E: Im#1,d,d,

ws:v, UmSm(d, d);y1) > log MN +; (66)
&3 gy u(Si(l,a);yi|ur) < log N + ; (67)

Ey: InF LN, gy, u(si(n,n);ylur) > 10g1\7+7.
(68)

Denote byS* and T* the coefficients selected by the
encoder and7*, Y5 the corresponding outputs. Averaged
over the codebook, we can bound

P[&)]

=P |J {wsv:(UnSm(d,d);Yy) >log MN +~}]
m#1,d,d
(69)
< (M — 1)NEP[1ys.v; (U2S2(1,1); Y7*) > log MN + ~|Y']
(70)
M-1
< - 71
~ Mexp(y) (71)

by change of measure, where the joint probability of
{Um, Sm(d,d)},, , i and Y} satisfiesP,,

Im, mSm (d,d) Yy =
Pys x Pyy. Similarly

P[&4]
=P[ U {eg,v1 10 (S1(n, n); Y| UL) > log N + v}
n#1,1<a<N
(72)
< (N - 1)NEP[15;Y1‘U(31(2, 1); Y |Uy)
> log N +7|Y{'U] (73)
_W-nN o
N exp(7)

Wherepsl(njl)yl*[]l = PUPS"UPYI*IU for n # 1. NeXt,
notice that

P& UEs] < E((Uy, S*,T)

:/IIP’[C(Ul,S*,T*)>v]dv. (76)
0

(75)

Note that(S*,T*) has a complicated distribution since
the coefficients are selected through the minimization of
(59). To tackle this, let

Then we can bound

P[¢(Uy, S*, T") > v]
=Pl () AULS(1L0),Ti(10) ¢ F

1<a<N,1<I<L
(78)
<P[(U,S,T) ¢ F,US]
min{N,L} —1
+ — te
N L(exp(—7) — exp(—27))

—exp(y)

(79)

where we invoked Lemma 5 in (79), and defined the set
S = {(u,s,1) 15,70 (55 t{u) > log NL — 2v}. (80)
Combining (76) and (79) we have

PlE; | ) &)

< /1 P[(U,S,T) ¢ F, US]dv
0

min{N,L} —1 o—exp(n) (81
NE(exp(—) — exp(—27)) &)
but by definitions (60) and (77),
/ BU.5.T) ¢ Fo U Sdv
0
- / BA{(U.S.T) € F£US)dv (82)
0
=E[1{(U,S,T) e S} + C1{(U,S,T) ¢ S}] (83)
_P[(U,S,T) € 8]
+ /dPUSTPY1Y2\UST(yUST)l{(Uv S,T) ¢ S}
(84)
=P[(U,S,T) € S]
+ /dPYIYQUSTl{(Yl,Yz) € VYusTt U(U,S,T) ¢S}
(85)
=P[(U,S,T) e SU(Y1,Ys) € Vusr) (86)
= P[{es;r10(S; T|U) > log NL — 27}
U {'LUS;Yl (US; Yl) < log MN + ’y}
U {wriy, (UT;Yz) < log ML + 7}
U {2, 0 (S; Y1|U) < log N + v}
U {11, 0 (T; Yo|U) < log L +~}]. (87)

Finally, the proof is accomplished by substituting (87)
into (81) and then applying the union bound with (71),
(74) and (81).

Foi={(u,5,t) €U xE X T : ((u,s,t) <v}. (77)  Remarkll In the i.i.d. setting Theorem 10 readily gives the



following achievable region
(1]

Rii <R;
Ry + Ry > 1(Uy;Ua|U) 2]
>oi(Ri — Rii) + Ro + Ri; + f:fi < I(UoUs;Y5) (3]
R+ R < I(UiQYi|UO)
(88)

(4

for someRii,Ri > 0,1 = 1,2, Py,u,u, and functionz :
Uy x Uy x Uy — X. Fourier-Motzkin elimination gives the [5]
same region as in [6]; see also [1, Theorem 8.4].

(6]

V. DISCUSSION
(7]
In contrast to the one-shot mutual covering lemma, a one-

shot version of mutugbackinglemma [1, Lemma 12.2] holds
trivially, because the key step union bound in the proof of [5[g]
Lemma 2] does not require independence among the pairs.

Lemma 12. Fix (Pxy, M, N,~), then (o]

Plmaxix.y (Xm;Yn) > log MN + 4] <exp(—7y) (89) [10]
[11]

where for alll <m < M,1<n<N, Px, vy, = Px x Py.
[12]

This can be used to derive a one-shot version of Berger-

Tung inner bound without time sharing or stochastic decader
[13]
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