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Abstract

We consider the problem of synchronizing data in distributed storage networks under an edit
model that includes deletions and insertions. We present two modifications of MDS, regenerating
and locally repairable codes that allow updates in the parity-check values to be performed
with one round of communication at low bit rates and using small storage overhead. Our
main contributions are novel protocols for synchronizing both hot and semi-static data and
protocols for data deduplication applications, based on intermediary permutation, Vandermonde
and Cauchy matrix coding.

1 Introduction

Coding for distributed storage systems has garnered significant attention in the past few years [1–4],
due to the rapid development of information technologies and the emergence of Big Data formats
that need to be saved or disseminated in a distributed fashion across a network. Reliable and effi-
cient storage, transfer, retrieval and update of distributed data are challenging computational and
networking tasks in which coding theory plays an indispensable role. One of the most significant
applications of coding methods is to ensure data integrity under distributed component and node
failure, via controlled redundancy introduced at different locations. This is accomplished by imple-
menting modified Reed-Solomon, regenerating and local repair coding solutions [5–10] that extend
and generalize the traditional coding paradigms that are part of CDs, DVDs, flash memories and
RAID like storage systems [11–13].

Typical distributed storage systems (DSS) such as Google’s Bigtable, Microsoft Azure and the
Hadoop Distributed File System, are all designed to scale to very large file sizes, to allow for
low-latency data access and to store redundant coded copies of files over a set of servers, disks or
nodes connected via a communication network. Two key functionalities of codes for DSS systems are
reconstructability of files via access to a subset of the nodes; and content repairability of failed nodes
that does not compromise data reconstruction capabilities. Evidently, both these functionalities
need to be retained when the content of files undergoes edits which arise in dynamically changing
storage systems and networked systems with load asymmetries involving “hot data” [14] or data
deduplication features [15]. Other examples in which frequent edits are encountered are Dropbox
and Sugarsync shared file systems [16], in which large number of user files are being independently
updated at multiple locations. Current solutions for synchronization protocols either assume that
data in uncoded or do not fully exploit the distributed nature of information, while deduplication
methods mostly apply to read-only architectures and are in an early stage of development as far as
distributed systems are concerned [17,18].
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When files are edited or deduplicated, the changes in the information content need to be com-
municated to the redundant storage nodes so that the DSS retains its reconstruction and repair
capabilities, and so that the communication and update costs are minimized. This is a challenging
task, as edits such as deletions and insertions, which most commonly arise in practice, cause syn-
chronization issues that appear hard to account for in the DSS encoded domain. In Dropbox and
related systems, deletion and insertion synchronization issues are resolved in the uncoded domain
via the use of the well known rsync [19] and dsync [20] or zsync (http://zsync.moria.org.uk/) algo-
rithms, related to a number of file synchronization methods put forward in the information theory
literature [21–28]. There, uncoded stored copies of a file are synchronized from an edited user’s
copy. More specifically, the problems involve a single user and a single node storing a replicate of
the user’s file. After the user edits his/her file, assuming no knowledge of the edits, the user and
the storage node communicate interactively until their files are matched or until one node matches
the master copy of the user. In the DSS scenario we propose to analyze, one may assume both full
knowledge of the edits or unknown edits, pertaining to the scenarios that edits were made by the
users themselves or by another user sharing the file, respectively. The core problem in this case is
to efficiently update coded copies in storage nodes with minimal communication rate. It is worth
pointing out that this type of question regarding synchronization from edits in DSS systems funda-
mentally differs from update efficient codes studied in [29–32]. In these contributions, the authors
minimize the number of nodes that need to be updated when a user’s file is changed. Consequently,
the edits in consideration may be vaguely viewed as substitutions, in which case, minimizing the
communication cost reduces to minimizing the number of storage nodes a user needs to recruit
during update. In contrast, this line of work is concerned with edits of the form of insertions or
deletions, where such simplified reductions do not apply. And although one may view a deletion as
a sequence of substitution errors, using update efficient codes with such preprocessing is highly sub-
optimal; in the worst case, one deletion is equivalent to ` substitutions, where ` is the file length.
Furthermore, instead of minimizing the number of storage nodes a user needs to communicate,
the objective of synchronizing from deletions and insertions is to minimize the communication cost
between the users and storage node even at the cost of introducing a small, controlled amount of
storage overhead.

The contributions of the paper are three-fold. First, we describe a number of edit models and
accompanying coding protocols for efficient synchronization in a distributed storage environment
that maintains regenerative properties. The synchronization protocols are based on a simple new
scheme termed intermediary coding, which flexibly changes the structure of the code so as to allow
reduced communication complexity between nodes in a distributed system. The intermediary cod-
ing schemes also offer flexibility in terms of accommodating a very broad family of coding schemes
used in storage devices (such as erasure codes, regenerating codes, locally repairable codes etc).
Second, we study extensions of the edit models related to deduplication applications and different
data types, such as hot and semi-static data. Third, we provide worst and average case com-
munication cost analyses for different edit models and synchronization protocols. This analysis
reveals that traditional schemes require a significantly higher communication cost than schemes
based on intermediary coding, both in the worst case and average case scenario. This may be
attributed to the fact that traditional encoding requires each node to communicate symbols in the
span of all deletion positions in different nodes, while intermediary coding allows for reducing the
communication cost to the number of bits needed to encode the particular edit only.

The paper is organized as follows. Section 2 introduces the relevant notation and provides
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the precise problem statement. Section 3 contains the description of simple update protocols and
their underlying communication cost when traditional DSS encoding methods are used. Section 4
contains our main result, a collection of encoding algorithm and protocols for data synchronization
that have overhead communication cost that is a constant factor away from the fundamental limits
derived in Section 5. Section 5 then examines both storage overhead and communication overhead
and explains how to trade between these two system parameters. Section 6 provides a short dis-
cussion on how to handle unknown edit positions. The average case analysis of the communication
cost of traditional and intermediary coding schemes, the description of hybrid and deduplication
schemes are presented in the Appendix section of the paper.

2 Notation and Problem Statement

Throughout the paper, we use [n] to denote the set of integers {1, 2, . . . , n}. For a finite set X
and k ≤ |X|, the collection of k-subsets of X is denoted by

(
X
k

)
. The symbol Fq is reserved for a

finite field of order q. The vector space of all vectors of length `, the vector space of all matrices
of dimensions m × n, and the vector space of all tensors of dimensions m × n × ` are denoted by
F`q, Fm×nq and Fm×n×`q , respectively. For i ∈ [`], xi represents the ith coordinate of a vector x ∈ F`q,
while ei stands for the ith standard basis vector.

Given a matrix M ∈ Fm×nq and a subset of the rows R ⊆ [m] and a subset of the columns
C ⊆ [n], M|R×C represents the |R| × |C| matrix obtained by restricting M to rows in R and
columns in C. We use analogous definitions for tensors.

We provide next a straightforward example that explains the underlying motivation for the
work as well as the difficulties encountered in synchronizing coded data.

Example 1. Consider two users with data vectors u(1) =
(
u

(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 , u

(1)
5

)
and u(2) =(

u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(2)
4 , u

(2)
5

)
, both of length five, over Fq. Here, q is chosen based on the smallest

number of consecutive, editable bits. Suppose we have three storage nodes where nodes 1, 2 and
3 store user information u(1) and u(2), and parity information u(1) + u(2), respectively. Then the
system is able to reconstruct both data blocks u(1) and u(2) and repair any failed node by accessing
any two nodes.

Suppose both data blocks are subjected to a single symbol deletion, and that the resulting data

blocks are ũ(1) =
(
u

(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4

)
and ũ(2) =

(
u

(2)
2 , u

(2)
3 , u

(2)
4 , u

(2)
5

)
. What protocol should the

users employ and what information do they have to communicate to the three storage nodes so as
to retain both reconstruction and repair functionalities, all with minimal data transmission cost?

One option is for the nodes to update their respective contents to ũ(1), ũ(2) and

ũ(1) + ũ(2) =
(
u

(1)
1 + u

(2)
2 , u

(1)
2 + u

(2)
3 , u

(1)
3 + u

(2)
4 , u

(1)
4 + u

(2)
5

)
.

Clearly, it is both necessary and sufficient for the user with data block ũ(1) to communicate his/her
deletion position to node 1. A similar statement holds true for the user with data block ũ(2) and
node 2. But what is the minimum communication complexity needed for node 3 to update its
content to ũ(1) + ũ(2)? At first glance, it appears that both nodes 1 and 2 should transmit their
whole content to node 3, as deletions occurred in their first and last position, respectively. The goal
of this work is to show that, akin to the notion of functional repair in DSS [6], one may significantly
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save in communication complexity by updating the content of node 3 through a flexible change in
the code structure.

2.1 Coding for Distributed Storage Systems

Let x =
(
x(1), x(2), . . . , x(B)

)
∈ FBq be an information vector to be stored in a distributed storage

system (DSS). We call each x(s), for s = 1, . . . , B, a data unit. A DSS is equipped with an encoding
function, as well as a set of reconstruction and a set of repair algorithms specifying a coding scheme.
The encoding algorithm converts the vector x into n vectors of length α and stores them in n storage
nodes, while the reconstruction algorithm recovers x from the contents of any k ≤ n out of n nodes.
In addition, when a node fails, one uses the content of a subset of d ≤ n nodes to repair the content
of the failed node.

More formally, we have the following definitions.

1. An encoding function is a map Encode : FBq → Fn×αq , where α is a given code parameter
that has to be chosen so that the encoding function of interest is constructable.

2. For any T ∈
([n]
k

)
, a map Reconstruct(T ) : Fk×αq → FBq is termed a reconstruction function

if for all
(
x(1), x(2), . . . , x(B)

)
∈ FBq ,

Reconstruct(T )
(
Encode

(
x(1), x(2), . . . , x(B)

)∣∣∣
T×[α]

)
=
(
x(1), x(2), . . . , x(B)

)
.

3. Given a t ∈ [n] and T ∈
([n]\{t}

d

)
, a map Repair(t, T ) : Fd×αq → Fαq is termed an exact repair

function if
Repair(t, T )(C|T×[α]) = C|{t}×[α],

where C is the information stored over n nodes.

Depending on the set of subsets T over which a repair function is defined on, one recovers the
various descriptions of codes for DSSs studied in the literature:

1. Maximum distance separable (MDS) codes [33, Ch. 11]. Here, we have d = k = B and
α = 1, and the reconstruction algorithm can also be used as the repair algorithm. We simply
denote an MDS code of length n and dimension k by [n, k], following the standard notation
for the dimensions of a linear error-correcting code, where it is understood that the minimum
Hamming distance of the code equals n − k + 1. One of the key properties of MDS codes
exploited for repair is the fact that every k-subset of the n coordinates is an information set.

2. Regenerating codes [34, 35]. Here, d ≥ k, and we require a repair function Repair(t, T ) for

all t ∈ [n] and all T ∈
([n]\{t}

d

)
. We note that in bandwidth-limited DSSs, it is of importance

to define an intermediary function, mapping words from Fd×αq to Fαq . More precisely, a repair

algorithm Repair(t, T ) maps inputs from Fd×αq to Fd×βq and then to Fαq , where β is usually
smaller than α and indicates the required amount of downloaded information (bits). However,
as we observe later, this intermediary function is not needed in our subsequent analysis.
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3. Locally repairable codes (LRC) [9, 10, 36]. Here, d < k, and for all t ∈ [n], we only require a

repair function Repair(t, T ) for some T ∈
([n]\{t}

d

)
. Efficient repair is achieved by minimizing

the number of nodes that needs to be contacted. In contrast to regenerating codes, we only
require information from a particular set of d nodes to repair a node, and the amount of
information downloaded is not considered.

We broadly refer to the three aforementioned families of encodings for DSSs as (n, k, d, α,B) DSS
codes, and focus on code maps that are linear.

2.2 Problem Description

Assume next that the units of a data block are updated via deletion or insertion edits1. For s ∈ [B],
consider the set N(s) , {t ∈ [n] : Encode(es)|{t}×[α] 6= 0}; in words, N(s) denotes the set of nodes
that needs to be updated when the data unit indexed by s is edited. We say that the nodes in
N(s) are connected to unit s.

Given a (n, k, d, α,B) DSS code, one can extend it to a (n, k, d, α`,B`) DSS code for any choice
of a positive integer `. This extension is akin to data-striping in RAID systems, amounting to a
simple conversion of a symbol to a vector of symbols. One can also view this construction as a
means of dividing the B` data units into ` groups of B symbols each and then applying to each
group of symbols an (n, k, d, α,B) DSS encoding. Equivalently, in this (n, k, d, α`,B`) DSS coding
scheme we may regard the given information as a B-tuple of data blocks, each of length `, say(
x(1),x(2), . . . ,x(B)

)
. The choice of ` is dictated by the storage system at hand, in particular, by

the size of the block (which is a system parameter) and the expected size of an edit. Consequently,
we assume that for algorithmic approaches that ` is a fixed system parameter. Nevertheless,
for asymptotic analysis, we use the standard modeling assumption in which ` is allowed to grow
arbitrarily large.

Example 1 (Continued). Recall the code of Example 1. There, we tacitly considered a single parity
[3, 2] MDS code, or a DSS code with parameters n = 3, k = 2, d = 2, α = 1, B = 2 and ` = 5, with
codewords of the form

(
u(1), u(2), u(1) + u(2)

)
, and u(1), u(2) belonging to a finite field. Assume that

there are two users with data blocks u(1) and u(2) of length `. Then by having nodes 1, 2 and 3
store u(1),u(2),u(1) + u(2), we obtain a (3, 2, 2, `, 2`) DSS code. Furthermore, we observe that the
connected nodes of the user with data block u(1) are nodes 1 and 3, while the connected nodes of
the user with data block u(2) are nodes 2 and 3.

The edit model of interest assumes that the data blocks are subjected to deletions performed
in an independent fashion by B different users2. More precisely, two different models for edits are
studied, including:

1. The uniform edits model, in which each data block has the same number of deletions and thus
the resulting data blocks all have the same length. Here the number of deletions is o(`/ log `).
This model is used to describe the main ideas behind the work in a succinct and notationally
simple manner, but may not be of practical importance. The model is also amenable for
combinatorial analysis.

1Consider a string (x1, x2, . . . , x`). A deletion at position i results in (x1, x2, . . . , xi−1, xi+1, . . . , x`), while an
insertion of symbol a at position i results in (x1, x2, . . . , xi−1, a, xi, . . . , x`).

2It may be possible that a user edits a number of different data blocks. However, for simplicity, our model assumes
that each data block is edited by one user.
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2. The nonuniform edits model, in which each data block has a possibly different number of
edits. This model may be analyzed both in a combinatorial and probabilistic setting. In the
former case, we assume D ≤ B ` edits for all B users. In the latter case, we assume that one
is given the probability p of deleting any particular symbol in a data block, resulting in an
average number of p ` edits per data block. Note that p may depend on `.

More generally, the problem of interest may be stated as follows: find the “best” protocol for
the B users to communicate their edits to the storage nodes, so that the storage nodes can update
their information while maintaining both reconstruction and repair functionalities. The word “best”
may refer to the smallest communication cost, smallest required combination of communication and
additional storage cost, etc. For simplicity, we first focus on the case of smallest communication
cost, defined as the average number of bits transmitted from one user to all the storage nodes.
An obvious suboptimal approach is for each user to send the entire data file of length ` to each
connected storage node, so that each such node may update its information according to the
encoding function at hand. However, as the number of edits made to a data block may be (and
usually is) much smaller compared to the data block size, a communication cost of ` symbols or
` log q bits may be highly suboptimal.

On the other hand, suppose a user performs a single edit. To encode the information about this
edit, one requires log ` bits for a deletion (for encoding the position) and log ` + log q bits for an
insertion (to encode the position and the symbol). Hence, assuming that the data blocks and edits
are uncorrelated, one requires each user to communicate at least log `+log q bits for each edit. As a
result, it is straightforward to see that a (loose) lower bound on the communication cost needed for
synchronization from a constant number of deletions is log ` (deletions) or log ` + log q (insertion)
bits, as at least one user has to communicate the information about one of its edits. When the
number of edits is of the order of the length of the data unit `, this bound may not apply, as it
may be more efficient to communicate “nonedits”. This difficult issue will not be discussed in this
work, although all schemes proposed in this work apply to this case as well, but without a proof
of order-optimality. More detailed descriptions and tighter lower bounds on the communication
complexity are given in Section 5.

In what follows, we propose a number of schemes that achieve a communication cost of O(log `+
log q) bits that is of the order of the intuitive lower bound. To facilitate such low communication
cost, we introduce additional storage overhead needed to define an intermediary encoding func-
tion, which we refer to as intermediary coding. The gist of the encoding method is to transform
the information, and hence the codes applied to data blocks, via permutation, Vandermonde and
Cauchy matrices (the resulting schemes are subsequently referred to as Scheme P, V and C, respec-
tively). The key property of the transforms is that they reduce the update and synchronization
communication cost by changing the code structure. The storage overhead induced by this codes
is carefully controlled by choosing the parameters of the corresponding matrices, as described in
Section 5.2. In Section 5.2, we also demonstrate that our schemes are optimal in terms of storage
allocation when the number of edits is o(`/ log `). Under the same condition of o(`/ log `) edits,
we demonstrate in Appendix B that on the average our schemes outperform schemes that do not
utilize intermediary encoding functions.

In general, our derivations and methods do not rely on specific assumptions on the network
topology. For the proofs of lower bounds or fundamental limits, a user is allowed to communicate
with any other user or storage node and vice versa, i.e., the storage network is a complete graph.
However, users are naturally assumed to communicate only with a “minimal” set of storage nodes
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Assumptions Schematic Diagram

Topology used for prov-
ing fundamental perfor-
mance bounds.

A user is allowed to communicate with any
other user or storage node and vice versa.
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Traditional Coding
Scheme (See Scheme T)

A user is allowed to communicate to any
of his/her connected storage nodes and all
users are allowed to have a two-way com-
munication with a designated central node
tasked with computing the span of all the
deletions.

© //
WW

��

�

© //
__

��

�

4
Intermediary Coding
Schemes (See Scheme P
and V)

A user is allowed to communicate to any
of his/her neighboring storage nodes.
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�

© //

��

�

�

Here, © denotes a user, while � and 4 denote a node and a designated central node, respectively.

Table 1: Communication Network Topology Models.

which contains encodings or systematic repetition of their data block symbols. These assumptions
are summarized in Table 1.

3 Communication Cost with Traditional Encoding Schemes

As discussed earlier, assume that one is given an (n, k, d, α,B) DSS code over Fq with func-
tions Encode, Reconstruct and Repair, and that for a given `, this code is augmented to
an (n, k, d, α`,B`) DSS code. Next, we state explicitly the encoding, reconstruction and repair
functions for this scheme and examine the requisite communication between users and storage
nodes under a single deletion model. The uniform deletion model may be analyzed in the same
manner. We first show that in the worst case, the number of bits communicated is at least (`− 1)
symbols, or (`−1) log q bits; we then proceed to introduce a scheme that lowers this communication
cost to an order-optimal level.

More formally, for a fixed `, in order to construct an (n, k, d, α`,B`) DSS code, we extend
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Encode to the linear map3 Encode(`) : FB×`q → Fn×α×`q , such that for i ∈ [`],

Encode(`)
(
x(1),x(2), . . . ,x(B)

)∣∣∣
[n]×[α]×{i}

= Encode
(
x

(1)
i , x

(2)
i , . . . , x

(B)
i

)
. (1)

Hence, we regard the information stored at the n nodes as an n × α × ` tensor. For i ∈ [`],

the ith slice of this tensor is the n × α array Encode
(
x

(1)
i , x

(2)
i , . . . , x

(B)
i

)
. We refer to this

particular encoding Encode(`) as a traditional encoding function. In the subsequent sections, we
define another encoding function that uses Encode(`) as a building block, and this novel encoding
function will represent a crucial component of our low-communication cost synchronization schemes.

Next, we provide the corresponding reconstruction and repair functions accompanying tradi-
tional encoding and verify that we indeed have a DSS code.

In particular, we define Reconstruct(T ; `) : Fk×α×`q → FB×`q for T ∈
([n]
k

)
and repair function

Repair(t, T ; `) : Fd×α×`q → Fα×`q for t ∈ [n] and T ∈
([n]\{t}

d

)
via

Reconstruct(T ; `)
(
C|T×[α]×[`]

)∣∣
[B]×{i} , Reconstruct(T )

(
C|T×[α]×{i}

)
for i ∈ [`], (2)

Repair(t, T ; `)
(
C|T×[α]×[`]

)∣∣
[α]×{i} , Repair(t, T )

(
C|T×[α]×{i}

)
for i ∈ [`]. (3)

Given access to k nodes, we regard their information as a k×α×` tensor and apply the classical re-

construction algorithm to the ith slice for i ∈ [`]. Since this slice is in fact Encode
(
x

(1)
i , x

(2)
i , . . . , x

(B)
i

)
,

we retrieve the data units
(
x

(1)
i , x

(2)
i , . . . , x

(B)
i

)
, which correspond to the ith coordinates of the data

blocks x(1),x(2), . . . ,x(B). Hence, the algorithm given by (2) retrieves the complete collection of
data blocks of the B users. A similar setup holds for the repair algorithm. As a result, Encode(`),
Reconstruct(T ; `) and Repair(t, T ; `) describe an (n, k, d, α`,B`) DSS code.

Suppose after the edits, the data blocks are updated to x̃(1), x̃(2), . . . , x̃(B), each of length `′.
One straightforward approach to maintain reconstruction and repair properties after the updates is
to ensure that the information stored at the n nodes is given by Encode(`′)

(
x̃(1), x̃(2), . . . , x̃(B)

)
.

Unfortunately, as we will see in the next example, such an approach requires a communication cost
of at least (`− 1) log q bits in the worst case scenario.

Example 1 (Generalized). Recall the systematic single parity [3, 2] MDS code and let the data
blocks of users 1 and 2 be u(1),u(2) ∈ F`q, respectively. For this code, we may use (1) and rewrite
the information at the storage nodes as

Encode(`)
(
u(1),u(2)

)
=

 u(1)

u(2)

u(1) + u(2)

 . (4)

Recall that in the case for MDS codes we have α = 1. Hence, the image of the encoding map
is simply written as a matrix, instead of a three dimensional tensor. This notational convention
applies to all subsequent examples in the paper.

3For compactness, unless stated otherwise, we drop the transposition symbol T when writing the B×` array repre-

senting the B data blocks of length `. In other words, we write
(
x(1),x(2), . . . ,x(B)

)
instead of

(
x(1),x(2), . . . ,x(B)

)T
.
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Proposition 1. Let u(1) and u(2) be strings of length `. Assume that exactly one deletion has
occurred in u(1) and u(2). Let ũ(1) and ũ(2) denote the respective edited strings, and suppose that
the information to be updated at the storage nodes is given by (4). Then, in the worst case over all
possible edit locations, the total communication cost is at least ` − 1 symbols, or (` − 1) log q bits,
independent of the network topology between users and storage nodes.

Proof. To prove the claimed result, we adapt the fooling set method from communication complexity
(see [37, §13.2.1]), standardly used to lower bound the deterministic communication complexity of
a function.

Assume that u
(1)
` and u

(2)
1 are the deleted coordinates. Then the task of node 3 is to update its

value to
(
u

(1)
1 + u

(2)
2 , u

(1)
2 + u

(2)
3 , . . . , u

(1)
`−1 + u

(2)
`

)
.

Let f : F`q×F`q → F`−1
q be a function with f(u(1),u(2)) =

(
u

(1)
1 + u

(2)
2 , u

(1)
2 + u

(2)
3 , . . . , u

(1)
`−1 + u

(2)
`

)
.

A fooling set for f of size M is a subset S ⊆ F`q × F`q and and a value c ∈ F`−1
q such that (a) for

every
(
u(1),u(2)

)
∈ S, f

(
u(1),u(2)

)
= c and (b) for every distinct

(
u(1),u(2)

)
,
(
v(1),v(2)

)
∈ S,

either f(u(1),v(2)) 6= c or f(v(1),u(2)) 6= c. One can show that if f has a fooling set of size M ,
then the total deterministic communication cost for any protocol computing f is at least logM .

To prove the claim, we exhibit next a fooling set of size q`−1 for the function of interest. Consider
the subset of F`q × F`q of size q`−1 defined as

S =
{(

u(1),u(2)
)

: u(1) =
(

0, u
(1)
2 , u

(1)
3 , . . . , u

(1)
`

)
,u(2) =

(
−u(1)

2 ,−u(1)
3 , . . . ,−u(1)

` , 0
)}

,

and let c = 0. Then f
(
u(1),u(2)

)
= 0 for all (u(1),u(2)) ∈ S. Furthermore, if u(1) 6= v(1), or equiv-

alently, if
(

0, u
(1)
2 , u

(1)
3 , . . . , u

(1)
`

)
6=
(

0, v
(1)
2 , v

(1)
3 , . . . , v

(1)
`

)
, then we can check that f

(
u(1),v(2)

)
=(

u
(1)
2 − v

(1)
2 , u

(1)
3 − v

(1)
3 , . . . , u

(1)
` − v

(1)
`

)
6= 0. Therefore, S is a fooling set of size q`−1.

For the general case involving more than two users and more than three storage nodes, one
can focus on the worst case scenario in which two users each have a single deletion and need to
update a parity check value in a common, connected node. The proof of Proposition 1 can be easily
modified to show that in this case, the worst case communication cost remains (`− 1) symbols, or
(`− 1) log q bits.

3.1 Update Protocols: Beyond the Worst Case

In what follows, we describe a straightforward update protocol for the traditional encoding scheme
with edits that are not necessarily confined to the worst case configuration.

Consider a (n, k, d, α`,B`) DSS code with the data blocks of the users equal to x(1),x(2), . . . ,x(B),
and the information stored in the storage nodes equal to Encode(`)

(
x(1),x(2), . . . ,x(B)

)
. We con-

sider the uniform edits model and for simplicity, assume that there is a single deletion4 at coordinate
is in data block x(s), for s ∈ [B]. Hence, the updated data block length equals `′ = ` − 1. Let
x̃(1), x̃(2), . . . , x̃(B) be the edited data blocks. In the traditional encoding scheme, to preserve re-
construction and repair properties, we require the information stored by the nodes to be updated
to Encode(`− 1)

(
x̃(1), x̃(2), . . . , x̃(B)

)
.

4Insertions can be treated in an almost identical manner as deletions and will not be explicitly discussed.
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Example 1 demonstrates that in the worst case, a user needs to transmit (` − 1) log q symbols
to its connected nodes. Clearly, for most edit scenarios, certain portions of the encoded data do
not need to be updated. Continuing Example 1, suppose x̃ = (x1, x2, . . . , x`−2, x`) with deletion
at coordinate `− 1 and ỹ = (y1, y2, . . . , y`−2, y`−1) with deletion at coordinate `. Node 3 needs to
update its string to x̃ + ỹ = (x1 + y1, x2 + y2, . . . , x`−2 + y`−2, x` + y`−1), and it suffices for users
1 and 2 to transmit x` and y`−1, respectively, to node 3. Indeed, to compute x̃ + ỹ, node 3 only
needs to compute the last coordinate as the other coordinates remain the same.

Suppose that all users send their deleted coordinates to a designated central storage node, and
that the designated central node computes imax , maxs∈[B] is and imin , mins∈[B] is.

Define I = {i ∈ [`] : imin ≤ i ≤ imax − 1}. Since
(
x̃

(1)
i , x̃

(2)
i , . . . , x̃

(B)
i

)
=
(
x

(1)
i , x

(2)
i , . . . , x

(B)
i

)
for i < imin, and

(
x̃

(1)
i , x̃

(2)
i , . . . , x̃

(B)
i

)
=
(
x

(1)
i+1, x

(2)
i+1, . . . , x

(B)
i+1

)
for i ≥ imax, we have

Encode(`− 1)
(
x̃(1), x̃(2), . . . , x̃(B)

)∣∣∣
[n]×[α]×{i}

=

{
Encode(`)

(
x(1),x(2), . . . ,x(B)

)∣∣
[n]×[α]×{i} , if i < imin,

Encode(`)
(
x(1),x(2), . . . ,x(B)

)∣∣
[n]×[α]×{i+1} , if i ≥ imax.

(5)

In other words, the information stored at coordinates in [n]× [α]×([`′]\I) need not be updated.
Therefore, it suffices to compute Encode(`− 1)

(
x̃(1), x̃(2), . . . , x̃(B)

)∣∣
[n]×[α]×I as given by

Encode(`− 1)
(
x̃(1), x̃(2), . . . , x̃(B)

)∣∣∣
[n]×[α]×I

= Encode(|I|)
(
x̃

(1)
I , x̃

(2)
I , . . . , x̃

(B)
I

)
, (6)

where x̃
(s)
I is the updated string restricted to the coordinates in I. In other words, x̃

(s)
I ,(

x
(s)
imin

, x
(s)
imin+1, . . . , x

(s)
is−1, x

(s)
is+1, . . . , x

(s)
imax

)
.

Consequently, equipped with x̃
(s)
I for s ∈ [B] and equations (5) and (6), the nodes are able to

compute Encode(`− 1)
(
x̃(1), x̃(2), . . . , x̃(B)

)
. We call this update protocol Scheme T.

Proposition 2 (Scheme T). Consider an (n, k, d, α`,B`) DSS code and assume single deletions in
the user data blocks. The updates in accordance to Scheme T result in an (n, k, d, α(`−1), B(`−1))
DSS code. Each user needs to send out |I| log q bits to a connected storage node, which in the worst
case equals (`− 1) log q bits. Here, I = {i ∈ [`] : imin ≤ i ≤ imax− 1}, where imax = maxs∈[B] is and
imin = mins∈[B] is.

In Appendix B, we compute the expected communication cost between a user and a connected
storage node for a number of probabilistic edit models, and show that for all models considered
this cost is of the order of ` log q bits, i.e., of the order of the worst case communication scenario
rate. The analysis is based on order statistics that characterizes the average span of deletions in
the data blocks.

4 Synchronization Schemes with Order-Optimal Communication
Cost

To avoid repeated transmissions of all data blocks of users, one needs to develop encoding methods
that work around the problems associated with the simple protocol T. We present next our main
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(
x(1),x(2), . . . ,x(B)

) Encode(`)
// C

C|T×[α]×[`]
Reconstruct(T ;`)

oo

User’s data blocks Nodes

(
x(1),x(2), . . . ,x(B)

) //

Encode∗(`)
//(

x(1)A(1),x(2)A(2), . . . ,x(B)A(B)
) Encode(`)

//

oo

C

C|T×[α]×[`]Reconstruct(T ;`)
oo

Reconstruct∗(T ;`)

oo

User’s data blocks Nodes

Figure 1: a) A diagram illustrating how traditional encoding extends an existing (n, k, d, α,B)
DSS code to an (n, k, d, α`,B`) DSS code so as to handle data blocks of length `. b) Intermediary
encoding that retains both reconstruction and repair functionalities.

results, a collection of synchronization schemes that achieve communication cost of O(log `+ log q)
bits as opposed to O(` log q) required in the T protocol setting. Our schemes are based on the
following observation, apparent from Example 1: if one insists on using (1) to encode data, then
edit updates inevitably incur a communication cost of the order of the data block lengths. Hence, the
idea is to introduce an intermediary encoding algorithm that preserves the reconstruction and repair
properties of the DSS code, while allowing for significantly lower edit information communication
costs. This intermediary encoding algorithm is described in what follows and is illustrated in
Figure 1.

4.1 Intermediary Encoding

Let
(
x(1),x(2), . . . ,x(B)

)
∈ FB×`q and let A(1),A(2), . . . ,A(B) be invertible ` × ` matrices over Fq.

We define Encode∗ : FB×`q → Fn×α×`q as

Encode∗(`)
(
x(1),x(2), . . . ,x(B)

)
, Encode(`)

(
x(1)A(1),x(2)A(2), . . . ,x(B)A(B)

)
. (1∗)

Next, we show that this encoding function preserves reconstruction and repair capabilities. The
proof for the repair capability is straightforward. For t ∈ [n] and T ∈

([n]\{t}
d

)
, simply define

Repair∗(t, T ; `) : Fd×α×`q → Fα×`q via

Repair∗(t, T ; `)(C|T×[α]×[`]) , Repair(t, T ; `)(C|T×[α]×[`]) (3∗)

Since the right hand side equals C|{t}×[α]×[`], the repair property holds.
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For the reconstruction property, consider the following algorithm for any T ∈
([n]
k

)
.

Algorithm 2∗:Reconstruct∗(T ; `)(C|T×[α]×[`]) (2∗)

1
(
y(1),y(2), . . . ,y(B)

)
← Reconstruct(T ; `)(C|T×[α]×[`])

2 for s ∈ [B] do

3 x̂(s) ← y(s)
(
A(s)

)−1

4 end

5 return
(
x̂(1), x̂(2), . . . , x̂(B)

)
The reconstruction algorithm produces the correct output since from y(s) = x(s)A(s) for s ∈ [B],

we have x̂(s) = x(s).
We summarize the observations in the following proposition.

Proposition 3. Consider an (n, k, d, α,B) DSS code with functions Encode, Reconstruct and
Repair. For any positive integer ` and B invertible `×` matrices A(1),A(2), . . . ,A(B), the functions
Encode∗, Reconstruct∗ and Repair∗ given by (1∗), (2∗) and (3∗) describe an (n, k, d, α`,B`)
DSS code.

Simple modifications of (1∗) that allow for (a) systematic DSS coding and for (b) variable data
block lengths are described in what follows.

(a) Systematic DSS. A systematic DSS code is a DSS code with the property that the B data
blocks are explicitly stored amongst a set of k nodes, termed the systematic nodes. In other
words, the content of the systematic nodes are the blocks x(s).

Assume a systematic DSS code with functionalities Encode,Reconstruct,Repair. As be-
fore, let A(1),A(2), . . . ,A(B) be invertible ` × ` matrices and define a systematic encoding
function Encode∗(`)

(
x(1),x(2), . . . ,x(B)

)
according to

Encode∗(`)
(
x(1),x(2), . . . ,x(B)

)∣∣∣
{t}×[α]×[`]

,

{
Encode(`)

(
x(1),x(2), . . . ,x(B)

)∣∣
{t}×[α]×[`]

, if t is a systematic node,

Encode(`)
(
x(1)A(1),x(2)A(2), . . . ,x(B)A(B)

)∣∣
{t}×[α]×[`]

, otherwise.

Let C be the resulting information stored over the n nodes. The reconstruction and repair
algorithms may be used unaltered provided that simple pre-processing of C|T×[α]×[`] is per-
formed first. Specifically, if t ∈ T and t is a systematic node, we first let C|{t}×[α]×[`] =(
x(s1),x(s2), . . . ,x(sα)

)
. Then, we modify this information to(

x(s1)A(s1),x(s2)A(s2), . . . ,x(sα)A(sα)
)
.

If C′ denotes the tensor resulting from the previous computation, reconstruction and repair are
performed according to Reconstruct∗(T ; `)(C′) and Repair∗(T ; `)(C′), respectively.

(b) Data blocks of variable lengths. For s ∈ [B], let x(s) be of length `s and let A(s) be a
right invertible `s × ` matrix, where ` = maxs∈[B] `s. Then we define Encode∗(`) : F`1q × F`2q ×
· · · × F`Bq → Fn×α×`q via (1∗). If we further define the reconstruction and repair functions via
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(2∗) and (3∗), we arrive at an (n, k, d, α`,B`) DSS code as before. The right inverse of A(s) is

required for reconstruction and for simplicity, we use the notation
(
A(s)

)−1
for both the inverse

and right inverse of a square and rectangular matrix, respectively.

Note that when A(s) = I for all s ∈ [B], we recover the traditional encoding function. In the
next subsection, we describe how to choose the matrices A(s) and accompanying update protocols
so as to ensure significantly lower communication cost between a user and connected storage node
as compared to the traditional scheme.

4.2 Synchronization Schemes

Suppose the data blocks are edited and the resulting data blocks are of length `′. The idea behind
our approach is to request the users to modify their respective matrices A(s) to be invertible `′× `′
matrices Ã(s) according to the edits made. Then, users can only transmit the locations and values of
their edits rather than a whole span of values, with the storage nodes still being able to update their
respective information so that (1∗) holds. Since the matrices Ã(s) are designed to be invertible, the
resulting system remains an (n, k, d, α`′, B`′) DSS code.

We propose three different update schemes for the matrices Ã(s) based on the frequency and
extent to which edits are made, catering to the need of [14]:

(4.1) Semi-static Data. Here, we assume that only a constant fraction of the data blocks is
edited by users so that most data blocks retained their original length `. In this case, the
matrices Ã(s) – albeit modified – remain of dimension `× `. The most appropriate choice for
the matrices are permutation matrices, i.e., 0-1 matrices with exactly one 1 per row and per
column. We observe that each node stores α` symbols.

(4.2) Hot Data. In contrast to the semi-static case, one may also assume that a significant
proportion of the data blocks are edited by users, as is the case for hot data5. In this case,
suppose that the resulting data blocks are of length `′ < `; then the storage requirements
reduce to each node storing α`′ < α` symbols. The matrices Ã(s) have dimension `′ × `′

and an appropriate choice for them are Vandermonde and Cauchy matrices (see [33]), to be
discussed in more detail throughout the next sections.

Scheme Based on Permutation Matrices. Although this scheme applies for general nonuniform
edit models, and consequently to data blocks of variables lengths, for simplicity we assume edits of
the form of a single deletion or insertion. As before, in the nonuniform setting we pad the shorter
data blocks by an appropriate number of zeros. To do so, we represent the file by padding the data
string with zeroes. So, a deletion in x at position 2 results in x̃ = (x1, x3, . . . , x`−1, 0).

Let data block x(s) be edited at coordinate is. Recall that we associate with x(s) an `×` matrix
A(s). The matrix A(s) is initialized to the identity matrix I and it remains a permutation matrix
after each update. Roughly speaking, the storage nodes maintain the coded information in the
original order. Since with each edit this order changes, the permutation matrix A(s) is used to keep
track of the order in the data blocks relative to that in the storage nodes. Hence, A(s) indicates

5In many application, hot data is left uncoded in order to facilitate quick access to information and eliminate the
need for re-encoding. Our scheme mitigates both the issues of access and re-encoding, while allowing higher level of
data integrity through distributed coding.
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that instead of editing “position is” of the check nodes, one has to edit a position “position js” in
the original order. These assertions are stated and proved rigorously in the proof of Proposition 4.

Since permutation matrices are clearly invertible, the approach results in an (n, k, d, α`,B`)
DSS code by Proposition 3. The permutation matrix intermediary encoding scheme is detailed in
Scheme P.

Scheme P: Suppose x(s) is edited at coordinate is.

1 if edit is a deletion then

2 js ← coordinate where the isth row A(s) is one (note: A(s) is a permutation matrix)

3 shift isth row of A(s) to the last row

4 else

5 js ← coordinate where the last row A(s) is one

6 shift last row of A(s) to the isth row

7 end
8 User s sends to the connected storage nodes N(s): the value affected, using x (log q bits),

the type of edit – insertion or deletion (one bit), and the coordinate js (log ` bits)
9 for t ∈ N(s) do

10 Compute d = Encode(`) (0, . . . ,0, xejs ,0, . . . ,0) |{t}×[α]×[`]

11 if edit is a deletion then
12 subtract d from coordinate js at each storage node
13 else
14 add d to coordinate js at each storage node
15 end

16 end

Proposition 4 (Scheme P). Consider an (n, k, d, α`,B`) DSS code and assume a single edit for
a single user. The updates in accordance to Scheme P result in an (n, k, d, α`,B`) DSS code and
the user needs to communicate log ` + log q bits to a connected storage node to update her/his
information.

Before we prove this proposition, we illustrate Scheme P via an example.

Example 2. Consider a simple example of two data blocks u(1) and u(2), shown below, for which ` =
5, as part of a [3, 2] MDS code over F5. Let D denote the tensor given by Encode(`) (0, . . . ,0, xejs ,0, . . . ,0)
in line 10.

14



u(1) u(2) edit D Encode(5)
(
u(1)A(1),u(2)A(2)

)
A(1) A(2)

(1, 2, 3, 4, 4) (1, 1, 1, 1, 1) — —

 1 2 3 4 4
1 1 1 1 1
2 3 4 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(1, 3, 4, 4, 0) (1, 1, 1, 1, 1) deletion at
position 2
of x

 0 2 0 0 0
0 0 0 0 0
0 2 0 0 0

  1 0 3 4 4
1 1 1 1 1
2 1 4 0 0




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(1, 3, 4, 0, 0) (1, 1, 1, 1, 1) deletion at
position 3
of x

 0 0 0 4 0
0 0 0 0 0
0 0 0 4 0

  1 0 3 0 4
1 1 1 1 1
2 1 4 1 0




1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(1, 4, 3, 4, 0) (1, 1, 1, 1, 1) insertion of
4 at posi-
tion 2 of x

 0 0 0 4 0
0 0 0 0 0
0 0 0 4 0

  1 0 3 4 4
1 1 1 1 1
2 1 4 0 0




1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


We reconstruct the data blocks using nodes or rows 1 and 3.

1. From row 1 and 3, we infer that row 2 is (1, 1, 1, 1, 1).

2. Hence, we obtain

û(1) = (1, 0, 3, 4, 4)
(
A(1)

)−1
= (1, 4, 3, 4, 0),

û(2) = (1, 1, 1, 1, 1)
(
A(2)

)−1
= (1, 1, 1, 1, 1),

as desired.

Proof of Proposition 4. We demonstrate the correctness of Scheme P for the case of a deletion.
Insertions are handled similarly.

We first show that the updates performed as part of the scheme result in an (n, k, d, α`,B`) DSS

code. It suffices to show that the nodes store Encode(`)
(
x(1)A(1),x(2)A(2), . . . , x̃(s)Ã(s), . . . ,x(B)A(B)

)
,

where Ã(s) is the matrix resulting from instruction performed from line 1 to line 7. Observe that
prior to the edit, the nodes stored Encode(`)

(
x(1)A(1),x(2)A(2), . . . ,x(s)A(s), . . . ,x(B)A(B)

)
. De-

fine

D , Encode(`)
(
x(1)A(1),x(2)A(2), . . . ,x(s)A(s), . . . ,x(B)A(B)

)
−Encode(`)

(
x(1)A(1),x(2)A(2), . . . , x̃(s)Ã(s), . . . ,x(B)A(B)

)
= Encode(`)

(
0, . . . ,0,x(s)A(s) − x̃(s)Ã(s),0, . . . ,0

)
,

and suppose that the following claim were true

x(s)A(s) − x̃(s)Ã(s) = xejs . (7)

Then, the updates in lines 9 to 16 have a net effect of subtracting D from the information stored
at the nodes (recall that Encode(es)|{t}×[α] = 0 for t /∈ N(s)). This completes the proof.
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Hence, it remains to show that (7) is correct. Without loss of generality, let x(s) = (x1, x2, . . . , x`).
Then x̃(s) = (x1, x2, . . . , xis−1, xis+1, . . . , x`, 0) and x = xis .

Since A(s)|{i}×[`] = Ã(s)|{i}×[`] for i ≤ is−1, we have xiA
(s)|{i}×[`]−xiÃ(s)|{i}×[`] = 0. Similarly,

xiA
(s)|{i}×[`]−xiÃ(s)|{i−1}×[`] = 0 for is+1 ≤ i ≤ `. Hence, the left hand side yields xisÃ

(s)|{is}×[`]−
0 · Ã(s)|{`}×[`] = xejs , as needed.

Scheme Based on Vandermonde Matrices. As for the case of coding with permutation ma-
trices, the scheme using Vandermonde matrices applies to nonuniform edits, but for simplicity we
assume that there is a single deletion at coordinate is in data block x(s), for s ∈ [B]. Nevertheless,
at the end of the section, we briefly outline minor algorithmic changes that need to be performed
in order to accommodate the non-uniform deletion model.

When one deletion is present, the updated data block length is `′ = `− 1. Recall that an `× `
Vandermonde matrix is an invertible matrix of the form

a1 a2
1 . . . a`−1

1 a`1
a2 a2

2 . . . a`−1
2 a`2

. . . . . . . . . . . . . . .

a`−1 a2
`−1 . . . a`−1

`−1 a``−1

a` a2
` . . . a`−1

` a``

 ,

where a1, . . . , a` are distinct values over an appropriate field.
Recall that we associate with x(s) an ` × ` matrix A(s). After synchronization, we want the

updated matrix Ã(s) to be of dimension (`− 1)× (`− 1) and invertible, and the information in the
n storage nodes reduced to α× (`− 1) arrays.

The deleted values x
(1)
i1
, x

(2)
i2
, . . . , x

(B)
iB

are stored in the storage nodes as

D , Encode(`)
(
x

(1)
i1

A|{i1}×[`], x
(2)
i2

A|{i2}×[`], . . . , x
(B)
iB

A|{iB}×[`]

)
. (8)

Hence, when given the values x
(s)
is

and positions is, each node t may subtract the vector D|{t}×[α]×[`]

from its content. To reduce the size of the storage node arrays, we simply remove the coordinates
in the set [n] × [α] × {`}. Suppose Ã(s) is the (` − 1) × (` − 1) matrix obtained from A(s) by
removing the isth row and last column. It is easy to check that a posteriori the edit, the storage
nodes contain the tensor

Encode(`− 1)
(
x̃(1)Ã(1), x̃(2)Ã(2), . . . , x̃(B)Ã(B)

)
. (9)

For the system to be an (n, k, d, α(`−1), B(`−1)) DSS code, we require Ã(s) to remain invertible.
This is clearly true if the matrix A(s) is Vandermonde. We refer to the method as Scheme V, the
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details of which are given in what follows.

Scheme V: Symbol x(s) is deleted at coordinate is, s ∈ [B].

1 for s ∈ [B] do

2 User s sends to all connected storage nodes its deleted value deleted – x
(s)
is

– (log q bits)
as well as the coordinate is of the deletion (log ` bits)

3 A(s) ← A(s) via removal of the isth row and last column

4 end
5 for t ∈ [n] do
6 Using (8), compute and subtract D|{t}×[α]×[`]

7 Remove the (t, j, `)th coordinate, for all j ∈ [α]

8 end

Proposition 5 (Scheme V). Consider an (n, k, d, α`,B`) DSS code and assume single deletions in
each user data block. The updates in accordance to Scheme V result in an (n, k, d, α(`−1), B(`−1))
DSS code and each user needs to communicate log `+log q bits to connected storage nodes to update
their information.

We again illustrate the communication scheme via an example.

Example 3. Assume that ` = 4 and that the DSS code is a [3, 2] MDS code over F5. As before, we
choose two data blocks u(1) and u(2) as shown below to illustrate the scheme.

u(1) i1 u(2) i2 D Encode(`)
(
u(1)A(1),u(2)A(2)

)
A(1) A(2)

(0, 1, 0, 1) — (1, 0, 1, 0) — —

 2 1 0 2
2 4 0 3
4 0 0 0




1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4




1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4


(0, 1, 0) 4 (0, 1, 0) 1

 1 4 1 4
1 1 1 1
2 0 2 0

  1 2 4 �3
1 3 4 �2
2 0 3 �0

  1 1 1
1 2 4
1 3 4

  1 2 4
1 3 4
1 4 1


We reconstruct the data blocks using nodes or rows 1 and 3.

1. From row 1 and 3, we infer that row 2 is (1, 3, 4).

2. Hence, we obtain

û(1) = (1, 2, 4)
(
A(1)

)−1
= (0, 1, 0),

û(2) = (1, 3, 4)
(
A(2)

)−1
= (0, 1, 0),

as desired.

Proof of Proposition 5. As before, it suffices to show that the information stored at the nodes is
given by (9). Proceeding in a similar fashion as was done for the proof of Proposition 4, and by
referring to the linearity of the encoding maps, the proof reduces to showing that for s ∈ [B],(

x(s)A(s)
)∣∣∣

[`−1]
− x̃(s)Ã(s) = x

(s)
is

A
∣∣∣
{is}×[`−1]

. (10)
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As before, we check that x
(s)
i A(s)

∣∣∣
{i}×[`−1]

−x(s)
i Ã(s)

∣∣∣
{i}×[`−1]

= 0 for i ≤ is−1 and x
(s)
i A(s)

∣∣∣
{i}×[`−1]

−

x
(s)
i Ã(s)

∣∣∣
{i−1}×[`−1]

= 0 for is + 1 ≤ i ≤ `. Hence, the remaining term on the left hand side is

x
(s)
is

A
∣∣∣
{is}×[`−1]

, which establishes (10).

Remark 4.

(i) Size of `. Recall that Vandermonde matrices exist whenever ` ≤ q, hence this inequality has
to hold true for the scheme to be implementable.

(ii) Cauchy matrices based encoding as a means of reducing communication complex-
ity. In Scheme V, all users were required to transmit (log `+log q) bits to describe their edits.
We may save log q bits in communication complexity by having one of the users, say user 1,
transmit only its location.

We achieve this by fixing A(1) = I. Suppose that x(1) had a deletion at position i1. To ensure
that Ã(1) remains invertible, we remove the i1th row and i1th column (in line 3). This in turn
forces us to delete the i1th column in all matrices A(s). Hence, one needs to ensure that all
square submatrices of A(s) are invertible for s ≥ 2. It is known that ` × ` Cauchy matrices,
taking the general form

1/(a1 − b1) 1/(a1 − b2) . . . 1/(a1 − b`−1) 1/(a1 − b`)
1/(a2 − b1) 1/(a2 − b2) . . . 1/(a2 − b`−1) 1/(a2 − b`)

. . . . . . . . . . . . . . .
1/(a`−1 − b1) 1/(a`−1 − b2) . . . 1/(a`−1 − b`−1) 1/(a`−1 − b`)
1/(a` − b1) 1/(a` − b2) . . . 1/(a` − b`−1) 1/(a` − b`)

 ,
for distinct values a1, . . . , a`, b1, . . . , b`, satisfy this requirement and clearly exist whenever
2` ≤ q. Hence, for the protocol to be implementable, the alphabet size and length of data
blocks need to satisfy the constraint 2` ≤ q.

(iii) Application to data deduplication. Deduplication broadly refers to the process of remov-
ing duplicate copies of data with the objective of saving storage [15]. Scheme V may easily
be integrated into a data deduplication process for a DSS so as to remove duplicates not only
amongst the users, but also their redundantly encoded information at the storage nodes.

We describe how to accomplish this task for post-process deduplication, i.e., deduplication
after the users have already written on their disks certain data blocks, say (f1, f2, . . . , fe) ∈ Feq.
Deduplication proceeds as follows:

(I) A central node broadcasts to all users and nodes the data (f1, f2, . . . , fe) to be removed.

(II) For s ∈ [B], user s scans the string x(s) for the data string (f1, f2, . . . , fe) and identifies
positions is,1, is,2, . . . , is,e where the blocks are stored.

(III) User s transmits positions is,1, is,2, . . . , is,e to all connected storage nodes.

(IV) Each storage node and user updates information as requested by Scheme V in e itera-
tions.
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Nonuniform Deletion Model. To conclude this subsection, we describe how to make simple
modifications to Scheme V so as to adapt it to the general scenario where each user x(s) has ds
deletions. Define `′ as maxs∈[B] `− ds, or equivalently, `−mins∈[B] ds. Our goal is to updated the

matrix Ã(s) so that it has dimension (`− ds)× `′, and reduce the content of the n storage nodes to
α× `′ arrays.

Suppose x(s) has deleted values x
(s)
is1
, x

(s)
is2
, . . . , x

(s)
isds

. Define d(s) ,
∑ds

t=1 x
(s)
ist

A|{ist}×[`] and mod-

ify (8) as

D , Encode(`)
(
d(1),d(2), . . . ,d(B)

)
. (8′)

As before, when given the deleted values and their coordinates, each node t subtracts the vector
D|{t}×[α]×[`]. To reduce the size of the storage nodes, we simply remove the coordinates belonging

to [n] × [α] × {i} for `′ + 1 ≤ i ≤ `. Suppose Ã(s) is the (` − ds) × `′ matrix with the rows
corresponding to the ds deletions and last `−`′ columns removed from A(s). Then it is not difficult
to check that the matrices Ã(s) remain Vandermonde if the A(s) matrices were initially chose to be
Vandermonde.

Next, we establish some fundamental limits of communication complexity for the given synchro-
nization of DSS codes under edit protocols, and compare the performance of schemes P, V, and T
with these limits.

5 Fundamental Limits and a Tradeoff between Communication
Cost and Storage Overhead

Suppose a user’s data block is subjected to a single edit. Then the communication cost of both
Scheme P and Scheme V is approximately log `+ log q, for each pair of user and his/her connected
storage node. Hence, for a single edit, the communication cost of both schemes is near-optimal.

However, when a data block has an arbitrary number of edits, say d, then the schemes require
d(log `+ log q) bits to be communicated and it is unclear if this quantity is optimal, order optimal
(i.e., of the same order as the optimal solution) or suboptimal. In the next Section 5.1, we establish
a simple lower bound on the communication cost using results of Levenshtein [38] and show that
Scheme P and Scheme V are within a constant factor away from the lower bound when d = o(`1−ε)
for a constant 0 < ε < 1. Hence, under these conditions for d, the schemes are order optimal.

Nevertheless, it is worth pointing out that Scheme P and Scheme V outperform Scheme T for
any number of edits. To achieve the communication cost of O(log ` + log q) bits, Scheme P and
Scheme V have to store certain structural information regarding the matrices A(s). As Scheme T
does not require this storage overhead, we also analyze the tradeoff between communication cost
and storage overhead in Section 5.2. Our findings suggest that the use of Scheme P and Scheme V
is preferred to the use of scheme T when the number of edits is d = o(`/ log `).

5.1 Fundamental Limits

We provide next a lower bound on the communication cost between a user and a connected storage
node and show that Scheme P and Scheme V are within a constant factor away from this lower
bound provided the number of edits is constant.

Recall that a subsequence of a sequence is itself a sequence that can be obtained from the
original sequence by deleting some elements without changing the order of the nonedited elements.
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Similarly, a supersequence of a sequence is itself a sequence that can be obtained from the original
sequence by inserting some elements without changing the order of the nonedited elements.

Consider the following quantity that counts the number of possible subsequences or superse-
quences resulting from d edits on a data block of length `, respectively, defined via

V (`, d) ,

{
maxx∈F`q |{x̃ : x̃ result from at most d deletions from x}|,
maxx∈F`q |{x̃ : x̃ result from at most d insertions and deletions from x}|.

(11)

We require log V (`, d) bits to describe d deletions (or d insertions/deletions) to a node that
contains the original sequence. This shows that each user needs to communicate to a connected
storage node at least log V (`, d) bits, given that the storage nodes contain only coded information
about the original sequence and that the user knows the positions of the edits. A similar argument
for establishing a lower bound for the classical two-way communication protocol was used in [39].

The fundamental combinatorial entity V (`, d) was introduced by Levenshtein [40] and has since
been studied by a number of authors [38, 40–44]. In particular, it is known (see [38, Eq. (11) and
(24)]) that

log V (`, d) ≥

{
log
(
`−d
d

)
, for deletions only,

log(q − 1)d
(
`+d
d

)
, for deletions and insertions.

When d = o(`1−ε) for a constant 0 < ε < 1, in the asymptotic parameter regime we have
log
(
`−d
d

)
= Ω(log `) and log(q − 1)d

(
`+d
d

)
= Ω(log ` + log q). Therefore, Scheme P and Scheme V

are within a constant factor away from this lower bound.

5.2 Tradeoff between Communication Cost and Storage Overhead

Suppose that during each round of update, a data block has a single edit. In this case, the
communication cost between each user and each connected storage node for both Scheme P and
Scheme V is approximately log `+ log q. However, to achieve this cost, each user needs to store the
associated matrix A(·). Hence, each user a priori requires `2 log q bits to store this matrix.

However, this stringent storage requirement may be easily relaxed. For any synchronization
scheme, we can first store the description of the initial matrices6. Subsequently, to generate the
matrices A(s), it suffices for the users to store the modifications to the initial matrices after the
edits and we term this information the storage overhead per edit. For Scheme P and Scheme V,
this overhead amounts to the space allocated for storing the locations of edits; hence, the storage
overhead per edit is log ` bits. In contrast, for Scheme T, the storage overhead per edit is zero as
the matrices A(·) are always the identity.

We summarize the communication cost and storage overhead features of the various schemes in
Table 2.

Storage overhead versus information storage. Consider a single data block that has d edits.
Then both Scheme P and Scheme V incur a total storage overhead of d log ` bits for the user. But
the data block itself is of size ` log q bits. Therefore, for desirable storage allocation properties, one
would want d log ` = o(`) or the number of edits to be o(`/ log `). This implies that Schemes P
and V should be used only in the small/moderate edit regime. Nevertheless, it is preferable to use
Schemes P and V for semi-static and hot data, respectively, since the former effectively maintains

6The initial matrix is the identity matrix for Scheme P and Scheme T, and a Vandermonde matrix for Scheme V.
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Scheme T Scheme P Scheme V

Communication Cost between User
and Storage Node per Edit

(`−1) log q (worst case) log `+ log q+ 1 log `+ log q

Storage Overhead per Edit 0 log ` log `

Applicability — — ` ≤ q and for
deletions only

Total Size of Storage Nodes for Data
Blocks of Length `′

nα`′ nα`, where `
is the length
of the original
data blocks

nα`′

Table 2: Trade-off between storage overhead and communication complexity of various synchro-
nization protocols.

the length of the original data file, while the latter scales storage requirements according to the
number of unedited symbols.

Hybrid Schemes. Suppose first that we are given a constraint Γ on the storage overhead per edit,
say 0 < Γ < log `. By combining Scheme V and Scheme T, we demonstrate a scheme that achieves
a lower (worst case) communication cost while satisfying the aforementioned storage constraint.

Pick γ so that log(γ`) ≤ Γ. Next, divide each data block into two parts of lengths approximately
γ` and (1 − γ)`. If the edit belongs to the first part, proceed with Scheme V by sending out
log `+ log q bits and storing log(γ`) bits. On the other hand, if the edit belongs to the second part,
then simply send the entire second part of (1 − γ)` log q bits and the deleted position of log ` bits
with no storage overhead. Hence, in the worst case, the hybrid scheme incurs a storage overhead
of max{log(γ`), 0} = log(γ`) bits and a communication cost of max{log(γ`) + log q, (1− γ)` log q}
bits. The choice of γ that minimizes the communication cost is given by the next lemma.

Lemma 6. The hybrid scheme has smallest communication cost if

γ = min

{
W (q`−1 log q)

` log q
,
2Γ

`

}
, (12)

where W (x) denotes the Lambert function, defined via x = W (x) exp(W (x)).

Proof. The result easily follows by observing that max{log(γ`) + log q, (1− γ)` log q} is minimized
when log(γ`) + log q = (1− γ)` log q. By rearranging terms, we arrive at the expression z = y exp y
with y = γ ` log q and z = q`+1 log q, which yields the Lambert function form. The proof follows
by observing that γ is also required to satisfy log(γ `) ≤ Γ.

The hybrid scheme is described in detail in Appendix A and Figure 2 illustrates the commu-
nication cost and storage overhead trade-offs achievable by the hybrid scheme. Observe that both
Scheme P and Scheme V come close to the lower bound when one is allowed a storage overhead of
log ` bits, assuming single edits per data block. Note that the lower bound on the communication
cost is independent on the storage overhead. It would hence be of interest to derive a lower bound
that actually captures the dependency on the storage overhead.

We conclude this section by considering a cost that takes into account both communication
complexity and storage overhead. Similar to the hybrid scheme, we request certain users to com-
municate via Scheme P/V and others via Scheme T. Our new objective is to find an assignment
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Figure 2: Communication Cost and Storage Overhead Tradeoff
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that minimizes the aggregate cost of storage and communication, rather than an assignment that
obeys a storage overhead bound only.

Specifically, we consider a probabilistic edit model, where one edit occurs in each round and
the probability of data block s being edited equals ps. Let V be the set of users that are assigned
Scheme P/V and define p ,

∑
s∈V ps.

Then, the expected storage overhead is p log `, while the expected communication cost is log `+
p log q + (1− p)` log q. For some predefined θ ≥ 0, the aggregate cost is defined as

CA(V ) , log `+ p log q + (1− p)` log q + θp log `. (13)

Proposition 7. Let CA be given by (13). If θ ≤ (` − 1) log q/ log `, then CA is minimized when
V = [B]. Otherwise, if θ > (`− 1) log q/ log `, then CA is minimized when V = ∅.

Proof. Consider θ ≤ (`− 1) log q/ log `. Suppose V 6= [B] and pick s /∈ V . Let V ′ = V ∪ {s}. Then

CA(V ′)− CA(V ) = ps log q − ps` log q + θps log ` = ps(θ log `− (`− 1) log q) ≤ 0.

Hence, augmenting V with s lowers the aggregate cost and so CA is minimized when V = [B]. The
argument for the other case proceeds along similar lines.

6 Unknown Deletion Locations

In the previous sections, we considered synchronization protocols for user induced edits. In this
case, the positions of deletions and the values of the corresponding symbols are known and available
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to the users of the DSS. Many applications, including Dropbox-like file synchronization, call for
file updates when changes are made by secondary users, in which case the edits are unknown to
primary or other file users. As will be shown next, it is straightforward to accommodate the update
scenarios to this model, provided that an additional small storage overhead is allowed. Again, we
focus on the single edit scenario, for which we show that one only needs to store the Varshamov-
Tenengolts (VT) Syndrome [45] of the data, in addition to a properly encoded original file. The
single edit scenario applies to the case when frequent checks or updates are performed. When
the updates appear less frequently, one may apply multiple-deletion correcting codes akin to those
described in [46].

Consider the data string x(s). Recall that its VT syndrome is given by

ν
(s)
1 ,

∑̀
i=1

x
(s)
i ,

ν
(s)
2 ,

`−1∑
i=1

iχi mod `,

where χi is the indicator function for the event x
(s)
i ≤ x

(s)
i+1, i ∈ [`− 1].

Case when all users have a single deletion. In addition to the matrices A(s), we have each

user store its VT syndrome (ν
(s)
1 , ν

(s)
2 ), which is of size log q + log ` bits. Then prior to an update,

each user retrieves its VT syndrome to compute the deleted position and its value. With this
information, the user proceeds with any of the previously outlined update schemes.
Case where a proportion of data blocks have a deletion. To simplify arguments, we consider
a systematic [n, k] MDS code and the argument for a systematic [n, k, d] regenerating code can be
derived as a straightforward extension of the former case.

Observe that in the previous scheme, an additional overhead of k(log q+log `) bits was required
to store all VT syndromes for all k users. We next show that by using the structure of the MDS
code, we can achieve storage savings by recording the VT syndromes of the (n − k) check nodes
only. For this purpose, assume that at most n− k data blocks have a deletion and that n− k < k.
Also, for simplicity, let ` = q.

For the syndromes ν
(1)
1 , ν

(2)
1 , . . . , ν

(k)
1 , each check node stores an additional check value that

represents a linear combination of these syndromes, so that from any collection of k nodes all syn-
dromes can be recovered. Similarly, each check node stores another check value from the syndromes7

ν
(1)
2 , ν

(2)
2 , . . . , ν

(k)
2 . Therefore, in this scheme, we store an additional 2(n− k) log q < k(log q+ log `)

bits. Suppose that n− k affected data blocks have a deletion. Each affected user requests the VT
syndromes from the unaffected k− (n− k) users and also the coded VT syndromes from the n− k
check nodes. With the k values, the affected user computes its own VT syndrome and consequently
uses it to determine the position of its deletion and its value.

7 Conclusion

We presented a collection of protocols for synchronization of data encoded using regenerating
and repair distributed storage codes, under probabilistic and deterministic symbol deletion edits.

7Here, we assume q is a prime and the syndrome is computed modulo q.
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Our protocols trade communication overhead for small increases in storage overheads, and may
be applied in various data deduplication and system update scenarios. The gist of the approach
introduced was to use intermediary encoding, which allows the updated encoded information to
retain repair and reconstruction properties, although with a different encoding functionality. In
this case, the synchronization protocols may be seen as a form of functional update rules – rules
that preserve functional properties but not the code structure. For the presented protocols, we
provided simple fundamental lower bounds, average case performance bounds as well as an average
case complexity analysis.
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A Hybrid Schemes

We describe in detail the hybrid scheme that combines Scheme P and Scheme V. Define `∗ = (1−γ)`.
Then, for s ∈ [B], initialize

A(s) ←
(

V 0
0 I

)
,
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where V is a Vandermonde matrix of dimension (` − `∗) × (` − `∗) and I is an identity matrix of
dimension `∗. For subsequent edits, we proceed as below.

Scheme H: Assumption: x(s) is deleted at coordinate is.

1 if is ≤ `− `∗ then
2 User s sends to all connected storage nodes N(s) the value of the deleted symbol – x

(s)
is

(log q bits) and the coordinate is (log ` bits)
3 A(s) ← A(s) with the isth row removed

4 else
5 User s computes the vector

d←
(
x

(s)
`−`∗+1, x

(s)
`−`∗+2, . . . , x

(s)
`

)
−
(
x

(s)
`−`∗+1, . . . , x

(s)
is−1, x

(s)
is+1, . . . , x

(s)
` , 0

)
6 User s sends to all connected storage nodes N(s) the vector d (`∗ log q bits)

7 User s pads x(s) with a zero.

8 end
9 for t ∈ N(s) do

10 Subtract D|{t}×[α]×[`] where

D =

{
Encode(`)

(
0,0, . . . , x

(s)
is

A|{is}×[`], . . . ,0
)
, if is ≤ `− `∗,

Encode(`) (0,0, . . . , (0,d), . . . ,0) , otherwise.

11 end

Proposition 8 (Scheme H). Consider an (n, k, d, α`,B`) DSS code and assume a single deletion per
user. The updates in accordance to Scheme H result in an (n, k, d, α`,B`) DSS code. In the worst
case, each user introduces a storage overhead of max{log(γ`), 0} bits and incurs a communication
cost of max{log(γ`) + log q, (1− γ)` log q} bits for its edit.

The proof is similar to the proofs of Proposition 4 and Proposition 5 and therefore omitted.
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Example 5. We illustrate Scheme H via a simple example involving a [3, 2] MDS code over F5,
involving two arbitrarily chosen data blocks u(1) and u(2) shown below.

u(1) u(2) D Encode(`)
(
u(1)A(1),u(2)A(2)

)
A(1) A(2)

(1, 1, 1, 1, 1, 1, 1) (1, 2, 3, 4, 3, 2, 1) —

 4 0 0 0 1 1 1
0 0 0 4 3 2 1
4 0 0 4 4 3 2




1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 3 4 2 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 3 4 2 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(1, 1,�1, 1, 1, 1, 1) (1, 2, 3, 4, 3, 2, 1)

 1 3 4 2 0 0 0
0 0 0 0 0 0 0
1 3 4 2 0 0 0

  3 2 1 3 1 1 1
0 0 0 4 3 2 1
3 2 1 2 4 3 2




1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 3 4 2 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(1, 1, 1, 1, 1, 1) (1, 2, 3, 4,�3, 2, 1)

 0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1

  3 2 1 3 1 1 1
0 0 0 4 2 1 0
3 2 1 2 3 2 1




1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 3 4 2 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(1, 1, 1, 1, 1, 1) (�1, 2, 3, 4, 2, 1, 0)

 0 0 0 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0

  3 2 1 3 1 1 1
4 4 4 3 2 1 0
2 1 0 1 3 2 1




1 1 1 1 0 0 0
1 2 4 3 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 2 4 3 0 0 0
1 3 4 2 0 0 0
1 4 1 4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


We reconstruct the data blocks using nodes or rows 1 and 3.

1. From row 1 and 3, we infer that row 2 is (4, 4, 4, 3, 2, 1, 0).

2. Hence, we obtain

û(1) = (3, 2, 1, 3, 1, 1, 1)
(
A(1)

)−1
= (1, 1, 1, 1, 1, 1),

û(2) = (4, 4, 4, 3, 2, 1, 0)
(
A(2)

)−1
= (2, 3, 4, 2, 1, 0),

as desired.

B Probabilistic Analysis of the Communication Cost

In Section 5.2, we described a straightforward worst case analysis of the communication costs
incurred by various synchronization/update protocols. In what follows, we estimate the expected
communication costs of the schemes in the asymptotic regime, and in particular, show that even
on average, Scheme T requires communicating Ω(` log q) bits per one single round of editing, unlike
schemes P and V.

For the purpose of average case analysis, we assume the following probabilistic models for edits:

(UD) The uniform deletions model. For simplicity, the underlying assumption is that each data
block has a single deletion, at a coordinate chosen uniformly at random.
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(CND) The combinatorial nonuniform deletion model. Here, the model assumes that exactly D
deletions occurred uniformly at random over all the ` coordinates of the B users. In addition,
we assume D = o(B`/ log `).

(PND) The probabilistic nonuniform deletion model. Here, we assume that each of the ` coordinates
of the B users is independently edited with probability p, where p may depend on `. In
addition, we assume that the edit probability is relatively small, i.e., that p = o(1/ log `).
Hence, the total number of edits in a data block is o(`/ log `).

Theorem 9 (Scheme T). Consider Scheme T. Let C be the communication cost between a user
and a storage node, with edits occurring in accordance with the (UD), (CND) and (PND) models.
Then

E[C] = η(`) ` log q,

where

1. For model (UD), we have

lim
`→∞

η(`)

=
B − 1

B + 1
, if B is constant, (14a)

≥ 1− 2e−c, if lim`→∞B(`)/` = c. (14b)

2. For model (CND), we have

lim
`→∞

η(`) ≥ D

D + 1
. (15)

3. For model (PND), we have

lim
`→∞

η(`) ≥ 1− e−c, if lim`→∞B(`) p(`) = c. (16)

Proof. Recall the definitions of imax, imin and I from Section 3. For the model (UD), we have
|I| = imax − imin, while |I| = `− imin holds for models (CND) and (PND). Hence, η(`)` = E[|I|] =
E[imax] − E[imin] = ` − 2E[imin] for model (UD), and η(`)` = ` − E[imin] for models (CND)
and (PND). Therefore, our problem reduces to estimating E[imin] for the various models. To
do so, we follow the standard derivation methods in order statistics (for example, see David and
Nagaraja [47]), and point out that the range (span, support) of the observed deletion positions is
studied in order statistics under the name sample range.

Recall that E[imin] =
∑`

i=1 Prob(imin ≥ i) and observe that

Prob(imin ≥ i) =


(
`−i+1
`

)B
, for model (UD),

(B(`−i+1)
D )

(B`D )
, for model (CND)

(1− p)B(i−1), for model (PND).

Hence, for model (UD), we have E[imin]/` =
∑`

i=1 i
B/`B+1. When B is constant, E[imin]/`→

1/(B + 1) as `→∞ yielding (14a). When lim`→∞B/` = κ, we have

E[imin]

`
≤ 1

`
+ (`− 1)

(`− 1)B

`B+1
=

1

`
+

(
1− 1

`

)B+1

→ e−κ,
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yielding (14b).
On the other hand, for model (CND), we have8

E[imin] =

∑`
i=1

(
Bi
D

)(
B`
D

) ≤
∑B`

i=D

(
i
D

)
+ (B − 1)

(
B`
D

)
B
(
B`
D

) =

(
B`+1
D+1

)
B
(
B`
D

) +
B − 1

B
=

B`+ 1

B(D + 1)
+
B − 1

B

As a result, lim`→∞E[imin]/` ≤ 1/(D + 1), yielding (15).
Finally, for model (PND), we have

E[imin] =
∑̀
i=1

(1− p)B(i−1)` ≤ 1 + (`− 1)(1− p)B.

If lim`→∞Bp = c, then lim`→∞E[imin]/` ≤ e−c yields (16).

Proposition 10 (Scheme P/V). Consider either Scheme P or Scheme V. Define C to be the
communication cost between one selected user and a connected storage node, with edits occurring
according to the above models. Then

1. For model (UD),
E[C] = log `+ log q.

2. For model (CND),

E[C] =
D

B
(log `+ log q).

3. For model (PND),

E[C] = p`(log `+ log q).

Proof. Note that the communication cost between a user and a connected storage node for Schemes
P/V is given by d(log q + log `), where d denotes the corresponding number of edits of the user.
Since for the models (UD), (CND) and (PND), the expected number of edits are one, D/B and p`,
respectively, the proposition follows after straightforward algebraic manipulations.

In Appendix C, we explored other methods for reducing the expected communication cost of
the Schemes P/V. The idea behind the method is to observe the location of the edit with largest
index, and then communicate all deletion positions based on a rescaled data block length equal to
that index. As an illustration, if the largest index of an edit in a data block of length ` is of the
order o(`), then the locations of the deletions would only require o(log n) bits for encoding. For
the uniform and at random deletion models, these savings are unfortunately not significant.

We conclude this analysis by comparing the relationships between the expected communication
costs of the various models. Let CT and CP be the expected communication cost in Scheme T and
Scheme P/V, respectively. In the following analysis, asymptotics are computed in ` and we assume
that q is either fixed or that q = O(`).

We note that under our model assumptions, we have lim`→∞CP /CT = 0.

8A similar formulation of E[imin] can be found in [48].
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1. For model (UD), we have CT = Ω(` log q), while CP = Θ(log `+log q). Hence, lim`→∞CP /CT =
0.

2. For model (CND), we have CT = Ω(` log q) or CT ≥ κ` log q, for some constant κ. Then

lim
`→∞

CP
CT
≤ lim

`→∞

D/B(log `+ log q)

κ` log q
→ 0,

since D = o(B`/ log `).

3. For model (PND), we have CT = Ω(` log q) or CT ≥ κ` log q, for some constant κ. Then

lim
`→∞

CP
CT
≤ lim

`→∞

p`(log `+ log q)

κ` log q
→ 0,

since p = o(1/ log `).

Consequently, for all three probabilistic models and our proposed protocols, we achieve a com-
munication complexity that is asymptotically negligible compared to that of the traditional ap-
proach given by Scheme T.

C Reducing the Expected Communication Cost for Schemes P/V

Suppose that the largest edited coordinate in a user data block with d edits equals imax. In this
case, edits are confined to a shorter block than the length of the data block, and sending d dlog imaxe
bits of information for d edits suffices. In what follows, we compute the expected value of dlog imaxe
given d edits, in order to determine how much one may save in the communication rate due to this
simple observation.

First, observe that for the independent, uniform deletion model, we have

E[dlog imaxe given d edits] =

dlog `e∑
i=1

Prob(dlog imaxe ≥ i) =

dlog `e∑
i=1

Prob(imax ≥ 2i−1 + 1)

=

dlog `e∑
i=1

(
1−

(
2i−1

d

)(
`
d

) ) = dlog `e −
dlog `e∑
i=1

(
2i−1

d

)(
`
d

) .

Let s(`, d) ,
∑dlog `e

i=1

(
2i−1

d

)
/
(
`
d

)
be the second term in the previously derived expression, repre-

senting the expected number of bits that can be saved by using the reduced range encoding scheme.

It is straightforward to see that
∑dlog `e

i=1

(
2i−1

d

)
/
(
`
d

)
<
∑dlog `e

i=1 2i−1/` ≤ (2`− 1)/` < 2.
Assuming model (CND), the expected communication cost per user-storage node pair follows

from a generating function approach that gives

1(
B+D−1

D

) [λD](1− λ)−(B−1)
∑
d≥1

dλd(dlog `e − s(`, d))

=
dlog `e(
B+D−1

D

) [λD](1− λ)−(B−1)
∑
d≥1

dλd − 1(
B+D−1

D

) [λD](1− λ)−(B−1)
∑
d≥1

dλds(`, d)

=
dlog `e(
B+D−1

D

) [λD]
λ

(1− λ)B+1
− 1(

B+D−1
D

) D∑
d=1

ds(`, d)[λD−d](1− λ)−(B−1)
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=

(
B+D−1
D−1

)(
B+D−1

D

) dlog `e − 1(
B+D−1

D

) D∑
d=1

ds(`, d)

(
B +D − d− 2

D − d

)

=
D

B
dlog `e − 1(

B+D−1
D

) D∑
d=1

dlog `e∑
i=1

d
(

2i−1

d

)(
B+D−d−2

D−d
)(

`
d

) ,

where [xk]p(x) denotes the coefficient of xk in the polynomial p(x).

Assuming model (PND), the expected communication cost may be evaluated as

∑̀
d=1

dpd(1− p)`−d
(
`

d

)
(dlog `e − s(`, d)) = dlog `e

∑̀
d=1

dpd(1− p)`−d
(
`

d

)
−
∑̀
d=1

dpd(1− p)`−d
(
`

d

)
s(`, d)

= p` dlog `e −
∑̀
d=1

dpd(1− p)`−d
(
`

d

)
s(`, d) = p` dlog `e −

∑̀
d=1

dlog `e∑
i=1

dpd(1− p)`−d
(

2i−1

d

)
.

Assuming model (CND) with different values of λs, the expected communication cost for user
s is given by ∑

d1+d2+···+dB=D

λd11 λ
d2
2 · · ·λ

dB
B ds(dlog `e − s(`, ds))∑

d1+d2+···+dB=D

λd11 λ
d2 · · ·λdBB

=

D∑
ds=0

λdss ds(dlog `e − s(`, ds))
∑

∑
i 6=s di=D−ds

λd11 λ
d2
2 · · ·λ

ds−1

s−1 λ
ds+1

s+1 · · ·λ
dB
B∑

d1+d2+···+dB=D

λd11 λ
d2 · · ·λdBB

=

D∑
ds=0

λdss ds(dlog `e − s(`, ds))hD−ds(λ1, λ2, . . . , λs−1, λs+1, . . . , λB)

hD(λ1, λ2, . . . , λB)
,

where hk(X1, X2, . . . , Xn) is the complete homogeneous symmetric polynomial of degree k in n
variables.

If λs = λs, we can specialize to

hk(λ, λ
2, . . . , λB) = [zk]

∏
1≤i≤B

(1− λiz)−1 (17)

hk(λ, λ
2, . . . , λs−1, λs+1, . . . , λB) = [zk]

∏
1≤i≤B,i 6=s

(1− λiz)−1. (18)

We remark that (17) yields the generating function that counts the number of partitions with at
most k parts of size at most B, while (18) yields the generating function that counts the number
of partitions with at most k parts of size at most B and no part of size s.
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