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Abstract

The secrecy of a distributed-storage system for passwords is studied. The

encoder, Alice, observes a length-n password and describes it using two hints,

which she stores in different locations. The legitimate receiver, Bob, observes

both hints. In one scenario the requirement is that the expected number of

guesses it takes Bob to guess the password approach one as n tends to infinity,

and in the other that the expected size of the shortest list that Bob must form

to guarantee that it contain the password approach one. The eavesdropper, Eve,

sees only one of the hints. Assuming that Alice cannot control which hints Eve

observes, the largest normalized (by n) exponent that can be guaranteed for the

expected number of guesses it takes Eve to guess the password is characterized for

each scenario. Key to the proof are new results on Arikan’s guessing and Bunte

and Lapidoth’s task-encoding problem; in particular, the paper establishes a close

relation between the two problems. A rate-distortion version of the model is also

discussed, as is a generalization that allows for Alice to produce δ (not necessarily

two) hints, for Bob to observe ν (not necessarily two) of the hints, and for Eve

to observe η (not necessarily one) of the hints. The generalized model is robust

against δ − ν disk failures.

1 Introduction

Suppose that some sensitive information X (e.g. password) is drawn from a finite set X

according to some probability mass function (PMF) PX . A (stochastic) encoder, Alice, maps

(possibly using randomization) X to two hintsM1 andM2 and stores them on different disks

in different locations. The hints are intended for a legitimate receiver, Bob, who knows where

they are stored and sees both. An eavesdropper, Eve, sees one of the hints but not both;
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we do not know which. Which hint is revealed to Eve is a subtle question. We adopt a

conservative approach and assume that, after observing X , an adversarial “genie” reveals to

Eve the hint that minimizes her ambiguity. Not allowing the genie to observe X would lead

to a weaker form of secrecy (Example 1). Given some notion of ambiguity, we would ideally

like Bob’s ambiguity about X to be small and Eve’s large.

There are several ways to define ambiguity. One approach would be to require that Bob

be able to reconstructX whenever X is “typical” and that the conditional entropy of X given

Eve’s observation be large. For some scenarios, such an approach might be unsuitable. First,

it may not properly address Bob’s needs when X is not typical. For example, if Bob must

guess X , this approach does not guarantee that the expected number of guesses be small: it

only guarantees that the probability of success after one guess be large. It does not indicate

the number of guesses that Bob might need when X is atypical. Second, conditional entropy

need not be an adequate measure of Eve’s ambiguity. For example, if X is some password

that Eve wishes to uncover, then we may care more about the number of guesses that Eve

needs than about the conditional entropy [1].

In this paper, we assume that Eve wants to guess X with the minimal number of guesses

of the form “Is X = x?”. We quantify Eve’s ambiguity about X by the expected number

of guesses that she needs to uncover X . In this sense, Eve faces an instance of the Massey-

Arikan guessing problem [2, 3]: When faced with the problem of guessing X after observing

that Z = z, where Z denotes Eve’s observation, Eve must come up with a guessing order for

the elements of X . Such an order can be specified using a bijective function G(·|z) from X

onto the set
{
1, . . . , |X |

}
—a guessing function with the understanding that if Eve observes

z, then the question “Is X = x?” will be her G(x|z)-th question. Eve’s expected number of

guesses is E
[
G(X |Z)

]
. This expectation is minimized if for each z ∈ Z the guessing function

G(·|z) orders the elements of X in decreasing order of their posterior probabilities given

Z = z.

As to Bob, we will consider two different criteria: In the “guessing version” the criterion

is the expected number of guesses it takes Bob to guess X , and in the “list version” the

criterion is the expected size of the list that Bob must form to guarantee that it contain X .

The former criterion is natural when Bob can check whether a guess is correct: if X is

some password, then Bob can stop guessing as soon as he has gained access to the account

that is secured by X . The latter criterion is appropriate if Bob does not know whether a

guess is correct. For example, if X is a task that Bob must perform, then the only way for

Bob to make sure that he performsX is to perform all the tasks in the list LM1,M2 comprising

the tasks that have positive posterior probabilities given his observation. In this scenario, a

good measure for Bob’s ambiguity about X is the expected number of tasks that he must

perform, i.e., E
[
|LM1,M2 |

]
, and this will be small whenever Alice is a good task-encoder for

Bob [4].

Alternatively, the list-size criterion can also be viewed as a worst-case version of the

guessing criterion: Even if Bob is incognizant of the PMF of X , the number of guesses it

takes him to guess X can be guaranteed not to exceed the size of the smallest list that is
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guaranteed to contain X .

The guessing and the list-size criterion for Bob lead to similar results in the follow-

ing sense: Clearly, every guessing function G(·|M1,M2) for X that guesses the elements of

X of zero posterior probability only after those of positive posterior probabilities satisfies

E
[
G(X |M1,M2)

]
≤ E

[
|LM1,M2 |

]
. Conversely, one can prove that every pair of ambiguities

for Bob and Eve that is achievable in the guessing version is—up to polylogarithmic factors

of |X |—also achievable in the list version (Remark 18). These polylogarithmic factors wash

out in the asymptotic regime where the sensitive information is an n-tuple and n tends to

infinity.

Things are different for Eve: applying the list-size criterion for Eve would lead to results

that markedly differ from those that apply under the guessing criterion; see Theorem 19 and

the subsequent discussion.

To derive our results, we establish new results on guessing and task-encoding: we relate

task-encoders to guessing functions (Theorem 8), and we quantify how additional side infor-

mation can help guessing (Lemma 5). These results may be of interest in their own right. For

example, the former result leads to alternative proofs of Bunte and Lapidoth’s asymptotic

task-encoding results [4, Theorems I.2 and VI.2] as well as the direct part of [5, Theorem I.1],

which states that, in the presence of feedback, the listsize capacity of a discrete-memoryless

channel (DMC) with positive zero-error capacity equals the cutoff rate with feedback (which

is in fact equal to that without feedback [5, Corollary I.4]). The latter result on how addi-

tional side information can help guessing is related to [6]: To quantify how additional side

information can help guessing, we establish how an encoder must describe X to minimize the

expected number of guesses that a decoder needs to guess X . The list-size analog is Lapidoth

and Pfister’s optimal task-encoder [6], which describes X to minimize the expected size of

the decoder’s list. Despite the close relation between task-encoding and guessing, an optimal

encoder for a guessing decoder is typically quite different from an optimal task-encoder.

We also generalize our problem in two different directions. The first, along the lines

of [7, 4], is a rate-distortion version of the model where Bob and Eve are content with

reconstructing the sensitive information to within some given allowed distortion. The second

considers the case where Alice produces δ s-bit hints, Bob sees ν ≤ δ hints, and Eve sees

η < ν hints (not necessarily a subset of those that Bob sees). This may model a scenario

where the hints are stored on different disks and we want to guarantee robustness against

the failure of δ − ν disks and the compromise of η disks. We adopt again a conservative

approach and assume that, after observing X , an adversarial genie reveals to Bob the ν

hints that maximize his ambiguity and to Eve the η hints that minimize her ambiguity. This

guarantees that—no matter which disks fail—the model be robust against the failure of δ−ν

disks and the compromise of η disks. The generalized model is a distributed-storage system,

which is static in the sense that failed disks are not replaced.

The case where X is drawn uniformly, Bob must reconstruct X , and Eve’s observation

must satisfy some information-theoretic security criterion (e.g., the mutual information be-

tween Eve’s observation and X must be null) corresponds to the erasure-erasure wiretap
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channel studied in [8] and is a special case of the wiretap networks in [9, 10]. In the liter-

ature, this setting is also known as “secret sharing.” In traditional secret sharing, each set

of hints either reveals X or reveals no information about X [11, 12]. More general are ramp

schemes, where any ν hints reveal X and the amount of information that fewer-than-ν hints

reveal is controlled (see e.g. [13]). Our setting is different in that we assume X ∼ PX and

in that, using some notion of ambiguity, we quantify how difficult it is for Bob and Eve to

reconstruct X .

To better bring out the role of Rényi entropy, we generalize the models and replace

expectations with ρ-th moments. (The generalization comes with no extra effort.) For an

arbitrary ρ > 0, we thus study the ρ-th (instead of the first) moment of the list-size and of

the number of guesses. Moreover, we shall allow some side information Y that is available

to all parties.

The connection between Rényi entropy and the ρ-th moment of the minimum number of

guesses has been studied extensively in the literature [3, 14, 15, 16]. The connection with

encoding tasks was studied in [4].

The idea to quantify Eve’s ambiguity by the ρ-th moment of the number of guesses she

needs to uncover X is due to Arikan and Merhav, who studied the Shannon cipher system

with a guessing wiretapper [1]. Their approach was later adopted in [17, 18]. The current

setting differs from the ones in [1, 17, 18] in the following sense: Instead of mapping X to

a public message using a secret key, which is available to Bob but not to Eve, here Alice

produces two hints and stores them so that Bob sees both but Eve sees only one. Moreover,

unlike [1, 17, 18] we do not measure Bob’s ambiguity in terms of the probability that X is

not his first guess.

The rest of this paper is structured as follows. Section 2 briefly describes our notation and

summarizes some notions and results pertaining to the guessing problem and the problem of

encoding tasks. In Section 3, we quantify how additional side information can help guessing

and relate task-encoders to guessing functions, thereby establishing the prerequisites for the

proofs of our main results. Section 4 contains the problem statement and the main results

(both finite-blocklength and asymptotic). The results are discussed in Section 5 and proved

in Section 6. Section 7 generalizes the model to allow for a limited number of disk failures.

Section 8 considers the rate-distortion version of the problem stated in Section 4 and extends

the results on guessing and task-encoding of Section 3 accordingly. Section 9 concludes the

paper.

2 Notation and Preliminaries

In this paper (X,Y ) is a pair of chance variables that is drawn from the finite set X × Y

according to the PMF PX,Y , and ρ > 0 is fixed. We denote by PX the marginal PMF of X
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and by PY the marginal PMF of Y , e.g.,

PX(x) =
∑

y∈Y

PX,Y (x, y), ∀x ∈ X .

For every positive integer n ∈ N we denote by PnX,Y the n-fold product of PX,Y , i.e.,

PnX,Y (x,y) =

n∏

i=1

PX,Y (xi, yi), ∀ (x,y) ∈ Xn × Yn.

A generic probability measure on a measurable space (Ω,F) is denoted P, i.e., whenever we

introduce a set of chance variables (e.g., X and Y ), we denote by P the probability measure

associated with the probability space (Ω,F ,P) on which the chance variables live.

For some positive integer k, we denote by ⊕k addition modulo k, so α⊕k β is for any pair

of integers (α, β) the unique element γ ∈ {0, . . . , k − 1} satisfying

γ ≡ α+ β mod k.

We denote by Fq the Galois field with q elements.

By default log(·) denotes base-2 logarithm, and ln(·) denotes natural logarithm. We

denote by α ∨ β the maximum of two real numbers α and β and by α ∧ β their minimum.

For some real number α, we denote by [α]+ the maximum of α and zero

[α]+ = α ∨ 0,

by ⌈α⌉ the smallest integer that is at least as large as α, and by ⌊α⌋ the largest integer that

is at most as large as α. We sometimes use the identity

⌈ξ⌉
ρ
< 1 + 2ρξρ, ξ ∈ R

+
0 , (1)

which is easily checked by considering separately the cases 0 ≤ ξ ≤ 1 and ξ > 1 [4].

2.1 The Conditional Rényi Entropy

To describe our results, we shall need the conditional version of Rényi entropy (originally

proposed by Arimoto [19] and also studied in [4, 20])

Hα(X |Y ) =
α

1− α
log
∑

y∈Y

(
∑

x∈X

PX,Y (x, y)
α

)1/α

, (2)

where α ∈ [0,∞] is the order and where the cases where α is 0, 1, or ∞ are treated by a

limiting argument. Let {(Xi, Yi)}i∈N be a discrete-time stochastic process with finite alphabet

X × Y. Whenever the limit as n tends to infinity of Hα(X
n|Y n)/n exists, we denote it by

Hα(X|Y ) and call it conditional Rényi entropy-rate. In this paper α will equal 1/(1 + ρ),

and thus, since ρ > 0, will take values in the set (0, 1). To simplify notation, we henceforth

write ρ̃ for 1/(1 + ρ)

ρ̃ ,
1

1 + ρ
. (3)

The conditional Rényi entropy satisfies the following properties (see, e.g. [20, Theorem 2]):
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Lemma 1. Let (X,Y, Z) be a triple of chance variables taking values in the finite set X×Y×Z

according to the joint PMF PX,Y,Z . For every α ∈ [0,∞]

Hα(X |Y ) ≤ Hα(X,Z|Y ). (4)

Lemma 2. [20, Theorem 3] Let (X,Y, Z) be a triple of chance variables taking values in the

finite set X × Y × Z according to the joint PMF PX,Y,Z . For every α ∈ [0,∞]

Hα(X |Y, Z) ≥ Hα(X,Z|Y )− log |Z|. (5)

2.2 Optimal Guessing Functions and Task-Encoders

Suppose we want to guess X with guesses of the form “Is X = x?” Following the notation of

[3], we call a bijection G : X →
{
1, . . . , |X |

}
a guessing function for X . The guessing function

determines the guessing order: If we use G(·) to guess X , then the question “Is X = x?”

will be our G(x)-th question. With a slight abuse of the term “function,” we call G(·|Y ) a

guessing function for X given Y if the mapping G(·|y) : X →
{
1, . . . , |X |

}
is for every y ∈ Y

a guessing function for X . If we use G(·|Y ) to guess X from the observation Y and observe

that Y = y, then the question “Is X = x?” will be our G(x|y)-th question.

In the following we shall consider guessing functions for X given Y . Since every guessing

function for X can be viewed as a guessing function for X given Y for the case where Y is

null, the results also apply to guessing functions for X .

The performance of a guessing function is studied in terms of the ρ-th moment of the

number of guesses that we need to guess X when we use that function. That is, the expec-

tation E
[
G(X |Y )ρ

]
is the performance of G(·|Y ). We say that a guessing function G(·|Y ) is

optimal if its performance is optimal, i.e., G(·|Y ) is optimal if, and only if, (iff) it minimizes

E
[
G(X |Y )ρ

]
among all the guessing functions for X given Y . It is easy to see that a guess-

ing function G(·|Y ) is optimal iff for every y ∈ Y, the function G(·|y) orders the possible

realizations of X in decreasing order of their posterior probabilities given Y = y. We can use

Arikan’s results on guessing [3] to bound the performance of optimal guessing functions:

Theorem 3 (On the Performance of Optimal Guessing Functions). [3, Theorem 1 and

Proposition 4] There exists some guessing function G(·|Y ) for which

E
[
G(X |Y )ρ

]
≤ 2ρHρ̃(X|Y ). (6)

Conversely, for every guessing function G(·|Y )

E
[
G(X |Y )ρ

]
≥
(
1 + ln |X |

)−ρ
2ρHρ̃(X|Y ) ∨ 1. (7)

For task-encoders we adopt the terminology of [4]. Given some finite set of descriptions

Z, we call a mapping f : X → Z a task-encoder for X . We associate every task-encoder with

a decoder of the form

f−1 : Z → 2X

(8)
z 7→

{
x ∈ X :

{
PX(x) > 0

}
∩
{
f(x) = z

}}
.
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If the encoder describes X by Z , f(X), then the list LZ , f−1(Z) produced by the decoder

is the list containing all the realizations of X of positive a priori probability that the encoder

could have described by Z. (This is the shortest list that is almost-surely guaranteed to

contain X given its description Z.)

Consider now the scenario where some side information Y is revealed to the encoder and

decoder [4, Section VI]. In this scenario we call f(·|Y ) a task-encoder for X given Y if the

mapping f(·|y) : X → Z is for every y ∈ Y a task-encoder for X . We associate every task-

encoder with a decoder f−1(·|Y ) satisfying for every y ∈ Y that f−1(·|y) is of the form (8),

i.e., that

f−1(·|y) : Z → 2X

(9)
z 7→

{
x ∈ X :

{
PX|Y (x|y) > 0

}
∩
{
f(x|y) = z

}}
.

If, upon observing Y , the encoder describes X by Z , f(X |Y ), then the list LYZ , f−1(Z|Y )

produced by the decoder is the list containing all the realizations of X that—given the side

information Y—have a positive posterior probability under PX|Y and that the encoder could

have described by Z.

In the following we shall consider task-encoders for X given Y . Since every task-encoder

for X can be viewed as a task-encoder for X given Y for the case where Y is null, the results

also apply to task-encoders for X .

We shall also need the notion of a stochastic task-encoder. Such an encoder associates

with every possible realization (x, y) ∈ X × Y of the pair (X,Y ) a PMF on Z and, upon

observing the side information y, describes x by drawing Z from Z according to the PMF

associated with (x, y). The conditional probability that Z = z given (X,Y ) = (x, y) is thus

determined by the stochastic encoder, and we denote it by

P[Z = z|X = x, Y = y], (x, y, z) ∈ X × Y × Z. (10)

Based on (Y, Z) the decoder associated with the encoder (10) produces the smallest list LYZ
that is guaranteed to contain X , i.e., if (Y, Z) = (y, z), then the decoder produces the list

Lyz =
{
x ∈ X : P[X = x|Y = y, Z = z] > 0

}
, (y, z) ∈ Y × Z (11)

of all the possible realizations x ∈ X of X of positive posterior probability

P[X = x|Y = y, Z = z] =
PX,Y (x, y)P[Z = z|X = x, Y = y]∑
x̃∈X PX,Y (x̃, y)P[Z = z|X = x̃, Y = y]

. (12)

We assess the performance of a task-encoder in terms of the ρ-th moment E
[
|LYZ |

ρ
]
of

the size of the list that the associated decoder must form. As we argue shortly, deterministic

task-encoders are optimal in the sense that for every stochastic task-encoder there exists a

deterministic task-encoder that performs at least as well. Therefore, we can use Bunte and

Lapidoth’s results on deterministic task-encoders [4] to bound the performance of optimal

stochastic task-encoders:
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Theorem 4 (On the Performance of the Optimal Task-Encoders). [4, Theorem VI.1] Let Z

be a finite set. If |Z| > log |X | + 2, then there exists a deterministic task-encoder f(·|Y ) for

which

E

[∣∣LYZ
∣∣ρ
]
= E

[
f−1

(
f(X |Y )

∣∣Y
)ρ]

< 1 + 2ρ(Hρ̃(X|Y )−log(|Z|−log |X |−2)+2). (13)

Conversely, given any stochastic task-encoder (10), the associated decoding lists {Lyz} (11)

satisfy

E

[∣∣LYZ
∣∣ρ
]
≥ 2ρ(Hρ̃(X|Y )−log |Z|) ∨ 1. (14)

We conclude this section by showing that for every stochastic task-encoder there exists

a deterministic task-encoder that performs at least as well. Given a stochastic task-encoder

(10) with associated decoding lists (11), we can construct a deterministic task-encoder f(·|Y )

as follows. If (x, y) ∈ X × Y satisfies PX|Y (x|y) > 0, then we choose f(x|y) as one that—

among all elements of {z ∈ Z : x ∈ Lyz}—minimizes |Lyz |, so

f(x|y) ∈ arg min
z∈Z : x∈Ly

z

|Lyz |. (15)

Otherwise, we choose f(x|y) to be an arbitrary element of Z. It then follows from (9) that

the deterministic task-encoder performs at least as well as the stochastic task-encoder:

E

[∣∣LYZ
∣∣ρ
]

=
∑

(x,y)∈X×Y

∑

z∈Z

PX,Y (x, y)P[Z = z|X = x, Y = y]|Lyz |
ρ (16)

≥
∑

(x,y)∈X×Y :
PX,Y (x,y)>0

∑

z∈Z

PX,Y (x, y)P[Z = z|X = x, Y = y] min
z′∈Z : x∈Ly

z′

|Lyz′ |
ρ (17)

=
∑

(x,y)∈X×Y :
PX,Y (x,y)>0

PX,Y (x, y) min
z′∈Z : x∈Ly

z′

|Lyz′ |
ρ (18)

=
∑

(x,y)∈X×Y

PX,Y (x, y)
∣∣Lyf(x|y)

∣∣ρ (19)

(a)

≥
∑

(x,y)∈X×Y

PX,Y (x, y)
∣∣f−1

(
f(x|y)

∣∣y
)∣∣ρ (20)

= E

[∣∣f−1
(
f(X |Y )

∣∣Y
)∣∣ρ
]
, (21)

where (a) holds because (9) and (15) imply that f−1
(
f(x|y)|y

)
⊆ Lyf(x|y).

3 Lists and Guesses

In this section we relate task-encoders to guessing functions and explain why the performance

guarantees for optimal guessing functions (Theorem 3) and task-encoders (Theorem 4) are

remarkably similar. Moreover, we quantify how additional side information can help guessing.
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We shall need these results to characterize the secrecy of the distributed-storage systems we

study in the present paper, but they may also be of independent interest.

We start by quantifying how some additional information Z (e.g., some description pro-

duced by an encoder) can help guessing. As the following lemma shows, Z can reduce the

ρ-th moment of the number of guesses by at most a factor of |Z|−ρ:

Lemma 5. Given a finite set Z, draw Z from Z according to some conditional PMF PZ|X,Y ,

so (X,Y, Z) ∼ PX,Y ×PZ|X,Y . For optimal guessing functions G⋆(·|Y, Z) and G⋆(·|Y ) (which

minimize E
[
G(X |Y, Z)ρ

]
and E

[
G(X |Y )ρ

]
, respectively)

E
[
G⋆(X |Y, Z)ρ

]
≥ E

[⌈
G⋆(X |Y )/|Z|

⌉ρ]
. (22)

Equality holds whenever Z = f(X,Y ) for some mapping f : X × Y → Z for which f(x, y) =

f(x̃, y) implies either
⌈
G⋆(x|y)/|Z|

⌉
6=
⌈
G⋆(x̃|y)/|Z|

⌉
or x = x̃. Such a mapping always

exists, because for all l ∈ N at most |Z| different x ∈ X satisfy
⌈
G⋆(x|y)/|Z|

⌉
= l.

Proof. To prove (22) we first show that

E
[
G⋆(X |Y, Z)ρ

]

is minimum if Z is deterministic given (X,Y ). Indeed, define the function g : X ×Y → Z so

that g(x, y) ∈ arg minz∈Z G
⋆(x|y, z) holds for all (x, y) ∈ X × Y. This implies that

G⋆
(
X |Y, Z

)
≥ G⋆

(
X |Y, g(X,Y )

)
(23)

and consequently that

E
[
G⋆(X |Y, Z)ρ

]
≥ min

G(·|Y )
E

[
G
(
X |Y, g(X,Y )

)ρ]
. (24)

It thus suffices to prove (22) for the case where Z is deterministic given (X,Y ), and we thus

assume w.l.g. that Z = g(X,Y ) for some function g : X ×Y → Z. For every guessing function

G
(
·|Y, g(X,Y )

)
we have

E

[
G
(
X |Y, g(X,Y )

)ρ]
=

∑

(x,y)∈X×Y

PX,Y (x, y)G
(
x|y, g(x, y)

)ρ
. (25)

Moreover, for every distinct x, x̃ ∈ X and every y ∈ Y the equality

G
(
x|y, g(x, y)

)
= G

(
x̃|y, g(x̃, y)

)

implies that g(x, y) 6= g(x̃, y), because G(·|y, z) : X →
{
1, . . . , |X |

}
is for every z ∈ Z one-

to-one. Consequently, for every ℓ ∈ N there are at most |Z| different x ∈ X for which

G
(
x|y, g(x, y)

)
= ℓ. For every y ∈ Y order the possible realizations of X in decreasing order

of PX,Y (x, y) or, equivalently, in decreasing order of their posterior probabilities given Y = y,

and let xyj denote the j-th element. Clearly, (25) is minimum over g(·, ·) and G
(
·|Y, g(X,Y )

)

if for every ℓ ∈ N and every y ∈ Y we have G
(
x|y, g(x, y)

)
= ℓ whenever x = xyj for some j

satisfying (ℓ − 1)|Z| + 1 ≤ j ≤ ℓ|Z| or, equivalently,
⌈
j/|Z|

⌉
= ℓ. Since G⋆(·|Y ) minimizes
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E
[
G(X |Y )ρ

]
, it orders the elements of X in decreasing order of their posterior probabilities

given Y , and consequently we can choose xyj to be the unique x ∈ X for which G⋆(x|y) = j.

Hence, (25) is minimized if f(·, ·) satisfies the specifications in the lemma, g(·, ·) = f(·, ·), and

G
(
x|y, f(x, y)

)
=
⌈
G⋆(x|y)/|Z|

⌉
(see Figure 1). Moreover, the minimum equals the RHS of

(22).

One can infer from Lemma 5 how to construct an optimal encoder f : X × Y → Z for

a guessing decoder, i.e., an encoder Z = f(X,Y ) that minimizes minG(·|Y,Z) E
[
G(X |Y, Z)ρ

]

among all the possible descriptions Z that are drawn from Z according to some conditional

PMF PZ|X,Y . To that end recall that a guessing function G(·|Y ) is optimal, i.e., minimizes

E
[
G(X |Y )ρ

]
, iff for every y ∈ Y G(·|y) orders the possible realizations of X in decreasing

order of their posterior probabilities given Y = y. An optimal encoder f : X × Y → Z for a

guessing decoder can be constructed as follows: For every y ∈ Y we first order the possible

realizations ofX in decreasing order of PX,Y (x, y) or, equivalently, in decreasing order of their

posterior probabilities given Y = y, and we let xyj denote the j-th element. (Ties are resolved

at will.) We then choose some mapping f : X ×Y → Z for which f(xyj , y) = f(xyj′ , y) implies

either
⌈
j/|Z|

⌉
6=
⌈
j′/|Z|

⌉
or j = j′, e.g., by indexing the elements of Z by the elements of{

0, . . . , |Z| − 1
}
and choosing f(xyj , y) as the element of Z indexed by the remainder of the

Euclidean division of j − 1 by |Z| (see Figure 1).

P
(·
|y
)

G
⋆ (
·|y
)

z
=
f
(·
, y
)

G
⋆ (
·|y
, z
)

6

5

4

3

2

1

⋄

•

⋆

⋄

•

⋆

2

2

2

1

1

1

x
∈
X

Figure 1: How to construct an optimal encoder f : X × Y → Z for a guessing decoder when

Z = {⋆, •, ⋄}. Light background tones indicate small values of P (·|y) or G⋆(·|y).

Lemma 5 and (1) imply the following corollary:

Corollary 6. Given a finite set Z, there exists some mapping f : X × Y → Z such that

min
G(·|Y,Z)

E
[
G(X |Y, Z)ρ

]
< 1 + 2ρ|Z|−ρ min

G(·|Y )
E
[
G(X |Y )ρ

]
, (26)

where Z denotes f(X,Y ). Conversely, for every chance variable Z that takes values in Z

min
G(·|Y,Z)

E
[
G(X |Y, Z)ρ

]
≥ |Z|−ρ min

G(·|Y )
E
[
G(X |Y )ρ

]
∨ 1. (27)

10



From Corollary 6 and Theorem 3, which characterizes the performance of optimal guessing

functions G(·|Y ), we obtain the following upper and lower bounds on the smallest ambiguity

minG(·|Y,Z)E
[
G(X |Y, Z)ρ

]
that is achievable for a given |Z|. The bounds are tight up to

polylogarithmic factors of |X |.

Corollary 7. Given a finite set Z, there exists some mapping f : X × Y → Z for which

min
G(·|Y,Z)

E
[
G(X |Y, Z)ρ

]
< 1 + 2ρ(Hρ̃(X|Y )−log |Z|+1), (28)

where Z denotes f(X,Y ). Conversely, for every chance variable Z that takes values in Z

min
G(·|Y,Z)

E
[
G(X |Y, Z)ρ

]
≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log |Z|) ∨ 1. (29)

Note that (29) also follows from (7) in Theorem 3 and the properties of conditional Rényi

entropy in Lemmas 1 and 2.

The performance guarantees for optimal guessing functions (Theorem 3 and Corollary 7)

and task-encoders (Theorem 4) are remarkably similar. To provide some intuition on this,

we relate task-encoders to guessing functions. As the following theorem shows, a “good”

guessing function “induces” a “good” task-encoder and vice versa:1

Theorem 8. Let Z be a finite set.

1. Given any stochastic task-encoder (10), the associated decoding lists {Lyz} (11) induce

a guessing function G(·|Y ) that satisfies

E
[
G(X |Y )ρ

]
≤ |Z|ρ E

[∣∣LYZ
∣∣ρ
]
. (30)

2. Every guessing function G(·|Y ) and every positive integer ω ≤ |X | satisfying

|Z| ≥ ω

(
1 +

⌊
log
⌈
|X |/ω

⌉⌋)
(31)

induce a deterministic task-encoder, i.e., a stochastic task-encoder whose conditional

PMF (10) is {0, 1}-valued, whose associated decoding lists {Lyz} (11) satisfy

E

[∣∣LYZ
∣∣ρ
]
≤ E

[⌈
G(X |Y )/ω

⌉ρ]
. (32)

To prove Theorem 8, we need the following fact:

Fact 9. For every k ∈ N
∣∣{k̃ ∈ N : ⌊log k̃⌋ = ⌊log k⌋

}∣∣≤ k. (33)

1We call a guessing function or task-encoder “good” if its performance is nearly optimal, and “induce”

means here that—without knowing the PMF PX,Y —we can construct from a guessing function a task-encoder

and vice versa.
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Proof of Fact 9. If k, k̃ ∈ N are such that ⌊log k̃⌋ = ⌊log k⌋, then

2⌊log k⌋ ≤ k̃ < 2⌊log k⌋+1. (34)

Hence, ∣∣{k̃ ∈ N : ⌊log k̃⌋ = ⌊log k⌋
}∣∣ ≤ 2⌊log k⌋ ≤ k. (35)

Proof of Theorem 8. As to the first part, suppose we are given a stochastic task-encoder

(10) with associated decoding-lists {Lyz} (11). For every y ∈ Y order the lists {Lyz}z∈Z in

increasing order of their cardinalities, and order the elements in each list in some arbitrary

way. Now consider the guessing order where we first guess the elements of the first (and

smallest) list in their respective order followed by those elements in the second list that have

not yet been guessed (i.e., that are not contained in the first list), and where we continue

until concluding by guessing those elements of the last (and longest) list that have not been

previously guessed. Let G(·|Y ) be the corresponding guessing function, and observe that

E
[
G(X |Y )ρ

]
=
∑

x,y

PX,Y (x, y)
∣∣{x̃ : G(x̃|y) ≤ G(x|y)

}∣∣ρ (36)

(a)

≤
∑

x,y

PX,Y (x, y) |Z|ρ min
z : x∈Ly

z

|Lyz |
ρ (37)

(b)

≤ |Z|ρ E

[∣∣LYZ
∣∣ρ
]
, (38)

where (a) holds because for every x, x̃ ∈ X and y ∈ Y a necessary condition for G(x̃|y) ≤

G(x|y) is that x̃ ∈ Lyz̃ for some z̃ ∈ Z satisfying

|Lyz̃ | ≤ min
z : x∈Ly

z

|Lyz |,

and because the number of lists whose size does not exceed minz : x∈Ly
z
|Lyz | is at most |Z|;

and (b) holds because the list LYZ contains X (11).

As to the second part, suppose we are given a guessing function G(·|Y ) and a positive

integer ω ≤ |X | satisfying (31). Let O = {0, . . . , ω − 1} and

S =

{
0, . . . ,

⌊
log
⌈
|X |/ω

⌉⌋}
.

From (31) it follows that |Z| ≥ |O| |S|. It thus suffices to prove the existence of a task-encoder

that uses only |O| |S| possible descriptions, and we thus assume w.l.g. that Z = O×S. That

is, using the side-information y the task-encoder (deterministically) describes x by z = (o, s).

The encoding involves two steps:

Step 1: In Step 1 the encoder first computes O ∈ O as the remainder of the Euclidean

division of G(X |Y )− 1 by |O|. This guarantees that if (Y,O) = (y, o), then X be in the set

Xy,o ,
{
x ∈ X :

(
G(x|y) − 1

)
≡ o mod |O|

}
.

12



It then constructs from G(·|Y ) a guessing function G(·|Y,O) as follows. The encoder con-

structs the guessing function G(·|y, o) so that—in the corresponding guessing order—we first

guess the elements of Xy,o in increasing order of G(x|y). Our first |Xy,o| guesses are thus the

elements of Xy,o with x ∈ Xy,o being guessed before x̃ ∈ Xy,o whenever G(x|y) < G(x̃|y).

Once we have guessed all the elements of Xy,o, we guess the remaining elements of X in some

arbitrary order. This order is immaterial, because X is guaranteed to be in the set Xy,o. As

we argue next, the guessing function G(·|Y,O) for X satisfies

G(X |Y,O) =
⌈
G(X |Y )/|O|

⌉
. (39)

Indeed, observe that for every (y, o) ∈ Y × O and l ∈
{
1, . . . , |Xy,o|

}
our l-th guess xl is the

element of Xy,o for which G(xl|y) = o + 1 + (l − 1)|O|. Since o + 1 ∈
{
1, . . . , |O|

}
, we find

that G(x|y, o) =
⌈
G(x|y)/|O|

⌉
whenever x ∈ Xy,o. But X is guaranteed to be in the set Xy,o.

This proves that the guessing function G(·|Y,O) for X satisfies (39). By (39) and because

|O| = ω,

G(X |Y,O) =
⌈
G(X |Y )/ω

⌉
. (40)

Step 2: In Step 2 the encoder first computes S =
⌊
logG(X |Y,O)

⌋
and then describes X

by Z , (O,S). By (40)

1 ≤ G(X |Y,O) ≤
⌈
|X |/ω

⌉

and consequently S ∈ S. Since O and S are deterministic given (X,Y ), the conditional PMF

(10) corresponding to the description Z = (O,S) is {0, 1}-valued. It remains to show that

the decoding lists {Lyz} (11) satisfy (32). To this end note that if (Y,O, S) = (y, o, s), then

X is in the set

Xy,o,s ,
{
x ∈ X :

⌊
logG(x|y, o)

⌋
= s
}
.

Because every pair x, x̃ ∈ Xy,o,s satisfies
⌊
logG(x|y, o)

⌋
=
⌊
logG(x̃|y, o)

⌋
, Fact 9 and the

fact that the guessing function G(·|y, o) is a bijection imply that

|Xy,o,s| ≤ G(x|y, o), ∀x ∈ Xy,o,s. (41)

Recalling that (
(Y,O, S) = (y, o, s)

)
=⇒ X ∈ Xy,o,s, (42)

we obtain from (41) that

|XY,O,S | ≤ G(X |Y,O). (43)

By (42) and because Z = (O,S), the list LYZ (11) is contained in the set XY,O,S and conse-

quently satisfies
∣∣LYZ

∣∣ ≤ |XY,O,S |. Hence, (43) implies that

∣∣LYZ
∣∣ ≤ G(X |Y,O). (44)

From (40) and (44) we conclude that

E

[∣∣LYZ
∣∣ρ
]
≤ E

[
G(X |Y,O)ρ

]
= E

[⌈
G(X |Y )/ω

⌉ρ]
. (45)
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To better understand the second part of Theorem 8, we briefly discuss the construction

of a deterministic task-encoder from an optimal guessing function G⋆(·|Y ) (which minimizes

E
[
G(X |Y )ρ

]
). If G⋆(·|Y ) is an optimal guessing function, then the two-step construction in

the proof of Theorem 8 can be alternatively described as follows. We construct a task-encoder

that describes X by

Z = (O,S),

where O takes values in some set O of size ω, where

1 ≤ ω ≤ |X |,

and S takes values in some set S of size

1 +
⌊
log
⌈
|X |/ω

⌉⌋
≤ 1 + log |X |.

(Note that the description Z assumes at most |O| |S| different values, and by (31) |O| |S| ≤

|Z|.) In the first step of the construction, we choose the first part of the description, O. We

choose O as one that—among all O’s that are drawn from O according to some conditional

PMF PO|X,Y—minimizes minG(·|Y,O) E
[
G(X |Y,O)ρ

]
. From Lemma 5 (and the subsequent

paragraph) we already know how to construct O. Indeed, from Lemma 5 it follows that

min
G(·|Y,O)

E
[
G(X |Y,O)ρ

]
≥ E

[⌈
G⋆(X |Y )/|O|

⌉ρ]
,

where equality is achieved by choosing O = f1(X,Y ) for some mapping f1 : X × Y → O

for which f1(x, y) = f1(x̃, y) implies either
⌈
G⋆(x|y)/|O|

⌉
6=
⌈
G⋆(x̃|y)/|O|

⌉
or x = x̃. For

example, in the case where O = {0, . . . , ω − 1} we can choose O as the remainder of the

Euclidean division of G(X |Y ) − 1 by |O|. Based on the optimal guessing function G⋆(·|Y )

and the first part of the description, O, we can construct an optimal guessing function

G⋆(·|Y,O) (which minimizes E
[
G(X |Y,O)ρ

]
) by choosing some G⋆(·|Y,O) for which

G⋆
(
x|y, f1(x, y)

)
=
⌈
G⋆(x|y)/|O|

⌉
, ∀ (x, y) ∈ X × Y.

In the second step of the construction we choose the second part of the description, S.

We choose S = f2(x, y), where

f2(x, y) =
⌊
logG⋆

(
x|y, f1(x, y)

)⌋
, ∀ (x, y) ∈ X × Y.

This will guarantee that the decoding lists satisfy

E

[∣∣LYZ
∣∣ρ
]
≤ E

[
G⋆(X |Y,O)ρ

]
= E

[⌈
G⋆(X |Y )/|O|

⌉ρ]
,

where

Z = (O,S) =
(
f1(X,Y ), f2(X,Y )

)
.

Note that the size of the support S of S is only logarithmic in |X | and thus negligible in

asymptotic settings, i.e., in asymptotic settings |Z| ≈ |O|.
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The following corollary results from Theorem 8 and (1) by setting

ω =

⌊
|Z|/

(
1 +

⌊
log |X |

⌋)⌋

in Theorem 8.

Corollary 10. Given a set Z of cardinality |Z| ≥ 1+
⌊
log |X |

⌋
, any guessing function G(·|Y )

induces a deterministic task-encoder, i.e., a stochastic task-encoder whose conditional PMF

(10) is {0, 1}-valued, whose associated decoding lists {Lyz} (11) satisfy

E

[∣∣LYZ
∣∣ρ
]
≤ 1 + 2ρ E

[
G(X |Y )ρ

]( |Z|

1 + log |X |
− 1

)−ρ

. (46)

Combined with Theorem 3, which bounds the performance of an optimal guessing func-

tion, Equations (30) and (46) provide an upper and a lower bound on the smallest E[|LYZ |
ρ]

that is achievable for a given |Z|. These bounds are weaker than [4, Theorem I.1 and The-

orem VI.1] (see Theorem 4) in the finite blocklength regime but tight enough to prove the

asymptotic results [4, Theorem I.2 and Theorem VI.2].

Another interesting corollary to Theorem 8 results from the choice ω = 1 in Theorem 8:

Corollary 11. Given a set Z of cardinality |Z| = 1+
⌊
log |X |

⌋
, any guessing function G(·|Y )

induces a deterministic task-encoder, i.e., a stochastic task-encoder whose conditional PMF

(10) is {0, 1}-valued, whose associated decoding lists {Lyz} (11) satisfy

E

[∣∣LYZ
∣∣ρ
]
≤ E

[
G(X |Y )ρ

]
. (47)

E.g., if

Z =
{
0, . . . ,

⌊
log |X |

⌋}
,

then the task-encoder f(·|Y ) defined by

f(·|y) =
⌊
logG(·|y)

⌋
, ∀ y ∈ Y (48a)

satisfies (47) or, equivalently,

E

[
f−1

(
f(X |Y )

∣∣Y
)ρ]

≤ E
[
G(X |Y )ρ

]
. (48b)

An implication of Corollary 11 for the problems studied in this paper is discussed in

Remark 18. Another example where Corollary 11 is useful is in determining the feedback

listsize capacity of a DMC W (y|x) with positive zero-error capacity. Corollary 11 can be

used to give an elegant proof of the direct part of [5, Theorem I.1], which states that in the

presence of perfect feedback the listsize capacity of W (y|x) equals the cutoff rate Rcutoff(ρ)

with feedback (which is in fact equal to the cutoff rate without feedback [5, Corollary I.4]).

To see this, suppose that we are given a sequence of (feedback) codes of rate R for which the

ρ-th moment of the number of guesses G⋆(M |Y n) a decoder needs to guess the transmitted

message M based on the channel-outputs Y n approaches one as the blocklength n tends to

infinity. (Recall that Rcutoff(ρ) is the supremum of all rates for which such a sequence exists.)
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Suppose now that the transmission does not stop after n channel uses. Instead, the encoder

computes

Z ,
⌊
logG⋆(M |Y n)

⌋
∈
{
0, . . . , ⌊nR⌋

}

from the feedback Y n and uses another n′ channel uses to transmit Z at a positive rate while

guaranteeing that the receiver can decode it with probability one. Since a positive zero-error

(feedback) capacity cannot be smaller than one [21], it is enough to take n′ ≤ ⌈log(nR)⌉.

Hence, (n+ n′)/n converges to one as n tends to infinity, and the rate of the code thus con-

verges to R. At the same time, when we substitute (M,Y n, Z) for (X,Y, Z) in Corollary 11,

Corollary 11 implies that the size of the smallest decoding-list LY
n+n′

that is guaranteed to

contain M satisfies
∣∣LY n+n′ ∣∣ =

∣∣LY n

Z

∣∣ ≤ G⋆(M |Y n), and consequently that the ρ-th moment

of
∣∣LY n+n′ ∣∣ converges to one as n tends to infinity. This proves that in the presence of perfect

feedback the listsize capacity of W (y|x) is lower-bounded by Rcutoff(ρ).

4 Problem Statement and Main Results

We consider two problems: the “guessing version” and the “list version.” The two differ in

the definition of Bob’s ambiguity. In both versions a pair (X,Y ) is drawn from the finite set

X ×Y according to the PMF PX,Y , and ρ > 0 is fixed. Upon observing (X,Y ) = (x, y), Alice

draws the hints M1 and M2 from some finite set M1 × M2 according to some conditional

PMF

P[M1 = m1,M2 = m2|X = x, Y = y]. (49)

Bob sees both hints and the side information Y . In the guessing version Bob’s ambiguity

about X is

A
(g)
B (PX,Y ) = min

G(·|M1,M2)
E
[
G(X |Y,M1,M2)

ρ
]
. (50)

In the list version Bob’s ambiguity about X is

A
(l)
B (PX,Y ) = E

[∣∣LYM1,M2

∣∣ρ
]
, (51)

where for all y ∈ Y and (m1,m2) ∈ M1 ×M2

Lym1,m2
=
{
x : P[X = x|Y = y,M1 = m1,M2 = m2] > 0

}
(52)

is the list of all the realizations of X of positive posterior probability

P[X = x|Y = y,M1 = m1,M2 = m2]

=
PX,Y (x, y)P[M1 = m1,M2 = m2|X = x, Y = y]∑
x̃ PX,Y (x̃, y)P[M1 = m1,M2 = m2|X = x̃, Y = y]

. (53)

Eve sees one of the hints and guesses X based on this hint and the side information Y .

Which of the hints is revealed to her is determined by an accomplice of hers to minimize her

guessing efforts. In both versions Eve’s ambiguity about X is

AE(PX,Y ) = min
G1(·|Y,M1), G2(·|Y,M2)

E
[
G1(X |Y,M1)

ρ ∧G2(X |Y,M2)
ρ
]
. (54)
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Optimizing over Alice’s mapping, i.e., the choice of the conditional PMF in (49), we wish

to characterize the largest ambiguity that we can guarantee that Eve will have subject to a

given upper bound on the ambiguity that Bob may have.

Note that by quantifying Eve’s ambiguity using (54), we are implicitly assuming that

Eve’s accomplice observesX and Y before determining the hint that minimizes Eve’s guessing

efforts. Less conservative is the ambiguity

ÃE(PX,Y ) = min
k∈{1,2}

min
Gk(·|Y,Mk)

E
[
Gk(X |Y,Mk)

ρ
]
, (55)

which applies if the accomplice does not observe (X,Y ) and reveals to Eve the hint that in

expectation over (X,Y ) minimizes her guessing efforts. Definition (55) is less conservative

than (55) in the sense that

AE(PX,Y ) ≤ ÃE(PX,Y ). (56)

Why we prefer (54) over (55) is explained in Section 5.

Of special interest to us is the asymptotic regime where (X,Y ) is an n-tuple (not neces-

sarily drawn IID), and where

M1 =
{
1, . . . , 2nR1

}
, M2 =

{
1, . . . , 2nR2

}
,

where (R1, R2) is a nonnegative pair corresponding to the rate.2 For both versions of the

problem, we shall characterize the largest exponential growth that we can guarantee for Eve’s

ambiguity subject to the constraint that Bob’s ambiguity tend to one.3 This asymptote turns

out not to depend on the version of the problem, and in the asymptotic analysis AB can stand

for either A
(g)
B or A

(l)
B .

The following definition phrases mathematically what we mean by the “largest exponential

growth that we can guarantee for Eve’s ambiguity:”

Definition 1 (Privacy-Exponent). Let
{
(Xi, Yi)

}
i∈N

be a stochastic process over the finite

alphabet X ×Y, and denote by PXn,Y n the PMF of (Xn, Y n). Given a nonnegative rate-pair

(R1, R2), we call EE an achievable ambiguity-exponent if there exists a sequence of stochastic

encoders such that Bob’s ambiguity (which is always at least one) satisfies

lim
n→∞

AB(PXn,Y n) = 1, (57)

and such that Eve’s ambiguity satisfies

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥ EE. (58)

The privacy-exponent EE is the supremum of all achievable ambiguity-exponents. If (57)

cannot be satisfied, then the set of achievable ambiguity-exponents is empty, and we define

the privacy-exponent as negative infinity.

2When we say that a positive integer k ∈ N assumes the value 2nR, where R > 0 corresponds to a rate,

we mean that k = ⌊2nR⌋.
3Note that in the guessing version G(X|Y,M1,M2)ρ is one iff Bob’s first guess is Xn, and in the list

version
∣

∣LY
M1,M2

∣

∣

ρ
is one iff Bob forms the “perfect” list comprising only Xn.
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We also consider a scenario where we impose only a modest requirement on Bob’s am-

biguity and allow it to grow exponentially with a given normalized (by n) exponent EB.

For this scenario the following definition introduces the mathematical quantity by which we

characterize the largest exponential growth that we can guarantee for Eve’s ambiguity:

Definition 2 (Modest Privacy-Exponent). Let EB ≥ 0. We call Em
E (EB) an achievable

modest-ambiguity-exponent if there is a sequence of stochastic encoders such that Bob’s am-

biguity satisfies

lim sup
n→∞

log
(
AB(PXn,Y n)

)

n
≤ EB, (59)

and such that Eve’s ambiguity satisfies

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥ Em

E (EB). (60)

For every EB ≥ 0, the modest privacy-exponent Em
E (EB) is the supremum of all achiev-

able modest-ambiguity-exponents. If (59) cannot be satisfied, then the set of achievable

modest-ambiguity-exponents is empty, and we define the modest privacy-exponent as nega-

tive infinity.

We next present our results to the stated problems in the finite-blocklength regime (Sec-

tion 4.1) and in the asymptotic regime (Section 4.2).

4.1 Finite-Blocklength Results

In the next two theorems cs is related to how much information can be gleaned about the

secret X from the pair of hints (M1,M2) but not from one hint alone; c1 is related to how

much can be gleaned from M1; and c2 is related to how much can be gleaned from M2.

More precisely, in the proof of the two theorems (see Section 6 ahead) we shall see that Alice

first maps (X,Y ) to the triple (Vs, V1, V2), which takes value in a set Vs × V1 × V2, whose

marginal cardinalities satisfy |Vν | = cν , ν ∈ {s, 1, 2}. Independently of (X,Y ) she then draws

a (one-time-pad like) random variable U uniformly over Vs and maps (U, Vs) to a variable

Ṽs choosing the (XOR like) mapping so that Vs can be recovered from (Ṽs, U) while Ṽs alone

is independent of (X,Y ). The hints are M1 = (Ṽs, V1) and M2 = (U, V2). Since the tuple

(Ṽs, V1) takes value in the set Vs ×V1 of size csc1, we must have that csc1 ≤ |M1|. Likewise,

we must have that csc2 ≤ |M2|. Because cs, c1, and c2 are positive integers, they thus satisfy

(61) ahead. Alice does not use randomization if cs = 1.

Theorem 12 (Finite-Blocklength Guessing-Version). For every triple (cs, c1, c2) ∈ N
3 satis-

fying

cs ≤ |M1| ∧ |M2|, c1 ≤
⌊
|M1|/cs

⌋
, c2 ≤

⌊
|M2|/cs

⌋
, (61a)

there is a choice of the conditional PMF in (49) for which Bob’s ambiguity about X is upper-

bounded by

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2)+1), (62)
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and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log(c1+c2)). (63)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(g)
B (PX,Y ) ≥

(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log(|M1| |M2|)) ∨ 1, (64)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
A

(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ), (65)

where (65) holds even if we replace (54) by (55), i.e.,

ÃE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
A

(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ), (66)

Proof. See Section 6.1.

Theorem 13 (Finite-Blocklength List-Version). If |M1| |M2| > log |X | + 2, then for every

triple (cs, c1, c2) ∈ N
3 satisfying

cs ≤ |M1| ∧ |M2|, c1 ≤
⌊
|M1|/cs

⌋
, c2 ≤

⌊
|M2|/cs

⌋
, (67a)

csc1c2 > log |X |+ 2, (67b)

there is a choice of the conditional PMF in (49) for which Bob’s ambiguity about X is upper-

bounded by

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2−log |X |−2)+2), (68)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log(c1+c2)). (69)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−log(|M1| |M2|)) ∨ 1, (70)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
A

(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ), (71)

where (71) holds even if we replace (54) by (55), i.e.,

ÃE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
A

(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ), (72)

Proof. See Section 6.1.

We next present the finite-blocklength results (Theorems 12 and 13) in a simplified and

more accessible form:
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Corollary 14 (Simplified Finite-Blocklength Guessing-Version). For any constant UB sat-

isfying

UB ≥ 1 + 2ρ
(
|M1| |M2|

)−ρ
2ρHρ̃(X|Y ), (73)

there is a choice of the conditional PMF in (49) for which Bob’s ambiguity about X is upper-

bounded by

A
(g)
B (PX,Y ) < UB, (74)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2−ρ
(
1 + ln |X |

)−ρ[
2−4ρ

(
|M1| ∧ |M2|

)ρ
(UB − 1) ∧ 2ρHρ̃(X|Y )

]
. (75)

Conversely, (74) cannot hold for

UB <
(
1 + ln |X |

)−ρ(
|M1| |M2|

)−ρ
2ρHρ̃(X|Y ) ∨ 1, (76)

and if Bob’s ambiguity satisfies (74) for some UB, then Eve’s ambigutiy about X is upper-

bounded by

AE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
UB ∧ 2ρHρ̃(X|Y ). (77)

Proof. The result is a corollary to Theorem 12 (see Appendix A for a proof).

Corollary 15 (Simplified Finite-Blocklength List-Version). For |M1| |M2| > log |X |+2 and

any constant UB satisfying

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log(|M1| |M2|−log |X |−2)+2), (78)

there is a choice of the conditional PMF in (49) for which Bob’s ambiguity about X is upper-

bounded by

A
(l)
B (PX,Y ) < UB, (79)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2−ρ
(
1 + ln |X |

)−ρ[
2−6ρ

(
|M1| ∧ |M2|

)ρ
(UB − 1)

∧ 2−4ρ
(
2 + log |X |

)−ρ(
|M1| ∧ |M2|

)ρ
2ρHρ̃(X|Y )

∧ 2ρHρ̃(X|Y )
]
. (80)

Conversely, (79) cannot hold for

UB <
(
|M1| |M2|

)−ρ
2ρHρ̃(X|Y ) ∨ 1, (81)

and if Bob’s ambiguity satisfies (79) for some UB, then Eve’s ambigutiy about X is upper-

bounded by

AE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
UB ∧ 2ρHρ̃(X|Y ). (82)

Proof. The result is a corollary to Theorem 13 (see Appendix B for a proof).

Note that the simplified achievability results (namely (73)–(75) in the guessing version

and (78)–(80) in the list version) match the corresponding converse results (namely (76)–(77)

in the guessing version and (81)–(82) in the list version) up to polylogarithmic factors of |X |.
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4.2 Asymptotic Results

Suppose now that (X,Y ) is an n-tuple. We study the asymptotic regime where n tends to

infinity. Recall that in this regime we refer to both A
(g)
B and A

(l)
B by AB, because the results

are the same for both versions of the problem. Theorems 12 and 13 imply the following

asymptotic result:

Theorem 16 (Privacy-Exponent). Let
{
(Xi, Yi)

}
i∈N

be a discrete-time stochastic process

with finite alphabet X ×Y, and suppose its conditional Rényi entropy-rate Hρ̃(X|Y ) is well-

defined. Given any positive rate-pair (R1, R2), the privacy-exponent is

EE =




ρ
(
R1 ∧R2 ∧Hρ̃(X|Y )

)
R1 +R2 > Hρ̃(X|Y ),

−∞, R1 +R2 < Hρ̃(X|Y ).
(83)

Proof. See Section 6.2.

Suppose now that Bob’s ambiguity need not tend to one but can grow exponentially

with a given normalized (by n) exponent EB. For this case Theorems 12 and 13 imply the

following asymptotic result:

Theorem 17 (Modest Privacy-Exponent). Let
{
(Xi, Yi)

}
i∈N

be a discrete-time stochastic

process with finite alphabet X×Y, and suppose its conditional Rényi entropy-rate Hρ̃(X|Y ) is

well-defined. Given any positive rate-pair (R1, R2), the modest privacy-exponent for EB ≥ 0

is

Em
E (EB) =





(
ρ(R1 ∧R2) + EB

)
∧ ρHρ̃(X|Y ) R1 +R2 ≥ Hρ̃(X|Y )− ρ−1EB,

−∞ R1 +R2 < Hρ̃(X|Y )− ρ−1EB.
(84)

Proof. See Section 6.3.

5 Discussion

This section provides some intuition and discusses some of the models and their underlying

assumptions. We begin with some intuition as to why the guessing and list-size criteria for

Bob lead to similar results. Then, we explain why we quantify Eve’s ambiguity by (54). We

show that if—rather than guessing—Eve were required to form a list, then perfect secrecy

would come almost for free. Finally, we explain how our results change in the following two

scenarios: 1) Alice knows which hint Eve observes; or 2) Alice describes X using only one

hint, but Alice and Bob see a secret key, which is not revealed to Eve.

The following remark explains why the results for the guessing and the list version differ

only by polylogarithmic factors of |X | (and are consequently the same in the asymptotic

regime):

Remark 18 (Why Do the Two Criteria for Bob Lead to Similar Results?). Consider

any choice of the conditional PMF in (49). In the guessing version Bob uses an optimal guess-

ing function G⋆(·|Y,M1,M2) (which minimizes E
[
G(X |Y,M1,M2)

ρ
]
) to guess X based on
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the side information Y and the hintsM1 andM2, and his ambiguity is E
[
G⋆(X |Y,M1,M2)

ρ
]
.

By Corollary 11 we can construct from G⋆(·|Y,M1,M2) an additional hint M that takes val-

ues in a set of size at most 1 +
⌊
log |X |

⌋
such that

E

[∣∣LYM1,M2,M

∣∣ρ
]
≤ E

[
G⋆(X |Y,M1,M2)

ρ
]
, (85)

where LYM1,M2,M
is the smallest list that is guaranteed to contain X given (Y,M1,M2,M).

Suppose now that Alice maps X to the hints M ′
1 , (M1,M) and M ′

2 , M2. This implies

that Bob’s ambiguity in the list version is

E

[∣∣LYM ′
1,M

′
2

∣∣ρ
]
= E

[∣∣LYM1,M2,M

∣∣ρ
]

and consequently no larger than E
[
G⋆(X |Y,M1,M2)

ρ
]
. Moreover, because M takes values

in a set of size at most 1+
⌊
log |X |

⌋
, we can use Lemma 5 to show that—compared to the case

where the hints are M1 and M2—Eve’s ambiguity decreases by at most a polylogarithmic

factor of |X |.

We next explain why we choose to quantify Eve’s ambiguity by (54) and not by (55). As

we have seen, (54) is more conservative than (55) in the sense that (56) holds. Consequently, it

follows from (66) and (72) that the results of Theorems 12 and 13 hold irrespective of whether

we quantify Eve’s ambiguity by (54) or by (55). We prefer to quantify Eve’s ambiguity by

(54), because—as the following example shows—(55) leads to a weaker notion of secrecy than

(54):

Example 1. Suppose that Y is null, X is uniform over X , and Alice produces the hints at

random: they are equally likely to be (M1 = X,M2 = ∗) or (M1 = ∗,M2 = X), where the

symbol ∗ is not in X . Since Bob can recover X from (M1,M2) (by producing the hint that

is not ∗),

min
G(·|M1,M2)

E
[
G(X |M1,M2)

ρ
]
= E

[
|LM1,M2 |

ρ
]
= 1.

The system is clearly insecure, because one of the hints always revealsX , and AE(PX,Y ) = 1.

However, as we next argue, this weakness is not captured by ÃE(PX,Y ). The probability of

M1 being ∗ is 1/2, so the ρ-th moment ofG1(X |M1) is at least minG(·) E
[
G(X)ρ

]
/2. Likewise,

by symmetry, for G2(X |M2). Thus ÃE(PX,Y ) differs from minG(·) E
[
G(X)ρ

]
by a factor of

at most 1/2.

So far, we have explained why we prefer (54) over (55). But why do we allow Eve to guess

even in the list version of our problem? That is, why do we prefer (54) over

A
(l)
E = E

[∣∣LYM1

∣∣ρ ∧
∣∣LYM2

∣∣ρ
]

(86)

even when Bob must form a list?

We prefer (54) over (86) because, as Theorem 19 ahead will show, forcing Eve to produce

a short list would severely handicap her and make it trivial to defeat her: when Eve must

form a list, perfect secrecy is almost free.
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Theorem 19 (Eve Must Form a List). If

|M1| ∧ |M2| ≥ 1 +
⌊
log |X |

⌋
, (87)

then there exists a conditional PMF as in (49) for which Bob’s ambiguity about X is upper-

bounded by

A
(l)
B (PX,Y ) ≤ 1 + 2ρ(Hρ̃(X|Y )−log(|M1| |M2|)+2 log(1+⌊log |X⌋)+3), (88)

and Eve’s ambiguity about X is

A
(l)
E (PX,Y ) = E

[
|LY |

ρ
]
, (89)

where

E
[
|LY |

ρ
]
=
∑

y

PY (y)
∣∣{x ∈ X : PX|Y (x|y) > 0

}∣∣ρ. (90)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−log(|M1| |M2|)) ∨ 1, (91)

and Eve’s ambiguity is upper-bounded by

A
(l)
E (PX,Y ) ≤ E

[
|LY |

ρ
]
. (92)

Proof. See Appendix C.

To see why perfect secrecy is almost free when Eve is required to form a list, note that the

RHS of (89) would also be Eve’s list size if she only saw Y and did not get to see any hint,

so in this sense achieving (89) is tantamount to achieving perfect secrecy. And the cost is

very small: Condition (87) is satisfied in the large-blocklength regime whenever the rates of

the two hints are positive; and the RHS of (88) will tend to one in this regime whenever the

sum of the rates exceeds the conditional Rényi entropy rate—a condition that is necessary

even in the absence of an adversay (Theorem 4).

That perfect secrecy is (almost) free when we quantify Eve’s ambiguity by (86) is highly

intuitive: By forcing Eve to form a list that is guaranteed to contain X , we force her to

include in her list all the realizations of X that have a positive posterior probability, no

matter how small. This implies that, if Eve were to form a list, then perfect secrecy could

be attained by hiding very little information from Eve. The situation is different in case

Eve guesses X , because allowing Eve to guess X , i.e., quantifying Eve’s ambiguity by (54), is

tantamount to first indexing the elements of the list in (86)—which she would otherwise have

to form—in decreasing order of their posterior probability, and to then downweigh the large

indices of the realizations at the bottom of the list by their small posterior probabilities.

To conclude the discussion of how to quantify Eve’s ambiguity, we relate Eve’s ambiguity

(54) to the concept of equivocation. In the classical Shannon cipher system [22], a popular

way to measure imperfect secrecy is in terms of equivocation, i.e., in terms of the conditional
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entropy H(X |Z), where X denotes some sensitive information and Z Eve’s observation. In

the settings where Bob is a list-decoder or a guessing decoder, Rényi entropy plays the role of

Shannon entropy in the sense that the minimum required rate to encode an n-tuple X = Xn

is the Rényi entropy rate Hρ̃(X) rather than the Shannon entropy rate H(X) = H1(X) (this

follows from Theorems 4 and Corollary 7). Consequently, in these settings the conditional

Rényi entropy Hρ̃(X |Z) qualifies as a “natural” equivalent for equivocation. But Hρ̃(X |Z)

has a nice operational characterization: 2ρHρ̃(X|Z) is (up to polylogarithmic factors of |X |)

the ρ-th moment of the number of guesses that Eve needs to guess X from her observation

Z (see Theorem 3). This is another reason why it makes sense to quantify Eve’s ambiguity

in terms of the ρ-th moment of the number of guesses that she needs to guess X .

In the remainder of this section we briefly discuss how the results of Theorems 12 and 13

change in the following two scenarios: 1) Alice knows which hint Eve observes; or 2) Alice

describes X using only one hint, but Alice and Bob share a secret key, which is unknown

to Eve. We begin with Scenario 1. In this scenario Alice draws the public hint Mp and the

secret hint Ms from some finite set Mp ×Ms according to some conditional PMF

P[Mp = mp,Ms = ms|X = x, Y = y]. (93)

Bob sees both hints. In the guessing version his ambiguity about X is

A
(g)
B (PX,Y ) = min

G(·|Y,Mp,Ms)
E
[
G(X |Y,Mp,Ms)

ρ
]

(94)

and in the list version

A
(l)
B (PX,Y ) = E

[∣∣LYMp,Ms

∣∣ρ
]
. (95)

Eve sees only the public hint. In both versions her ambiguity about X is

AE(PX,Y ) = min
G(·|Y,Mp)

E
[
G(X |Y,Mp)

ρ
]
. (96)

The next two theorems characterize the largest ambiguity that we can guarantee that

Eve will have subject to a given upper bound on the ambiguity that Bob may have (see

Appendix D for a proof). As in the case where the hints are not secret and public, the

guessing and the list version lead to similar results (cf. Remark 18). In the next two theorems

c is related to how much can be gleaned about X from Mp.

Theorem 20 (Secret Hint Guessing-Version). For every c ∈ N satisfying

c ≤ |Mp|, (97)

there is a {0, 1}-valued choice of the conditional PMF in (93) for which Bob’s ambiguity

about X is upper-bounded by

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(c |Ms|)+1), (98)
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and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log c). (99)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(g)
B (PX,Y ) ≥

(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log(|Mp| |Ms|)) ∨ 1, (100)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |Ms|
ρ
A

(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (101)

Theorem 21 (Secret Hint List-Version). If |Mp| |Ms| > log |X | + 2, then for every c ∈ N

satisfying

c ≤ |Mp|, c |Ms| > log |X |+ 2, (102)

there is a {0, 1}-valued choice of the conditional PMF in (93) for which Bob’s ambiguity

about X is upper-bounded by

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(c |Ms|−log |X |−2)+2), (103)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log c). (104)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−log(|Mp| |Ms|) ∨ 1, (105)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |Ms|
ρ
A

(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (106)

We next contrast Theorems 20 and 21 to their counterparts in the previous scenario,

i.e., to Theorems 12 and 13. By comparing the respective upper and lower bounds on

Eve’s ambiguity, we see that c and |Ms| in the current scenario, which relate to how much

information can be gleaned about X fromMp and Ms, play the roles of c1 + c2 ≈ c1 ∨ c2 and

|M1| ∧ |M2| in the previous scenario, which relate to how much information can be gleaned

about X from the hint that—among M1 and M2—reveals more information about X and

the one that—among M1 and M2—reveals less information about X . This reflects the fact

that in the current scenario Eve always sees Mp, whereas in the previous scenario she sees

the hint that reveals more information about X and hence minimizes her ambiguity.

Unlike Theorems 12 and 13, Theorems 20 and 21 imply that in the current scenario Alice

can describe X deterministically by choosing a {0, 1}-valued conditional PMF (93). To see

why, recall that in the current scenario Eve sees only the public hint Mp, and hence there is

no need to encrypt information that can be gleaned from the secret hint Ms. Consequently,

Alice need not draw a one-time-pad like random variable and ensure that some information
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can be gleaned about X from (Mp,Ms) but not from one hint alone. Instead, she can store

that information on Ms without prior encryption.

We now proceed to Scenario 2, where Alice describes X using only one hint, but Alice and

Bob share a secret key, which is unknown to Eve. The secret key K is drawn independently

of the pair (X,Y ) and uniformly over some finite set K. Upon observing (X,Y ) = (x, y) and

K = k, Alice draws the hint M from some finite set M according to some conditional PMF

P[M = m|X = x, Y = y,K = k]. (107)

Throughout, we assume that |K| ≤ |M|. Bob sees the secret key and the hint. In the guessing

version his ambiguity about X is

A
(g)
B (PX,Y ) = min

G(·|Y,K,M)
E
[
G(X |Y,K,M)ρ

]
(108)

and in the list version

A
(l)
B (PX,Y ) = E

[∣∣LY,KM
∣∣ρ
]
. (109)

Eve sees sees only the hint. In both versions her ambiguity about X is

AE(PX,Y ) = min
G(·|Y,M)

E
[
G(X |Y,M)ρ

]
. (110)

The next two theorems characterize the largest ambiguity that we can guarantee that

Eve will have subject to a given upper bound on the ambiguity that Bob may have (see

Appendix E for a proof). Again, the guessing and the list version lead to similar results.

Here |K| is related to how much information can be gleaned about X from (K,M) but not

from M alone, i.e., to the “encrypted” information stored on M , and c is related to how

much information can be gleaned about X from M , i.e., to the “unencrypted” information

stored on M .

Theorem 22 (Secret Key Guessing-Version). For every c ∈ N satisfying

c |K| ≤ |M|, (111)

there is a {0, 1}-valued choice of the conditional PMF in (107) for which Bob’s ambiguity

about X is upper-bounded by

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(c |K|)+1), (112)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log c). (113)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(g)
B (PX,Y ) ≥

(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log |M|) ∨ 1, (114)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |K|ρA
(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (115)
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Theorem 23 (Secret Key List-Version). If
⌊
|M|/|K|

⌋
|K| > log |X |+2, then for every c ∈ N

satisfying

c |K| ≤ |M|, c |K| > log |X |+ 2, (116)

there is a {0, 1}-valued choice of the conditional PMF in (107) for which Bob’s ambiguity

about X is upper-bounded by

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(c |K|−log |X |−2)+2), (117)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log c). (118)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−log |M|) ∨ 1, (119)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ |K|ρA
(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (120)

Theorems 22 and 23 are reminiscent of their counterparts for the scenario with a public

and a secret hint, i.e., of Theorems 20 and 21. The main difference is that in the current

scenario c and |K|, which relate to the “unencrypted” and the “encrypted” information stored

on M , respectively, play the roles of c and |Ms|, which in the previous scenario relate to the

information stored on the public and the secret hint, respectively. Like Theorems 20 and 21,

Theorems 22 and 23 imply that in the current scenario Alice can describe X deterministically

by choosing a {0, 1}-valued conditional PMF (107); there is no need for Alice to draw a one-

time-pad like random variable, because she can use the secret key K as a one-time-pad.

6 Proofs

6.1 A Proof of Theorems 12 and 13

We first establish the achievability results, i.e., (62)–(63) in the guessing version and (68)–

(69) in the list version. To this end fix (cs, c1, c2) ∈ N
3 satisfying (61) in the guessing version

and (67) in the list version. For every ν ∈ {s, 1, 2} let Vν be a chance variable taking values

in the set Vν = {0, . . . , cν − 1}. Corollary 7 implies that there exists some {0, 1}-valued

conditional PMF P
[
(Vs, V1, V2) = (vs, v1, v2)

∣∣X = x, Y = y
]
for which

min
G(·|Y,Vs,V1,V2)

E
[
G(X |Y, Vs, V1, V2)

ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2)+1). (121)

Moreover, Theorem 4 implies that there exists some deterministic task-encoder f(·|Y ) : X →

Vs × V1 × V2 for which

E

[∣∣LYVs,V1,V2

∣∣ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(csc1c2−log |X |−2)+2), (122)
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where (Vs, V1, V2) = f(X |Y ). Both (61) and (67) imply that |M1| ≥ csc1 and |M2| ≥ csc2. It

thus suffices to prove (62)–(63) and (68)–(69) for a conditional PMF (49) that assigns positive

probability only to csc1 elements of M1 and csc2 elements of M2. Therefore, we can assume

w.l.g. that M1 = Vs×V1 and M2 = Vs×V2. That is, we can chooseM1 = (Vs ⊕csU, V1) and

M2 = (U, V2), where (Vs, V1, V2) is drawn according to one of the above conditional PMFs

depending on the version, and where U is independent of (X,Y, Vs, V1, V2) and uniform over

Vs. Bob observes both hints and can thus recover (Vs, V1, V2). Hence, in the guessing version

(62) follows from (121) and in the list version (68) follows from (122).

The proof of (63) and (69) is more involved. It builds on the following two intermediate

claims, which we prove next:

1. We can assume w.l.g. that Eve must guess not only X but the pair (X,U).

2. Given any pair of guessing functions G1(·, ·|Y,M1) and G2(·, ·|Y,M2) for (X,U), there

exist a chance variable Z that takes values in a set of size at most cs(c1 + c2) and a

guessing function G(·, ·|Y, Z) for (X,U) for which

G(X,U |Y, Z) = G1(X,U |Y,M1) ∧G2(X,U |Y,M2). (123)

We first prove the first intermediate claim. To this end note that in both versions (guessing

and list) there exist some mappings g1 : X × Y ×M1 → Vs and g2 : X × Y ×M2 → Vs for

which

U = g1(X,Y,M1) = g2(X,Y,M2). (124)

Given any guessing functions G1(·|Y,M1) and G2(·|Y,M2) for X , introduce some guessing

functions G1(·, ·|Y,M1) and G2(·, ·|Y,M2) for (X,U) satisfying, for every (x, y) ∈ X × Y,

m1 ∈ M1, and m2 ∈ M2, that

Gk
(
x, gk(x, y,mk)

∣∣y,mk

)
= Gk(x|y,mk), ∀ k ∈ {1, 2}. (125)

From (124) it follows that

Gk(X,U |Y,Mk) = Gk(X |Y,Mk), ∀ k ∈ {1, 2}. (126)

Consequently, Eve can guess X and the pair (X,U) with the same number of guesses. This

proves the first intermediate claim.

We next prove the second intermediate claim. Given any pair of guessing functions

G1(·, ·|Y,M1) and G2(·, ·|Y,M2) for (X,U), define the triple of chance variables

(I, Û , V̂ ) ,




(1, Vs ⊕csU, V1) ifG1(X,U |Y,M1) ≤ G2(X,U |Y,M2),

(2, U, V2) otherwise
(127)

over the alphabet I × Vs × V̂, where I = {1, 2} and V̂ = {0, 1, . . . , c1 ∨ c2 − 1}. Observing

(Y, I, Û , V̂ ), Eve can guess (X,U) using either G1 or G2 depending on the value of I. That

is, Eve can guess (X,U) using some guessing function G(·, ·|Y, I, Û , V̂ ) satisfying, for every

y ∈ Y, i ∈ I, û ∈ Vs, and v̂ ∈ {0, 1, . . . , ci − 1}, that

G(·, ·|y, i, û, v̂) = Gi
(
·, ·|y, (û, v̂)

)
. (128)
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By (127) the number of guesses that she needs to do so is given by

G(X,U |Y, I, Û , V̂ )

= GI
(
X,U |Y, (Û , V̂ )

)
(129)

= GI(X,U |Y,MI) (130)

= G1(X,U |Y,M1) ∧G2(X,U |Y,M2). (131)

Consequently, (123) holds when we set Z = (I, Û , V̂ ). To conclude the proof of the second

intermediate claim, note that the triple (I, Û , V̂ ) takes values in the set

{
(1, û, v̂) : (û, v̂) ∈ Vs × V1

}
∪
{
(2, û, v̂) : (û, v̂) ∈ Vs × V2

}
,

whose cardinality is given by

|Vs × V1|+ |Vs × V2| = cs(c1 + c2).

We are now ready to prove (63) and (69):

E
[
G1(X |Y,M1)

ρ ∧G2(X |Y,M2)
ρ
]

(a)
= E

[
G1(X,U |Y,M1)

ρ ∧G2(X,U |Y,M2)
ρ
]

(132)

(b)
= E

[
G(X,U |Y, I, Û , V̂ )ρ

]
(133)

(c)

≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X,U|Y )−log(cs(c1+c2))) (134)

(d)
=
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log(c1+c2)), (135)

where (a) holds by (126); (b) holds by (131); (c) follows from Corollary 7 and the fact that

(I, Û , V̂ ) takes values in a set of size cs(c1 + c2); and (d) holds because

Hρ̃(X,U |Y )

=
1

ρ
log
∑

y∈Y

(
∑

x∈X

∑

u∈Vs

(
PX,Y (x, y)/|Vs|

)ρ̃
)1+ρ

(136)

=
1

ρ
log



∑

y∈Y

(
∑

x∈X

PX,Y (x, y)
ρ̃

)1+ρ
|Vs|

ρ


 (137)

= Hρ̃(X |Y ) + log cs. (138)

The equality in (136) holds because U is independent of (X,Y ) and uniform over the set Vs

of size |Vs| = cs. This concludes the proof of the achievability results.

It remains to establish the converse results, i.e., (64)–(66) in the guessing version and

(70)–(72) in the list version. In the guessing version (64) follows from Corollary 7, and in

the list version (70) follows from Theorem 4. From (56) we see that (65) and (71) follow

from (66) and (72), respectively, and hence it only remains to establish (66) and (72). By

Corollary 6, it holds for every k ∈ {1, 2} and l ∈ {1, 2} \ {k} that

min
G(·|Y,M1,M2)

E
[
G(X |Y,M1,M2)

ρ
]
≥ |Ml|

−ρ min
Gk(·|Y,Mk)

E
[
Gk(X |Y,Mk)

ρ
]
. (139)
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Since

min
G(·|Y,M1,M2)

E
[
G(X |Y,M1,M2)

ρ
]
≤ E

[∣∣LYM1,M2

∣∣ρ
]
,

(139) implies that in both versions the ambiguity ÃE(PX,Y ) exceeds Bob’s ambiguity by at

most a factor of
(
|M1| ∧ |M2|

)ρ
. That is, ÃE(PX,Y ) ≤

(
|M1| ∧ |M2|

)ρ
A

(g)
B (PX,Y ) and

ÃE(PX,Y ) ≤
(
|M1| ∧ |M2|

)ρ
A

(l)
B (PX,Y ). Another upper bound on ÃE(PX,Y ) is obtained by

considering the case where Eve ignores the hint that she observes and guesses X based on Y

alone. In this case it follows from Theorem 3 that

min
Gk(·|Y,Mk)

E
[
Gk(X |Y,Mk)

ρ
]
≤ 2ρHρ̃(X|Y ), ∀ k ∈ {1, 2}. (140)

From (140) we obtain that in both versions the ambiguity ÃE(PX,Y ) cannot exceed 2ρHρ̃(X|Y ),

i.e., ÃE(PX,Y ) ≤ 2ρHρ̃(X|Y ). This concludes the proof of (66) and (72) and consequently that

of the converse results.

6.2 A Proof of Theorem 16

If R1 + R2 < Hρ̃(X|Y ), then (64) in the guessing version and (70) in the list version imply

that the privacy-exponent is negative infinity. We hence assume that R1 +R2 > Hρ̃(X|Y ).

We first show that the privacy-exponent cannot exceed the RHS of (83). To this end

suppose that (57) holds and consequently

lim sup
n→∞

log
(
AB(PXn,Y n)

)

n
= 0. (141)

This, combined with (65) in the guessing version and (71) in the list version, implies that

lim sup
n→∞

log
(
AE(PXn,Y n)

)

n
≤ ρ
(
R1 ∧R2 ∧Hρ̃(X|Y )

)
. (142)

Hence, the privacy-exponent cannot exceed the RHS of (83).

We next show that the privacy-exponent cannot be smaller than the RHS of (83). By

possibly relabeling the hints, we can assume w.l.g. that R2 = R1 ∧ R2. Fix some ǫ > 0

satisfying

ǫ ≤ R1 +R2 −Hρ̃(X|Y ). (143)

Choose a nonnegative rate-triple (Rs, R̃1, R̃2) ∈ (R+
0 )

3 as follows:

1. If R2 ≤ Hρ̃(X|Y )/2, then choose

Rs = 0, R̃1 = Hρ̃(X|Y )−R2 + ǫ, R̃2 = R2. (144)

2. Else if Hρ̃(X|Y )/2 < R2 ≤ Hρ̃(X|Y ), then choose

Rs = 2R2 −Hρ̃(X|Y )− ǫ, R̃1 = R̃2 = Hρ̃(X|Y )−R2 + ǫ. (145)

(To guarantee that Rs ≥ 0, we assume in this case that ǫ > 0 is sufficiently small so

that, in addition to (143), also

ǫ < 2R2 −Hρ̃(X|Y ) (146)

holds.)
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3. Else if Hρ̃(X|Y ) < R2, then choose

Rs = R2, R̃1 = R̃2 = 0. (147)

Having chosen (Rs, R̃1, R̃2), choose the triple (cs, c1, c2) ∈ N
3 to be (2nRs , 2nR̃1 , 2nR̃2). For

every sufficiently-large n, this choice implies (61) and (67), and by Theorems 12 and The-

orem 13 we can thus guarantee (62)–(63) in the guessing version and (68)–(69) in the list

version. Note that

Rs + R̃1 + R̃2 > Hρ̃(X|Y ). (148)

Combining (148) with (62) in the guessing version and with (68) in the list version yields

(57). Moreover, combining (148) with (63) in the guessing version and with (69) in the list

version implies that

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥ ρ
(
Hρ̃(X|Y )− (R̃1 ∨ R̃2)

)
(149)

≥ ρ
(
(R1 ∧R2 − ǫ) ∧Hρ̃(X|Y )

)
. (150)

Letting ǫ tend to zero proves that the privacy-exponent cannot be smaller than the RHS of

(83).

6.3 A Proof of Theorem 17

If R1 + R2 < Hρ̃(X|Y ) − ρ−1EB, then (64) in the guessing version and (70) in the list

version imply that the modest privacy-exponent is negative infinity. We hence assume that

R1 +R2 ≥ Hρ̃(X|Y )− ρ−1EB.

We first show that the modest privacy-exponent cannot exceed the RHS of (84). To this

end suppose that (59) holds. This, combined with (65) in the guessing version and (71) in

the list version, implies that

lim sup
n→∞

log
(
AE(PXn,Y n)

)

n
≤
(
ρ(R1 ∧R2) + EB

)
∧ ρHρ̃(X|Y ). (151)

Hence, the modest privacy-exponent cannot exceed the RHS of (84).

We next show that the modest privacy-exponent cannot be smaller than the RHS of

(84). By possibly relabeling the hints, we can assume w.l.g. that R2 = R1 ∧ R2. Choose a

nonnegative rate-triple (Rs, R̃1, R̃2) ∈ (R+
0 )

3 as follows:

1. If R2 ≤
(
Hρ̃(X|Y )− ρ−1EB

)
/2, then choose

Rs = 0, R̃1 = Hρ̃(X|Y )− ρ−1EB −R2, R̃2 = R2. (152)

2. Else if
(
Hρ̃(X|Y )− ρ−1EB

)
/2 < R2 ≤ Hρ̃(X|Y )− ρ−1EB, then choose

Rs = 2R2 −Hρ̃(X|Y ) + ρ−1EB, R̃1 = R̃2 = Hρ̃(X|Y )− ρ−1EB −R2. (153)

3. Else if Hρ̃(X|Y )− ρ−1EB < R2, then choose

Rs = R2, R̃1 = R̃2 = 0. (154)
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Having chosen (Rs, R̃1, R̃2), choose the triple (cs, c1, c2) ∈ N
3 to be (2nRs , 2nR̃1 , 2nR̃2). For

every sufficiently-large n, this choice implies (61) and (67), and by Theorems 12 and The-

orem 13 we can thus guarantee (62)–(63) in the guessing version and (68)–(69) in the list

version. Note that

Rs + R̃1 + R̃2 ≥ Hρ̃(X|Y )− ρ−1EB. (155)

Combining (155) with (62) in the guessing version and with (68) in the list version yields

(59). Moreover, combining (155) with (63) in the guessing version and with (69) in the list

version implies that

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥ ρ
(
Hρ̃(X|Y )− (R̃1 ∨ R̃2)

)
(156)

≥
(
ρ(R1 ∧R2) + EB

)
∧ ρHρ̃(X|Y ). (157)

Consequently, the modest privacy-exponent cannot be smaller than the RHS of (84), which

concludes the proof.

7 Resilience against Disk Failures

In this section we generalize the model of Section 4 to allow for Alice to produce δ hints (not

necessarily two) and store them on different disks, for Bob to see ν ≤ δ (not necessarily 2)

of those hints, and for Eve to see η < ν (not necessarily one) of the hints. We assume that,

after observing X and Y , an adversarial “genie” reveals to Bob the ν hints that maximize his

ambiguity and to Eve the η hints that minimize her ambiguity. The former guarantees that

the system be robust against δ − ν disk failures, no matter which disks fail; and the latter

guarantees that Eve’s ambiguity be “large” no matter which η hints she sees. We allow the

genie to observe (X,Y ), because, as we have seen, not allowing the genie to observe (X,Y )

would lead to a weaker form of secrecy (see Example 1).

The current network can be described as follows. As in Section 4, we consider two

problems, the “guessing version” and the “list version,” which differ in the definition of Bob’s

ambiguity. Upon observing (X,Y ) = (x, y), Alice draws the δ-tuple M = (M1, . . . ,Mδ) from

the finite set Fδ2s according to some conditional PMF

P[M = m|X = x, Y = y], m ∈ F
δ
2s . (158)

We assume here that each hint comprises s bits (i.e., that M takes values in F
δ
2s); why this

assumption is reasonable will be explained shorty (see Theorem 27 and Remark 28 ahead).

Bob gets to see a size-ν set B ⊆ {1, . . . , δ}, the components MB of M indexed by B, and

the side information Y . As already mentioned, the index set B is chosen by an adversary of

his. In the guessing version Bob guesses X using an optimal guessing function GB(·|Y,MB),

which minimizes the ρ-th moment of the number of guesses that he needs. (As indicated by

the subscript, the guessing function GB(·|Y,MB) can depend on B.) His min-max ambiguity

about X is thus given by

A
(g)
B (PX,Y ) = min

GB(·|Y,MB)
E

[
max
B

GB(X |Y,MB)
ρ
]
. (159)
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In the list version Bob’s ambiguity about X is

A
(l)
B (PX,Y ) = E

[
max
B

∣∣LY
MB

∣∣ρ
]
, (160)

where for all y ∈ Y and mB ∈ F
δ
2s

Ly
mB

=
{
x : P[X = x|Y = y,MB = mB] > 0

}
(161)

is the list of all the realizations of X of positive posterior probability

P[X = x|Y = y,MB = mB]

=
PX,Y (x, y)P[MB = mB|X = x, Y = y]∑
x̃ PX,Y (x̃, y)P[MB = mB|X = x̃, Y = y]

. (162)

Note that for Bc , {1, . . . , δ} \ B we have

P[MB = mB|X = x, Y = y] =
∑

mBc

P[M = m|X = x, Y = y].

Eve observes a size-η set E ⊆ {1, . . . , δ}, the components ME of M indexed by E , and the

side information Y . The index set E is chosen by an accomplice of hers. Eve guesses X using

an optimal guessing function GE(·|X,ME), which minimizes the ρ-th moment of the number

of guesses that she needs. (The guessing function GE(·|X,ME) can depend on E .) In both

versions her ambiguity about X is thus given by

AE(PX,Y ) = min
GE(·|X,ME)

E

[
min
E
GE(X |Y,ME)

ρ
]
. (163)

Optimizing over Alice’s choice of the conditional PMF in (158), we wish to characterize the

largest ambiguity that we can guarantee that Eve will have subject to a given upper bound

on the ambiguity that Bob may have.

Of special interest to us is the asymptotic regime where (X,Y ) is an n-tuple (not neces-

sarily drawn IID), and where each hint stores

s = nRs

bits, where Rs is nonnegative and corresponds to the per-hint storage-rate. (We assume

that δ, ν, and η are fixed.) For both versions of the problem, we shall characterize the

largest exponential growth that we can guarantee for Eve’s ambiguity subject to the con-

straint that Bob’s ambiguity tend to one, i.e., we shall characterize the privacy-exponent

EE defined in Definition 1. In addition, we shall also characterize the largest exponential

growth that we can guarantee for Eve’s ambiguity in case Bob’s ambiguity is allowed to grow

exponentially with a given normalized (by n) exponent EB ≥ 0, i.e., we shall characterize

the modest privacy-exponent Em
E (EB) defined in Definition 2. As for the model of Section 4,

the privacy-exponent and the modest privacy-exponent turn out not to depend on the ver-

sion of the problem, and in the asymptotic analysis AB can thus stand for either A
(g)
B or A

(l)
B .
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7.1 Finite-Blocklength Results

In the next two theorems (ν − η)r should be viewed as the number of information-bits that

can be gleaned about X from ν but not from η hints. Moreover, for every γ ∈ {η, ν}, γp

should be viewed as the number of information-bits that any γ hints reveal about X . By

adapting the proof of Theorems 24 and 25 to the case at hand (see Appendix F), we obtain

the following results:

Theorem 24 (Finite-Blocklength Guessing-Version). For every pair (p, r) ∈ {0, . . . , s}2

satisfying

p+ r = s, (164a)

p, r ∈ {0} ∪
{
⌈log δ⌉, ⌈log δ⌉+ 1, . . .

}
, (164b)

there is a choice of the conditional PMF in (158) for which Bob’s ambiguity about X is

upper-bounded by

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−νs+ηr+1), (165)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−η(s−r)−η log δ−log(1+ln |X |)). (166)

Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(g)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−νs−log(1+ln |X |)) ∨ 1, (167)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA
(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (168)

Proof. See Appendix F.2.

Theorem 25 (Finite-Blocklength List-Version). If 2νs > log |X | + 2, then for every pair

(p, r) ∈ {0, . . . , s} satisfying

p+ r = s, (169a)

p, r ∈ {0} ∪
{
⌈log δ⌉, ⌈log δ⌉+ 1, . . .

}
, (169b)

2νs−ηr > log |X |+ 2, (169c)

there is a choice of the conditional PMF in (158) for which Bob’s ambiguity about X is

upper-bounded by

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(2νs−ηr−log |X |−2)+2), (170)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−η(s−r)−η log δ−log(1+ln |X |)). (171)
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Conversely, for every conditional PMF, Bob’s ambiguity is lower-bounded by

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−νs) ∨ 1, (172)

and Eve’s ambiguity is upper-bounded by

AE(PX,Y ) ≤ 2ρ(ν−η)sA
(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (173)

Proof. See Appendix F.2.

The bounds in Theorems 24 and 25 are tight in the sense that, with a judicious choice

of p and r, the achievability results (namely (165)–(166) in the guessing version and (170)–

(171) in the list version) match the corresponding converse results (namely (167)–(168) in

the guessing version and (172)–(173) in the list version) up to polynomial factors of δη and

of ln |X |. This can be seen from the following corollary to Theorems 24 and 25, which states

the achievability results in a simplified and more accessible form:

Corollary 26 (Simplified Finite-Blocklength Achievability-Results). In the guessing version,

for any constant UB satisfying

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−νs+1), (174)

there is a choice of the conditional PMF in (158) for which Bob’s ambiguity about X is

upper-bounded by

A
(g)
B (PX,Y ) < UB, (175)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
δη(1 + ln |X |)

)−ρ((
(2δ)−ρη2ρ(ν−η)s(UB − 1)

)
∧ 2ρHρ̃(X|Y )

)
. (176)

In the list version, for any constant UB satisfying

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log(2νs−log |X |−2)+2), (177)

there is a choice of the conditional PMF in (158) for which Bob’s ambiguity about X is

upper-bounded by

A
(l)
B (PX,Y ) < UB, (178)

and Eve’s ambiguity about X is lower-bounded by

AE(PX,Y ) ≥
(
δη(1 + ln |X |)

)−ρ
(
(
2−3ρ(2δ)−ρη2ρ(ν−η)s(UB − 1)

)

∧2ρHρ̃(X|Y )

∧

((
2(2δ)η

(
2 + log |X |

))−ρ
2ρ((ν−η)s+Hρ̃(X|Y ))

))
. (179)
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Proof. The result is a corollary to Theorems 24 and 25. See Appendix G for a detailed

proof.

We conclude this section by explaining why it is a good idea to store an equal number of

bits on each disk. This can be seen from the next theorem:

Theorem 27 (Converse Results: Disk ℓ stores sℓ Bits). Suppose that for every ℓ ∈ {1, . . . , δ}

Disk ℓ stores sℓ bits, where s1 ≤ . . . ≤ sδ. For every conditional PMF in (158), Bob’s

ambiguity about X is—depending on the version of the problem—lower-bounded by

A
(g)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−

∑ν
ℓ=1 sℓ−log(1+ln |X |)) ∨ 1, (180a)

A
(l)
B (PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−

∑ν
ℓ=1 sℓ) ∨ 1, (180b)

and Eve’s ambiguity about X is upper-bounded by

AE(PX,Y ) ≤ 2ρ
∑ν−η

ℓ=1 sℓA
(g)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ), (181a)

AE(PX,Y ) ≤ 2ρ
∑ν−η

ℓ=1 sℓA
(l)
B (PX,Y ) ∧ 2ρHρ̃(X|Y ). (181b)

Proof. See Appendix H.

Remark 28 (Why Store s Bits on Each Disk?). Compare a scenario where for every

ℓ ∈ {1, . . . , δ} Disk ℓ stores sℓ bits, where s1 ≤ . . . ≤ sδ, with a scenario where each disk

stores
⌊
(s1+ . . .+sδ)/δ

⌋
bits. Based on Theorem 27 and Corollary 26, neglecting polynomial

factors of δη and of ln |X |, every pair of ambiguities for Bob and Eve that is achievable in

the former scenario is also achievable in the latter scenario.

7.2 Asymptotic Results

Suppose now that (X,Y ) is an n-tuple. We study the asymptotic regime where n tends

to infinity. Recall that in this regime we refer to both A
(g)
B and A

(l)
B by AB, because the

results are the same for both versions. As we prove in Appendix I, Theorems 24 and 25 and

Corollary 26 imply the following asymptotic result:

Theorem 29 (Privacy-Exponent and Modest Privacy-Exponent). Let
{
(Xi, Yi)

}
i∈N

be a

discrete-time stochastic process with finite alphabet X ×Y, and suppose its conditional Rényi

entropy-rate Hρ̃(X|Y ) is well-defined. Given any nonnegative rate Rs, the privacy-exponent

is

EE =




ρ
(
Rs(ν − η) ∧Hρ̃(X|Y )

)
νRs > Hρ̃(X|Y ),

−∞ νRs < Hρ̃(X|Y ),
(182)

and the modest privacy-exponent for EB ≥ 0 is

Em
E (EB) =





(
ρRs(ν − η) + EB

)
∧ ρHρ̃(X|Y ) νRs ≥ Hρ̃(X|Y )− ρ−1EB,

−∞ νRs < Hρ̃(X|Y )− ρ−1EB.
(183)
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By (182) we can achieve the maximum privacy-exponent ρHρ̃(X|Y ) if the per-hint

storage-rate satisfies

Rs ≥ Hρ̃(X|Y )/(ν − η),

where Hρ̃(X|Y ) is the minimum rate that is necessary to describe the source for Bob. This

agrees with the well-known result that the optimal share-size to share a k-bit secret so that

any ν shares reveal X and any η shares provide no information about X is k/(ν − η) (see,

e.g., [8]).

8 Coding and Encryption under a Fidelity Criterion

In this section we study a rate-distortion version of the model of Section 4, where reconstruc-

tions are lossy but subject to a given fidelity criterion. We only treat the asymptotic regime

where (X,Y ) is an n-tuple, and we shall assume that the n-tuple is drawn IID. Throughout

this section,
{
(Xi, Yi)

}
i∈N

is thus a discrete-time stochastic process of IID pairs (Xi, Yi) that

are drawn from the finite set X × Y according to the PMF PX,Y .

Consider some “reconstruction alphabet” X̂ and some nonnegative “distortion-function”

d : X × X̂ → R
+
0 . We quantify the distortion between any pair of n-tuples (x, x̂) ∈ Xn × X̂n

by their average distortion

d(n)(x, x̂) =
1

n

n∑

i=1

d(xi, x̂i). (184)

The fidelity criterion we study is that any reconstruction x̂ ∈ X̂n of Xn satisfy

d(n)(Xn, x̂) ≤ ∆ (185)

for some nonnegative “distortion-level” ∆ ≥ 0. Following the convention of [7], we assume

that for every x ∈ X there exists some x̂ ∈ X̂ for which d(x, x̂) = 0, i.e., that

min
x̂∈X̂

d(x, x̂) = 0, ∀x ∈ X . (186)

To describe the results in this section, we denote by RX|Y (QX,Y ,∆) the classical rate-

distortion function of X given Y under some fixed PMF QX,Y on X × Y [23, Ch. 7]

RX|Y (QX,Y ,∆) = min
QX̂|X,Y :

E[d(X,X̂)]≤∆

I(X, X̂|Y ); (187)

and we denote by D(QX,Y ||PX,Y ) the Kullback-Leibler divergence between two PMFs QX,Y

and PX,Y on X × Y. By E
(ρ)
X|Y (PX,Y ,∆) we refer to the functional

E
(ρ)
X|Y (PX,Y ,∆) = sup

QX,Y

(
RX|Y (QX,Y ,∆)− ρ−1D(QX,Y ||PX,Y )

)
, (188)

where the supremum is over all PMFs QX,Y on X × Y.

The remainder of this section is structured as follows. Section 8.1 summarizes some no-

tions and results pertaining to the rate-distortion versions of the guessing and task-encoding
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problems. Section 8.2 extends the results on guessing and task-encoding of Section 3 to the

case where the reconstruction is subject to the fidelity criterion (185). Finally, Section 8.3

studies a rate-distrotion version of the model of Section 4.

8.1 Optimal Guessing Functions and Task-Encoders

Suppose we want to guess a reconstruction x̂ ∈ X̂n of Xn that satisfies the fidelity crite-

rion (185) with guesses of the form “Is d(n)(Xn, x̂) ≤ ∆?” Similarly as in Section 2.2, we

call Ĝ(·|Y n) a guessing function on X̂n if for every y ∈ Yn the mapping Ĝ(·|y) : X̂n →{
1, . . . , |X̂ |n

}
is one-to-one.4 The guessing function determines the guessing order: If we use

Ĝ(·|Y n) to guess a reconstruction of Xn from the observation Y n and observe that Y n equals

y, then the question “Is d(n)(Xn, x̂) ≤ ∆?” will be our Ĝ(x̂|y)-th question.

Suppose we are given a guessing function Ĝ(·|Y n). For every y ∈ Yn we define

G∆(·|y) : X
n →

{
1, . . . , |X̂ |n

}

as the unique mapping satisfying that, if (Xn, Y n) equals (x,y), then the first question

that will be answered with “Yes!” will be our G∆(x|y)-th question.5 That is, for every

pair (x,y) ∈ Xn × Yn we denote by G∆(x|y) the smallest positive integer j satisfying

that d(n)(x, x̂) ≤ ∆ holds for the unique n-tuple x̂ ∈ X̂n for which Ĝ(x̂|y) = j. The success

function corresponding to Ĝ(·|Y n) is the collection
{
G∆(·|y)

}
y∈Yn and is denoted G∆(·|Y

n).

For every y ∈ Yn we define

ψ(·|y) : Xn → X̂n

as the unique mapping satisfying that
(
ψ(x|y) = x̂ ⇐⇒ G∆(x|y) = Ĝ(x̂|y)

)
, ∀ (x, x̂,y) ∈ Xn × X̂n × Yn, (189)

so if (Xn, Y n) equals (x,y), then the question “Is d(n)(Xn, x̂) ≤ ∆?” will be answered with

“Yes!” for the first time when x̂ = ψ(x|y). The reconstruction function corresponding to

Ĝ(·|Y n) is the collection
{
ψ(·|y)

}
y∈Yn and is denoted ψ(·|Y n).

We assess the performance of a guessing function in terms of the ρ-th moment of the

number of guesses that we need to guess a reconstruction x̂ that satisfies the fidelity criterion

(185). That is, the performance of Ĝ(·|Y n) is E
[
G∆(X

n|Y n)ρ
]
, where G∆(·|Y

n) is the

success function corresponding to Ĝ(·|Y n). We say that a guessing function is optimal if

its performance is optimal, i.e., Ĝ(·|Y n) is optimal iff its corresponding success function

minimizes E
[
G∆(X

n|Y n)ρ
]
among all success functions. We can use Arikan and Merhav’s

results in [7] to characterize the asymptotic performance of optimal guessing functions on

X̂n:

Theorem 30 (Asymptotic Performance of Optimal Guessing Functions on X̂n). [7, Sec-

tion VI. C.] There exist guessing functions Ĝ(·|Y n) whose corresponding success functions

4Unlike the guessing problem of Section 2.2, where we guess over the source-sequence alphabet Xn, here

we guess over the reconstruction-sequence alphabet X̂n.
5By (186) and because ∆ ≥ 0, at least one question will be answered with “Yes!”.
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G∆(·|Y
n) satisfy

lim
n→∞

1

n
log
(
E
[
G∆(X

n|Y n)ρ
])

≤ ρE
(ρ)
X|Y (PX,Y ,∆). (190)

Conversely, for every guessing functions Ĝ(·|Y n) with corresponding success functions G∆(·|Y
n)

lim
n→∞

1

n
log
(
E
[
G∆(X

n|Y n)ρ
])

≥ ρE
(ρ)
X|Y (PX,Y ,∆). (191)

For task-encoders we adopt the terminology of [4, Section 7]. Given some finite set Z,

a task-encoder f(·|Y n) for Xn given side-information Y n is for every y ∈ Yn a mapping

f(·|y) : Xn → Z. A corresponding task-decoder φ(·|Y n) is, for every y ∈ Yn, a mapping

φ(·|y) : Z → 2X̂
n

for which

∀x ∈ Xn s.t. PnX|Y (x|y) > 0 ∃ x̂ ∈ φ
(
f(x|y)

∣∣y
)
: d(n)(x, x̂) ≤ ∆. (192)

If, upon observing Y n, the task-encoder describes Xn by Z = f(Xn|Y n), then the corre-

sponding decoder produces the list LY
n

Z , φ(Z|Y n). By (192) this list is guaranteed to

contain a reconstruction x̂ ∈ X̂n of Xn that satisfies the fidelity criterion (185).

As in Section 2.2, a stochastic task-encoder associates with every realization (x,y) ∈

Xn × Yn of the pair (Xn, Y n) a PMF on Z and, upon observing the side information y,

describes x by drawing Z from Z according to the PMF associated with (x,y), so conditonal

on (X,Y ) = (x,y) the probability that Z = z is

P[Z = z|Xn = x, Y n = y], (x,y, z) ∈ Xn × Yn ×Z. (193)

A corresponding task-decoder is a collection of lists {Ly

z} for which

∀ (x,y, z) ∈ Xn × Yn ×Z s.t. PnX,Y (x,y)P[Z = z|Xn = x, Y n = y] > 0 ∃ x̂ ∈ Ly

z :

d(n)(x, x̂) ≤ ∆. (194)

If, upon observing Y n, the task-encoder describes Xn by Z, then the corresponding decoder

produces the list LY
n

Z ⊆ X̂n. By (194) this list is guaranteed to contain a reconstruction

x̂ ∈ X̂n of Xn that satisfies the fidelity criterion (185).

We assess the performance of an encoder-decoder pair in terms of the ρ-th moment

E

[∣∣LY n

Z

∣∣ρ
]
of the size of the list that the decoder produces. Bunte and Lapidoth charac-

terized the asymptotic performance of optimal encoder-decoder pairs for the case where Y n

is null and the task-encoder is deterministic [4, Theorem VII.1]. A generalization of the

results in [4] to the case at hand where Y n need not be null and the task-encoder may

be stochastic is feasible but not carried out in this paper. Instead, we shall use the close

connection between task-encoding and guessing to characterize the asymptotic performance

of optimal encoder-decoder pairs. The performance guarantees for optimal encoder-decoder

pairs are thus presented in Section 8.2 ahead (Corollary 36 ahead).
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8.2 Lists and Guesses

This section extends the results of Section 3 to the case where the reconstruction x̂ ∈ X̂n

of Xn is subject to the fidelity criterion (185). We begin with the rate-distortion version

of Lemma 5, which quantifies how some additional informaiton Z (e.g., some description

produced by an encoder), can help guessing:

Lemma 31. Given a finite set Z, draw Z from Z according to some conditional PMF

PZ|Xn,Y n , so (Xn, Y n, Z) ∼ PnX,Y × PZ|Xn,Y n . For optimal guessing functions Ĝ⋆(·|Y n, Z)

and Ĝ⋆(·|Y n) with corresponding success function G⋆∆(·|Y
n, Z) and G⋆∆(·|Y

n) (which mini-

mize E
[
G∆(X

n|Y n, Z)ρ
]
and E

[
G∆(X

n|Y n)ρ
]
, respectively)

E
[
G⋆∆(X

n|Y n, Z)ρ
]
≥ |Z|−ρ E

[
G∗

∆(X
n|Y n)ρ

]
. (195)

Conversely, if ψ(·|Y n) is the reconstruction function corresponding to Ĝ⋆(·|Y n) (for which

(189) holds when we substitute Ĝ⋆(x̂|y) for Ĝ(x̂|y) and G⋆∆(x|y) for G∆(x|y) in (189)) and

Z = f
(
ψ(Xn|Y n), Y n

)
for some mapping f : X̂n × Yn → Z for which f(x̂,y) = f(x̂′,y)

implies either
⌈
Ĝ⋆(x̂|y)/|Z|

⌉
6=
⌈
Ĝ⋆(x̂′|y)/|Z|

⌉
or x̂ = x̂′, then

E
[
G⋆∆(X

n|Y n, Z)ρ
]
≤ E

[⌈
G⋆∆(X

n|Y n)/|Z|
⌉ρ]

. (196)

Such a mapping f always exists, because for all l ∈ N at most |Z| different x̂ ∈ X̂n satisfy⌈
Ĝ⋆(x̂|y)/|Z|

⌉
= l.

Proof. See Appendix J.

Lemma 31 and (1) imply the following rate-distortion version of Corollary 6:

Corollary 32. Given a finite set Z, there exists some mapping f : Xn ×Yn → Z such that

Z = f(Xn, Y n) satisfies

min
Ĝ(·|Y n,Z)

E
[
G∆(X

n|Y n, Z)ρ
]
< 1 + 2ρ|Z|−ρ min

Ĝ(·|Y n)
E
[
G∆(X

n|Y n)ρ
]
. (197)

Conversely, for every chance variable Z that takes values in Z

min
Ĝ(·|Y n,Z)

E
[
G∆(X

n|Y n, Z)ρ
]
≥ |Z|−ρ min

Ĝ(·|Y n)
E
[
G∆(X

n|Y n)ρ
]
∨ 1. (198)

(In (197) and (198) G∆(·|Y
n, Z) and G∆(·|Y

n) are the success functions corresponding to

Ĝ(·|Y n, Z) and Ĝ(·|Y n), respectively.)

From Corollary 32 and Theorem 30, which characterizes the asymptotic performance

of optimal guessing functions Ĝ(·|Y n), we obtain the following asymptotic rate-distortion

version of Corollary 7:

Corollary 33. Let Ĝ(·|Y n, Z) be guessing functions and let G∆(·|Y
n, Z) be the corresponding

success functions. Then, given a positive rate R > 0 and finite sets Zn satisfying

lim
n→∞

log |Zn|

n
= R, (199)
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there exist mappings fn : X
n × Yn → Zn for which Zn = fn(X

n, Y n) satisfy

lim
n→∞

1

n
log

(
min

Ĝ(·|Y n,Z)
E
[
G∆(X

n|Y n, Zn)
ρ
])

≤ ρ
(
E

(ρ)
X|Y (PX,Y ,∆)−R

)
∨ 0. (200)

Moreover, if R > E
(ρ)
X|Y (PX,Y ,∆), then there exist mappings fn : X

n × Yn → Zn for which

Zn = fn(X
n, Y n) satisfy

lim
n→∞

min
Ĝ(·|Y n,Z)

E
[
G∆(X

n|Y n, Zn)
ρ
]
= 1. (201)

Conversely, for all chance variables Zn taking values in Zn

lim
n→∞

1

n
log

(
min

Ĝ(·|Y n,Z)
E
[
G∆(X

n|Y n, Zn)
ρ
])

≥ ρ
(
E

(ρ)
X|Y (PX,Y ,∆)−R

)
∨ 0. (202)

Our next result is a rate-distortion version of Theorem 8:

Theorem 34. Let Z be a finite set.

1. Given any stochastic task-encoder (193), every decoder with lists {Ly

z} (194) induces

a guessing function Ĝ(·|Y n) whose corresponding success function G∆(·|Y
n) satisfies

E
[
G∆(X

n|Y n)ρ
]
≤ |Z|ρ E

[∣∣LY n

Z

∣∣ρ
]
. (203)

2. Every guessing function Ĝ(·|Y n) with corresponding success function G∆(·|Y
n) and

every positive integer ω ≤ |X̂ |n satisfying

|Z| ≥ ω

(
1 +

⌊
log
⌈
|X̂ |n/ω

⌉⌋)
(204)

induce a deterministic task-encoder, i.e., a stochastic task-encoder whose conditional

PMF (193) is {0, 1}-valued, and a decoder whose lists {Ly

z } (194) satisfy

E

[∣∣LY n

Z

∣∣ρ
]
≤ E

[⌈
G∆(X

n|Y n)/ω
⌉ρ]

. (205)

Proof. See Appendix K.

The following rate-distortion version of Corollary 10 results from Theorem 34 and (1) by

setting

ω =

⌊
|Z|/

(
1 +

⌊
log |X̂ |n

⌋)⌋

in Theorem 34.

Corollary 35. Given a set Z of cardinality |Z| ≥ 1 +
⌊
log |X̂ |n

⌋
, any guessing function

Ĝ(·|Y n) with corresponding success function G∆(·|Y
n) induces a deterministic task-encoder,

i.e., a stochastic task-encoder whose conditional PMF (193) is {0, 1}-valued, and a decoder

with lists {Ly

z} (194) that satisfy

E

[∣∣LY
n

Z

∣∣ρ
]
≤ 1 + 2ρ E

[
G∆(X

n|Y n)ρ
]( |Z|

1 + log |X̂ |n
− 1

)−ρ

. (206)
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We can combine (203) and (206) with Theorem 30, which characterizes the asymptotic

performance of an optimal guessing function Ĝ(·|Y n), to characterize the asymptotic perfor-

mance of optimal encoder-decoder pairs:

Corollary 36 (Asymptotic Performance of Optimal Encoder-Decoder Pairs). Given a pos-

itive rate R > 0 and finite sets satisfying

lim
n→∞

log |Zn|

n
= R, (207)

there exist deterministic task-encoders, i.e., stochastic task-encoders whose conditional PMFs

(193) (where we substitute Zn for Z in (193)) are {0, 1}-valued, and decoders whose lists{
Ly

zn

}
satisfy (194) (when we substitute Zn for Z in (194)) for which

lim
n→∞

1

n
logE

[∣∣LY n

Zn

∣∣ρ
]
≤ ρ
(
E

(ρ)
X|Y (PX,Y ,∆)−R

)
∨ 0; (208)

and if, moreover, R > E
(ρ)
X|Y (PX,Y ,∆), then there exist encoder-decoder pairs for which

lim
n→∞

E

[∣∣LY n

Mn

∣∣ρ
]
= 1. (209)

Conversely, for any stochastic task-encoders (193) (where we substitute Zn for Z in (193))

and decoders whose lists
{
Ly

zn

}
satisfy (194) (when we substitute Zn for Z, zn for z, and Zn

for Z in (194))

lim
n→∞

1

n
logE

[∣∣LY n

Zn

∣∣ρ
]
≥ ρ
(
E

(ρ)
X|Y (PX,Y ,∆)−R

)
∨ 0. (210)

Note that for the special case where Y n is null Corollary 36 specializes to [4, Theo-

rem VII. 1].

Another interesting corollary to Theorem 34, that is to say a rate-distortion version of

Corollary 11, results from the choice ω = 1 in Theorem 34:

Corollary 37. Given a set Z of cardinality |Z| = 1 +
⌊
log |X̂ |n

⌋
, any guessing function

Ĝ(·|Y n) with corresponding success function G∆(·|Y
n) induces a deterministic task-encoder,

i.e., a stochastic task-encoder whose conditional PMF (193) is {0, 1}-valued, and a decoder

with lists {Ly

z } (194) that satisfy

E

[∣∣LY n

Z

∣∣ρ
]
≤ E

[
G∆(X

n|Y n)ρ
]
. (211)

8.3 Distributed-Storage Systems

We consider the following rate-distortion version of the model in Section 4. Upon observing

(Xn, Y n) = (x,y), Alice draws the hints M1 and M2 from the finite set M1×M2 according

to some conditional PMF

P[M1 = m1,M1 = m1|X
n = x, Y n = y]. (212)

We assume here that

M1 = {1, . . . , 2nR1}, M2 = {1, . . . , 2nR2},
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where (R1, R2) is a nonnegative pair corresponding to the rate. Bob sees both hints. In the

guessing version he guesses a reconstruction of Xn that satisfies (185) based on the hints and

the side information Y n, and Bob’s ambiguity about Xn is thus

A
(g)
B (PnX,Y ,∆) = min

Ĝ(·|Y n,M1,M2)
E
[
G∆(X

n|Y n,M1,M2)
ρ
]
, (213)

where G∆(·|Y
n,M1,M2) is the success function corresponding to the guessing function

Ĝ(·|Y n,M1,M2). In the list version Bob’s ambiguity about Xn is

A
(l)
B (PnX,Y ,∆) = E

[∣∣LY n

M1,M1

∣∣ρ
]
, (214)

where
{
Ly

m1,m1

}
are the lists of a decoder corresponding to the stochastic encoder (212) and

thus satisfy (194) (when we substitute (M1,M2) for Z, (m1,m2) for z, and M1 ×M2 for Z

in (194)), so

PnX,Y (x,y)P[M1 = m1,M1 = m1|X
n = x, Y n = y] > 0

=⇒ ∃ x̂ ∈ Ly

m1,m2
: d(n)(x, x̂) ≤ ∆. (215)

Eve sees one of the hints and guesses a reconstruction of Xn that satisfies (185) based on

this hint and the side information Y . We assume that an accomplice of hers chooses the hint

so that her guessing efforts are minimum. In both versions Eve’s ambiguity about X is thus

AE(P
n
X,Y ,∆) = min

Ĝ(1)(·|Y n,M1), Ĝ(2)(·|Y n,M2)
E

[
G

(1)
∆ (Xn|Y n,M1)

ρ ∧G
(2)
∆ (Xn|Y n,M2)

ρ
]
, (216)

whereG
(1)
∆ (·|Y n,M1) andG

(2)
∆ (·|Y n,M2) are the success functions corresponding to the guess-

ing functions Ĝ(1)(·|Y n,M1) and Ĝ
(2)(·|Y n,M2), respectively.

For both versions of the problem, we shall characterize the largest exponential growth

that we can guarantee for Eve’s ambiguity subject to the constraint that Bob’s ambiguity

tend to one, i.e., we shall characterize the privacy-exponent EE defined in Definition 1. In

addition, we shall also characterize the largest exponential growth that we can guarantee

for Eve’s ambiguity in case Bob’s ambiguity is allowed to grow exponentially with a given

normalized (by n) exponent EB ≥ 0, i.e., we shall characterize the modest privacy-exponent

Em
E (EB) defined in Definition 2. Like the model studied in Section 4, the privacy-exponent

and the modest privacy-exponent turn out not to depend on the version of the problem, and

AB can thus stand for either A
(g)
B or A

(l)
B .

Our results are presented in the following theorem, which generalizes Theorems 16 and

17. To prove the theorem, we combine the proofs of Theorems 12 and 13 with the proofs of

Theorems 16 and 17. Thereby, we replace the results of Section 3 with their rate-distortion

versions, i.e., with the results of Section 8.2. The main difficulty in adapting the proofs to

the rate-distortion version of the problem is that Claim 1 in the proof of Theorems 12 and 13

need not hold, because Eve need not guess Xn but only a reconstruction of it that satisfies

(185).

43



Theorem 38. Given any nonnegative rate-pair (R1, R2) and distortion-level ∆ ≥ 0, the

privacy exponent is

EE =




ρ
(
R1 ∧R2 ∧E

(ρ)
X|Y (PX,Y ,∆)

)
R1 + R2 > E

(ρ)
X|Y (PX,Y ,∆),

−∞ R1 + R2 < E
(ρ)
X|Y (PX,Y ,∆);

(217)

and the modest privacy exponent for EB ≥ 0 is

Em
E (EB) =





(
ρ(R1 ∧R2) + EB

)
∧ ρE

(ρ)
X|Y (PX,Y ,∆)

R1 +R2 ≥ E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB,

−∞ R1 +R2 < E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB.

(218)

Proof. See Appendix L.

9 Summary

This paper studies a distributed-storage system whose encoder, Alice, observes some sensitive

information X (e.g., a password) that takes values in a finite set X and describes it using two

hints, which she stores in different locations. The legitimate receiver, Bob, sees both hints,

and—depending on the version of the problem—must either guessX (the guessing version) or

must form a list that is guaranteed to contain X (the list version). The eavesdropper, Alice,

sees only one of the hints; an accomplice of hers controls which. Based on her observation, Eve

wishes to guess X . For an arbitrary ρ > 0, Bob’s and Eve’s ambiguity about X are quantified

as follows: In the guessing version we quantify Bob’s ambiguity by the ρ-th moment of the

number of guesses that he needs to guess X , and in the list version we quantify Bob’s

ambiguity by the ρ-th moment of the size of the list that he must form. In both versions

we quantify Eve’s ambiguity by the ρ-th moment of the number of guesses that she needs to

guessX . For each version this paper characterizes—up to polylogarithmic factors of |X |—the

largest ambiguity that we can guarantee that Eve will have subject to a given upper bound

on the ambiguity that Bob may have. Our results imply that, if the hint that is available

to Bob but not to Eve can assume σ realizations, then—up to polylogarithmic factors of

|X |—the ambiguity that we can guarantee that Eve will have either exceeds the ambiguity

that Bob may have by a factor of σρ or—in case the hint that Eve observes reveals no

information about X—is as large as it can be. This holds even if we require that—up to

polylogarithmic factors of |X |—Bob’s ambiguity be as small as it can be. The paper also

discusses extensions to a distributed-storage system that is robust against disk failures and

a rate-distortion version of the problem.

The results for the guessing and the list version are remarkably similar: every pair of am-

biguities for Bob and Eve that is achievable in the guessing version is—up to polylogarithmic

factors of |X |—also achievable in the list version and vice versa. This can be explained by the

close relation between Arikan’s guessing problem [3] and Bunte and Lapidoth’s task-encoding

problem [4] that this paper reveals. The relation can be used to give alternative proofs of [4,
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Theorems I.2 and VI.2] as well as the direct part of [5, Theorem I.1]. It holds also for the

rate-distortion versions of the guessing and task-encoding problems, which were introduced

in [7, 4]; and in this case it can be used to give an alternative proof of [4, Theorem VII.1].

A A Proof of Corollary 14

Proof. The converse results readily follow from the converse results of Theorem 12: (64)

implies (76) and (65) implies (77). The proof of the achievability results (74)–(75) is more

involved. Suppose that (73) holds. To show that there is a choice of the conditional PMF in

(49) for which (74)–(75) hold, we will exhibit a judicious choice of the triple (cs, c1, c2) ∈ N
3

for which (74) follows from (62) and (75) from (63). By possibly relabeling the hints, we can

assume w.l.g. that |M2| = |M1| ∧ |M2|. Our choice of (cs, c1, c2) depends on the constant

UB and the cardinalities |M1| and |M2|. Specifically, we distinguish between three different

cases.

The first case is the case where

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log |M2|+1). (219)

In this case we choose

cs = |M2| and c1 = c2 = 1. (220)

Note that this choice satisfies (61). Consequently, (62) implies that Bob’s ambiguity satisfies

(74):

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log |M2|+1) (221)

≤ UB, (222)

where the second inequality holds by (219). Moreover, it follows from (63) that Eve’s ambi-

guity satisfies (75):

AE(PX,Y ) ≥ (1 + ln |X |)−ρ2ρ(Hρ̃(X|Y )−log 2) (223)

= 2−ρ(1 + ln |X |)−ρ2ρHρ̃(X|Y ). (224)

The second case is the case where

UB ≥ 1 +
⌊
|M1|/|M2|

⌋−ρ
2ρ(Hρ̃(X|Y )−log |M2|+1) (225a)

and

UB < 1 + 2ρ(Hρ̃(X|Y )−log |M2|+1). (225b)

In this case we choose

cs = |M2|, c1 =
⌈
2Hρ̃(X|Y )−log |M2|+1−ρ−1 log(UB−1)

⌉
, c2 = 1. (226)
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By (225a), this choice satisfies (61). Moreover, note that

csc1c2 ≥ |M2| 2
Hρ̃(X|Y )−log |M2|+1−ρ−1 log(UB−1) (227)

= 2Hρ̃(X|Y )+1−ρ−1 log(UB−1). (228)

Consequently, it follows from (62) that Bob’s ambiguity satisfies (74):

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−(Hρ̃(X|Y )+1−ρ−1 log(UB−1))+1) (229)

= UB. (230)

From (225b) it follows that

1 < 2Hρ̃(X|Y )−log |M2|+1−ρ−1 log(UB−1). (231)

Note that, for every ξ > 1, it holds that ⌈ξ⌉ < 2ξ. Consequently, (226) and (231) imply that

c1 + c2 = c1 + 1 (232)

< 2c1 (233)

< 2Hρ̃(X|Y )−log |M2|+3−ρ−1 log(UB−1). (234)

Eve’s ambiguity satisfies (75), because from (63) and (234) it follows that:

AE(PX,Y ) >
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−(Hρ̃(X|Y )−log |M2|+3−ρ−1 log(UB−1))) (235)

= 2−3ρ
(
1 + ln |X |

)−ρ
|M2|

ρ(UB − 1) (236)

= 2−3ρ
(
1 + ln |X |

)−ρ(
|M1| ∧ |M2|

)ρ
(UB − 1), (237)

where the last equality holds by the assumption that |M2| = |M1| ∧ |M2|.

The third and last case is the case where

UB < 1 +
⌊
|M1|/|M2|

⌋−ρ
2ρ(Hρ̃(X|Y )−log |M2|+1). (238)

In this case we let k⋆ ∈ N be the largest positive integer k for which

1 + 2ρk−ρ
⌊
|M1|/k

⌋−ρ⌊
|M2|/k

⌋−ρ
2ρHρ̃(X|Y ) ≤ UB, (239)

and we choose

cs = k⋆, c1 =
⌊
|M1|/k

⋆
⌋
, c2 =

⌊
|M2|/k

⋆
⌋
. (240)

The existence of such a k⋆ follows from (73), which implies that (239) holds when we sub-

stitute 1 for k. The choice in (240) satisfies (61). Consequently, (62) implies that Bob’s

ambiguity satisfies (74):

A
(g)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(cs⌊|M1|/cs⌋⌊|M2|/cs⌋)+1) (241)

≤ UB, (242)
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where in the second inequality we used that (239) holds when we substitute cs for k. By the

choice of cs in (240) we also have

2−ρHρ̃(X|Y )(UB − 1)
(a)
< 2ρ(cs + 1)−ρ

⌊
|M1|

cs + 1

⌋−ρ⌊
|M2|

cs + 1

⌋−ρ
(243)

(b)
< 23ρ

(
cs + 1

|M1| |M2|

)ρ
(244)

(c)

≤ 24ρ
(

cs
|M1| |M2|

)ρ
, (245)

where (a) holds because cs is the largest positive integer k for which (239) holds and conse-

quently

UB < 1 + 2ρ(cs + 1)−ρ
⌊
|M1|

cs + 1

⌋−ρ⌊
|M2|

cs + 1

⌋−ρ
2ρHρ̃(X|Y );

(b) holds because (238) and the fact that (239) holds for every positive integer k < cs + 1

imply that |M2| ≥ cs + 1 and consequently that |M1| ∧ |M2| ≥ cs + 1, and because

ξ/2 < ⌊ξ⌋, ξ ≥ 1;

and (c) holds because cs ≥ 1 and consequently cs + 1 ≤ 2cs. From (245) we obtain that

(c1 + c2)
−ρ (a)

=
(⌊

|M1|/cs
⌋
+
⌊
|M2|/cs

⌋)−ρ
(246)

(b)

≥ 2−ρ
(

cs
|M1|

)ρ
(247)

(c)
> 2−5ρ|M2|

ρ 2−ρHρ̃(X|Y )(UB − 1), (248)

where (a) holds by (240); (b) holds by the assumption that |M2| ≤ |M1|; and (c) holds by

(245). From (248) and (63) we obtain that Eve’s ambiguity satisfies (75):

AE(PX,Y ) > 2−5ρ
(
1 + ln |X |

)−ρ
|M2|

ρ(UB − 1) (249)

= 2−5ρ
(
1 + ln |X |

)−ρ(
|M1| ∧ |M2|

)ρ
(UB − 1), (250)

where the last equality holds by the assumption that |M2| = |M1| ∧ |M2|.

B A Proof of Corollary 15

Proof. The converse results readily follow from the converse results of Theorem 13: (70)

implies (81), and (71) implies (82). The proof of the achievability results (79)–(80) is more

involved. Suppose that |M1| |M2| > log |X | + 2 and that (78) holds. To show that there is

a choice of the conditional PMF in (49) for which (79)–(80) hold, we will exhibit a judicious

choice of the triple (cs, c1, c2) ∈ N
3 for which (79) follows from (68) and (80) from (69). By

possibly relabeling the hints, we can assume w.l.g. that |M2| = |M1| ∧ |M2|. Our choice of

(cs, c1, c2) depends on UB, |M1|, and |M2|; specifically, we distinguish three different cases.
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The first case is the case where

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log(|M2|−log |X |−2)+2). (251)

In this case we choose

cs = |M2|, c1 = c2 = 1. (252)

Note that this choice satisfies (67). Consequently, (68) implies that Bob’s ambiguity satisfies

(79), because

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(|M2|−log |X |−2)+2) (253)

≤ UB, (254)

where the second inequality holds by (251). Moreover, from (69) it follows that Eve’s ambi-

guity satisfies (80):

AE(PX,Y ) ≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log 2) (255)

= 2−ρ
(
1 + ln |X |

)−ρ
2ρHρ̃(X|Y ). (256)

The second case is the case where

UB ≥ 1 + 2ρ(Hρ̃(X|Y )−log(|M2| ⌊|M1|/|M2|⌋−log |X |−2)+2) (257a)

and

UB < 1 + 2ρ(Hρ̃(X|Y )−log(|M2|−log |X |−2)+2). (257b)

In this case we choose

cs = |M2|, c1 =
⌈(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1) + log |X |+ 2

)
/|M2|

⌉
, c2 = 1. (258)

By (257a), this choice satisfies (67). Moreover, note that

csc1c2 ≥ 2Hρ̃(X|Y )+2−ρ−1 log(UB−1) + log |X |+ 2. (259)

Consequently, (68) implies that Bob’s ambiguity satisfies (79), because

A
(l)
B (PX,Y ) < 1 + 2ρ

(
Hρ̃(X|Y )−log

(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1)

)
+2
)

(260)

= UB. (261)

From (257b) it follows that

1 <
(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1) + log |X |+ 2

)
/|M2|. (262)

Note that, for every ξ > 1, it holds that ⌈ξ⌉ < 2ξ. Consequently, (258) and (262) imply that

c1 + c2 = c1 + 1 (263)

< 2c1 (264)

< 4
(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1) + log |X |+ 2

)
/|M2|. (265)
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From (69) and (265) it follows that Eve’s ambiguity satisfies (80):

AE(PX,Y ) > 2−2ρ
(
1 + ln |X |

)−ρ
|M2|

ρ

×2ρ
(
Hρ̃(X|Y )−log

(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1)+log |X |+2

))
(266)

= 2−2ρ
(
1 + ln |X |

)−ρ
|M2|

ρ 2ρHρ̃(X|Y )

×
(
2Hρ̃(X|Y )+2−ρ−1 log(UB−1) + log |X |+ 2

)−ρ
(267)

(a)

≥ 2−5ρ
(
1 + ln |X |

)−ρ
|M2|

ρ(UB − 1)

∧2−3ρ
(
1 + ln |X |

)−ρ
(2 + log |X |)−ρ|M2|

ρ 2ρHρ̃(X|Y ) (268)

(b)
= 2−5ρ

(
1 + ln |X |

)−ρ(
|M1| ∧ |M2|

)ρ
(UB − 1)

∧2−3ρ
(
1 + ln |X |

)−ρ
(2 + log |X |)−ρ

(
|M1| ∧ |M2|

)ρ
2ρHρ̃(X|Y ), (269)

where (a) holds because
1

a+ b
≥

1

2a
∧

1

2b
, a, b > 0;

and (b) holds by the assumption that |M2| = |M1| ∧ |M2|.

The third and last case is the case where

UB < 1 + 2ρ(Hρ̃(X|Y )−log(|M2| ⌊|M1|/|M2|⌋−log |X |−2)+2). (270)

In this case we let k⋆ ∈ N be the largest positive integer k for which

1 + 2ρ(Hρ̃(X|Y )−log(k⌊|M1|/k⌋⌊|M2|/k⌋−log |X |−2)+2) ≤ UB, (271)

and we choose

cs = k⋆, c1 =
⌊
|M1|/k

⋆
⌋
, c2 =

⌊
|M2|/k

⋆
⌋
. (272)

The existence of such a k⋆ follows from (78), which implies that (271) holds when we sub-

stitute 1 for k. Note that the choice in (272) satisfies (67). Consequently, (68) implies that

Bob’s ambiguity satisfies (79), because

A
(l)
B (PX,Y ) < 1 + 2ρ(Hρ̃(X|Y )−log(cs⌊|M1|/cs⌋⌊|M2|/cs⌋−log |X |−2)+2) (273)

≤ UB, (274)

where in the second inequality we used that (271) holds when we substitute cs for k. By the

choice of cs in (272) we also have

2−ρ(Hρ̃(X|Y )+2)(UB − 1)
(a)
<

(
(cs + 1)

⌊
|M1|

cs + 1

⌋⌊
|M2|

cs + 1

⌋
− log |X | − 2

)−ρ
(275)

(b)
<

(
|M1| |M2|

4(cs + 1)
− log |X | − 2

)−ρ
(276)

(c)

≤

(
|M1| |M2|

8cs
− log |X | − 2

)−ρ
, (277)
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where (a) holds because cs is the largest positive integer k for which (271) holds and conse-

quently

UB < 1 + 2ρ(Hρ̃(X|Y )−log((cs+1)⌊|M1|/(cs+1)⌋⌊|M2|/(cs+1)⌋−log |X |−2)+2);

(b) holds because (270) and the fact that (271) holds for every positive integer k < cs + 1

imply that |M2| ≥ cs + 1 and consequently that |M1| ∧ |M2| ≥ cs + 1, and because

ξ/2 < ⌊ξ⌋, ξ ≥ 1;

and (c) holds because cs ≥ 1 and consequently cs + 1 ≤ 2cs. From (277) we obtain that

(
cs

|M1|

)ρ
> 2−3ρ|M2|

ρ
(
(UB − 1)−1/ρ2Hρ̃(X|Y )+2 + log |X |+ 2

)−ρ
, (278)

and consequently that

(c1 + c2)
−ρ (a)

=
(⌊

|M1|/cs
⌋
+
⌊
|M2|/cs

⌋)−ρ
(279)

(b)

≥ 2−ρ
(

cs
|M1|

)ρ
(280)

(c)
> 2−4ρ|M2|

ρ
(
(UB − 1)−1/ρ2Hρ̃(X|Y )+2 + log |X |+ 2

)−ρ
(281)

(d)

≥ 2−7ρ|M2|
ρ(UB − 1)2−ρHρ̃(X|Y ) ∧ 2−5ρ(2 + log |X |)−ρ|M2|

ρ, (282)

where (a) holds by (272); (b) holds by the assumption that |M2| ≤ |M1|; (c) holds by (278);

and (d) holds because
1

a+ b
≥

1

2a
∧

1

2b
, a, b > 0.

From (282) and (69) we obtain that Eve’s ambiguity satisfies (80):

AE(PX,Y ) > 2−5ρ
(
1 + ln |X |

)−ρ
|M2|

ρ
(
2−2ρ(UB − 1)

∧
(
2 + log |X |

)−ρ
2ρHρ̃(X|Y )

)
(283)

= 2−5ρ
(
1 + ln |X |

)−ρ(
|M1| ∧ |M2|

)ρ(
2−2ρ(UB − 1)

∧
(
2 + log |X |

)−ρ
2ρHρ̃(X|Y )

)
, (284)

where the last equality holds by the assumption that |M2| = |M1| ∧ |M2|.

C A Proof of Theorem 19

Proof. We first establish the achievability results, i.e., (88)–(89). To this end suppose that

|M1| ∧ |M2| ≥ 1 +
⌊
log |X |

⌋
. Let

cs = 1 +
⌊
log |X |

⌋
, c1 =

⌊
|M1|

cs

⌋
, c2 =

⌊
|M2|

cs

⌋
, (285)
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and for each ν ∈ {cs, c1, c2} let Vν be a chance variable taking values in the set Vν =

{0, . . . , cν − 1}. Corollary 7 implies that there exists some {0, 1}-valued conditional PMF

P
[
(V1, V2) = (v1, v2)

∣∣X = x, Y = y
]
for which

min
G(·|Y,V1,V2)

E
[
G(X |Y, V1, V2)

ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(c1c2)+1). (286)

Draw (V1, V2) from V1 × V2 according to the above conditional PMF. Fix ǫ > 0 and draw

(V ′
1 , V

′
2) from V1 × V2 according to the conditional PMF

P
[
(V ′

1 , V
′
2) = (v′1, v

′
2)
∣∣(V1, V2) = (v1, v2)

]

=

(
1− 2−ǫ −

2−ǫ

|V1| |V2|

)
1{(v′1,v

′
2)=(v1,v2)} +

2−ǫ

|V1| |V2|
. (287)

Note that, irrespective of the realization (v1, v2) of (V ′
1 , V

′
2), the probability that (V ′

1 , V
′
2)

equals (v1, v2) is 1−2−ǫ. Let G⋆(·|Y, V1, V2) be an optimal guessing function, which minimizes

E
[
G(X |Y, V1, V2)

ρ
]
. Define the guessing function G(·|Y, V ′

1 , V
′
2) by

G(x|y, v′1, v
′
2) = G⋆(x|y, v

′
1, v

′
2), ∀ (x, y, v

′
1, v

′
2) ∈ X × Y × V1 × V2. (288)

Using the trivial bound

G(x|y, v′1, v
′
2) ≤ |X |, ∀ (x, y, v′1, v

′
2) ∈ X × Y × V1 × V2,

we obtain that

E
[
G(X |Y, V ′

1 , V
′
2)
ρ
]
≤ (1− 2−ǫ)E

[
G⋆(X |Y, V1, V2)

ρ
]
+ 2−ǫ|X |ρ. (289)

Consequently,

min
G(·|Y,V ′

1 ,V
′
2 )
E
[
G(X |Y, V ′

1 , V
′
2)
ρ
]

≤ (1 − 2−ǫ) min
G(·|Y,V1,V2)

E
[
G(X |Y, V1, V2)

ρ
]
+ 2−ǫ|X |ρ (290)

< 1 + 2−(ǫ−ρ log|X |) + 2ρ(Hρ̃(X|Y )−log(c1c2)+1), (291)

where (291) follows from (286). Corollary 11 and (285) imply that there exists some {0, 1}-

valued conditional PMF

P[Vs = vs|X = x, Y = y, V ′
1 = v1, V

′
2 = v2]

for which

E

[∣∣LYVs,V ′
1 ,V

′
2

∣∣ρ
]
≤ min
G(·|Y,V ′

1 ,V
′
2 )
E
[
G(X |Y, V ′

1 , V
′
2)
ρ
]

(292)

< 1 + 2−(ǫ−ρ log|X |) + 2ρ(Hρ̃(X|Y )−log(c1c2)+1). (293)

Draw Vs from Vs according to the above conditional PMF. Using the assumption that |M1|∧

|M2| ≥ 1 +
⌊
log |X |

⌋
and (285), we obtain that

ck >
|Mk|

2
(
1 +

⌊
log |X |

⌋) , k ∈ {1, 2}. (294)
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From (293) and (294) it follows that

E

[∣∣LYVs,V ′
1 ,V

′
2

∣∣ρ
]
< 1 + 2−(ǫ−ρ log |X |) + 2ρ(Hρ̃(X|Y )−log(|M1| |M2|)+2 log(1+⌊log |X |⌋)+3). (295)

By (285) |M1| ≥ csc1 and |M2| ≥ csc2, and hence it suffices to prove (88)–(89) for a

conditional PMF (49) that assigns positive probability only to csc1 elements of M1 and csc2

elements ofM2, and we thus assume w.l.g. that M1 = Vs×V1 and M2 = Vs×V2. That is, we

can chooseM1 = (Vs⊕csU, V
′
1) andM2 = (U, V ′

2), where U is independent of (X,Y, Vs, V
′
1 , V

′
2)

and uniform over Vs. For this choice it follows from (295) that

A
(l)
B (PX,Y ) < 1 + 2−(ǫ−ρ log |X |) + 2ρ(Hρ̃(X|Y )−log(|M1| |M2|)+2 log(1+⌊log |X |⌋)+3). (296)

This proves that (88) holds for every sufficiently-large ǫ. As to (69), note that for every ǫ > 0

LYM1
= LYM2

= LY , (297)

because

P[M1 = m1,M2 = m2|X = x, Y = y] > 0, ∀ (x, y,m1,m2) ∈ X × Y ×M1 ×M2. (298)

We next conclude by establishing the converse results (91)–(92). Theorem 4 implies (91);

and (92) trivially holds, because the list that Eve forms based on Y and the hint that she

observes cannot be larger than the list that she would have to form if she were to observe

only Y .

D A Proof of Theorems 20 and 21

Proof. We first establish the achievability results, i.e., (98)–(99) in the guessing version and

(103)–(104) in the list version. To this end, fix c ∈ N satisfying (97) in the guessing version

and (102) in the list version. Both (97) and (102) imply that c ≤ |Mp|. Hence it suffices to

prove (98)–(99) and (103)–(104) for a {0, 1}-valued conditional PMF as in (93) that assigns

positive probability only to c elements of Mp. We can thus assume w.l.g. that |Mp| = c.

Corollary 7 implies that there exists some {0, 1}-valued conditional PMF

P[Mp = mp,Ms = ms|X = x, Y = y]

for which

min
G(·|Y,Mp,Ms)

E
[
G(X |Y,Mp,Ms)

ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(|Mp| |Ms|)+1) (299)

= 1 + 2ρ(Hρ̃(X|Y )−log(c |Ms|)+1). (300)

In addition, Theorem 4 implies that there exists some deterministic task-encoder f(·|Y ) : X →

Mp ×Ms for which

E

[∣∣LYMp,Ms

∣∣ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(|Mp×Ms|−log |X |−2)+2) (301)

= 1 + 2ρ(Hρ̃(X|Y )−log(c |Ms|−log |X |−2)+2), (302)
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where (Mp,Ms) = f(X |Y ). Accordingly, in the guessing version (98) follows from (300) and

in the list version (103) follows from (302). Moreover, Corollary 7 implies (99) in the guessing

version and (104) in the list version:

min
G·(X|Y,Mp)

E[G(X |Y,Mp)
ρ] ≥

(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log |Mp|) (303)

=
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X|Y )−log c). (304)

It remains to establish the converse results, i.e., (100)–(101) in the guessing version and

(105)–(106) in the list version. In the guessing version (100) follows from Corollary 7, and in

the list version (105) follows from Theorem 4. To prove (101) and (106), we first note from

Corollary 6 that

min
G(·|Y,Mp,Ms)

E
[
G(X |Y,Mp,Ms)

ρ
]
≥ |Ms|

−ρ min
G(·|Y,Mp)

E
[
G(X |Y,Mp)

ρ
]
. (305)

Moreover, we also note that

min
G(·|Y,Mp,Ms)

E
[
G(X |Y,Mp,Ms)

ρ
]
≤ E

[∣∣LYMp,Ms

∣∣ρ
]
. (306)

From (305) and (306) it follows that in both versions Eve’s ambiguity exceeds Bob’s by at

most a factor of |Ms|
ρ, i.e., AE(PX,Y ) ≤ |Ms|

ρA
(g)
B (PX,Y ) and AE(PX,Y ) ≤ |Ms|

ρA
(l)
B (PX,Y ).

Since Eve can ignore Mp and guess X based on Y alone, we obtain from Theorem 3 that in

both versions Eve’s ambiguity cannot exceed 2ρHρ̃(X|Y ). That is,

AE(PX,Y ) = min
G(·|Y,Mp)

E
[
G(X |Y,Mp)

ρ
]
≤ 2ρHρ̃(X|Y ). (307)

This concludes the proof of (101) and (106) and consequently that of the converse results.

E A Proof of Theorems 22 and 23

Proof. We first establish the achievability results, i.e., (112)–(113) in the guessing version

and (117)–(118) in the list version. To this end fix c ∈ N satisfying (111) in the guessing

version and (116) in the list version. Let Mp be a chance variable that takes values in the

set Mp, and let Ms be a chance variable that takes values in the set K. Corollary 7 implies

that there exists some {0, 1}-valued conditional PMF P[Mp = mp,Ms = ms|X = x, Y = y]

for which

min
G(·|Y,Mp,Ms)

E
[
G(X |Y,Mp,Ms)

ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(|Mp| |Ms|)−1) (308)

= 1 + 2ρ(Hρ̃(X|Y )−log(c |K|)−1). (309)

Theorem 4 implies that there exists some deterministic task-encoder f(·|Y ) : X → Mp×Ms

for which

E

[∣∣LYMp,Ms

∣∣ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(|Mp| |Ms|−log |X |−2)+2) (310)

= 1 + 2ρ(Hρ̃(X|Y )−log(c |K|−log |X |−2)+2), (311)
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where (Mp,Ms) = f(X |Y ). Both (111) and (116) imply that c |K| ≤ |M|. Hence it suffices

to prove (112)–(113) and (117)–(118) for a {0, 1}-valued conditional PMF as in (107) that

assigns positive probability only to c |K| elements of M. We can thus assume w.l.g. that

M = K × Mp, where Mp is a set of cardinality c, and K =
{
0, . . . , |K| − 1

}
. That is, we

can choose M = (Ms ⊕|K|K,Mp), where (Ms,Mp) is drawn according to one of the above

conditional PMFs depending on the version. Bob observes the hint M and the secret key K

and can thus recover the pair (Ms,Mp). Hence, in the guessing version (112) follows from

(309), and in the list version (117) follows from (311).

The proof of (113) and (118) is more involved. Note that in both versions (guessing and

list) there exists some mapping g : X × Y ×M → K for which

K = g(X,Y,M). (312)

Given any guessing function G(·|Y,M) for X , introduce some guessing function G(·, ·|Y,M)

for (X,K) satisfying that

G
(
x, g(x, y,m)

∣∣y,m
)
= G(x|y,m), ∀ (x, y,m) ∈ X × Y ×M. (313)

From (312) it then follows that

G(X,K|Y,M) = G(X |Y,M), (314)

and consequently that Eve can guessX and the pair (X,K) with the same number of guesses.

In particular,

E
[
G(X |Y,M)ρ

]
= E

[
G(X,K|Y,M)ρ

]
. (315)

Corollary 7 implies that

min
G(·,·|Y,M)

E
[
G(X,K|Y,M)ρ

]
≥
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X,K|Y )−log |M|) (316)

=
(
1 + ln |X |

)−ρ
2ρ(Hρ̃(X,K|Y )−log(c |K|)). (317)

Note, that

Hρ̃(X,K|Y ) =
1

ρ
log
∑

y∈Y

(
∑

x∈X

∑

k∈K

(
PX,Y (x, y)

|K|

)̃ρ)1+ρ
(318)

=
1

ρ
log



∑

y∈Y

(
∑

x∈X

PX,Y (x, y)
ρ̃

)1+ρ
|K|ρ


 (319)

= Hρ̃(X |Y ) + log |K|, (320)

where the first equality holds because K is independent of (X,Y ) and uniform over the set

K. Consequently, (315) and (317) imply (113) in the guessing version and (118) in the list

version.
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It remains to establish the converse results, i.e., (114)–(115) in the guessing version and

(119)–(120) in the list version. To this end we first note that

Hρ̃(X |Y,K) =
α

1− α
log
∑

y∈Y

∑

k∈K

(
∑

x∈X

(
PX,Y (x, y)

|K|

)α)1
α

(321)

=
α

1− α
log
∑

y∈Y

(∑

x∈X

PX,Y (x, y)
α

)1
α

(322)

= Hρ̃(X |Y ), (323)

where the first equality holds because K is independent of (X,Y ) and uniform over the set

K. In the guessing version (114) follows from Corollary 7 and (323), and in the list version

(119) follows from Theorem 4 and (323). To prove (115) and (120), we first note that by

Corollary 6

min
G(·|Y,K,M)

E
[
G(X |Y,K,M)ρ

]
≥ |K|−ρ min

G(·|Y,M)
E
[
G(X |Y,M)ρ

]
. (324)

Because

min
G(·|Y,K,M)

E
[
G(X |Y,K,M)ρ

]
≤ E

[∣∣LY,KM
∣∣ρ
]
,

(324) implies that in both versions Eve’s ambiguity exceeds Bob’s by at most a factor of |K|ρ,

i.e., AE(PX,Y ) ≤ |K|ρA
(g)
B (PX,Y ) and AE(PX,Y ) ≤ |K|ρA

(l)
B (PX,Y ). Since Eve can ignore

M and guess X based on Y alone, we obtain from Theorem 3 that in both versions Eve’s

ambiguity cannot exceed 2ρHρ̃(X|Y ):

AE(PX,Y ) = min
G(·|Y,M)

E
[
G(X |Y,M)ρ

]
≤ 2ρHρ̃(X|Y ). (325)

This concludes the proof of (115) and (120) and consequently that of the converse results.

F A Proof of Theorems 24 and 25

In Section F.1 we summarize the results on maximum-distance separable (MDS) codes that we

shall use in the proof of Theorems 24 and 25. Theorems 24 and 25 are proved in Section F.2.

F.1 Properties of MDS Codes

The following results on maximum-distance separable (MDS) codes can be found, e.g., in [24].

An (n, k) linear code C over a finite field Fq is a k-dimensional linear subspace of the vector

space Fnq of all n-tuples over Fq. An (n, k, d) linear code is an (n, k) linear code satisfying that

the minimum Hamming distance between any two codewords (or, equivalently, the minimum

Hamming weight of any nonzero codeword) is d. By the Singleton bound k ≤ n−d+1, where

equality is achieved iff the following holds for every size-k set C ⊆ [1 : n], where k = n−d+1:

if we reduce all qk codewords to the components indexed by C, then we obtain all qk k-tuples

over Fq. An MDS code is a linear code that satisfies the Singleton bound with equality.
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In this paper we are interested in the case where q = 2ℓ, ℓ ∈ N, and we denote by α a

primitive element of Fq. If n = q, then for every k ∈ {1, . . . , n}

Gk,q =




1 1 1 . . . 1

0 1 α . . . α−1

...
...

...
...

0 1 αk−1 . . . α−(k−1)




∈ F
k×q
q (326)

is a generator matrix of a (q, k) MDS code. (More precisely, Gk,q is a generator matrix of a

Reed-Solomon (RS) code.) To see this, note that

uGk,q =
(
u(0), u(α0), u(α), . . . , u(α−1)

)
, u ∈ F

k
q , (327)

where u(β) =
∑k−1

j=0 ujβ
j , β ∈ Fq is computed in the field F2ℓ . Hence, the first component

of uGk,q is zero iff zero is a root of u(z), and for every i ∈ {2, . . . , q} the i-th component of

uGk,q is zero iff αi−2 is a root of u(z). Since α is a primitive element of Fq, we know that

0, 1, α, . . . , αq−1 are distinct elements of Fq. Moreover, the polynomial u(z) has degree at

most k − 1, and hence the fundamental theorem of algebra asserts that if u(z) 6= 0, then

u(z) can have at most k − 1 roots in Fq. Consequently, at most k − 1 components of any

nonzero codeword can be zero, and hence every nonzero codeword has Hamming weight at

least n − k + 1. This and the Singleton bound imply that d = n − k + 1 and consequently

that the code with generator matrix (326) is a (q, k) MDS code.

If k ≤ n ≤ q, then the matrix Gk,n ∈ F
k×n
q that we obtain by taking the first n columns

of Gk,q is a generator matrix of an (n, k) MDS code. To see this, note that reducing Gk,q to

its first n columns is tantamount to reducing each codeword to its first n components. This

implies that the Hamming weight of any codeword or, equivalently, the Hamming distance

between any two codewords can decrease by at most q−n, and consequently that the minimum

Hamming distance between any two codewords can decrease by at most q−n. Consequently,

the new code is an (n, k, d) linear code with d ≥ q− k+1− (q−n) = n− k+1. This and the

Singleton bound imply that d = n − k + 1 and consequently that the new code is an MDS

code.

We also note here that, for any generator matrix Gk,n of an (n, k) MDS code over Fq,

where k ≤ n ≤ q, and any k′ < k, the matrix Gk′,n that we obtain by taking the first k′ rows

of Gk,n is a generator matrix of an (n, k′) MDS code.

F.2 A Proof of Theorems 24 and 25

Proof. We first establish the achievability results, i.e., (165)–(166) in the guessing version

and (170)–(171) in the list version. We begin with an outline of the proof ideas. We shall

use the following coding scheme. Upon observing (X,Y ), Alice describes X deterministically

by a tuple (V,W ), where V takes values in the finite field F
ν
2p and W in F

ν−η
2r . Depending

on the version, she chooses the description (V,W ) so that, if Bob’s observation were (V,W ),

then his ambiguity about X would satisfy (165) in the guessing version and (170) in the list
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version. Then, she maps V to a length-δ codeword of a (δ, ν, δ − ν + 1) MDS code over F2p

and stores each codeword symbol on a different disc. Since the code is MDS, any γ ≤ ν hints

reveal γp bits of V . Independently of (X,Y ), Alice draws a random variable U uniformly

over the field F
η
2r , maps (W,U) to a length-δ codeword of a (δ, ν, δ − ν + 1) MDS code over

the field F2r , and stores each codeword symbol on a different disc. She chooses the mapping

so that any η codeword symbols are independent of W or, equivalently, that given W it is

possible to reconstruct U from any η codeword symbols. (As in [8], this is accomplished

using nested MDS codes.) As a consequence, W can be recovered from any ν hints, while

any η hints reveal no information about W .

Summing up, the outlined coding scheme guarantees that, upon observing ν hints, Bob

can reconstruct the tuple (V,W ). Hence, his ambiguity aboutX satisfies (165) in the guessing

version and (170) in the list version. Observing η hints enables Eve to recover ηp bits of V , but

it does not enable her to recover any information aboutW . Using the results of Section 3, we

can thus show that observing η hints can decrease Eve’s guessing efforts by at most a factor

of 2−ρνp.6 Since we quantify Eve’s ambiguity by (163), we assume that—upon observing

all the hints and (X,Y )—an adversarial genie reveals to Eve the η hints that minimize her

ambiguity. In doing so, the genie can decrease Eve’s ambiguity by an additional factor of at

most δ−ρη (this is due to Corollary 6 and the fact that there are
(
δ
η

)
≤ δη size-η subsets of

{1, . . . , δ}).

The described MDS codes exist if each nonnegative integer p and r is either zero or at

least log δ (see Appendix F.1). Recalling that each disc stores up to s bits, we can thus

construct the MSD codes whenever p and r satisfy (164). In the list version the stronger

requirement (169)—in addition to guaranteeing the existence of the described MDS codes—

allows us to use Theorem 4 in order to guarantee that Bob’s ambiguity satisfy (170).

We are now ready to give a formal proof of the achievability results, i.e., (165)–(166) in

the guessing version and (170)–(171) in the list version. To this end fix p, r ∈ {1, . . . , s}

satisfying (164) in the guessing version and (169) in the list version, and let V and W be

chance variables taking values in V = F
ν
2p and W = F

ν−η
2r , respectively. Corollary 7 implies

that there exists some {0, 1}-valued conditional PMF P
[
(V,W ) = (v, w)

∣∣X = x, Y = y
]
for

which

min
G(·|Y,V,W )

E
[
G(X |Y, V,W )ρ

]
< 1 + 2ρ(Hρ̃(X|Y )−νs+ηr+1). (328)

Theorem 4 implies that there exists some deterministic task-encoder f(·|Y ) : X → V ×W for

which

E

[∣∣LYV,W
∣∣ρ
]
< 1 + 2ρ(Hρ̃(X|Y )−log(2νs−ηr−log |X |−2)+2), (329)

where (V,W ) = f(X |Y ). Draw U independently of (X,Y ) and uniformly over Fη2r . Choose

6The coding scheme is reminiscent of the coding scheme in the proof of Theorem 12 and 13, where after

describing X Alice stores part of the description (insecurely) on the first hint, another part (insecurely) on

the second hint, and the remaining portion (securely) so that it can only be computed from both hints.
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GV ∈ F
ν×δ
2p , GW ∈ F

(ν−η)×δ
2r , and GU ∈ F

η×δ
2r so that

GV ,

(
GU

GW

)
, GU

are generator matrices of MDS codes. (This is possible, because both (164) and (169) imply

that

p > 0 =⇒ 2p ≥ δ, (330a)

r > 0 =⇒ 2r ≥ δ; (330b)

if p = 0, then V can assume but one value, and hence we do not need GV ; and if r = 0, then

(W,U) can assume but one value, and hence we do not need GW and GU .) Define the chance

variables

Mp = V GV , (331a)

Mr = U GU ⊕W GW =
(
U W

)(GU

GW

)
, (331b)

where Mp is computed in the field F2p and Mr in F2r . Note that Mp ∈ F
δ
2p and Mr ∈ F

δ
2r .

Since both (164) in the guessing version and (169) in the list version imply that s = p + r,

Alice can choose the ℓ-th hint to comprise the ℓ-th components of Mp and Mr, so

Mℓ =
(
[Mp]ℓ, [Mr]ℓ

)
, ℓ ∈ {1, . . . , δ}. (332)

For this choice of the hints Bob can recover (V,W,U) no matter which ν hints he observes,

because

GV ,

(
GU

GW

)

are generator matrices of MDS codes. Hence, in the guessing version (165) follows from (328),

and in the list version (170) follows from (329).

The proof of (166) and (171) is more involved. Recall that Eve observes a size-η set

E ⊂ {1, . . . , δ} and the components ME of M indexed by E . Index the possible sets that

E could denote by the elements of some size-
(
δ
η

)
set K, and denote by E(k) the set that is

indexed by k. The proof of (166) and (171) builds on the following two intermediate claims,

which we prove next:

1. Eve’s ambiguity can be alternatively expressed as

AE(PX,Y ) = min
K,G(·|Y,ME(K),K)

E
[
G(X |Y,ME(K),K)ρ

]
, (333)

where K is a chance variable of support K, and where the minimization is over all

conditional PMFs of K given (X,Y,M) and all guessing functions G(·|Y,ME(K),K).

2. We can assume w.l.g. that Eve must guess not only X but the pair (X,U).

58



We first prove Claim 1, i.e., that

min
GE(·|Y,ME)

E

[
min
E
GE(X |Y,ME)

ρ
]

= min
K,G(·|Y,ME(K),K)

E
[
G(X |Y,ME(K),K)ρ

]
. (334)

Note that

min
E
GE(X |Y,ME) = min

k
GE(k)(X |Y,ME(k)); (335)

and for any given GE(k)(·|Y,ME(k)), k ∈ K, define

K = arg min
k

GE(k)(X |Y,ME(k)), (336)

and introduce the guessing functionG(·|Y,ME(K),K) satisfying that, for every (x, y) ∈ X×Y,

mE(k) ∈ F
η
2s , and k ∈ K,

G(x|y,mE(k), k) = GE(k)(x|y,mE(k)). (337)

We then obtain that

E
[
G(X |Y,ME(K),K)ρ

]
= E

[
min
E
GE(X |Y,ME)

ρ
]
, (338)

and consequently that

min
GE(·|Y,ME)

E

[
min
E
GE(X |Y,ME)

ρ
]

≥ min
K,G(·|Y,ME ,K)

E
[
G(X |Y,ME(K),K)ρ

]
. (339)

To see that equality holds, note that, irrespective of K and G(·|Y,ME(K),K),

E
[
G(X |Y,ME(K),K)ρ

]
≥ E

[
min
k
G(X |Y,ME(k), k)

ρ
]
. (340)

For any givenG(·|Y,ME(K),K) introduce the collection of guessing functionsGE(k)(·|Y,ME(K)), k ∈

K that, for every (x, y) ∈ X × Y and mE(k) ∈ F
η
2s , satisfy

GE(k)(x|y,mE(k)) = G(x|y,mE(k), k). (341)

We then obtain from (340) that

E
[
G(X |Y,ME(K),K)ρ

]
≥ E

[
min
k
GE(k)(X |Y,ME(k))

ρ
]
, (342)

and consequently that

min
GE(·|Y,ME)

E

[
min
E
GE(X |Y,ME)

ρ
]

≤ min
K,G(·|Y,ME ,K)

E
[
G(X |Y,ME(K),K)ρ

]
. (343)

From (339) and (343) we conclude that (334) holds.
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We next prove Claim 2. To this end we shall use Claim 1. Let K be any chance variable

of finite support K, and note that W is deterministic given (X,Y ). By (331b)

[U GU ]E(K) = [Mr]E(K) ⊖ [W GV ]E(K), (344)

where the computation is in the field F2r . Consequently, [U GU ]E(K) is deterministic given

(X,Y,ME(K),K). Because GU is a generator matrix of an MDS code, and because |E(K)| =

η, it follows that U is deterministic given (X,Y,ME(K),K), i.e., that there exists some

mapping

g : X × Y × F
η
2r ×K → U

for which

U = g(X,Y,ME(K),K). (345)

Given any guessing function G(·|Y,ME(K),K) for X , introduce some guessing function

G(·, ·|Y,ME(K),K) for (X,U) satisfying that

G
(
X, g(X,Y,ME(K),K)

∣∣Y,ME(K),K
)
= G(X |Y,ME(K),K), (346)

and note that

G(X,U |Y,ME(K),K) = G(X |Y,ME(K),K). (347)

This proves Claim 2.

Having established Claims 1 and 2, we are now ready to prove (166) and (171):

min
GE(·|Y,ME)

E

[
min
E
GE(X |Y,ME )

ρ
]

(a)
= min

K,G(·|Y,ME ,K)
E
[
G(X |Y,ME(K),K)ρ

]
(348)

(b)
= min

K,GE(·|Y,ME ,K)
E
[
G(X,U |Y,ME(K),K)ρ

]
(349)

(c)

≥ 2ρ(Hρ̃(X,U|Y )−ηs−log (δη)−log(1+ln |X |)) (350)
(d)

≥ 2ρ(Hρ̃(X|Y )−η(s−r)−η log δ−log(1+ln |X |)), (351)

where (a) holds by (334); (b) holds by (347); (c) follows from Corollary 7 and the fact that

(ME(K),K) takes values in a set of size 2ηs
(
δ
η

)
; and (d) holds because

(
δ
η

)
≤ δη and

Hρ̃(X,U |Y )

(e)
=

1

ρ
log
∑

y∈Y

(
∑

x∈X

∑

u∈F
η

2r

(
PX,Y (x, y)/2

ηr
)ρ̃
)1+ρ

=
1

ρ
log




∑

y∈Y

(
∑

x∈X

PX,Y (x, y)
ρ̃

)1+ρ
2ρηr





= Hρ̃(X |Y ) + ηr, (352)
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where (e) holds because U is independent of (X,Y ) and uniform over the set Fη2r of size 2ηr.

This concludes the proof of the achievability results.

It remains to establish the converse results, i.e., (167)–(168) in the guessing version and

(172)–(173) in the list version. To this end we first note that

A
(g)
B (PX,Y ) = min

GB(·|Y,MB)
E

[
max
B

GB(X |Y,MB)
ρ
]

≥ min
GB(·|Y,MB)

max
B

E
[
GB(X |Y,MB)

ρ
]
, (353a)

A
(l)
B (PX,Y ) = E

[
max
B

∣∣LY
MB

∣∣ρ
]

≥ max
B

E

[∣∣LY
MB

∣∣ρ
]
. (353b)

Because B ⊆ {1, . . . , δ} is a size-ν set, in the guessing version (167) follows from (353a) and

Corollary 7, and in the list version (172) follows from (353b) and Theorem 4. To prove (168)

and (173), we first note that

AE(PX,Y ) = min
GE (·|Y,ME)

E

[
min
E
GE(X |Y,ME)

ρ
]

(354)

≤ min
E, GE(·|Y,ME)

E
[
GE(X |Y,ME)

ρ
]
. (355)

Corollary 6 implies that, for every size-ν set B ⊆ {1, . . . , δ} and every size-η set E ⊂ B,

min
GB(·|Y,MB)

E
[
GB(X |Y,MB)

ρ
]
≥ 2−ρ(ν−η)s min

GE(·|Y,ME)
E
[
GE(X |Y,ME)

ρ
]
; (356)

and, because

min
GB(·|Y,MB)

E
[
GB(X |Y,MB)

ρ
]
≤ E

[∣∣LY
MB

∣∣
]
,

(355) and (356) imply that in both versions Eve’s ambiguity exceeds Bob’s by at most a factor

of 2ρ(ν−η)s, i.e., AE(PX,Y ) ≤ 2ρ(ν−η)sA
(g)
B (PX,Y ) and AE(PX,Y ) ≤ 2ρ(ν−η)sA

(l)
B (PX,Y ).

Since Eve can ignore the hints that she observes and guess X based on Y alone, we obtain

from Theorem 3 that, for every size-η set E ⊂ {1, . . . , δ},

min
GE(·|Y,ME)

E
[
GE (X |Y,ME)

ρ
]
≤ 2ρHρ̃(X|Y ); (357)

and (355) and (357) imply that in both versions Eve’s ambiguity cannot exceed 2ρHρ̃(X|Y ),

i.e., AE(PX,Y ) ≤ 2ρHρ̃(X|Y ). This concludes the proof of (168) and (173) and consequently

that of the converse results.

G A Proof of Corollary 26

Proof. For the guessing version, the results in (175)–(176) follow from Theorem 24 if we let

r̃ =
νs+ ρ−1 log(UB − 1)−Hρ̃(X |Y )− 1

η
, (358)
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r =





0 ⌊r̃⌋ ∈ (−∞, log δ),

⌊r̃⌋ ⌊r̃⌋ ∈ [log δ, s− log δ),

s− ⌈log δ⌉ ⌊r̃⌋ ∈ [s− log δ, s),

s ⌊r̃⌋ ∈ [s,∞),

(359)

p = s− r, (360)

and note that

r 6= s =⇒ r̃ − r < log δ + 1.

To obtain the results in (178)–(179) for the list version, let

r̃ =
νs− log

(
2Hρ̃(X|Y )− 1

ρ
log(UB−1)+2 + log |X |+ 2

)

η
, (361)

and choose r as in (359). Then, (170) implies that Bob’s ambiguity satisfies (178). Since

r 6= s =⇒ r̃ − r < log δ + 1,

we obtain from (171) that, if r 6= s, then

AE(PX,Y ) > 2ρ(Hρ̃(X|Y )+(ν−η)s−2η log δ−η−log(1+ln |X |))

×
(
2Hρ̃(X|Y )− 1

ρ
log(UB−1)+2 + log |X |+ 2

)−ρ
. (362)

Because
1

a+ b
≥

1

2a
∧

1

2b
, a, b > 0,

the second factor satisfies the lower bound

(
2Hρ̃(X|Y )− 1

ρ
log(UB−1)+2 + log |X |+ 2

)−ρ

≥ 2−ρ(Hρ̃(X|Y )− 1
ρ
log(UB−1)+3) ∧

(
2(log |X |+ 2)

)−ρ
. (363)

We are now ready to conclude the proof of (179): if r 6= s, then (179) follows from (362) and

(363); and if r = s, then (171) implies that

AE(PX,Y ) ≥ 2ρ(Hρ̃(X|Y )−η log δ−log(1+ln |X |)) (364)

and consequently that (179) holds.

H A Proof of Theorem 27

Proof. If we choose B = {1, . . . , ν}, then in the guessing version (180a) follows from (353a)

and Corollary 7, and in the list version (180b) follows from (353b) and Theorem 4. For

B = {1, . . . , ν} and E = {ν − η + 1, . . . , ν}, Corollary 6 implies that,

min
GB(·|Y,MB)

E
[
GB(X |Y,MB)

ρ
]
≥ 2−ρ

∑η−ν
ℓ=1 sℓ min

GE(·|Y,ME)
E
[
GE(X |Y,ME)

ρ
]
. (365)
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Since

min
GB(·|Y,MB)

E
[
GB(X |Y,MB)

ρ
]
≤ E

[∣∣LY
MB

∣∣
]
,

(355) and (365) imply that in both versions Eve’s ambiguity exceeds Bob’s by at most a

factor of 2ρ
∑η−ν

ℓ=1 sℓ . That is,

AE(PX,Y ) ≤ 2ρ
∑η−ν

ℓ=1 sℓA
(g)
B (PX,Y )

and

AE(PX,Y ) ≤ 2ρ
∑η−ν

ℓ=1 sℓA
(l)
B (PX,Y ).

Moreover, (355) and (357) imply that in both versions Eve’s ambiguity cannot exceed 2ρHρ̃(X|Y ).

That is,

AE(PX,Y ) ≤ 2ρHρ̃(X|Y ),

which concludes the proof of (181).

I A Proof of Theorem 29

Proof. We first prove (182). If νRs < Hρ̃(X|Y ), then (167) in the guessing version and (172)

in the list version imply that the privacy-exponent is negative infinity. We hence assume that

νRs > Hρ̃(X|Y ).

We start by showing that the privacy-exponent cannot exceed the RHS of (182). To this

end, suppose that (57) holds and consequently

lim sup
n→∞

log
(
AB(PXn,Y n)

)

n
= 0. (366)

Combining (168) with (366) in the guessing version and (173) in the list version implies that

lim sup
n→∞

log
(
AE(PXn,Y n)

)

n
≤ ρ
(
Rs(ν − η) ∧Hρ̃(X|Y )

)
. (367)

Hence, the privacy-exponent cannot exceed the RHS of (182).

We next show that the privacy-exponent cannot be smaller than the RHS of (182). To

this end fix 0 < ǫ < νRs −Hρ̃(X|Y ) and let

UB(n) = 1 + 2−nǫ. (368)

Note that UB(n) converges to one as n tends to infinity. By Corollary 26 we can guarantee

that Bob’s ambiguity not exceed UB(n) whenever n is sufficiently large and that

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥ ρ
((
Rs(ν − η)− ǫ

)
∧Hρ̃(X|Y )

)
. (369)

By letting ǫ tend to zero we thus find that the privacy-exponent cannot be smaller than the

RHS of (182).
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To prove (183), we first note that if νRs < Hρ̃(X|Y )−ρ−1EB, then (167) in the guessing

version and (172) in the list version imply that the modest privacy-exponent is negative

infinity. We hence assume that νRs ≥ −ρ−1EB.

We start by showing that the modest privacy-exponent cannot exceed the RHS of (183).

To this end, suppose that (59) holds. Due to (168) in the guessing version and (173) in the

list version, it follows that

lim sup
n→∞

log
(
AE(PXn,Y n)

)

n
≤
(
ρRs(ν − η) + EB

)
∧ ρHρ̃(X|Y ). (370)

Hence, the privacy-exponent cannot exceed the RHS of (183).

We next show that the privacy-exponent cannot be smaller than the RHS of (183). To

this end let

UB(n) = 2ρnEB . (371)

By Corollary 26 we can guarantee that Bob’s ambiguity not exceed UB(n) whenever n is

sufficiently large and that

lim inf
n→∞

log
(
AE(PXn,Y n)

)

n
≥
(
ρRs(ν − η) + EB

)
∧ ρHρ̃(X|Y ). (372)

This proves that the modest privacy-exponent cannot be smaller than the RHS of (183).

J A Proof of Lemma 31

Proof. To prove (195), fix some optimal guessing function Ĝ⋆(·|Y n, Z) with corresponding

success functionG⋆∆(·|Y
n, Z). The success functionG⋆∆(·|Y

n, Z) minimizes E
[
G⋆∆(X |Y n, Z)ρ

]
.

Let ψ(·|Y n, Z) be the corresponding reconstruction function, i.e., the unique mapping satis-

fying that

ψ(x|y, z) = x̂ ⇐⇒ G⋆∆(x|y, z) = Ĝ⋆(x̂|y, z), ∀ (x, x̂,y, z) ∈ Xn × X̂n × Yn ×Z. (373)

For every y ∈ Yn consider a guessing order on X̂n where we first guess the elements of the

set {
x̂ ∈ X̂n : min

z∈Z
Ĝ⋆(x̂|y, z) = 1

}

in some arbitrary order followed by the elements of the set

{
x̂ ∈ X̂n : min

z∈Z
Ĝ⋆(x̂|y, z) = 2

}
,

and where we continue until concluding by guessing the elements of X̂n for which minz∈Z Ĝ
⋆(x̂|y, z)

is maximum. Let Ĝ(·|Y n) be the corresponding guessing function. For every x̂, x̂′ ∈ X̂n and

y ∈ Yn a necessary condition for Ĝ(x̂′
∣∣y) ≤ Ĝ(x̂

∣∣y) is that

min
z∈Z

Ĝ⋆(x̂′
∣∣y, z) ≤ min

z∈Z
Ĝ⋆(x̂

∣∣y, z).
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In addition, for every z′ ∈ Z the mapping Ĝ⋆(·
∣∣y, z′) : X̂n →

[
1 : |X̂ |n

]
is one-to-one, and

consequently the number of x̂′ ∈ X̂n satisfying

Ĝ⋆(x̂′
∣∣y, z′) ≤ min

z∈Z
Ĝ⋆(x̂

∣∣y, z)

is minz∈Z Ĝ
⋆(x̂
∣∣y, z). Consequently,

Ĝ
(
ψ(Xn|Y n, Z)

∣∣Y n
)
≤ |Z|min

z∈Z
Ĝ⋆
(
ψ(Xn|Y n, Z)

∣∣Y n, z
)

(374)

≤ |Z| Ĝ⋆
(
ψ(Xn|Y n, Z)

∣∣Y n, Z
)
. (375)

From (375) it follows that the success function G∆(·|Y
n) corresponding to Ĝ(·|Y n) satisfies

G∆(X
n|Y n)

(a)

≤ Ĝ
(
ψ(Xn|Y n, Z)

∣∣Y n
)

(376)

(b)

≤ |Z| Ĝ⋆
(
ψ(Xn|Y n, Z)

∣∣Y n, Z
)

(377)

(c)
= |Z|G⋆∆(X

n|Y n, Z), (378)

where (a) holds because d(n)
(
Xn, ψ(Xn|Y n, Z)

)
≤ ∆; (b) holds by (375); and (c) holds

because ψ(·|Y n, Z) satisfies (373). Since Ĝ⋆(·|Y n, Z) is an optimal guessing function, this

concludes the proof of (195).

To prove (196), fix some optimal guessing function Ĝ⋆(·|Y n) with a corresponding suc-

cess function G⋆∆(·|Y
n). The success function G⋆∆(·|Y

n) minimizes E
[
G⋆∆(X |Y n)ρ

]
. Let

ψ(·|Y n) be the corresponding reconstruction function for which (189) holds when we sub-

stitute Ĝ⋆(x̂|y) for Ĝ(x̂|y) and G⋆∆(x|y) for G∆(x|y) in (189). Let f : X̂n × Yn → Z be

some mapping for which f(x̂,y) = f(x̂′,y) implies either
⌈
Ĝ⋆∆(x̂|y)/|Z|

⌉
6=
⌈
Ĝ⋆∆(x̂

′|y)/|Z|
⌉

or x̂ = x̂′. The mapping f could be any mapping for which, for every (x̂,y) ∈ X̂n × Yn,

f(x̂,y) is—up to relabeling the elements of Z—the remainder of the Euclidean division of

Ĝ⋆(x̂|y) − 1 by |Z|. Define the chance variable X̂n = ψ(Xn|Y n), which takes values in X̂n.

Lemma 5 implies that for Z = f(X̂n, Y n) there exists some guessing function Ĝ(·|Y n, Z) for

X̂n for which

E
[
Ĝ(X̂n|Y n, Z)ρ

]
= E

[⌈
Ĝ(X̂n|Y n)/|Z|

⌉ρ]
. (379)

In fact, in the proof of Lemma 5 it is shown that there exists some guessing function

Ĝ(·|Y n, Z) for X̂n for which

Ĝ(X̂n|Y n, Z) =
⌈
Ĝ(X̂n|Y n)/|Z|

⌉
. (380)

Let Ĝ(·|Y n, Z) be a guessing function as in (380) with corresponding success functionG∆(·|Y
n, Z).

Note that

G∆(X
n|Y n, Z)

(a)

≤ Ĝ
(
ψ(Xn|Y n)

∣∣Y n, Z
)

(381)

(b)
=
⌈
Ĝ⋆
(
ψ(Xn|Y n)

∣∣Y n
)
/|Z|

⌉
(382)

(c)
=
⌈
G⋆∆(X

n|Y n)/|Z|
⌉
, (383)
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where (a) holds because d(n)
(
Xn, ψ(Xn|Y n)

)
≤ ∆; (b) holds because X̂n = ψ(Xn|Y n)

and by (380); and (c) holds because ψ(·|Y n) satisfies (189) when we substitute Ĝ⋆(x̂|y) for

Ĝ(x̂|y) and G⋆∆(x|y) for G∆(x|y) in (189). Since Ĝ⋆(·|Y n) is an optimal guessing function,

this concludes the proof of (196).

K A Proof of Theorem 34

Proof. As to the first part, suppose we are given a stochastic task-encoder (193) and a decoder

with lists {Ly

z } satisfying (194). For every y ∈ Yn order the lists {Ly

z }z∈Z in increasing order

of their cardinalities, and order the elements in each list in some arbitrary way. Now consider

the guessing order where we first guess the elements of the first (and smallest) list in their

respective order followed by those elements in the second list that have not yet been guessed

(i.e., that are not contained in the first list). We continue until concluding by guessing those

elements of the last (and longest) list that have not been previously guessed. Let Ĝ(·|Y n) be

the corresponding guessing function, let G∆(·|Y
n) be its success function, and let ψ(·|Y n) be

its reconstruction function (which satisfies (189)). Observe that

E
[
G∆(X

n|Y n)ρ
] (a)
= E

[
Ĝ
(
ψ(Xn|Y n)

∣∣Y n
)ρ]

(384)

=
∑

x,y

PnX,Y (x,y)
∣∣∣
{
x̂ : Ĝ(x̂|y) ≤ Ĝ

(
ψ(x|y)

∣∣y
)}∣∣∣

ρ

(385)

(b)

≤
∑

x,y

PnX,Y (x,y) |Z|ρ min
z : ψ(x|y)∈Ly

z

|Ly

z |
ρ (386)

(c)

≤ |Z|ρ E
[∣∣LY n

Z

∣∣ρ
]
, (387)

where (a) holds because ψ(·|Y n) satisfies (189); (b) holds because for every x ∈ Xn, x̂ ∈ X̂n,

and y ∈ Yn, a necessary condition for Ĝ(x̂|y) ≤ Ĝ
(
ψ(x|y)

∣∣y
)
is that x̂ ∈ Ly

z̃ for some

z̃ ∈ Z satisfying |Ly

z̃ | ≤ minz : ψ(x|y)∈Ly

z
|Ly

z |, and because the number of lists whose size does

not exceed minz : ψ(x|y)∈Ly

z
|Ly

z | is at most |Z|; and (c) is true because by (194) the list LY
n

Z

contains a reconstruction x̂ ∈ X̂n of Xn that satisfies the fidelity criterion (185), and because

(189) implies that

Ĝ
(
ψ(x|y)

∣∣y
)
≤ Ĝ(x̂|y), ∀ x̂ s.t. d(n)(Xn, x̂) ≤ ∆, (388)

and consequently that

min
z : ψ(x|y)∈Ly

z

|Ly

z | ≤ min
z : x̂∈Ly

z

|Ly

z |, ∀ x̂ s.t. d(n)(Xn, x̂) ≤ ∆. (389)

This concludes the proof of (203).

As to the second part, suppose we are given a positive integer ω ≤ |X̂ |n satisfying (204)

and a guessing function Ĝ(·|Y n) with corresponding success function G∆(·|Y
n) and recon-

struction function ψ(·|Y n) satisfying (189). Define the chance variable X̂n = ψ(Xn|Y n),
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which takes values in X̂n. Theorem 8 implies that Ĝ(·|Y n) and ω induce a {0, 1}-valued

conditional PMF

P[Z = z|X̂n = x̂, Y n = y], ∀ (x̂,y, z) ∈ X̂n × Yn ×Z, (390)

whose associated decoding lists

L̂y

z =
{
x̂ ∈ X̂n : P[X̂n = x̂|Y n = y, Z = z] > 0

}
, ∀ (y, z) ∈ Yn ×Z (391)

satisfy

E

[∣∣L̂Y n

Z

∣∣ρ
]
≤ E

[⌈
Ĝ(X̂n|Y n)/ω

⌉ρ]
. (392)

Define the {0, 1}-valued conditional PMF

P[Z = z|Xn = x, Y n = y]

= P
[
Z = z

∣∣X̂n = ψ(x|y), Y n = y
]
, ∀ (x,y, z) ∈ Xn × Yn ×Z, (393)

and the lists

Ly

z = L̂y

z , ∀ (y, z) ∈ Yn ×Z. (394)

Because X̂n = ψ(Xn|Y n), (391), (393), and (394) imply that

ψ(Xn|Y n) ∈ LY
n

Z . (395)

Since

d(n)
(
x, ψ(x|y)

)
≤ ∆, ∀ (x,y) ∈ Xn × Yn,

this implies that the decoding lists {Ly

z } satisfy (194). Hence, (393) is a deterministic task-

encoder (whose conditional PMF (193) is {0, 1}-valued) for which the decoder with lists (394)

satisfies (194). We are now ready to conclude the proof of (205):

E

[∣∣LY n

Z

∣∣ρ
]

(a)
= E

[∣∣L̂Y n

Z

∣∣ρ
]

(396)

(b)

≤ E

[⌈
Ĝ(X̂n|Y n)/ω

⌉ρ]
(397)

(c)
= E

[⌈
G∆(X

n|Y n)/ω
⌉ρ]

, (398)

where (a) holds by (394); (b) holds by (392); and (c) holds because X̂n = ψ(Xn|Y n), where

ψ(·|Y n) satisfies (189).

L A Proof of Theorem 38

Proof. We first prove (217). If R1 +R2 < E
(ρ)
X|Y (PX,Y ,∆), then Corollary 33 in the guessing

version and Corollary 36 in the list version imply that the privacy-exponent is negative
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infinity. We hence assume that R1 + R2 > E
(ρ)
X|Y (PX,Y ,∆). In this case Corollary 33 in the

guessing version and Corollary 36 in the list version imply that the constraint

lim
n→∞

AB(P
n
X,Y ,∆) = 1 (399)

can be met.

We first show that the privacy-exponent cannot exceed the RHS of (217). To this end we

note that it holds for every n ∈ N that

AE(P
n
X,Y ) = min

Ĝ(1)(·|Y n,M1), Ĝ(2)(·|Y n,M2)
E

[
G

(1)
∆ (Xn|Y n,M1)

ρ ∧G
(2)
∆ (Xn|Y n,M2)

ρ
]

(400)

≤ min
k∈{1,2}

(
min

Ĝ(k)(·|Y n,Mk)
E

[
G

(k)
∆ (Xn|Y n,Mk)

ρ
])
. (401)

By Corollary 32 it holds for every k ∈ {1, 2} and l ∈ {1, 2} \ {k} that

min
Ĝ(·|Y n,M1,M2)

E
[
G∆(X

n|Y n,M1,M2)
ρ
]

≥ |Ml|
−ρ min

Ĝ(k)(·|Y n,Mk)
E

[
G

(k)
∆ (Xn|Y n,Mk)

ρ
]
. (402)

Because

min
Ĝ(·|Y n,M1,M2)

E
[
G∆(X

n|Y n,M1,M2)
ρ
]
≤ E

[∣∣LY n

M1,M2

∣∣ρ
]
,

(401) and (402) imply that in both versions Eve’s ambiguity exceeds Bob’s by at most a

factor of |M1|
ρ ∧ |M2|

ρ. That is,

AE(P
n
X,Y ,∆) ≤

(
|M1| ∧ |M2|

)ρ
AB(P

n
X,Y ,∆). (403)

Suppose that (399) holds and consequently

lim sup
n→∞

log
(
AB(P

n
X,Y ,∆)

)

n
= 0. (404)

From (403) and (404) it follows that

lim sup
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n
≤ ρ(R1 ∧R2). (405)

Eve can ignore the hint that she observes and guess a reconstruction for Xn based on Y n

alone. Hence, we obtain from Theorem 30 that

lim sup
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n
≤ ρE

(ρ)
X|Y (PX,Y ,∆). (406)

From (405) and (406) we conclude that the privacy-exponent cannot exceed the RHS of (217):

lim sup
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n
≤ ρ
(
R1 ∧R2 ∧ E

(ρ)
X|Y (PX,Y ,∆)

)
. (407)

We next show that the privacy-exponent cannot be smaller than the RHS of (217). By

possibly relabeling the hints, we can assume w.l.g. that R2 = R1 ∧ R2. Fix some ǫ > 0

satisfying

ǫ ≤ R1 +R2 − E
(ρ)
X|Y (PX,Y ,∆). (408)

Choose a nonnegative rate-triple (Rs, R̃1, R̃2) as follows:
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1. If R2 ≤ E
(ρ)
X|Y (PX,Y ,∆)/2, then choose

Rs = 0, R̃1 = E
(ρ)
X|Y (PX,Y ,∆)−R2 + ǫ, R̃2 = R2. (409)

2. Else if E
(ρ)
X|Y (PX,Y ,∆)/2 < R2 ≤ E

(ρ)
X|Y (PX,Y ,∆), then choose

Rs = 2R2 − E
(ρ)
X|Y (PX,Y ,∆)− ǫ, R̃1 = R̃2 = E

(ρ)
X|Y (PX,Y ,∆)−R2 + ǫ. (410)

(To guarantee that Rs ≥ 0, we assume in this case that ǫ > 0 is sufficiently small so

that, in addition to (408), also

ǫ < 2R2 − E
(ρ)
X|Y (PX,Y ,∆) (411)

holds.)

3. Else if E
(ρ)
X|Y (PX,Y ,∆) < R2, then choose

Rs = R2, R̃1 = R̃2 = 0. (412)

Having chosen (Rs, R̃1, R̃2), choose the triple (cs, c1, c2) ∈ N
3 to be

(cs, c1, c2) = (2nRs , 2nR̃1 , 2nR̃2). (413)

For each ν ∈ {s, 1, 2}, let Vν be a chance variable taking values in the set Vν = {0, . . . , cν−1}.

Because our choice of (Rs, R̃1, R̃2) satisfies

Rs + R̃1 + R̃2 > E
(ρ)
X|Y (PX,Y ,∆), (414)

Corollary 36 implies that there exist {0, 1}-valued conditional PMFs

P
[
(Vs, V1, V2) = (vs, v1, v2)

∣∣Xn = x, Y n = y
]

and decoders, whose lists

{
Ly

vs,v1,v2

}
(y,vs,v1,v2)∈Yn×Vs×V1×V2

satsify

∃ x̂ ∈ LY
n

Vs,V1,V2
s.t. d(n)(Xn, x̂) ≤ ∆, (415)

for which

lim
n→∞

E

[∣∣LY
n

Vs,V1,V2

∣∣ρ
]
= 1. (416)

Because

min
Ĝ(·|Y n,Vs,V1,V2)

E
[
G∆(X

n|Y n, Vs, V1, V2)
ρ
]
≤ E

[∣∣LY
n

Vs,V1,V2

∣∣ρ
]
,

(416) implies that

lim
n→∞

min
Ĝ(·|Y n,Vs,V1,V2)

E
[
G∆(X

n
∣∣Y n, Vs, V1, V2)ρ

]
= 1. (417)
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Our choice of (Rs, R̃1, R̃2) satisfies

R1 ≥ Rs + R̃1, R2 ≥ Rs + R̃2, (418)

and hence we can for every blocklength n choose some conditional PMF (212) that assigns

positive probability only to csc1 elements of M1 and csc2 elements of M2. Therefore, we

can assume w.l.g. that M1 = Vs × V1 and M2 = Vs × V2 and choose M1 = (Vs ⊕csU, V1)

and M2 = (U, V2), where (Vs, V1, V2) is drawn according to the above conditional PMF, and

where U is independent of (Xn, Y n, Vs, V1, V2) and uniform over Vs. For this choice (399)

follows from (416) in the list version and from (417) in the guessing version.

It remains to show that for the above choice of the conditional PMFs (212)

lim inf
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n
≥ ρ
(
R1 ∧R2 ∧ E

(ρ)
X|Y (PX,Y ,∆)

)
. (419)

Define the triple of chance variables

(I, Û , V̂ ) ,





(1, Vs ⊕csU, V1) if G

(1)
∆ (Xn|Y n,M1) ≤ G

(2)
∆ (Xn|Y n,M2),

(2, U, V2) otherwise
(420)

with alphabet I × Vs × V̂, where I = {1, 2} and V̂ = {0, . . . , c1 ∨ c2 − 1}. From (Y n, I, U, V̂ )

Eve can guess a reconstruction x̂ ∈ X̂n of Xn using either Ĝ(1)(·|Y n,M1) or Ĝ
(2)(·|Y n,M2)

depending on the value of I. That is, Eve can use some guessing function Ĝ(·|Y n, I, Û , V̂ )

satisfying that, for every y ∈ Yn, i ∈ I, û ∈ Vs, and v̂ ∈ {0, . . . , ci − 1},

Ĝ(x̂|y, i, û, v̂) = Ĝ(i)
(
x̂
∣∣y, (û, v̂)

)
, (421)

where by (420) the success function G∆(·|Y
n, I, Û , V̂ ) corresponding to Ĝ(·|Y n, I, Û , V̂ ) sat-

isfies

G∆(X
n|Y n, I, Û , V̂ )

= G
(I)
∆

(
Xn
∣∣Y n, (Û , V̂ )

)
(422)

= G
(I)
∆ (Xn|Y n,MI) (423)

= G
(1)
∆ (Xn|Y n,M1)

ρ ∧G
(2)
∆ (Xn|Y n,M2). (424)

Let ψ(·|Y n, I, Û , V̂ ) be the reconstruction function corresponding to Ĝ(·|Y n, I, Û , V̂ ), i.e.,

the unique mapping satisfying that

(
ψ(x|y, i, û, v̂) = x̂ ⇐⇒ G∆(x|y, i, û, v̂) = Ĝ(x̂|y, i, û, v̂)

)
,

∀ (x, x̂,y, i, û, v̂) ∈ Xn × X̂n × Yn × I × Vs × V̂ , (425)

and define the chance variable X̂n = ψ(Xn|Y n, I, Û , V̂ ). Note that

E
[
Ĝ(X̂n|Y n, I, Û , V̂ )ρ

]
≥ min

G(·,·,·|Y n,I,Û,V̂ )
E
[
G(X̂n, I, Û |Y n, I, Û , V̂ )ρ

]
. (426)
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This implies that

AE(P
n
X,Y ,∆) ≥ min

G(·,·,·|Y n,I,Û,V̂ )
E
[
G(X̂n, I, Û |Y n, I, Û , V̂ )ρ

]
(427)

(a)

≥
(
|I| |Vs| |V̂ |

)−ρ
min

G(·,·,·|Y n)
E
[
G(X̂n, I, Û |Y n)ρ

]
(428)

≥ 2−ρ−nρ(Rs+R̃1∨R̃2) min
G(·,·,·|Y n)

E
[
G(X̂n, I, Û |Y n)ρ

]
, (429)

where (a) follows from Corollary 6 and the fact that (I, Û , V̂ ) takes values in the set

{
(1, û, v̂) : (û, v̂) ∈ Vs × V1

}
∪
{
(2, û, v̂) : (û, v̂) ∈ Vs × V2

}
,

which is of size

|Vs × V1|+ |Vs × V2| = cs(c1 + c2).

From (429) it follows that

lim inf
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n

≥ lim inf
n→∞

min
G(·,·,·|Y n)

log
(
E
[
G(X̂n, I, Û

∣∣Y n)ρ
])

n
− ρ(Rs + R̃1 ∨ R̃2). (430)

Therefore, if we can show that

lim inf
n→∞

min
G(·,·,·|Y n)

log
(
E
[
G(X̂n, I, Û |Y n)ρ

])

n
≥ ρ
(
E

(ρ)
X|Y (PX,Y ,∆) +Rs

)
, (431)

then we can let ǫ tend to zero to conclude from (430) that (419) holds:

lim inf
n→∞

log
(
AE(P

n
X,Y ,∆)

)

n
≥ ρ
(
R2 ∧ E

(ρ)
X|Y (PX,Y ,∆)

)
(432)

≥ ρ
(
R1 ∧R2 ∧ E

(ρ)
X|Y (PX,Y ,∆)

)
. (433)

We next conclude the proof of (419) by establishing (431). By Theorem 3

lim inf
n→∞

min
G(·,·,·|Y n)

log
(
E
[
G(X̂n, I, Û |Y n)ρ

])

n
≥ ρHρ̃(X̂

n, I, Û |Y n). (434)

In [4, Appendix B] it is shown that for every pair of chance variables (A,B) taking values in

some finite set A× B according to som PMF PA,B

Hρ̃(A|B) = max
Q∈P(B),
V ∈P(A|B)

H(V |Q)− ρ−1D(Q× V ||PA,B), (435)

where P(B) denotes the set of PMFs on B, and P(A|B) denotes the set of transition laws

from B to A. We shall use (435) to lower-bound the RHS of (434), where we will substitute

(X̂n, I, Û) for A and Y n for B in (435). To that end denote by Vn the conditional PMF of
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(X̂n, I, Û) given (Xn, Y n, U), and denote by Ṽn the conditional PMF of (Y n, X̂n, I, Û) given

(Xn, Y n, U). Note that Vn and Ṽn are both {0, 1}-valued. Fix any PMF QX,Y on X ×Y, let

PU denote the uniform distribution on Vs, and define the PMF on Xn×Yn×U ×X̂n×I×U

QXn,Y n,U,X̂n,I,Û =
(
QnX,Y × PU

)
× Vn.

As to D(Q × V ||PA,B), we then find that

D
(
QnY ×

(
(QnX|Y × PU )Vn

)∣∣∣
∣∣∣PnY ×

(
(PnX|Y × PU )Vn

))
(436)

= D
(
(QnX,Y × PU ) Ṽn

∣∣∣∣(PnX,Y × PU ) Ṽn
)

(437)

(a)

≤ D(QnX,Y × PU ||P
n
X,Y × PU ) (438)

= D(QnX,Y ||P
n
X,Y ) (439)

= nD(QX,Y ||PX,Y ), (440)

where (a) follows from the Data-Processing inequality [23, Lemma 3.11]. As to H(V |Q), we

find that

H
(
(QnX|Y × PU )Vn

∣∣QnY
)

(441)

(a)

≥ I
(
QnX|Y × PU , Vn

∣∣QnY
)

(442)

(b)
= I(QnX|Y , PU Vn|Q

n
Y ) + I

(
PU , Vn

∣∣QnX,Y
)

(443)

(c)
= I(QnX|Y , PU Vn|Q

n
Y ) + log |Vs| (444)

(d)

≥ I(QnX|Y , QX̂n|Xn,Y n |Q
n
Y ) + log |Vs| (445)

(e)

≥ nRX|Y (QX,Y ,∆) + log |Vs|, (446)

where (a) holds because entropy is nonnegative; (b) follows from chain rule; (c) holds because

U is independent of (Xn, Y n) and uniform over its support Vs, and because U is determin-

istic given
(
Xn, Y n, X̂n, I, Û

)
(which holds by (420) and because Vs is deterministic given

(Xn, Y n)); (d) holds for the conditional PMF

QX̂n|Xn,Y n(x̂|x,y) =
∑

u,i,û

PU (u)Vn(x̂, i, û|x,y, u), ∀ (x, x̂,y) ∈ Xn × X̂n × Yn, (447)

because conditioning cannot increase entropy; and (e) follows from the conditional Rate-

Distortion theorem [25] and

PQn
X,Y

×QX̂n|Xn,Y n

[
d(n)

(
Xn, X̂n

)
≤ ∆

]
= 1, (448)

which holds by (447) and because

(
Vn(x̂, i, û|x,y, u) > 0 =⇒ ∃ v̂ ∈ V̂ : x̂ = ψ(x|y, i, û, v̂)

)
,

∀ (x, x̂,y, i, û) ∈ Xn × X̂n × Yn × I × U . (449)
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More precisely, (e) can be established as follows. Draw
(
Xn, Y n, X̂n

)
from Xn×Yn×X̂n

according to the PMF QnX,Y ×QX̂n|Xn,Y n . By (448)

E

[
d(n)(Xn, X̂n)

]
= EQn

X,Y
×QX̂n|Xn,Y n

[
d(n)(Xn, X̂n)

]
≤ ∆. (450)

Consequently, we find that

I(QnX|Y , QX̂n|Xn,Y n |Q
n
Y )

= I(Xn; X̂n|Y n) (451)

(f)
=

n∑

i=1

I
(
Xi; X̂

n
∣∣Y n, X i−1

)
(452)

(g)

≥

n∑

i=1

I
(
Xi; X̂i

∣∣Yi
)

(453)

(h)
= n

(
1

n

n∑

i=1

I
(
QX|Y , QX̂i|Xi,Yi

∣∣QY
)
)

(454)

(i)

≥ nI

(
QX|Y ,

1

n

n∑

i=1

QX̂i|Xi,Yi

∣∣∣∣∣QY

)
(455)

(j)

≥ n min
QX̂|X,Y :

E[d(X,X̂)≤∆]

I(QX|Y , QX̂|X,Y |QY ) (456)

(k)
= RX|Y (QX,Y ,∆), (457)

where (f) follows from the chain rule; (g) holds because Xi and
(
Y i−1, Y ni+1, X

i−1
)
are

independent, and because conditioning cannot increase entropy; (h) holds for the conditional

PMFs QX̂i|Xi,Yi
, i ∈ [1 : n] that satisfy

QX̂i|Xi,Yi
(x̂i|xi, yi) =

∑

xi−1,x̂i−1,yi−1,
xn
i+1,x̂

n
i+1,y

n
i+1

Qi−1
X,Y (x

i−1, yi−1)Qn−iX,Y (x
n
i+1, y

n
i+1)QX̂n|Xn,Y n(x̂

n|xn, yn),

∀ (xi, x̂i, yi) ∈ X × X̂ × Y;

(i) holds because mutual information is convex in the transition law (here QX̂i|Xi,Yi
); (j)

holds because (450) implies that

∆ ≥ E

[
d(n)(Xn, X̂n)

]
(458)

= E

[
1

n

n∑

i=1

d
(
Xi, X̂i

)
]

(459)

= E
QX,Y ×

(
1
n

∑
n
i=1 QX̂i|Xi,Yi

)[d(X, X̂)
]
; (460)

and (k) holds by the definition of the rate-distortion function under the PMF QX,Y (187).

This concludes the proof of (446).
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Having established (446), we are now ready to conclude the proof of (431). By substituting

(X̂n, I, Û) for A and Y n for B in (435), we obtain from (435), (440), and (446) that

Hρ̃(X̂
n, I, Û

∣∣Y n)
≥ H

(
(QnX|Y × PU )Vn

∣∣QnY
)

−ρ−1D
(
QnY ×

(
(QnX|Y × PU )Vn

)∣∣∣
∣∣∣PnY ×

(
(PnX|Y × PU )Vn

))
(461)

≥ n
(
RX|Y (QX,Y ,∆)− ρ−1D(QX,Y ||PX,Y )

)
+ log |Vs|. (462)

Because this holds for every PMF QX,Y on X × Y, and by the definition of E
(ρ)
X|Y (PX,Y ,∆)

(188),

Hρ̃(X̂
n, I, Û |Y n)

≥ n sup
QX,Y

(
RX|Y (QX,Y ,∆)− ρ−1D(QX,Y ||PX,Y )

)
+ log |Vs| (463)

= nE
(ρ)
X|Y (PX,Y ,∆) + log |Vs|. (464)

This, |Vs| = 2nRs , and (434) imply (431). This concludes the proof of (217).

We next prove (218). If R1 + R2 < E
(ρ)
X|Y (PX,Y ,∆) − ρ−1EB, then Corollary 33 in the

guessing version and Corollary 36 in the list version imply that the modest privacy-exponent

is negative infinity. We hence assume that R1 +R2 > E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB. We can now

use the same line of argument as in the proof of (217) but with (404) replaced by

lim sup
n→∞

log
(
AB(P

n
X,Y ,∆)

)

n
≤ EB (465)

to show that the modest privacy-exponent cannot exceed the RHS of (218). To show that

the modest privacy-exponent is lower-bounded by the RHS of (218), we argue as for the

privacy-exponent, except that here we choose the nonnegative triple (Rs, R̃1, R̃2) as follows:

1. If R2 ≤
(
E

(ρ)
X|Y (PX,Y ,∆)− ρ−1EB

)
/2, then choose

Rs = 0, R̃1 = E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB −R2, R̃2 = R2. (466)

2. Else if
(
E

(ρ)
X|Y (PX,Y ,∆)− ρ−1EB

)
/2 < R2 ≤ E

(ρ)
X|Y (PX,Y ,∆)− ρ−1EB, then choose

Rs = 2R2 − E
(ρ)
X|Y (PX,Y ,∆) + ρ−1EB,

R̃1 = R̃2 = E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB −R2. (467)

3. Else if E
(ρ)
X|Y (PX,Y ,∆)− ρ−1EB < R2, then choose

Rs = R2, R̃1 = R̃2 = 0. (468)
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