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Abstract—In this paper, we consider a multiple-input-multiple-
output optical wireless communication (MIMO-OWC) system
suffering from log-normal fading. In this scenario, a general
criterion for the design of full large-scale diversity space code
(FLDSC) with the maximum likelihood (ML) detector is devel-
oped. Based on our criterion, FLDSC is attained if and only if all
the entries of the space coding matrix are positive. Particularly
for 2×2 MIMO-OWC with unipolar pulse amplitude modulation
(PAM), a closed-form linear FLDSC satisfying this criterion is
attained by smartly taking advantage of some available properties
as well as by developing some new interesting properties on
Farey sequences in number theory to rigorously attack the
continuous and discrete variables mixed max-min problem. In
fact, this specific design not only proves that a repetition code
(RC) is the best linear FLDSC, but also uncovers a significant
difference between MIMO radio frequency (RF) communications
and MIMO-OWC that space-only transmission is sufficient for
a full diversity achievement. Computer simulations demonstrate
that FLDSC substantially outperforms spatial multiplexing with
the same total optical power and spectral efficiency and the latter
obtains only the small-scale diversity gain.

Index Terms—Full large-scale diversity, log-normal fading
channels, multiple-input-multiple-output (MIMO), optical wire-
less communications (OWC), space code.

I. INTRODUCTION

Optical wireless communications (OWC), due to its poten-
tial for bandwidth-hungry applications, has become a very
important area of research [1]–[7]. However, some challenges
remain, especially in atmospheric environments, where robust-
ness is a key consideration. Therefore, in the design of high
date rate OWC links, we need to consider the atmospheric
impairments-induced fading which can be described by the
log-normal (LN) statistical model [8], [9]. To combat fad-
ing, multi-input-multi-output (MIMO) OWC (MIMO-OWC)
systems introduce the design for the transmitted symbols
distributed over transmitting apertures (space) and (or) symbol
periods (time). Full large-scale diversity is achieved when the
total degrees of freedom (DoF) available in the MIMO-OWC
system is fully utilized.

Unfortunately, unlike MIMO techniques for radio frequency
(MIMO-RF) communications with Rayleigh fading, there are
two significant challenges in MIMO-OWC communications.
The first is that there does not exist any available mathe-
matical tool that could be directly applied to the analysis

of the average pair-wise error probability (PEP) when LN
is involved. Although there are really mathematical formulae
in literature for numerically and accurately computing the
integral involving LN [8], [10], [11], it can not be used for the
theoretic analysis on diversity. The second is a nonnegative
constraint on the design of transmission for MIMO-OWC,
which is a major difference between MIMO RF communica-
tions and MIMO-OWC. It is because of this constraint that the
currently available well-developed MIMO techniques for RF
communications can not be directly utilized for MIMO-OWC.
Despite the fact that the nonnegative constraint can be satisfied
by properly adding some direct-current components (DC)
into transmitter designs so that the existing advanced MIMO
techniques [12] for RF communications such as orthogonal
space-time block code (OSTBC) [13], [14] could be used in
MIMO-OWC, the power loss arising from DC incurs the fact
that these modified OSTBCs [15], [16] in a LN fading optical
channel have worse error performance than the RC [11], [17],
[18].

All the aforementioned factors greatly motivate us to de-
velop a general criterion on the design of full large-scale
diversity transmission for MIMO-OWC. As an initial explo-
ration, we consider the space-alone code, and intend to uncover
some unique characteristics of MIMO-OWC by establishing a
general criterion for the design of FLDSC and attaining an
optimal analytical solution to a specific two by two linear
FLDSC.

II. CHANNEL MODEL AND SPACE CODE

A. Channel model with space code

Let us consider an M × N MIMO-OWC system having
M receiver apertures and N transmitter apertures transmitting
the symbol vector s, {sl}, l = 1, . . . , L, which are randomly,
independently and equally likely, selected from a given con-
stellation. To facilitate the transmission of these L symbols
through the N transmitters in the one time slots (channel use),
each symbol sl is mapped by a space encoder Fl to an N × 1
space code vector F (sl) and then summed together, resulting
in an N × 1 space codeword given by x =

∑L
l=1 Fl (sl),

where the n-th element of x represents the coded symbol
to be transmitted from the n-th transmitter aperture. These
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coded symbols are then transmitted to the receivers through
flat-fading path coefficients, which form the elements of the
M × N channel matrix H. The received space-only symbol,
denoted by the M × 1 vector y, can be written as

y =
1

Pop
Hx + n, (1)

where Pop is the average optical power of x and, the entries
of channel matrix H are independent and LN distributed, i.e.,
hij = ezij , where zij ∼ N

(
µij , σ

2
ij

)
, i = 1 . . .M, j =

1 . . . N . The probability density function (PDF) of hi,j is

fH (hij) =
1√

2πhijσij
exp

(
− (lnhij − µij)2

2σ2
ij

)
(2)

The PDF of H is fH (H) =
∏M
i=1

∏N
j=1 fH (hij). The

signalling scheme of s is unipolar pulse amplitude modulation
(PAM) to meet the unipolarity requirement of intensity mod-
ulator (IM), i.e., x ∈ RN×1

+ . As an example, the constellation
of unipolar 2p-ary PAM is B2p = {0, 1, . . . , 2p − 1}, where p
is a positive integer. Then, the equivalent constellation of s is
S = {s : si ∈ B, i = 1, . . . N}, i.e., S = BN2p .

Furthermore, for noise vector n, the two primary sources
at the receiver front end are due to noise from the receive
electronics and shot noise from the received DC photocurrent
induced by background radiation [19], [20]. By the central
limit theorem, this high-intensity shot noise for the lightwave-
based OWC is closely approximated as additive, signal-
independent, white, Gaussian noise (AWGN) [20] with zero
mean and variance σ2

n.
By rewriting the channel matrix as a vector and align-

ing the code-channel product to form a new channel vec-
tor, we can have Hx =

(
IM ⊗ xT

)
vec (H), where ⊗

denotes the Kronecker product operation and vec (H) =
[h11, . . . , h1N , . . . , hM1, . . . , hMN ]

T . For discussion conve-
nience, we call IM⊗xT a codeword matrix, denoted by S (x).
Then, the correlation matrix of the corresponding error coding
matrix is given by

ST (e)S (e) = IM ⊗X (e) (3)

where X (e) = eeT , e = F (̂s)−F (s) is the error vector with
s 6= ŝ and s, ŝ ∈ S. All these non-zero e form an error set,
denoted by E .

B. Problem formulation

To formally state our problem, we make the following
assumptions throughout this paper.

1) Power constraint. The average optical power is con-
strained, i.e., E

[∑N
i xi

]
= Pop. Although limits are

placed on both the average and peak optical power
transmitted, in the case of most practical modulated
optical sources, it is the average optical power constraint
that dominates [21].

2) SNR definition. The optical SNR is defined by ρop =
Pop√
Nσ2

n

, since the noise variance per dimension is as-

sumed to be σ2
n. Thus, in expressions on error perfor-

mance involved in the squared Euclidean distance, the
term ρ, in fact, is equal to

ρ =
1

Nσ2
n

(4)

with optical power being normalized by 1
Pop

. Unless
stated otherwise, ρ is referred to as the squared optical
SNR thereafter.

Under the above assumptions, our primary task in this paper
is to establish a general criterion on the design of FLDSC and
solve the following problem.

Problem 1: Design the space encoder F(·) subject to the
total optical power such that 1) ∀s ∈ S,F (s) meets the
unipolarity requirement of IM; 2) Full large-scale diversity
is enabled for the ML receiver. �

III. DESIGN CRITERIA FOR SPACE CODE

This subsection aims at deriving the PEP of MIMO-OWC
and then, establishing a general design criterion for the linear
space coded system.

A. PEP of MIMO-OWC

Given a channel realization H ∈ RM×N+ and a transmitted
signal vector s, the probability of transmitting s and deciding
in favor of ŝ with the ML receiver is given by [22]

P (s→ ŝ|H) = Q

(
d (e)

2

)
(5)

where d2 (e) = ρ
NP 2

op
vec (H)

T
ST (e)S (e) vec (H) =

ρ
NP 2

op

∑M
i=1

(
hTi e

)2
with hi = [hi1, . . . , hiN ]

T
, i =

1, . . . ,M . Averaging (5) over H yields

P (s→ ŝ) =

∫
P (s→ ŝ|H) fH (H) dH. (6)

To extract the dominant term of (6), we make an assumption
for time being. Later on, we will prove that this condition
is actually necessary and sufficient for X (e) to render full
diversity.

Assumption 1: Any e ∈ E is unipolar without zero entry. �
Theorem 1: Under Assumption 1, P (s→ ŝ) is bounded by

CL (ln ρ)
−MN

e
−
∑M
i=1

∑N
j=1

(ln ρ+ln(P2
opΩ)−ln(M∑N

k=1 e
2
k))

2

8σ2
ij︸ ︷︷ ︸

PL(s→ŝ)

≤ P (s→ ŝ) ≤ CU1ρ
−MN2 e

−
∑M
i=1

∑N
j=1

ln2 ρ

8σ2
ij︸ ︷︷ ︸

PU1(s→ŝ)

+CU2 (ln ρ)
−MN

e
−
∑M
i=1

∑N
j=1

(
ln

ρ

ln2 ρ
+ln(P2

opΩ)−ln e2j

)2

8σ2
ij︸ ︷︷ ︸

PU2(s→ŝ)

(7)



where Ω =
∑M
i=1

∑N
j=1 σ

−2
ij , CL =∏M

i=1

∏N
j=1 σij

(4π)MNe−
MN

2
Q

(
1
2

(∑N
k=1 e

2
k

)− 1
2

)
, CU1 =

e

∑M
i=1

∑N
j=1 σ

2
ij

2

2
∏N
i=1

∏M
j=1 σij

(∑N
k=1 e

2
k

NP 2
op

)−MN2
and CU2 =

(NP 2
op)

MN

2
∏M
i=1

∏N
j=1

√
σ2
ij

e
−Ω

8 ln2

(
NP2

opΩ

M

)
. �

Now, we can see that in (7), PL (s→ ŝ) and PU2 (s→ ŝ)
have the same exponential term, exp

(
−Ω

8 ln2 ρ
)
, whereas the

exponential term of PU1 (s→ ŝ) is exp
(
−Ω

8 ln2 ρ
ln2 ρ

)
, which

decays slower than exp
(
−Ω

8 ln2 ρ
)

against high SNR. That
being said, we have successfully attained the dominant term,
PU1 (s→ ŝ), of the upper-bound of P (s→ ŝ). Thus, our
selection of τ is reasonable to capture the dominant behaviour
of P (s→ ŝ).

With all the aforementioned preparations, we enable to give
the general design criterion for FLDSC of MIMO-OWC in the
following subsection.

B. Design Criterion for FLDSC

The discussions in Subsection III-A tells us that
PU1 (s→ ŝ) is the dominant term of the upper-bound of
P (s→ ŝ) in (7). With this, we will provide a guideline on
the space code design in this subsection. To define the perfor-
mance parameters to be optimized, we rewrite PU2 (s→ ŝ) as
follows.

PU2 (s→ ŝ) = CU2Gc (e)

(
ρ

ln2 ρ

)Ω
4 ln

(
NP2

opΩ

M

)
− 3

4 lnGd(e)

× (ln ρ)
−MN

exp

(
−Ω

8
ln2 ρ

ln2 ρ

)
(8)

where Gd (e) =
∏N
j=1 |ej |

∑M
i=1 σ

−2
ij and Gc (e) =

exp
(

1
2

∑M
i=1

∑N
j=1 (ln |ej |σij )2

)(
NP 2

opΩ

M

) 1
2 ln lnGd(e)

.
Here, the following three factors dictate the minimization

of PU1 (s→ ŝ):

1) Large-scale diversity gain. The exponent Ω with respect
to ln ρ

ln2 ρ
governs the behavior of PU1 (s→ ŝ). For this

reason, Ω is named as the large-scale diversity gain. The
full large-scale diversity achievement is equivalent to the
event that all the MN terms in Ω =

∑M
i=1

∑N
j=1 σ

−2
ij

offered by the N ×M MIMO-OWC are fully utilized.
Thus, when we design space code, full large-scale di-
versity must be assured in the first place.

2) Small-scale diversity gain. Gd (e) =
∏N
j=1 |ej |

∑M
i=1 σ

−2
ij

is called small-scale diversity gain, which affects the
polynomial decaying in terms of ρ

ln2 ρ
. mine Gd (e)

should be maximized to optimize the error performance
of the worst error event. Since the small-scale diversity
gain will affect the average PEP via the polynomially
decaying speed of the error curve, the small-scale diver-
sity gain of the space code is what to be optimized in
the second place.

3) Coding gain. Gc (e) is defined as coding gain. On
condition that both diversity gain are maximized, if there
still exists DoF for further optimization of the coding
gain, maxe∈E Gc (e) should be minimized as the last
step for the systematical design of space code.

In what follows, we will give a sufficient and necessary
condition on a full large-scale diversity achievement. Hence,
Assumption 1 is sufficient and necessary for FLDSC, which
is summarized as the following theorem:

Theorem 2: A space code enables full large-scale diversity
if and only ∀e ∈ E , e is unipolar without zero-valued entries
or equivalently, ∀e ∈ E , X (e) is positive. �

With these results, we can proceed to design FLDSC
systematically in the following section.

IV. OPTIMAL DESIGN OF SPECIFIC LINEAR FLDSC

In this section, we will exemplify our established criterion
in (8) by designing a specific linear FLDSC for 2×2 MIMO-
OWC with unipolar pulse amplitude modulation (PAM). For
this particular design, a closed-form space code optimizing
both diversity gains will be obtained by smartly taking ad-
vantage of some available properties as well as by developing
some new interesting properties on Farey sequences in number
theory.

A. Design Problem Formulation

Consider a 2 × 2 MIMO-OWC system with F (s) = Fs,

where F =

(
f11 f12

f21 f22

)
and X (e) =

(
e2

1 e1e2

e1e2 e2
2

)
.

By Theorem 2, X (e) should be positive to maximize the large-
scale diversity gain. On the other hand, from the structure of
X (e) and (8), the small-scale diversity gain is Gd (e) = |e1e2|
under the assumption that CSIT is unknown. Therefore, to
optimize the worst case over E , FLDSC design is formulated
as follows:

max
f11,f12,f21,f22

min
e
e1e2

s.t.

{
[e1, e2]

T ∈ E , fij > 0, i, j ∈ {1, 2},
e1e2 > 0, f11 + f12 + f21 + f22 = 1.

(9)

Our task is to analytically solve (9). To do that, we first
simplify (9) by finding all the possible minimum terms.

B. Equivalent Simplification of Design Problem

For 2p-PAM, all the possible non-zero values of e1e2 are

e1e2 = (mf11 ± nf12) (mf21 ± nf22) 6= 0,m, n ∈ B2p . (10)

1) Preliminary simplification: After observations over (10),
we have the following facts.

1) ∀m 6= 0,m, n ∈ B2p , it holds holds that

(mf11 + nf12) (mf21 + nf22) ≥ f11f21. (11a)

2) ∀n 6= 0, m,n ∈ B2p , it is true that

(mf11 + nf12) (mf21 + nf22) ≥ f12f22. (11b)



3) ∀k 6= 0,m2 + n2 6= 0, k,m, n ∈ B2p , we have

k (mf11 − nf12) (mf21 − nf22)

(mf11 − nf12) (mf21 − nf22)
≥ 1. (11c)

So, all the possible minimum of e1e2 in (9) are f11f21,
f12f22 and (mf11 − nf12) (mf21 − nf22), where n

m are ir-
reducible, i.e., m ⊥ n. These terms are denoted by
F10 = f12f22

(
f11

f12
× f21

f22

)
, F01 = f12f22 and Fmn =

f12f22

(
m f11

f12
− n

)(
m f21

f22
− n

)
. After putting aside the com-

mon term, f12f22, we can see that Fmn is the piecewise linear
function of f11

f12
and f21

f22
, respectively. So, (9) can be solved

by fragmenting interval [0,∞) into disjoint subintervals. This
fragmentation can be done by the breakpoints where Fmn = 0.
To characterize this sequence, there exists an elegant mathe-
matical tool in number theory presented below.

2) Farey sequences: First, we observe some specific exam-
ples of the breakpoint sequences. For OOK, the breakpoints
0
1 ,

1
1 ,∞. For 4-PAM, they are 0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,∞. For 8-

PAM, we have the breakpoint sequence with the former part
being

0

1
,

1

7
,

1

6
,

1

5
,

1

4
,

2

7
,

1

3
,

2

5
,

3

7
,

1

2
,

4

7
,

3

5
,

2

3
,

5

7
,

3

4
,

4

5
,

5

6
,

6

7
,

1

1
(12a)

and the remaining being
7

6
,

6

5
,

5

4
,

4

3
,

7

5
,

3

2
,

5

3
,

7

4
,

2

1
,

7

3
,

5

2
,

3

1
,

7

2
,

4

1
,

5

1
,

6

1
,

7

1
,∞ (12b)

Through these special examples, we find that the series of
breakpoints before 1/1 (such as the sequence in (12a)) is
the one which is called the Farey sequence [23]. The Farey
sequence Fk for any positive integer k is the set of irreducible
rational numbers a

b with 0 ≤ a ≤ b ≤ k arranged in an
increasing order. The series of breakpoints after 1

1 (such as
the sequence in (12b)) is the reciprocal version of the Farey
sequence. Thus, our focus is on the sequence before 1

1 .
The Farey sequence has many interesting properties [23],

some of which closely relevant to our problem are given as
follows.

Lemma 1: If n1

m1
, n2

m2
and n3

m3
are three successive terms of

Fk, k > 3 and n1

m1
< n2

m2
< n3

m3
, then,

1) m1n2 −m2n1 = 1 and m1 +m2 ≥ k + 1.
2) n1+n2

m1+m2
∈
(
n1

m1
, n3

m3

)
and n2

m2
= n1+n3

m1+m3
.

�
However, having only Lemma 1 is not enough to solve our

design problem in (9). We need to develop the other new
properties of Farey sequences, concluded by Properties 1, 2
and 3.

Property 1: Given k > 3, assume n0

m0
, n1

m1
, n2

m2
, n3

m3
∈ Fk

and n0

m0
< n1

m1
< n2

m2
< n3

m3
. If n1

m1
and n2

m2
are successive,

then, n1+n3

m1+m3
≥ n2

m2
and n0+n2

m0+m2
≤ n1

m1
. �

Property 2: Assume n1

m1
, n2

m2
∈ Fk, k > 3 and n1

m1
< n2

m2
.

Then,
1) n1

m1
< n1+n2

m1+m2
< n2

m2
holds.

2) If f11

f12
, f21

f22
∈
(
n1

m1
, n1+n2

m1+m2

)
, then, Fm1n1 < Fm2n2 .

3) If f11

f12
, f21

f22
∈
(
n1+n2

m1+m2
, n2

m2

)
, then, Fm1n1 > Fm2n2 .

4) If f11

f12
= f21

f22
= n1+n2

m1+m2
, then, Fm1n1

= Fm2n2
.

�
Using Properties 1 and 2, we attain the following property.

Property 3: If n1

m1
and n2

m2
are successive in Fk and

f11

f12
, f21

f22
∈
(
n1

m1
, n2

m2

)
, then, Fm1n1

and Fm2n2
are the two

worst cases. �

C. Techniques to Solve The Max-min Problem

Thanks to Farey sequences, (9) is transformed into a
piecewise max-min problem with two objective functions. By
solving this kind of problem, our code construction results can
be presented as the following theorem.

Theorem 3: The solution to (9) is determined by

F =
1

2 + 2p+1

(
1 2p

1 2p

)
, or

1

2 + 2p+1

(
2p 1
2p 1

)
. (13)

�
Theorem 3 uncovers the fact that the optimal linear space

coded symbols are actually unipolar 22p-ary PAM symbols,
since B22p = {s1 + 2ps2 : s1, s2 ∈ B2p}. Therefore, in fact,
we have rigorously proved that RC [11] is optimal in the sense
of the criterion established in this paper.

V. COMPUTER SIMULATIONS

In this section, we carry out computer simulations to verify
our newly developed criterion in (8). In light of our work being
initiative, the only space-only transmission scheme available
in the literature is spatial multiplexing (SM). Accordingly, we
compare the performance of spatial multiplexing and FLDSC
specifically designed for 2×2 MIMO-OWC in Section IV. In
addition, we suppose that hij , i, j = 1, 2 are independently and
identically distributed and let σ11 = σ12 = σ21 = σ22 = σ.
These schemes are as follows:

1) FLDSC. The optical power is normalized in such a way
that

∑2
i,j=1 fij = 2 yields E

[∑2
i,j=1 fijsj

]
= 1. From

(13), the coding matrix is F = 1
3

(
2 1
2 1

)
.

2) SM. We fix the modulation formats to be OOK and vary
σ2. So the rate is 2 bits per channel use (pcu). The trans-
mitted symbols s1, s2 are chosen from {0, 1} equally
likely. The average optical power is E [s1 + s2] = 1.

We can see that both schemes have the same spectrum
efficiency, i.e., 2 bits pcu and the same optical power. Through
numerical results, we have following observations.

Substantial enhancement from FLDSC is achieved, as
shown in Fig. 1. For σ2 = 0.01, the improvement is almost 16
dB at the target bit error rate (BER) of 10−2. For σ2 = 0.5, the
improvement is almost 6 dB at the target BER of 10−3. Note
that the small-scale gain also governs the negative slope of
error curve. The decaying speed of the error curve of FLDSC
is exponential in terms of ln ρ

ln2 ρ
, whereas that of SM is

polynomial with respect to ρ, even worse than single-input-
singal-output (SISO).
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SM presents only small-scale diversity gain illustrated in
Fig. 2. By varying the variance of H, we find that in the high
SNR regimes, the error curve decays as ρ−1 as long as the
SNR is high enough . From σ2 = 0.001 to σ2 = 0.1, the error
curve has a horizonal shift, which is the typical style of RF
MIMO [12]. The reason is given as follows. The equivalent

space coding matrix is X (e) =

(
e2

1 e1e2

e1e2 e2
2

)
, e1, e2 ∈

{0,±1} with e2
1 + e2

2 6= 0. It should be noted that there exists
two typical error events: e1e2 = −1 and e1e2 = 0. From the
necessity proof of Theorem 2, for e1e2 = −1, the attained
large-scale diversity gain is zero, and at the same time, if
e1e2 = 0 with e2

1 + e2
2 6= 0, then, the attained large-scale

diversity gain is only two for 2× 2 MIMO-OWC. Therefore,
the overall large-scale diversity gain of SM is zero with small-
scale diversity gain being attained.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have established a general criterion on
the full-diversity space coded transmission of MIMO-OWC
for the ML receiver, which is, to our best knowledge, the first
design criterion for the full large-scale diversity transmission
of optical wireless communications with IM/DD over log-

normal fading channels. Particularly for a 2×2 case, we have
attained an optimal closed-form FLDSC, rigorously proving
that RC is the best among all the linear space codes. Our
results clearly indicate that the transmission design is indeed
necessary and essential for significantly improving the overall
error performance for MIMO-OWC.
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