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Capacity Results for the Multi-Way Relay Channel
with Common Messages

Lawrence Ong
School of Electrical Engineering and Computer Science, The University of Newcastle, Australia

Abstract—We consider the multi-way relay channel with com-
mon messages and full data exchange, where multiple users
exchange correlated messages through a relay. We propose an
optimal coding scheme and show that it achieves (i) the capacity
region if the uplink is a finite-field channel and the downlink
is any arbitrary channel and (ii) the full degrees-of-freedom
region if the channel is a multiple-input multiple-output (MIMO)
additive white Gaussian noise (AWGN) channel.

Index Terms—Multi-way relay channel, capacity, degrees of
freedom, MIMO, AWGN

I. INTRODUCTION

Relaying is an important aspect in wireless communications.
Acting as repeaters, they boost exponentially decaying signal
strength (as the distance increases); acting as base stations,
they coordinate transmissions among multiple devices. In this
paper, we study the multi-way relay channel where multiple
devices (referred to as the users) communicate through a relay.
This wireless network structure is commonly deployed today
in, e.g., satellite networks and cellular mobile networks.

The capacity of the multi-way relay channel remains un-
known to date, except for some special cases [1], [2]. A main
challenge is to determine how the relay should facilitate data
exchange among the users—what to decode and what to relay.

In this paper, we focus on the multi-way relay channel with
correlated messages (where the users may have parts of their
messages in common) and full data exchange (where each user
sends its message to all other users). We derive

1) the capacity region if the uplink (i.e., the link from the
users to the relay) is a finite-field channel, and

2) the degrees-of-freedom (DOF) region (i.e., asymptotic
capacity in the high signal-to-noise regime) if the channel
is a multiple-input multiple-output (MIMO) additive
white Gaussian noise (AWGN) channel.

To this end, we design an optimal function (of the messages)
that the relay should decode, by carefully scheduling when the
users should transmit which part of their messages.

A. Related Work and Our Contributions

Consider the multi-way relay channel depicted in Fig. 1 with
full data exchange. When the users’ messages are independent,
the capacity region has been found if the channel is any finite-
field channel [1], or the uplink is any deterministic channel [2].
The equal-rate capacity (all users transmitting at the same rate)
has been found for the symmetrical AWGN channel [3].

Lawrence Ong is the recipient of an Australian Research Council Future
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Fig. 1. The multi-way relay channel, where users, nodes 1, 2, . . . , L, exchange
correlated messages with the help of a relay, node 0, through an uplink (drawn
with solid lines) and a downlink (drawn with dashed lines)

When the users’ messages are correlated, the problem
becomes significantly more difficult. Here, we consider a
special and useful correlation structure where the messages
comprise independent sub-messages, and each sub-message
is known to one or more users. We refer to this message
structure as common messages (see Han [4] and also common
information in the sense of Gács and Körner [5]).

For the three-user finite-field channel with common mes-
sages, Ong et al. [6] designed an optimal coding function1 and
showed that the coding function achieves the capacity region.
This function is, however, specific to only three users. A year
later, Ong et al. [7] designed an optimal coding function for
any number of users, but the common messages are restricted
to only pair-wise, meaning that any sub-message can be known
to at most two users.

In this paper, we extend the coding function for pair-wise
common messages and introduce a crucial new step, and show
that our new scheme can achieve the capacity region of the
finite-field channel for all common messages (not restricted to
pair-wise) for any number of users.

The finite-field channel (see equation (1)) shares many
similarities with the more-widely-used AWGN model (e.g.,
both are linear). We have shown that insights from the finite-
field channel are useful for the AWGN channel [3]. In this
paper, we further show the utility of analyzing the finite-field
channel: by showing that the optimal coding function designed
for the finite-field channel is also asymptotically optimal in
the MIMO AWGN channel at high transmitted power, i.e., it
achieves the full degrees-of-freedom (DOF) region.

DOF studies the asymptotic capacity of communication
networks as the transmitted power grows to infinity. It provides
insights to optimal allocation of resources—in the time,
frequency, and spatial dimensions—in the network. The DOF

1Function of messages that the relay should decode on the uplink



region of the MIMO AWGN multi-way relay channel is also an
open problem to date. Current studies on the DOF of the MIMO
AWGN multi-way relay channel focus on independent messages
and private message exchange2 (see, e.g., Lee et al. [8], Tian
and Yener [9], Chaaban et al. [10], and the references therein).
The techniques used therein first orthogonalize the MIMO
uplink, and let at most two users transmit their messages on
each orthogonal sub-link. The relay then decodes a function
of the transmitted messages (at most two) on each sub-link.

We observe that a key difference between the optimal coding
function for the multi-way relay channel with independent
messages and that with common messages is that the relay
decodes functions of at most two messages in the former, but
of more than two messages in the latter.

II. CHANNEL MODEL

The multi-way relay channel, depicted in Fig. 1 consists
of an uplink conditional probability mass function (pmf)
pY0|X1,X2,...,XL

(y0|x1, x2, . . . , xL) and a downlink conditional
pmf pY1,Y2,...,YL|X0

(y1, y2, . . . , yL|x0), where Xi ∈ Xi and
Yi ∈ Yi are input and output of node i respectively.

Define the following independent messages:3 {WI : I ∈
P≤L−1([1 : L])}, where P≤L−1([1 : L]) is the set of all subsets
of [1 : L] with cardinality between one and L−1 (inclusive). For
example, P≤2([1 : 3]) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.
Here, we have used the notation [a : b] , {a, a+ 1, . . . , b}.

Messages {WI : a ∈ I} are given to node a a priori. Denote
the set of indices of all messages that node a knows by

Ka , {I ∈ P≤L−1([1 : L]) : a ∈ I}, (1)

and that for all messages that node a wants by

Wa , {I ∈ P≤L−1([1 : L]) : a /∈ I}. (2)

We have Wa = P≤L−1([1 : L]) \ Ka, i.e., each user wants all
messages that it does not know.

Consider n uses of the channel (uplink and downlink
simultaneously). Let WI be randomly distributed on [1 : 2nrI ],
for some integer 2nrI . Here, rI is the transmission rate of WI in
bits per channel use. Let the channel input and output of node a
on the t-th channel use be Xa[t] and Ya[t] respectively. A block
code consists of (i) encoding functions for each node a ∈ [0 :
L]: Xa[t] = fa,t(WKa , Ya[1], . . . , Ya[t − 1]), for t ∈ [1 : n],
where WS , (Wa : a ∈ S), K0 = ∅; (ii) a decoding function
for each user a ∈ [1 : L]: ŴWa

= ga(WKa
, Ya[1], . . . , Ya[n]),

where ŴWa
is user a’s estimate of WWa

.
The rate tuple r = (rI : I ∈ P≤L−1([1 : L]) is said to be

achievable if, for any ε > 0, we can find a sufficiently large n
and some block code {fa,t, ga} such that the probability that
some user(s) wrongly decodes some message(s) is smaller than
ε. The capacity is the closure of the set of all achievable r.

III. RESULTS

We state our capacity results in this section, and present the
proofs in subsequent sections. Our results are expressed using

2In private message exchange—as opposed to full message exchange—each
user sends different (and independent) messages to different receivers.

3We simply use messages to denote independent sub-messages of the users.

the following notation. The sum rate of all messages that node
a needs to decode is

rΣ
a ,

∑
I∈Wa

rI, (3)

and the largest sum rate (among all users) to be decoded is

rΣ
max , max

a∈[1:L]
rΣ
a . (4)

A. Finite-Field Uplink and Arbitrary Downlink

For a finite-field uplink, we have Xa = Y0 = F for all
a ∈ [1 : L], for some finite field F where |F| , F , and

Y0 = X1 ⊕X2 ⊕ · · · ⊕XL ⊕ Z0 ,
L⊕
a=1

Xa ⊕ Z0, (5)

where ⊕ is addition in the finite field F , and Z0 ∈ F is
an arbitrarily distributed random variable with H(Z0), and is
independent with each channel use. We do not constraint the
downlink to take any particular form.

In this paper, we obtain the following:
Theorem 1: The capacity region of the multi-way relay

channel with any finite-field uplink and any arbitrary downlink
is the set of all non-negative rate tuple r, each satisfying

rΣ
max ≤ log2 F −H(Z0), (6)

rΣ
a ≤ I(X0;Ya), for all a ∈ [1 : L], (7)

for some pmf pX0(x0) on X0.
The proof for the converse follows from the cut-set argu-

ment [11, p. 589], [12], [1]. We present an optimal coding
scheme (for achievability) in Section IV.

Remark 1: Theorem 1 includes the results of finite-field
multi-way relay channels with independent messages [1] and
those with pair-wise common messages [7] as special cases.

B. MIMO AWGN Channel

For a MIMO AWGN channel, each user has M transmit
and M receive antennas, and the relay has N transmit and N
receive antennas. The received signals of the relay and of user
a ∈ [1 : L] are

Y0 =

L∑
a=1

Ha,0Xa + Z0 and Ya = H0,aX0 + Za

respectively, where Xa,Ya,Za are complex column vectors of
length M ; X0,Y0,Z0 are complex column vectors of length
N ; Ha,0 are N ×M complex matrices; and H0,a are M ×N
complex matrices. We assume that the channel matrices H-,-
have full rank, i.e., rank(H-,-) = min{M,N}. They are fixed
and are known to the users and the relay.

All noise vectors {Za}La=0 are zero-mean complex Gaussian
vectors with E[ZaZ†a] = σa1, for some σa > 0, where †
denotes conjugate transpose, and 1 is the identity matrix.

We impose a transmit power constraint for all nodes,
E[tr(XaX†a)] ≤ ρ, where tr(·) denotes the trace of a matrix.

An achievable rate tuple for the MIMO AWGN channel is
thus a function of ρ, which can be written as r(ρ) = (rI(ρ) :



TABLE I
UPLINK MESSAGE TRANSMISSION

column index 2 3 · · · L (2, 3) (2, 4) · · · (L− 1, L) · · · (I) · · · (2, 3, . . . , L)

row 1 V 2 V 3 · · · V L V 2,3 V 2,4 · · · V L−1,L · · · V I · · · V 2,3,...,L

row 2 V 1 V 1,3 V 1,4 V I2 7→1 V 1,3,...,L

row 3 V 1 V 2,1 V I3 7→1 V 2,1,...,L

...
row L V 1 V L−1,1 V IL7→1 V 2,3,...,1

Note: We have indicated the replaced indices in rows [2 : L] in red.

I ∈ P≤L−1([1 : L])). In this paper, we derive achievable DOF
tuples, defined as

d = (dI : I ∈ P≤L−1([1 : L])) , lim
ρ→∞

r(ρ)

log2 ρ
. (8)

Following the notation in (3) and (4), we define dΣ
a ,∑

I∈Wa
dI, and dΣ

max , maxa∈[1:L] d
Σ
a .

Analogous to the capacity region, we find the closure of all
achievable DOF tuples, known as the DOF region, as follows:

Theorem 2: The DOF region of the MIMO AWGN multi-
way relay channel, with M transmit and M receive antennas at
each user, and N transmit and N receive antennas at the relay,
is the set of all non-negative DOF tuples d, each satisfying

dΣ
max ≤ min{M,N}. (9)

We present the proof of the converse of Theorem 2 in
Section V, and achievability in Section VI.

IV. PROOF OF ACHIEVABILITY OF THEOREM 1
When the users have only pair-wise common messages, i.e.,

WI = ∅ for all |I| > 2 (i.e., a (sub)message can be known a
priori to at most two users), Ong et al. [7] designed an optimal
TDMA (time-division multiple access) coding scheme for the
uplink where selected users transmit during each time slot,
and the relay decodes the modulo addition (in the finite field
F) of the transmitted messages. The optimal uplink coding
scheme designed therein comprises two components: (i) a
message-alignment table to determine which messages should
be transmitted in which slots, and (ii) a shuffling step to swap
messages in the table to ensure that there are sufficient linearly-
independent equations for each user to decode what it wants,
when the relay transmits the additions back to the users.

In this paper, we extend the message-alignment table to the
general case where a message can be known a priori to any
number of users. It turns out that the shuffling step cannot
be similarly extended. Hence, we introduce a new method to
generate sufficient linearly-independent equations for the users.
This method requires grouping of sufficiently long message
vectors and rotating the message vectors. We will describe
these two steps in detail in the next two sub-sections.

A. Message-Alignment Table
We first injectively map each message WI ∈ [1 : 2nrI ] to a

finite-field vector of length `I, denoted as V I ∈ F`I , where

`I = d(nrI)/ log2 F e. (10)

We define `Σa ,
∑

I∈Wa
`I, and `Σmax , maxa∈[1:L] `

Σ
a .

Without loss of generality (WLOG), assume that user 1
needs to decode the most number of symbols, i.e., `Σ1 = `Σmax.

Table I depicts our proposed transmission scheme. It contains
L rows and |W1| columns. It is designed such that the users
transmit the messages in each column simultaneously, and the
relay decodes the finite-field addition of all messages in each
column. The messages are assigned to the cells as follows:

1) In row 1, we put each {V I : I ∈ W1} (i.e., messages
requested by user 1) in one cell. This takes up all |W1|
cells in row 1. By design, I’s here do not contain 1. We
name the column that contains V I in row 1 column I.

2) In row a ∈ [2 : L] in column I, we assign V Ia 7→1
to the

cell, where

Ia7→1 ,

{
I in which a is replaced by 1, if a ∈ I

{}, otherwise,
(11)

where V {} , ∅.
For simplicity, we first assume that the messages (finite-field

vectors) assigned to each column are of equal length.
Using random linear codes of length nI = n`I/`

Σ
max for

each column I, the relay can decode the finite-field addition of
all transmitted message in each column I if nI is sufficiently
large and if (see, e.g., Ong et al. [1], [7])

(log2 F
`I)/nI = (`Σmax log2 F )/n < log2 F −H(Z0). (12)

Denote the concatenation of message additions (decoded by
the relay) over all |W1| columns by U . Clearly, U ∈ F`Σ1 , as
the relay decodes `I finite-field symbols in each column I.

On the downlink, the relay uses random coding. It chooses
some pX0

(x0) and transmits randomly generated codeword
X0(U) ∈ Xn0 . From the channel coding theorem [11, Sec 7.7],
user 1 can reliably decode U if n is sufficiently large and if

(log2 F
`Σ1 )/n = (`Σ1 log2 F )/n < I(X0;Y1). (13)

Now, for user a ∈ [2 : L], it knows a priori the messages
V Ka

= (V I : I ∈ Ka). Since U is a deterministic function of
(V Ka ,V Wa), user a searches over at most F

∑
I∈Wa

`I = F `
Σ
a

candidates of U to determine the correct one. So, any user
a ∈ [2 : L] can reliably decode U if [2]

(log2 F
`Σa )/n = (`Σa log2 F )/n < I(X0;Ya). (14)

After all users have decoded U , we need to show the
following:



Proposition 1: Each user a ∈ [1 : L] can obtain V Wa
from

U and its prior knowledge V Ka .
Proof of Proposition 1: Referring to Table I again, user

1 knows all messages in rows [2 : L], and it can decode all
messages in row 1 (i.e., V W1 ) from U .

For user a ∈ [2 : L], consider any column I = I′ ∪ {a}.
By construction, we have a /∈ I′, 1 /∈ I′ (because 1 /∈ I

for any column I) and |I′| ∈ [0 : L − 2]. The messages in
column I′ ∪ {a} are V I′∪{a} (in row 1), VI′∪{1} (in row a),
and {V I′′∪{a}} where each I′′ is formed by replacing one
element in I′ by 1. Since user a knows all but V I′∪{1} in this
column, it can decode V I′∪{1} from the relevant part in U .
Repeating this, user a can obtain all V I′∪{1} where a /∈ I′.

For V I′∪{1} where a ∈ I′, user a knows the message a
priori. This means user a can obtain all messages in rows
[2 : L], which are {V I′∪{1} : |I′| ∈ [0 : L− 2]}. Using U , it
can then decode all messages in row 1 as well.

It is easy to see that each message appears at least once in
Table I. Since each user can obtain all messages in the table,
it can obtain all its requested messages.

We have shown that if (12), (13), and (14) are satisfied,
then all users can reliably decode (i.e., with diminishing error
probability as n increases) the messages they each request.
Note that for any ψ > 0, we can always choose a sufficiently
large n such that (`I log2 F )/n− rI < ψ while satisfying (10)
for all I. This means (`Σa log2 F )/n can be made arbitrarily
close to rΣ

a , and this proves the achievability part of Theorem 1
if all messages in the same column are of the same length.

B. Message Rotation

We will now design a rotation scheme so that Theorem 1
still holds even if the messages are of different lengths.

For (12) to hold, we require that each cell in column I still
contains `I symbols, and that U contains `Σ1 = `Σmax symbols.
This might not be possible, e.g., if `1 > `2, then we cannot fit
the entire message V 1 in the cell in row 2 in column 2, which
has a length of only `2 symbols.

To rectify this, we now allow the messages in each row
a ∈ [2 : L] to share their cells. In row a, all cells with assigned
messages are in columns {I ∈ W1 : a ∈ I}. These cells have

a total length of
(∑

I∈W1
s.t. a∈I

`I

)
. The messages assigned to

these cells are {V Ia 7→1
: I ∈ W1 where a ∈ I}, which can be

shown to be equal to {V I : I ∈ Wa where 1 ∈ I}, and they

have in total
(∑

I∈Wa
s.t. 1∈I

`I

)
symbols.

Since we have assumed WLOG that
∑

I∈W1
`I ≥∑

I∈Wa
`I, it follows that

∑
I∈W1
s.t. a∈I

`I ≥
∑

I∈Wa
s.t. 1∈I

`I. This

means all messages assigned to row a can indeed fit into
the designated cells on that row without changing the cell size,
by spreading the messages across these cells.

With this, the relay can still reliably decode U (which is the
addition of messages in each column, now with the messages
being spread) if (12) holds. Since the messages in each row
did not change (only the positions changed), all users can still
reliably decode U if (13) and (14) hold.

What is left to be shown is that Proposition 1 still holds.
Note that the shuffling step [7] used for pair-wise common
message cannot be extended to the general case here, as it
requires each column to have no more than three messages.

In this paper, we propose a new method: In rows [2 : L],
instead of sending the messages as they are, we send rotated
versions of the messages. For each message V Ia 7→1

, we
transmits V Ia 7→1

�R instead, where R ∈ F`I×`I is a fixed
rotating matrix unique to each row a and each column I.

This rotation scheme does not affect the decoding of user 1,
who can still decode all its required messages in row 1.

Each message in rows [2 : L] can be expressed as V I′∪{1}
for some I′ where 0 ≤ |I′| ≤ L − 2 and 1 /∈ I′. From the
perspective of user a, each of these messages either appears in
row a (if a /∈ I′)4 or is known a priori (if a ∈ I′). Thus, all
messages in rows [2 : L] that are unknown to user a appear in
row a, and they spread across columns {I : a ∈ I}. Knowing
the messages in row 1 in these columns, user a can decode
the messages in row a from the sums in these columns (i.e.,
the relevant parts in U ) if the sums are linearly independent.

As the number of messages in Table I is fixed, we can
always increase n to get sufficiently long vector length `I for
each message V I (see (10)), so that we can find sufficient
number of unique rotating matrices to get linearly-independent
equations for each user. To see this, suppose that V 1,2 ∈ F`
and V 1,3 ∈ F` align perfectly twice in two columns (this is
possible as we allow the messages in each row to spread across
the assigned columns). We rotate them such that

(V 1,2 �R1)⊕ (V 1,3 �R2)⊕ V ′ = U ′ ∈ F`

(V 1,2 �R3)⊕ (V 1,3 �R4)⊕ V ′′ = U ′′ ∈ F`

are linearly independent. V ′ and V ′′ are rotated messages (or
parts of) in other rows. Note that we consider the whole `
symbol-wise additions as one “equation set”. In this example,
two equation sets were linearly dependent before the rotation,
and choosing one set of rotating matrices made the two equation
sets linearly independent. When we increase n (and therefore
{`I}), the number of dependent equation sets remains the same,
but the choices of rotation matrices {R} increase.

After decoding messages in row a, user a knows all messages
in rows [2 : L]. It can then decode messages in row 1 in columns
{I : a /∈ I}. This completes the proof of Theorem 1. �

Remark 2: Although we can increase the length of the
message vectors {`I}, the function U is still symbol-wise
additions (in F , which is fixed for a given channel) of
the message vectors. Hence, we cannot simply replace the
coding function in Table I with that for network coding [13,
Thm 19.20], where the base field must be chosen to be
sufficiently large.

V. PROOF OF THE CONVERSE OF THEOREM 2

It has been shown that for a point-to-point MIMO AWGN
channel Y = HX+ Z, with M transmit antennas, N receive

4For any I′ where 0 ≤ |I′| ≤ L − 2 and 1, a /∈ I′, there must be some
column I = I′ ∪ {a}. So V I′∪{1} must have been assigned to row a.



antennas, and a transmit power constraint ρ, any DOF is upper
bounded as d = limρ→∞

r(ρ)
log ρ ≤ min{M,N}, where r(ρ) is

an achievable rate for the channel [14].
For the multi-way relay channel, from the cut-set bound [11,

Thm 15.10.1], we have rΣ
a ≤ I(X[1:L]\{a};Y{0,a}|X{0,a}) ≤

h
(∑

i∈[1:L]\{a}Hi,0Xi + Z0

)
− h(Z0). The last term is

the channel capacity of a point-to-point channel Y0 =
[H1,0 · · ·Ha−1,0Ha+1,0 · · ·HL,0][X1 · · ·Xa−1Xa+1 · · ·XL]T +
Z0, with (L− 1)M transmit and N receive antennas. So,

dΣ
a ,

∑
I∈Wa

dI = lim
ρ→∞

rΣ
a

log2 ρ
≤ min{(L− 1)M,N}, (15)

for all a ∈ [1 : L]. Also, using the cut-set bound again, we
obtain rΣ

a ≤ I(X0;Ya), from which we get

dΣ
a ≤ min{M,N}, for all a ∈ [1 : L], (16)

which is equivalent to (9). Given (16), (15) is redundant.

VI. PROOF OF ACHIEVABILITY OF THEOREM 2
We now prove that any DOF tuple satisfying (9) is achievable.

WLOG, suppose rΣ
1 = rΣ

max. Let δ , min{M,N}. For the
uplink, we orthogonalize the channel using the Moore-Penrose
inverse to obtain δ parallel sub-channels (see, e.g., Jafar and
Fakhereddin [14]), and ignore sub-channels with zero gain:

Y
(i)
0 =

∑
a∈[1:L]

α(i)
a S(i)

a + Z̃
(i)
0 , i ∈ [1 : δ], (17)

Here, S(i)
a is the channel input from user a for sub-channel i,

α
(i)
a is the effective channel gain from user a to the relay on

sub-channel i, and Z̃(i)
0 ∼ N (0, σ(i)) is the effective noise after

orthogonalization. Here, the noise {Z̃(i)
0 } may be correlated.

We now use our proposed coding scheme in Table I. We
set F = {0, 1} so that `I = nrI. We perform appropriate
rotations to obtain the required linearly-independent equations
for all users. Note that the total width of the table is nrΣ

1 bits.
We will transmit the messages in the table over n channel
uses, where each channel use consists of δ sub-channels (17).
We divide the width of the table into δ virtual columns, each
having a length of (nrΣ

1 )/δ bits.5 For virtual column i ∈ [1 : δ],
each user a transmits on sub-channel i the relevant messages
(with zero padding if the message length is shorter than the
virtual column length) in the virtual column using a lattice
code of length n.6 Let A(i) be the set of users to transmit in
virtual column i. Each user a ∈ A(i) transmits with power
E[S

(i)
a S

(i)†
a ] = minb∈A(i)

{
α

(i)
b α

(i)†
b

}
ρ
/(

δα
(i)
a α

(i)†
a

)
, so that

the relay sees the same effective signal-to-noise ratio from these
users, while each user satisfies its transmit power ρ. The relay
can decode the modulo-lattice addition of the transmitted lattice
codewords in virtual column i if [15]

(nrΣ
1 )/δ

n
< max

{
log2

(
1

|A(i)|
+
Qiρ/δ

σ(i)

)
, 0

}
, (18)

5(nrΣ
1 )/δ is an integer for sufficiently large n.

6Unlike the finite-field channel where the columns are transmitted using
TDMA (one column at a time), here we transmit all virtual columns
simultaneously via multiple sub-channels.

where Qi = minb∈A(i)

{
α

(i)
b α

(i)†
b

}
, and |A(i)| is the number

of non-empty rows in virtual column i (i.e., the number of
lattice-codewords being added). This means

dΣ
1 = lim

ρ→∞

rΣ
1

log2 ρ
< lim
ρ→∞

δ

log2 ρ
log2

(
1

|A(i)|
+
Qiρ/δ

σ(i)

)
= lim
ρ→∞

δ

log2 ρ

[
log2 ρ+ log2

(
Qi
δσ(i)

)]
= δ. (19)

The above inequality is the same for all virtual columns i ∈
[1 : δ]. So, the relay can reliably decode the summation in all
virtual columns, U , if the DOF tuple satisfies (19).

For the downlink, we use the results from Section IV (where
the downlink is an arbitrary channel). User a can decode U
on the downlink if (13)–(14) hold. This means,

dΣ
a = lim

ρ→∞

rΣ
a

log2 ρ
< min{M,N} = δ, (20)

for all a ∈ [1 : L], where the inequality follows from the DOF
result for the point-to-point channel.

Recall our assumption that dΣ
1 = dΣ

max. Combining (19) and
(20), we have that a DOF tuple d is achievable if (9) holds. �
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