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Abstract—We consider a simple multiple access network
(SMAN), where k sources of unit rates transmit their data to
a common sink via n relays. Each relay is connected to the
sink and to certain sources. A coding scheme (for the relays) is
weakly secure if a passive adversary who eavesdrops on less than
k relay-sink links cannot reconstruct the data from each source.

We show that there exists a weakly secure maximum distance
separable (MDS) coding scheme for the relays if and only if every
subset of ` relays must be collectively connected to at least `+1
sources, for all 0 < ` < k. Moreover, we prove that this condition
can be verified in polynomial time in n and k. Finally, given
a SMAN satisfying the aforementioned condition, we provide
another polynomial time algorithm to trim the network until it
has a sparsest set of source-relay links that still supports a weakly
secure MDS coding scheme.

I. INTRODUCTION

A simple multiple access network (SMAN) is a two-hop
network, where some k independent sources transmit their
data to a common sink via n relays. We use (n, k)-SMAN
to refer to such network. An example of a (6, 4)-SMAN is
illustrated in Fig. 1. Simple multiple access networks were
studied in the recent work of Yao et al. [1] (to model the
problem of decentralized distribution of keys from a pool
among the wireless nodes), Halbawi et al. [2], and Dau et
al. [3], [4], [5]. The model of SMAN considered in [2] is
more general in the sense that the sources are assumed to
have arbitrary rates. However, it was shown in [4], [5] that
as far as the problem of constructing error-correcting codes
for the relays is concerned, considering unit-rate sources is
sufficient. Interestingly, the code design problem for SMAN
was also shown in [4], [5] to be equivalent to the code design
problem for weakly secure cooperative data exchange [6], [7].

Error correction for the general multiple access network was
first investigated in the work of Dikaliotis et al. [8]. The coding
schemes derived in [8] are packetized over large fields, which
are of sizes at least exponential in the number of sources.
While SMAN is a special case of multiple access network [8],
the authors of [2], [4], [5] focused more on designing error-
correcting codes over small fields, whose sizes are linear in n
and k. Various new problems on balance and sparsity of the
network were also investigated in [3], [5].

In this paper we study the security aspect of the cod-
ing schemes used for the relays in an (n, k)-SMAN. More
specifically, we focus on the weak security of such coding
schemes against a passive adversary, which eavesdrops on
the relay-sink links. Suppose that each source transmits a
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Fig. 1: An example of a (6, 4)-SMAN. Three relay-sink links
(dashed) are eavesdropped. The question is: can we prevent the
adversary from learning about each individual source packet?

single packet, which is an element of some finite field Fq , to
the sink. All source packets are assumed to be independent
and randomly distributed over Fq . The coding scheme for
the relays is weakly secure if an adversary that eavesdrops
on at most k − 1 relay-sink links gains no information (in
Shannon’s sense) about each particular source packet. In the
context of decentralized key distribution [1], a wireless node
(corresponding to the sink in the SMAN) contacts its neighbors
(corresponding to the relays in the SMAN) to retrieve k secret
keys si ∈ Fq (1 ≤ i ≤ k). Each of its neighbors possesses
some of these k keys and transmits one (coded) packet in
Fq to that node. In that scenario, a weakly secure coding
scheme for the corresponding SMAN would guarantee that
an adversary that eavesdrops on at most k − 1 transmissions
cannot determine explicitly any secret key. Note that Yao et
al. [1] only considered an active adversary who can corrupt
the transmissions. In this work, we assume the presence of
both an active adversary and a passive adversary. Note that
these two adversaries may be independent of each other. In
other words, they may attack different sets of links.

The concept of weak security was first discussed by Ya-
mamoto [9] in the context of ramp secret sharing scheme.
After Yamamoto [9], weak security was also discovered by
Bhattad and Narayanan [10] in a more general context of
network coding. Weak security is important in practice since
it guarantees that no meaningful information is leaked to
the adversary, and often requires no additional overhead. For
example, suppose that the adversary obtains the coded packet
x1 + x2 where x1 and x2 are packets from the sources s1
and s2, respectively. Then the adversary would not be able to
determine either x1 or x2, as from its point of view, both x1
and x2 are completely random variables.
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In this work we limit ourselves to maximum distance sep-
arable (MDS) coding schemes (see Section II for definition).
Our main contributions are summarized below.
• We establish a necessary and sufficient condition for the

existence of a weakly secure MDS coding scheme for
the relays. More specifically, there exists a weakly secure
MDS coding scheme for the relays if and only if every
subset of ` relays must be collectively connected to at
least ` + 1 sources, for all 0 < ` < k. Moreover, this
condition, referred to as the Weak Security Condition, can
be verified in polynomial time in n and k.

• Given a SMAN satisfying the Weak Security Condition,
we provide a polynomial time algorithm to trim the
network by removing certain source-relay links until it
has the sparsest set of source-relay links that still supports
a weakly secure MDS coding scheme. This algorithm is
similar to the algorithm used to find a maximum matching
in a bipartite graph that deletes edges of the graph one
by one until all remaining edges form a matching.

• We also study the so-called block security, which is
a generalization of weak security, and characterize the
block security level of an arbitrary SMAN.

The first conclusion above describes the additional requirement
on the source-relay links if a passive adversary is also present.
Indeed, an MDS code implemented at the relays allows the
sink to tolerate a maximum number of b(n − k + 1)/2c
corrupted relay/links. Such an MDS code exists if and only
if the SMAN satisfies the MDS Condition [3], [4], [5], [7]:
every subset of ` relays must be collectively connected to at
least ` sources, for all ` ≤ k. Comparing the MDS Condition
and the Weak Security Condition, we conclude that more
source-relay links are required to defend both an active and
a passive adversary. Hence, a SMAN that survives the most
powerful active adversary, which can corrupt b(n− k+1)/2c
relays/links, may not be weakly secure against a passive
adversary.

The paper is organized as follows. Necessary notation and
definitions are provided in Section II. The weak security for
SMAN is discussed in Section III. The extension of weak
security to block security is investigated in Section IV.

II. PRELIMINARIES

Let Fq denote the finite field with q elements. Let [n] denote
the set {1, 2, . . . , n}. For a k × n matrix M , for i ∈ [k] and
j ∈ [n], let M i and M [j] denote the row i and the column
j of M , respectively. We define below standard notions from
coding theory (for instance, see [11]).

The support of a vector u = (u1, . . . , un) ∈ Fn
q is the

set supp(u) = {i ∈ [n] : ui 6= 0}. The (Hamming) distance
between two vectors u and v of Fn

q is defined to be d(u,v) =
|{i ∈ [n] : ui 6= vi}|. A k-dimensional subspace C of Fn

q is
called a linear [n, k, d]q (error-correcting) code over Fq if the
minimum distance d(C ) between any pair of distinct vectors
in C is equal to d. Sometimes we may use the notation [n, k]q
or just [n, k] for the sake of simplicity. The vectors in C are
called codewords. A generator matrix G of an [n, k]q code

C is a k × n matrix whose rows are linearly independent
codewords of C . Then C = {xG : x ∈ Fk

q}. The well-known
Singleton bound ([11, Ch. 1]) states that for any [n, k, d]q code,
it holds that d ≤ n−k+1. If the equality is attained, the code
is called maximum distance separable (MDS).
Definition 1. An (n, k) simple multiple access network
((n, k)-SMAN for short) is a network that consists of
• k independent sources s1, . . . , sk of unit rates, one sink,

and n relays r1, . . . , rn, where n ≥ k, and
• some directed edges of capacity one that connect certain

source-relay pairs and one directed edge of capacity one
that connects each relay to the sink.

An (n, k)-SMAN can be represented by an adjacency
matrix M = (mi,j) ∈ Fk×n

2 where mi,j = 1 if and only
if the source si is connected to the relay rj .

Let X = (X1, . . . , Xk) be a vector of independent and
identically uniformly distributed random variables over Fq . We
assume that the vector of source packets is x = (x1, . . . , xk),
a realization of X . A linear coding scheme for an (n, k)-
SMAN is represented by a k × n matrix G = (gi,j) over
Fq . The coding rule for the relays is as follows: rj (j ∈ [n])
creates and transmits the coded packet xG[j] to the sink. We
refer to G as the encoding matrix of the coding scheme. Note
that gi,j must be zero whenever mi,j = 0. If G generates
a linear code that can correct t errors then the sink can still
determine all k source packets under the presence of at most
t erroneous coded packets sent from some t relays.

A coding scheme based on G is weakly secure if the
conditional entropy

H
(
Xi | {XG[j] : j ∈ E}

)
= H(Xi),

for every i ∈ [k] and for every subset ∅ 6= E ⊂ [n], |E| < k.
In words, a coding scheme is weakly secure if an adversary
that eavesdrops on at most k−1 coded packets transmitted on
different relay-sink links obtains no information about each
particular source packet. Note that we always assume that
rankq(G) = k. Hence, obviously an adversary that eavesdrops
on certain k linearly independent coded packets can always
retrieve all k source packets.

III. WEAK SECURITY FOR SMAN

A. Necessary and Sufficient Condition for Weak Security

We first derive a necessary and sufficient condition on the
links between sources and relays for a SMAN to support a
weakly secure MDS coding scheme.

Theorem 1. An (n, k)-SMAN supports a weakly secure MDS
coding scheme, i.e. there exists a weakly secure MDS coding
scheme for the relays over some finite field Fq , if and only
if every subset of ` relays must be collectively connected to
at least ` + 1 sources, for all 0 < ` < k. In other words, it
requires that

| ∪j∈J supp(M [j])| ≥ |J |+ 1, ∀∅ 6= J ⊂ [n], |J | < k, (1)

where M [j] is the jth column of the adjacency matrix M .
We refer to (1) as the Weak Security Condition for SMAN.



We need a few lemmas for the proof of Theorem 1.

Lemma 1 ([12]). The k×n matrix G is a generator matrix of
an [n, k, d]q error-correcting code if and only if every n−d+1
columns of G has rank k.

Lemma 2. A coding scheme based on the matrix G for an
(n, k)-SMAN is weakly secure if and only if every k − 1
columns of G generates an error-correcting code of minimum
distance at least two.

Proof: This is a corollary of [13, Lemma 3]. More details
can be found in Appendix A.
Lemma 3. If the ` × k matrix A generates a [k, `, d ≥ 2]q
error-correcting code then

| ∪j∈J supp(Aj)| ≥ |J |+ 1, ∀∅ 6= J ⊆ [`]. (2)

Proof: Suppose that A generates a code of minimum
distance at least two but (2) is violated. Then there exists
∅ 6= J ⊆ [`] such that

| ∪j∈J supp(Aj)| ≤ |J |. (3)

We aim to obtain a contradiction.
Let I ⊆ [k] \ ∪j∈J supp(Aj) such that |I| = k − |J |.

Moreover, let L ⊂ [k] such that L ⊇ I and |L| = k − 1.
Let A[L] be the ` × (k − 1) submatrix of A that consists of
columns of A indexed by the elements in L. Then according
to Lemma 1, we have

rankq(A[L]) = `. (4)

On the other hand, we claim that the |J | rows of A[L] indexed
by the elements in J has rank at most |J |−1. As the remaining
`−|J | rows of A[L] has rank at most `−|J |, we deduce that

rankq(A[L]) ≤ (|J | − 1) + (`− |J |) < `. (5)

From (4) and (5) we obtain a contradiction.
We now prove that our aforementioned claim is correct.

Consider the submatrix AJ [L] that consists of rows of A[L]
indexed by the elements of J . Due to (3) and our assumption
that L ⊇ I , the submatrix AJ [L] has at least k − |J | all-
zero columns. Since |L| = k − 1, AJ [L] has k − 1 columns.
Therefore, it has at most |J | − 1 nonzero columns. Hence,
rankq(AJ [L]) ≤ |J | − 1, as claimed.

Remark 1. The result in Lemma 3 can be extended to d ≥ d′
for any d′ ≥ 1 by replacing |J |+ 1 with |J |+ d′ − 1 in (2).

Lemma 4. Let P be a (k − 1) × k 0-1 matrix. Let var(P )
be the matrix obtained from P by replacing every nonzero
entry of P by some indeterminate ξi,j over Fq . Suppose that
all of these indeterminates are independent. Let f(var(P )) =∏

Q det(Q), where the product is taken over all k submatrices
Q of order k − 1 of var(P ). Then f(var(P )), which is a
multivariable polynomial in Fq[· · · , ξi,j , · · · ], is not identically
zero if and only if

| ∪j∈J supp(P j)| ≥ |J |+ 1, ∀∅ 6= J ⊆ [k − 1]. (6)

Proof: The proof follows from [3, Lemma 2-4]. More
details can be found in Appendix B.

We are now in position to prove Theorem 1.
Proof of Theorem 1:

Only-If. Suppose that there exists a weakly secure MDS cod-
ing scheme for an (n, k)-SMAN described by the adjacency
matrix M . We aim to prove that the Weak Security Condition
(1) holds. Let G be the encoding matrix of the weakly secure
MDS coding scheme. Note that as G generates an MDS
code, every subset of k − 1 columns of G is always linearly
independent [11, Ch. 11]. Hence, by Lemma 2, every set of
k−1 columns ofGmust generate a [k, k−1, 2] error-correcting
code. Note here that supp(G[j]) ⊆ supp(M [j]) for all j ∈ [n].
Hence, by applying Lemma 3 to all (k − 1) × k matrices
corresponding to all subsets of k − 1 columns of G, it is
straightforward that the Weak Security Condition holds.
If. We assume that the Weak Security Condition holds, i.e.

| ∪j∈J supp(M [j])| ≥ |J |+1, ∀∅ 6= J ⊂ [n], |J | ≤ k− 1.

We aim to show that there exists a weakly secure MDS coding
scheme for the corresponding (n, k)-SMAN.

Using the same notation as in Lemma 4, let var(M) =
(vi,j) where vi,j = 0 if mi,j = 0 and vi,j = ξi,j if mi,j 6= 0.
Here ξi,j’s are independent indeterminates. For each submatrix
P ′ of size k × (k − 1) of M , let P be its transpose and
var(P ) the corresponding (transposed) submatrix of var(M).
We henceforth refer to such a matrix P as a transposed
submatrix ofM . Note that the Weak Security Condition (1) on
M implies the condition (6) on every transposed submatrix P
of size (k−1)×k of M . Hence, by Lemma 4, the polynomial
f(var(P )) is not identically zero. Let

F (var(M)) =
∏
P

f(var(P )) ∈ Fq[· · · ξi,j · · · ],

where the product is taken over all transposed submatrices P
of size (k − 1)× k of M . Then F (var(M)) 6≡ 0.

It is obvious that the Weak Security Condition (1) implies
the MDS Condition [4], [5], [7], which requires that every
subset of ` relays must be collectively connected to at least
` sources, for all ` ≤ k. Hence, if f(var(M)) is the product
of determinants of all submatrices of order k of var(M) then
f(var(M)) 6≡ 0, according to [3, Lemma 2-4]. Therefore

F ext(var(M))
4
= f(var(M))× F (var(M)) 6≡ 0.

Hence, according to [14, Lemma 4], for sufficiently large q,
there exists gi,j ∈ Fq (for (i, j) where mi,j = 1) such that

F ext(var(M))(· · · , gi,j , · · · ) 6= 0.

As a consequence,

f(var(P ))(· · · , gi,j , · · · ) 6= 0, (7)

for every transposed submatrix P of size (k−1)×k of M . Let
G = (gi,j) (if mi,j = 0 we set gi,j = 0). Then thanks to (7),
every transposed submatrix A of size (k−1)×k of G satisfies
the following property: all submatrices of order k−1 of A are
invertible. Hence, according to [11, Ch. 11], every set of k−1
columns of G generates an MDS [k, k−1, 2]q error-correcting
code. Thus, by Lemma 2, the coding scheme based on G is



weakly secure. Moreover, as f(var(M))(· · · , gi,j , · · · ) 6= 0
as well, it follows that every submatrix of order k of G is
invertible. Thus, G also generates an MDS code.
Remark 2. Theorem 1 shows what the additional cost is
(in terms of source-relay links) when a passive adversary is
also present, on top of an active adversary. More specifically,
while defending against an active adversary requires that every
subset of ` relays must be collectively connected to at least
` sources, for all ` ≤ k, defending against both adversaries
requires that every subset of ` relays must be collectively
connected to at least `+ 1 sources, for all 0 < ` < k.

B. Verification of Weak Security Condition in Polynomial Time

While designing a weakly secure MDS coding scheme for
a given (n, k)-SMAN may require non-polynomial time (as
random coding over finite fields with exponentially large sizes
is used), verifying whether a SMAN supports a weakly secure
MDS coding scheme can be done in polynomial time. We
prove this fact below using a proper modification of the proof
of [5, Lemma 10]. We first present a simple lemma. Its proof
is similar to the proof of [3, Lemma 4] and can be found in
Appendix C.
Lemma 5. The Weak Security Condition (1) is equivalent to
the following:

| ∪i∈I supp(M i)| ≥ n− k + |I|+ 1, ∀∅ 6= I ( [k]. (8)

Proposition 1. The Weak Security Condition (1) can be
verified in polynomial time in n and k.

Proof: By Lemma 5, it suffices to prove that (8) can be
verified in polynomial time for all ∅ 6= I ⊆ [k] \ {i0}, for
every i0 ∈ [k]. Without loss of generality, let i0 = k. The
other cases can be proved in the same manner. We associate
with M a network N k(M) constructed as follows. The set
of nodes of N k(M) consists of
• a source node s,
• n packet nodes s1, . . . , sn,
• k − 1 coding nodes r1, . . . , rk−1,
• k − 1 broadcast nodes b1, . . . , bk−1,
• k − 1 sink nodes t1, . . . , tk−1.

To simplify the notation, set Ri = supp(M i). The set of
directed edges of N k(M) consists of
• one edge of capacity one from s to si, ∀i ∈ [n],
• one edge of capacity infinity from sj to ri if j ∈ Ri,
• one edge of capacity one from ri to bi, ∀i ∈ [k − 1],
• one edge of capacity infinity from ri to ti, ∀i ∈ [k − 1],
• one edge of capacity infinity from bi to tj , ∀i, j ∈ [k−1].

For instance, for the (6, 4)-SMAN in Fig. 1, the corresponding
adjacency matrix is

M =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 , (9)

and the corresponding network N 4(M) is depicted in Fig. 2.
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Fig. 2: The network N 4(M) associated to M in (9) when
i0 = k = 4.

A cut (S, T ) of a network is a partition of the set of nodes
of that network into two parts, namely S and T . We are only
interested in cuts that separate the source and some sink, i.e.
S contains the source and T contains some sink. Let c(u, v)
denote the capacity of an edge (u, v) in a network. Then the
capacity of a cut (S, T ) is defined as

c(S, T ) =
∑

u∈S,v∈T
c(u, v).

Consider the following Min-Cut Condition for N k(M): the
capacity of every cut that separates s and any sink is at least
n. According to the Network Flow Algorithm (Ford-Fulkerson
Algorithm), we can verify the Min-Cut Condition for N k(M)
in polynomial time. Therefore, it suffices for our purpose to
show that the condition (8) restricted to those I ⊆ [k− 1] (for
M ) is equivalent to the Min-Cut Condition (for N k(M)).

Suppose that the Min-Cut Condition for N k(M) holds. We
aim to prove that (8) restricted to those I ⊆ [k−1] also holds
for M . Let I be an arbitrary nonempty subset of [k − 1].
Recall that we use Ri to denote supp(M i). Consider a cut
(S, T ) where

T = {ti : i ∈ I} ∪ {bi : 1 ≤ i ≤ k − 1} ∪ {ri : i ∈ I}
∪
{
sj : j ∈ ∪i∈IRi

}
.

Then the capacity of (S, T ) is

c(S, T ) =
∑

j∈∪i∈IRi

c(s, sj)+
∑
i/∈I

c(ri, bi) = |∪i∈IRi|+k−1−|I|.

As c(S, T ) ≥ n, we have

| ∪i∈I Ri| ≥ n− k + |I|+ 1.

Conversely, suppose that (8) restricted to those I ⊆ [k − 1]
holds. We need to prove that c(S, T ) ≥ n for every cut (S, T )
that separates s and some sink. Suppose that {ti}i∈I′ ⊆ T ,
where ∅ 6= I ′ ⊆ [k−1], and that ti /∈ T if i /∈ I ′. If c(S, T ) =
∞ then it is larger than n trivially. Now suppose that c(S, T ) <
∞. Then (S, T ) does not contain any edge of the form (sj , ri),
(ri, ti), or (bj , ti), as these have capacity infinity. Hence, T
must contain the following nodes
• ti for all i ∈ I ′, because of our definition of (S, T ),
• bj for all j ∈ [k− 1], as c(bj , ti) =∞ for every j and i,
• ri for all i ∈ I ′, as c(ri, ti) =∞ for every i,



Let I be the subset of [k − 1] that satisfies

T ∩ {ri}i∈[k−1] = {ri}i∈I .
Then I ′ ⊆ I . Since c(sj , ri) = ∞ when j ∈ Ri, the set T
must also contains the packet nodes sj if j ∈ Ri for some
i ∈ I . Therefore,

c(S, T ) ≥
∑

j∈∪i∈IRi

c(s, sj) +
∑
i/∈I

c(ri, bi)

= | ∪i∈I Ri|+ k − 1− |I|
≥ (n− k + |I|+ 1) + k − 1− |I| = n.

We complete the proof.

C. Trimming SMAN While Preserving Weak Security in Poly-
nomial Time

Given an (n, k)-SMAN that satisfies the Weak Security
Condition (1), Theorem 2 states that one can trim the network
to obtain a sparsest possible network where the Weak Security
Condition is still satisfied. Moreover, the trimming process can
be done in polynomial time in n and k. We prove this theorem
in Appendix D. Note that we use here the equivalent statement
of the Weak Security Condition stated in Lemma 5.

Theorem 2. For each i ∈ [k] let Ri be an arbitrary subset of
[n] (n ≥ k). Suppose that

| ∪i∈I Ri| ≥ n− k + |I|+ 1, ∀∅ 6= I ( [k]. (10)

Then for every i ∈ [k] there exists a subset R′i ⊆ Ri such that
• | ∪i∈I R′i| ≥ n− k + |I|+ 1, ∀∅ 6= I ( [k],
• |R′i| = n− k + 2, for all i ∈ [k].

Moreover, such subsets R′i can be found in polynomial time.

IV. EXTENSION TO BLOCK SECURITY

In this section we extend our result on weak security to
a more general concept of block security (or security against
guessing in some other works in the network coding literature).

The coding scheme for an (n, k)-SMAN based on a k × n
encoding matrix G is b`-block secure against a passive adver-
sary of strength ` (` < k) if the conditional entropy

H
(
{Xj : j ∈ B} | {XG[j] : j ∈ E}

)
= H({Xj : j ∈ B}),

for every subset B ⊂ [k], |B| ≤ b`, and for every subset
E ⊂ [n], |E| ≤ `. In words, a coding scheme is b`-block
secure against an adversary of strength ` if an adversary
that eavesdrops on at most ` relay-sink packets obtains no
information about each subset of at most b` source packets.
In that case, even if the adversary can guess correctly some
b` − 1 source packets, it still gains no information about any
other packet.

Theorem 3. An (n, k)-SMAN supports an MDS coding
scheme that is b`-block secure against an adversary of strength
` if and only if

|∪j∈J supp(M [j])| ≥ |J |+b`, ∀∅ 6= J ⊂ [n], |J | ≤ `, (11)

where M [j] denotes the jth column of the adjacency matrix
M . Note that in the right-hand side of (11), the first term |J |

corresponds to the MDS Condition, while the second term b`
corresponds to the block security level.

Theorem 3 characterizes the block security level of an MDS
coding scheme for SMAN based on the density of the source-
relay links. In a special case where the SMAN is densest, i.e.
each source is connected to all relays, then according to [15], a
Cauchy matrix would provide the best level of block security,
which is b` = k − `. The proof of Theorem 3 follows the
same idea of that of Theorem 1, using a generalized version
of Lemma 3 (see Remark 1). We omit the proof.

While the Weak Security Condition can be verified in
polynomial time, it is not known whether a similar conclusion
holds for block security. More specifically, given an (n, k)-
SMAN and a sequence {b`}k−11 , whether (11) can be verified
in polynomial time is still an open question.
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APPENDIX

A. Proof of Lemma 2

This lemma is a corollary of [13, Lemma 3]. We refer the
reader to [13] and its extended version for a detailed and
rigorous proof. Nevertheless, we provide here an informal
proof that may illustrate better the intuition behind this lemma.
Below we refer to the number of nonzero coordinates of a
vector as its (Hamming) weight. It is well known in coding
theory that the minimum Hamming weight of a nonzero
codeword of any linear error-correcting code is equal to its
minimum distance.

Suppose that every k − 1 columns of the coding matrix
G generates an error correcting codes of minimum distance
d ≥ 2. Suppose that a passive adversary obtains xG[E], where
G[E] is the k × (k − 1) submatrix of G formed by columns
indexed by E, for some E ⊂ [n], |E| = k − 1. Hence, it can
linearly transform these k − 1 coded symbols by considering
the product

xG[E]αt = x(αG[E]t)t = xct,

where α ∈ Fk−1
q is some coefficient vector, the superscript “t”

denotes the transpose, and c = αG[E]t. Since the columns
of G[E] generates an error-correcting codes of minimum
distance at least two, c, if nonzero, has weight at least two.
In other words, if c 6= 0 then it has at least two nonzero
coordinates. As a result, xct is a linear combination of at
least two source packets. Therefore, by linearly transforming
the eavesdropped coded symbols xG[E], the adversary cannot
determine explicitly each source packet. As the source packets
are independent and uniformly randomly distributed over Fq ,
this is equivalent to saying that the conditional entropy of each
source packet remains the same given the knowledge of k− 1
coded packets. Hence, the coding scheme is weakly secure.

Conversely, if for some subset E ⊂ [n], |E| = k − 1, the
columns of G[E] generate a linear error-correcting code of
minimum distance one, then there exists α ∈ Fk−1

q such that
c = αG[E]t has weight one. Suppose that ci 6= 0 and cj = 0
if j 6= i. Then by post-multiplying xG[E] by αt, the adversary
obtains the source packet xi explicitly. Hence, in this case the
coding scheme is not weakly secure.

B. Proof of Lemma 4

This lemma is a corollary of [3, Lemma 2-4]. Indeed, let
M be a k× n binary matrix. Then [3, Lemma 2-4] conclude
that f(var(M)) 6≡ 0 if and only if

| ∪i∈I supp(M i)| ≥ n− k + |I|, ∀∅ 6= I ⊆ [k].

Applying this conclusion to the (k − 1) × k matrix P in
Lemma 4, the proof follows.

C. Proof of Lemma 5

Suppose that (1) does not hold, i.e. there exists ∅ 6= J ⊂
[n], |J | ≤ k − 1, such that

| ∪j∈J supp(M [j])| ≤ |J |. (12)

We aim to show that (8) does not hold either. Indeed, from
(12), let I ⊆ [k]\∪j∈J supp(M [j]) such that |I| = k−|J |. Be-
cause 1 ≤ |J | ≤ k−1, we deduce that ∅ 6= I ( [k]. Moreover,
due to (12) and our assumption that I ⊆ [k]\∪j∈J supp(M [j]),
we conclude that

| ∪i∈I supp(M i)| ≤ n− |J | = n− k + |I|.

Hence, (8) is violated.
Conversely, we need to show that if (8) does not hold then

neither does (1). The proof is completely similar and therefore
is omitted.

D. Proof of Theorem 2

We can prove this theorem by modifying the proof of [4,
Theorem 2] accordingly. Both proofs follow the same idea of
a well-known proof of Hall’s marriage theorem: repeatedly
removing the edges of the bipartite graph until the graph
becomes sparsest yet still satisfies the Hall’s condition. To
simplify the notation, for a set I ⊆ [k] we use RI to denote
the union ∪i∈IRi.

Suppose that the sets Ri satisfy (10). We keep removing the
elements of these sets while maintaining the Weak Security
Condition (10). Assume that at some point, the removal of
any element in any set Ri would make them violate (10). We
prove that now the sets Ri have cardinality precisely n−k+2,
which concludes the first part of the theorem.

Suppose, for contradiction, that there exists r ∈ [k] such
that |Rr| ≥ n − k + 3. Take a and b in Rr, a 6= b. For all
i ∈ [k], let

Ra
i =

{
Ri \ {a}, if i = r,

Ri, otherwise,
(13)

Rb
i =

{
Ri \ {b}, if i = r,

Ri, otherwise.
(14)

According to our assumption, both of the two collections of
sets {Ra

i }i∈[k] and {Rb
i}i∈[k] violate (10). Therefore, there

exist two nonempty subsets A ⊆ [k] and B ⊆ [k], r /∈ A∪B,
such that

|Ra
A∪{r}| < n− k + |A|+ 2, (15)

|Rb
B∪{r}| < n− k + |B|+ 2. (16)

Since r /∈ A, by (13) we have

|Ra
A∪{r}| ≥ |Ra

A| = |RA| ≥ n− k + |A|+ 1. (17)

Similarly, since r /∈ B, by (14) we have

|Rb
B∪{r}| ≥ |Rb

B | = |RB | ≥ n− k + |B|+ 1. (18)

From (15) and (17) we deduce that

|Ra
A∪{r}| = |Ra

A| = |RA| = n− k + |A|+ 1. (19)

Similarly, from (16) and (18) we have

|Rb
B∪{r}| = |Rb

B | = |RB | = n− k + |B|+ 1. (20)



Therefore,

Ra
A∪{r} ∩Rb

B∪{r} = RA ∩RB . (21)

Moreover, as a ∈ Rb
B∪{r} and b ∈ Ra

A∪{r}, we deduce that

Ra
A∪{r} ∪Rb

B∪{r} = RA∪B∪{r}. (22)

From (19) and (20) we have

2(n− k) + |A|+ |B|+ 2

= |Ra
A∪{r}|+ |Rb

B∪{r}|
= |Ra

A∪{r} ∪Rb
B∪{r}|+ |Ra

A∪{r} ∩Rb
B∪{r}|

= |RA∪B∪{r}|+ |RA ∩RB |,

(23)

where the last transition is due to (21) and (22). We further
evaluate the two terms of the last sum in (23) as follows. The
first term

|RA∪B∪{r}| ≥ n− k + |A ∪B ∪ {r}|+ 1

= n− k + |A ∪B|+ 2.
(24)

The second term

|RA ∩RB | ≥ n− k + |A ∩B|+ 1, (25)

which can be explained below.
• If A∩B 6= ∅, then by applying (10) to A∩B we obtain

|RA ∩RB | ≥ |RA∩B | ≥ n− k + |A ∩B|+ 1.

• If A ∩ B = ∅, then n − k + |A ∩ B| + 1 = n − k + 1.
We have

Ra
A∪{r} = Ra

A ∪Ra
r = RA ∪ (Rr \ {a}). (26)

By (19), Ra
A∪{r} = RA. Combining this with (26) we

deduce that
Rr \ {a} ⊆ RA. (27)

Similarly,
Rr \ {b} ⊆ RB . (28)

From (27) and (28) we have

|RA∩RB | ≥ |Rr \{a, b}| ≥ (n−k+3)−2 = n−k+1,

which proves that (25) is correct when A ∩B = ∅.
Finally, from (23), (24), and (25) we deduce that

2(n− k) + |A|+ |B|+ 2

≥
(
n− k + |A ∪B|+ 2

)
+
(
n− k + |A ∩B|+ 1

)
= 2(n− k) + |A|+ |B|+ 3,

which produces a contradiction.
The proof of the first part of this theorem also provides

a polynomial time algorithm to find subsets of Ri’s that all
have cardinality n−k+2 yet still maintain the Weak Security
Condition (10). Indeed, we keep removing the elements of
the subsets Ri in the following way. If there exists r ∈ [k]
such that |Rr| ≥ n − k + 3, then as we just prove, for
a, b ∈ Rr, it is impossible that removing a or b from Rr

both render the Weak Security Condition violated. Therefore,

we can either remove a or b while still maintaining the Weak
Security Condition. Note that by Proposition 1, the Weak
Security Condition can be verified in polynomial time in k and
n. Therefore, this algorithm terminates in polynomial time in
k and n and produces subsets R′i’s of the original sets Ri’s
that satisfy the stated requirement in the theorem. Note that
by setting I = {i}, the Weak Security Condition (10) implies
that |R′i| ≥ n − k + 2. Hence, those R′i’s form a sparsest
(n, k)-SMAN that still supports a weakly secure MDS coding
scheme.
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