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Abstract

Obtaining accurate Channel State Information (CSI) at thasimitters (TX) is critical to many
cooperation schemes such as Network MIMO, Interferencgniient etc. Practical CSI feedback and
limited backhaul-based sharing inevitably creates degians of CSI which arespecificto each TX,
giving rise to adistributed form of CSI. In the Distributed CSI (D-CSI) broadcast chadnsetting,
the various TXs design elements of the precoder based on itidividual estimates of the global
multiuser channel matrix, which intuitively degrades penfiance when compared with the commonly
used centralized CSI assumption. This paper tackles thitectying scenario and presents a first analysis
of the rate performance for the distributed CSI multi-TX &doast channel setting, in the large number
of antenna regime. Using Random Matrix Theory (RMT) tool® derive deterministic equivalents
of the Signal to Interference plus Noise Ratio (SINR) for grmpular regularized Zero-Forcing (ZF)

precoder, allowing to unveil thprice of distributednestor such cooperation methods.

Index Terms

Multiuser channels, Cooperative communication, MIMO, dheck Communications

. INTRODUCTION

Network (or Multi-cell) MIMO methods, whereby multiple extfering TXs share user mes-
sages and allow for joint precoding, are currently congiddor next generation wireless net-

works [1]. With perfect message and CSI sharing, the diffeeXs can be seen as a unique
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virtual multiple-antenna array serving all RXs in a mulégntenna broadcast channel (BC)
fashion, and well known precoding algorithms from the &tere can be used [2]. Joint precoding
however requires the feedback of an accurate multi-usert€®hach TX in order to achieve
near optimal sum rate performance [3].

Although the case of imperfect, noisy or delayed, CSI has lmemsidered in past work [3],
[4], literature typically assumesentralizedCSIT, i.e., that the precoding is done on the basis of
a singleimperfect channel estimate which is common at every TX. @&dtgh meaningful in the
case of a broadcast with a single transmit device, this gssomcan be challenged when the
joint precoding is carried out across distant TXs linked byelhogeneous and imperfect backhaul
links or having to communicate without backhaul (over thg among each other, as in the case
of direct device-to-device cooperation. In these casds, eékpected that the CSI exchange will
introduce further delay and quantization noise. It is thecpcally relevant for joint precoding
across distant TXs to consider a CSI setting where each Teéiveg itsown channel estimate.
This setting is referred to as distributed CSI (D-CSI) in thst of this paper.

From an information theoretic perspective, the study afigraitter cooperation in the D-CSI
broadcast channel setting raises several intriguing aatleciging questions.

First, the capacity region of the broadcast channel undenargl D-CSI setting is unknown. In
[5], a rate characterization at high SNR is carried out uf)o§ analysis for the two transmitters
scenario. This study highlighted the severe penalty cabgedte lack of a consistent CSI shared
by the cooperating TXs from a DoF point of view, when using avemtional precoder. It was
also shown that classical (regularized) robust precodirgd not restore the DoF. Although a
new DoF-restoring decentralized precoding strategy wasemted in [5] for the two TXs case,
the general case of more thanTXs remains open. At finite SNR, the problem of designing
precoders that optimally tackle the D-CSI setting is opandiay number of TXs. The use of
conventional linear precoders that are unaware of the Ds@i8¢tture is expected to yield a loss
with respect to a centralized (even imperfect) CSI settifeg.the quantifying of this loss in the
finite SNR region has not been addressed previously. Thisesiqely the question addressed
by this paper.

We study the average rate achieved when the number of traastennas and the number of
receive antennas jointly grow large with a fixed ratio, thlisvdng to use efficient tools from

the field of RMT. Although RMT has been applied in many workshe analysis of wireless



communications [See [7]-[11] among others], its role inpived to analyze cooperative systems
with distributed information has not been highlighted vefo

Our main contribution consists in providing a determimistiguivalent for the average rate
per user in a D-CSI setting where each TX receivews estimate of the global multi-user

channel matrix with the quality (in a statistical sense)o$ testimate varying from TX to TX.

I[I. SYSTEM MODEL
A. Transmission Model

We study a so-called Network MIMO transmission where Xs serve jointly K receivers
(RXs). In order to simplify our analysis we restrict ours=vo linear precoding structures. Each
TX is equipped withV/+x antennas such that the total number of transmit antennanhsed by
M £ nMrx. Every RX is equipped with a single-antenna. We assume tigatatio of transmit
antennas with respect to the number of users is fixed and diyen

M
2221 (1)

We further assume that the RXs have perfect CSI so as to factleeamperfect CSI feedback
and exchange among the TXs. We consider that the RXs tremfdargnce as noise. The channel
from then TXs to the K RXs is represented by the multi-user channel makfixx c®*M,

The transmission is then described as

Y1 hl'x M
| =Hx+n= S I o (2)
YK higx nK
wherey; € C is the signal received at theth RX, hl! = e'H € c*M is the channel from
all transmit antennas to RX andn = [n,...,nx]" € cf*! is the normalized Gaussian noise
with its elements i.i.d. a8A(0,1).
The transmitted multi-user signale c*! is obtained from the symbol vecter= [s], ..., sk]T €

c&x1 with its elements i.i.dN:(0,1) as

S
x=Ts = [t,,....t] ;1 ®3)

SK



with T € cM*K peing themulti-userprecoder and; £ Te, € c**! being the beamforming
vector used to transmit to RX We consider for clarity the sum power constraifi||? = P.

Our main figure-of-merit is the average rate per user

K
R 2 % Z E [log, (1 + SINRy)] (4)
k=1

whereSINR, denotes the Signal-to-Interference and Noise Ratio (SIMARX k& and is defined

as
it |

A
SINR £ -
+ 2otz | P bl
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B. Distributed CSIT Model

In the distributed CSIT model studied here, each TX receiteeewn CSI based on which
it designs its transmission parameters without any additicommunication to the other TXs.
Specifically, TXj receives the multi-user channel estimBte) € cX*M and designs its transmit
coefficientsx; € cMm*! solely as a function oH). For ease of exposition, we assume that

the imperfect multi-user channel estimate is modeled by

~

HY 2 /1 — (01)2H + gD AW) (6)

with A e cX*M haying its elements i.i.dV; (0,1). We then denote byh!”)" the kth row
of HY, i.e., the estimate at TX of the channel from all the transmit antennas to RXThe
approach described in this work extends to a more genemniation structure allowing for a
non uniform description quality at each TX as well as cotretain the multi-user channel. The

calculations will be provided in an upcoming work.

Remarkl. The D-CSI model encompasses the imperfect centralized @8ehby takingn =
1. O

C. Regularized Zero Forcing with Distributed CSIT

We address the performance of a classical MISO broadcastgee namelyegularized ZF
[6], [12], when faced with distributed CSIT in the large ®ystregime. Hence, the precoder
designed at TX; is assumed to take the form

. NP 1 VP
TEJZ) L (H(J)(H(J))H+MQIM> H(J)\/—\/; (7)



with regularization factorx > 0. We also define

o HO((FO\H
C(j) é # + OéIM (8)
such that the precoder at TXcan be rewritten as
_ 1 o nin VP
TV — (U1 . 9
The scalar?¥) corresponds to the power normalization at TXHence, it holds that
. NP -1
pl) — ||<H(J)(H(J))H + MaIM> H(J)H%_ (10)

Upon concatenation of all TX’s precoding vectors, the difecglobal precoder denoted by

TDCSL is equal to

(EYT |
ocst o[BS Tz an
EfT0
whereE!' € cMm>M is defined as
B} 2 100 tniex Dntrx Ot ()i | - (12)

We furthermore denote thith column of T2 (used to serve RX) by 155,

Although the finite SNR rate analysis under the precodingcsitre (11) and the distributed
CSI model in (6) is challenging in the general case becausthefdependency of one user
performance on a all channel estimates, some useful irssigimt be obtained in the large antenna

regime, as shown below.

[Il. DETERMINISTIC EQUIVALENT OF THE SINR

The Stieltjes transform has proven very useful many timekeranalysis of wireless networks
[9], [10] and we will also follow this approach. Hence, ourpapach will be based on the

following fundamental result.

1
Theorem 1. [10], [13] Consider the resolvent matri€) = (I{HTH + aIM> with the matrixH

defined according to Section Il and> 0. Then the equation

_ L v T
x_Mtr<<aIM+ﬁ(l—|—x)) ) (13)



admits a unique fixed point which we will denote din the following. Let

I —1
J2 (al M 14
@ <QM+B<1+5>) -
and let the matrixU be any matrix with bounded spectral norm. Then,
1 1
7 TUQ) = 7t (UQy) 07 0 (15)

The fixed pointé can easily be obtained by an iterative algorithm given in [2]l] and
recalled in Appendix A for the sake of completeness. Usingtteorem and the definition of

we can now state our main result.

Theorem 2. Considering the D-CSI BC described in Section Il, ti¥¢NR; — SINR;, — 0 with
SINR} defined as

LY VI 0P

SINRY £ 0 16
k f,?—l—% ( )
with I € R given by
o A & I’ ()2
I = ; (1+6)2n2 [n+26 (—1+n+ ("))
+62 (_1 +n+ (cW) ) +6* (—(o D6 4 (U(j))S)
\/ 1— \/ o)? — (g(j>)4}
+Z Z 1+5 e |24 (0) + (o)
Jj=1j'= 1]’75]
w (_1 + (002 & (Uu’>)2>] (17)
whileT* € R and T ;, € R are respectively defined as
5?2 5?2
o & PUTY [(1 —0)+ m] 18)

1—‘?7]-/ = . . 2 ’ (19)
<1 _ % (1= (c@)2)(1—(aU")?2) (116)2)




IV. PROOF OFTHEOREM 2

Our calculation is built upon results from both [9] and [1Qe also make extensive use of
classical RMT lemmas recalled in Appendix A. Note that Lemire@nd Lemma 8 are novel. In
particular, Lemma 7 extends [10, Lemm&] and is an interesting result in itself.

During the calculation we use the notation= y to denote that: — y # 0.
M —00

A. Deterministic Equivalent foi (/)

We start by finding a deterministic equivalent f&f7). In fact, a deterministic equivalent for
w0) is provided in [9]. However, it can also be obtained using hean7 witho) = ¢U") =0,
which gives

P < 1°, (20)

Looking at the definition ofi™ in (18), it can be noted that, as expected, this determnisti

equivalent does not depend of¥).

B. Deterministic Equivalent foh,t]:% :

Turning to the desired signal at RX we can write

n

H,DCSI __
h trZF k= E

(a \/72 1 hHE EH C(j))—lhg) (22)
P 14+ Lall(cl)hy
13 H HG)y—1
o L RIEENCY) Ry
2/ 1= (o@)2 Y (23)
FOZ 1+ 1hH C! ]))_lhk
\/ Io Z V 1= U(]

tr(EEHC(J) )
1+1t (tcih—1)
@ [P1 —
AN Sl 1— (ocW)32—— 2
\/Fon; Sk (25)
+ alyy, Vj (26)

H(CO) Ry (21)

(24)

where we have defined



with

G\H 2 (20 ~ (5
(FL) Y .. AY, BY)

AP, Vi (27)

Equality (a) follows then from Lemma 2 and the use of the deterministicivedent derived
for ¥, (b) from Lemma 4,(c) from Lemma 3,(d) from Lemma 5 and the fundamental

Theorem 1. Note thaf is defined in Theorem 1. It follows then directly that
s = £ (1m0 e

C. Deterministic Equivalent for the Interference Term

Our first step is to write explicitly the interference ternmingsthe definition of TP¢S! in (18)

and replacel¥) by its deterministic equivalent.

K
0=1,0+k
= b T (T )  hy — it (ten) (30)
1 P H H =1/ 1UN\HETE) i\ —1 H
= szmhk E;EN(CY)~ () TH) (CY)) ' E Bl hy (31)
i=1j'=1
Po e ZZhHE Ef(CY) T H)THY) (CY)E, Elhy (32)
Jj=1j'=1
Fo e ZZhHE B (€)= () ) @AY (CY) B Bl (33)
Jj=1j'=1

To obtain a deterministic equivalent for the second sunuonain (33) we use the following

relation
(CW)~1 — (CE]Z]))_I = (CW))~t <C(]J€') _ C(j)) (C(/Z))_l (34)

=—(CW)~ ( h hH+cl 5(] (5 ) +C 5(] hH+C2 hk(‘sl(cj))H> (CEIZ]))_I

(35)



Inserting (35) in (33) yields

I
ro el Z Z RSB (ClRp) ™ (H) " H) (CV) By By
Jj=1j'=1

_ __ZZhHE EH C(] hkc(()j)hg] (ijﬂ)) (Hbjﬂ))HH(J (C(J ) 1Ej/E2hk

J=1j'=1

L LS Y RIEEN(C) Lo (60| () G R (CYY) B Bl by

ro M3
Jj=1y=1
—FWZZhHE E(CV)- afj"cgj’hﬂ (C) T EHM Y (CU) B, Elhy
j=1j'=1 -
Pl o N S
o 2o S BEEENCY) T e (00| () @GR (CY)) By Bl by
j=1j'=1 )
(36)
2A-B-C-D-E. (37)

We proceed by calculating each of théerms in (37) successively, using in particular Lemma 8:

ro M2 ZhHE EJ(CR)) " (H))"H (CY)E, Ellh, (38)
Jj=1j'=1
n_ o tr(E; E R, EH(C( )) (IZI(J'))HP IiI(j’)(C(j’))_1
_ P R [k] e ) kB (S
T o £ M2
j=1j'=1

( ) ~ () A (/) (/) _ (/) _ . tr (C(J/))fl
tr (B B(CY) ()P () ) e (BB ) 1 4 ()

_ C((]j ) e o 1 (j/)]\/{l
1+tr((05€}) )
i (BB (C)~ ()P () ) e (B, B () ) u(iefh )
(Y2 I\ k) R i S [+] 7
M? M 1+t (eih1)
M
(39)

From the unitary invariance of the distribution Hf and AY), it can be shown that
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o (BB (CE) ) P B (€)1 e ((Cf) APy I (Cl)) )

M? n M?
(40)
1 o
< I%, (41)

where the last equality follows directly from applying Leram. Inserting (41) in (39) and using

the fundamental Theorem 1 yields
01+ s TS A )
Y7 Cl + ( (J ))2 3" 0 (42)

FOZZ nn 1+0 2 n nl+d

Jj=1j=1
We then proceed similarly for the remainidgerms:

e D0 3 BB ] () )R ()
Jj=1j=1
(43)
n n H(CW) i) tr (C(j.))il
vﬂzzcm <EE (Cy)” >1+C§”7< i )
Lo &40 M e((cfi))
Jj=1j'=1 1+T
o ((C) ()P HG) () B EY)
M2
()y—1(F0) (") @) (e
ot ((c[,g]) HY) P HY (C)) 1) r (EJ,E;i(cm) )1 §g>t(<01[w> )
0 M? M . tr((CEZ])) )
M
G Mo\ ot
ot ((c[ )~ (HEG) P HY (C) 1) tr (EJ,Ey,(cfg])) 1) w(c) »
+(02 ) M2 M 1 tr(C—1) ( )
M
6]_—]—01 Fgg’ (') 51—|—ng )(S (") )
_ T — J N\210 4
n 14+06 (n 0 "5 1+0 (cz) PPnl4+0 (45)
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- e S S [EEC) 8 (6 ) )

Jj=1j'=1

(46)

- =5 Z REEE(CO) 8] (6O T B HE (CO) B B b

(47)
. E;E!(CY) ) (e )
P w tr (BB (CE) —r
[0 £ M w((cfh1)
= It =
QNS 19 (Y- ()~ r((cip
o (€D g PyHR ) ) o (B ) (Gl
e i i )
1+ ———
. ~n (s ~ (n . : r (J
oo () @R Py ) ) o (BENCE) ) 1 4 =) )} .
— C
i M? M (i) )
14—
P~ 09 0 [ oped 0 a8l
= = 1) R AC)) ot s B 49
Foj:1cl< )es nlto S nito Co n 110 (49)
FOM?,ZZ WEENCD) 60| - ) i) ) T (CV)) By Bl
Jj=1j=1
| w (BEN(CR) ) ()
vﬂzzcm (=) r( %5 (Cig) Tk
I‘O 2 2 M ((C(J)) )
j=1j'=1 14+ +
t EEH(c(J)) (H(J))HP I:I(j/)(c(j/))—l
r{ By (Cpy ik ) ey (S
. =
ot ((CED (B EED () ) b (B ER(CE) ) 1y (e )
— G 2 (C-1)
M M L+ =5
(y—1( Py H -1 R N (<
+(C(j,))2tr <<C[k}) AP HY (CH))- )tr (EJ/EJ.,(CW) ) ( il ) 50
2 M?2 M wr((Cf))1)
14—
PN 0 O (T gy 81N 00 ) gy
F0]1]/_12 < nl+6\ n 0 i’y 14946 2 PWn1446 )
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P 1 L . . PN L
P =3 2 0 (MBI ] - [(62)" () ™ ()" () 'y Bilhy

i=1 j'=1
(52)
Pl o . o
= T [RFEENCY) - - (7)) T (B HE (CY) T EEN R (53)
j=1
n G)\— tr (C(J))
N |8 (BENCE) ) 1 ¢ (™)
B 2 (4)
Jj=1 M 1+%
1 1Y / j ()
o o (i @ PR ) ) o (BE(CH) ) (™)

L+ M

1)y -1,7{0) 1) (U () o)
et () @) PRag ) ) o (BENC) ) 1 4 o8 (¢ ) ) 50
M? M tr((CEZ]))*l)

)
(](51-1-01 € ) () Oél—FCl )
Z n 1446 (Clc e nl+d Czrn 1+6 |- (55)

The flnal expression is obtained after inserting all the meft@stic equivalents derived inside the
interference expression (37). The compact expressioneothiorem is obtained after algebraic

manipulations using the software Mathematica.

Remark2. It is important to differentiate the casgs= ;' andj # j° when computingl’s .
Indeed, in the casg¢ = j/, it holds
F?,j’ - FO. (56)

O

V. SIMULATION RESULTS

We now verify using Monte-Carlo simulations the accuracytlod asymptotic expression
derived in Theorem 2. We consider a network consisting:of 3 TXs with a sum power
constraint given byP = 10 dB anda = 1/P. We focus in this work on the case Gf\))? =
0.1,¥j =1,...,n so as to emphasize thpggice of distributedness

In Fig. 1, we show the rate per user as a function of the numbarsers for a square
setting whereM = nMrx = K (i.e.,, § = 1) in the distributed CSIT configuration where
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Fig. 1: Average rate per user as a function of the number asusewith (¢))? = 0.1, Vj.

(cU)2 =0.1,¥j = 1,...,n. For comparison purpose, we also show the rate per usemebitai
in the case of imperfect centralized CSIT with®“s!)2 = 0.1 and with perfect CSIT (i.e.
(c“CSH2 = 0 or equivalently(c9)? = 0, V). As note earlier, a deterministic equivalent for the
centralized case is obtained using= 1 in Theorem 2.

The large system deterministic equivalents are shown toseéuliwith just20 to 30 users
and antennas. In addition, the cost of having distributédrination is also highlighted by the
losses compared to the centralized configuration. This shibv necessity to take properly
into account the CSI configuration when designing the feeklcheme and the precoder.
Considering the same network configuration, we show in Fighe? average rate per user in

terms of the regularization facter. Quite interestingly it appears that the optimal regultian
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Fig. 2: Average rate per user as a functionnofor (¢))? = 0.1, V.

factors (represented with the * marker) are not the samearcéntralized and distributed CSI

settings.

VI. CONCLUSION

We have studied in this work the joint transmission usingulagzed ZF in a distributed CSI
configuration. Using RMT tools, an analytical expressios baen derived to approximate the
average rate per user. This expression becomes asymfyoégact in the large system limit
where the number of transmit antennas and the number ofvezeatennas go to infinity at the
same pace. This new deterministic equivalent reveals teeretated to not just CSI feedback
limitation, but also backhaul sharing limitations and carhlelpful to design more robust systems.

The extensions to more general channel and CSI models altergfing and subject to ongoing
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work. Note that the price of distributedness is evaluate® lier a conventional precoder. This
further motivates the development of novel precoding satethat are more suitable to the
distributed CSI setting.

APPENDIX
A. Classical Lemmas from the Literature

Lemma 1 (Adapted from [9], [11]) Let o« > 0 and (dx)r>0 be the sequence defined as

= (57)

-1

g R0

O = for k>1

tr <OéIM + 75(14-%5&71)1]\/[)

Theny, koo s, with 6 being by construction a fixed point ¢57).

Lemma 2 (Resolvent Identities [10], [11])Given any matrixH € c®*¥ let h}l denote its
kth row and H, € c(&-DxM denote the matrix obtained after removing thth row from
H. The resolvent matrices dI and H, are denoted byQ = (HHH+aIM)_1 and Q, =
(H'H,, + aIM)_l, with o > 0, respectively. It then holds that

. 1 Qkhkhllek
Q=Q—5; 1+ LhIQ.hy

(58)

and

hi Qx

hilQ = .
T 1+ LhllQih

(59)

Lemma 3 ( [10], [11]). Let (An)n>1, Ax € CV*V be a sequence of matrices such that
limsup ||Ay]|| < oo, and (xy)n>1,xx € CV*! be a sequence of random vectors of i.i.d. entries

of zero mean, unit variance, and finite eighth order momedependent ofA 5. Then,

1 1 a.s.

Lemma 4 ( [10], [11]). Let (An)n>1, Ax € CV*V be a sequence of matrices such that
limsup ||Ax| < oo, and xy,yy be random, mutually independent with i.i.d. entries of zero
mean, unit variance, finite eighth order moment, and inddpahofA . Then,

1 a.s.
NX]%ANYN o0 (61)
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Lemma55 ([9], [11]). Let Q and Q, be as given in Lemma 2. Then, for any mathixwe have
tr (A (Q— Q) < [|A]2. (62)

Lemma 6 ( [9], [11]). Let U, V,® be of uniformly bounded spectral norm with respect to
N and let V be invertible. Further, defin&c & ©z andy £ ©q where z,q € ¢V have
i.i.d. complex entries of zero mean, varianceV and finite8th order moment and be mutually
independent as well as independenflafV. Definecy, ¢, c2 € RT such thatcye; — ¢ > 0, and
letu= Ltr (V™) andv £ L tr (@UV ). Then we have:

H H H H 1 u'(1+au)
x U (V+coxx" +c¢ T OXy + 0yX X -0
( 0 1Yy 2Xy 2yX) (cocr — 3)u? + (co + c)u+ 1
(63)
as well as
H H H H H) 1 —coud/
x U (V +coxx" +¢ T oXy + Cyx B -0
( 0 1Yy 2 XYy 2yx') Ty (cocr — e3)u? + (co +c)u + 1
(64)

B. New Lemmas

Lemma 7. Let H and H” be two imperfect multi-user channel estimates as described
’ ’ -1 7 7 -1 .
Section Il. LetQ’ £ (HHH —i—ozIM> and Q" = (H;[H —|—ozIM> with @ > 0. Let

M
A € cM*M pe of uniformly bounded spectral norm with respect\fo Then,

7 52 + Y
1 'ey'HEy!” 0y %tl‘ (A) 52 CoCo < 0-0 0) a.s.

_ Vv - L 65
2 T (AQHTH'Q) 3010 (1-6)+ 159 0 (65)

with ¢y =1 — 0", ¢ &1 — 0", Q, defined as in Theorem 1, ang defined as

c’)06’52 52
6(i+6) [<1 B 5) + (1+6)]

Yy £ (66)
(1- st
Note that in the case wher&d = 1I,,, the result simplifies to
]- a.s.
Tt (QH"H"Q") — Y, == 0. (67)

Proof: We start by defining

H/H/H -1
Q= < i +ozIM) (68)
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with
H 2 (R b, R, . b (69)

We then define similarlyQ; andH/". Let us start by writing the simple equality

Q/ - Qo = Qo (QO_I - Q/_l) Ql (70)

B IK H/HH/
o (pt5 - )@ 1)

We can then replac€)’ using (71) to obtain
1
W tr (AQ/H/HH//Q//) (72)
1 TH T/ o~/ tr AQOQ,H/HH”Q” 1 My VT HTT (V/

= o tr (AQ,H"H"Q") + ( V) )—Wtr (AQH"H'QH"H"Q") (73)
=2+ Zy + Zs. (74)

We will now calculate separately each of the teffn Starting withZ; gives

Zy = % tr (AQ,H"H"Q") (75)
— i i ih//HQHAQ h/ (76)
M = M l o’%y
K
@ 1 1 hRQJAQ,R,
- M g M 1+ h”HQgh” (77)
® 1 i Vo tr (QUAQ,) (78)
M 1+ 4 tr( 7)
@ Z /COC// 1 tr Q//AQO (79)
TM4&Z 1+ 4 tr(Q”)
/ / 62 1 tl"
5 = 1 +6 ' (80)

where equality(a) follows from Lemma 2, equalityb) from Lemma 3, equality(c) from
Lemma 5, and equalityd) from the fundamental Theorem 1. The following calculati@me
very similar and the same lemmas are used in the same way Isaictvé will omit to mention

explicitly the lemmas used.



18

Turning to Z3 gives

Z3 — _% tr (AQOH/HH/Q/H/HH//Q//) (81)
_ HA/xy/Hyy' ! /
—W Ztr (R QHH'Q"AQ ) (82)
/=1
1 i tr (h'QHTH"Q"AQ,h) ©3)
M 1+ LhIQ)h,
W 1 i r (hIQHTH"Q; AQOhZ 1 i r (RPQHTH"Q/h/hNQ/AQ,h))
M3 £ 1+ LhHQ)R, (1+ Lr1Q)h)) (1+ LRMQRY)
(84)
= Zy+ Zs (85)

with equality (a) obtained using Lemma 2. We also split the calculation in twd atart by

calculatingZ, as follows.

g _ 1 N~ (b QHHQUAQ.RY) i r (A QU QUAQLRY) o
UM T hQh I+ QR
K HEY! K 1
t H;'H/Q/AQ, t 'AQ,
_ L 0 (QEHPHQIAQ) Zm Qg (QAQ) gy,
M= 1+ 4t (Q) 1+ g7 tr(Q)
K e (QHTH'Q'AQ,) K ﬁ% H(Q) 4 t1(Q'AQ,) )
M 1+itr<Q/> VAR 1+;ftr<Q/>
7 52 1 t
~ g, w5 tr(A) (89)

B 1+5



19

Finally, it remains to calculate’; as

1 h/H H/HH// //h h//H A oh/
Z5xiﬁi§: e (f%é) e .
—i h%HQZH/HH//Qghgh//HQ AQohg)
M* (14 6)
1 K tr (h/HQgh/Hh”Q h//h//HQ AQOh/)
" M* ; (1+6)° 1)
i 37 tr (QUHIHIQY) g tr (QFAQy)
(140)°
1 Q) &t (Q)) &t (QUAQ,)
+M; € (1+5) (92)
LK, et (QUHAHIQY) Lt (QuAQ,) K 0% tr (Q,AQ,)
= —;CO (1107 t coCh 15 op (93)

! " 1t (QHAH)Q)) 6L tr (A 1 Vhpotss tr (A (94)
= g% (1+6)° "3 (1+ ) '
Adding all the Z; gives

1 / ! !
B (AQH"H"Q") (95)
_(LVARE SAd # s (QUEPHQY) & /! 6)
T\B 1+ 81496 B(1+46) MR Af
feochd? L tr (A 0 (14 \/chch 7= tr (QHIH/QY)
o Vool Ty A Gy (1 Ve ) (97)

(14 9)

It remains then to calculate the cade= I to conclude the calculation. In that case, we have

(1 _ 76060352 2) Lo (QEHQY) = ¥ ch0” {( 5 } 98)

(1+49)

(14 6)°) M? B(1+9) (1+9)
Hence,
w/cf)cg(? 2
1 /H/HH// ny A( 1+5 |:(1 B 6) + (ICST(S)} _ Y 99
Wtr (Q Q ) =Y, (99)

(1 . chey 62 )
B(1+6)2

Inserting (99) inside (98) concludes the proof. [ |
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Lemma 8. Let L,R, A € cM*M pe of uniformly bounded spectral norm with respectMo
and let A be invertible. Letx,y have i.i.d. complex entries of zero mean, finite variance and

finite 8th order moment and be mutually independent as well as indigre of L, R, A. Then

we have:
x"TLA7'Rx 1+Clu+ 5 u
T = iR — CouULU Aupug——o
M PROPOTRIRT s T R 1y
x"LA- 'Ry N u 1+ cu
il A S C1CoULU — Couru
i LR+ CLCULUR T — CULUR—
with

A = A + coxx + c1yy™? + eoxy™ 4 coyxt

with ¢y + ¢; = 1 and ¢pc; — 3 = 0, and

A tr(ATY) » tr(LATY) » tr(A7'R) » tr(LA7'R)
U—iM ) UL—iM ) UR—iM ) ULR—iM .
Proof: Focusing first on the first equality gives
1 1 _
MXHLA_lRX — MXHLA_lRX (100)
1 _ _
= MXHLA_I (A—A)A'Rx (101)
1 _
= —WXHLA_l (coxx™ + cryy™ + coyx" + coxy™) AT Rx (102)
o) 1 tr (AR
(x) i (COXHLA_lx + CQXHLA_ly) % (103)
o (LAt (AR) 1+ TR L ot (LA) uw (AR) u(A7) (10
= —CO A1 C2 : A_1
MM B T MM G

where equality(a) is obtained from using Lemma 4 and Lemma 3 and equélityollows from
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Lemma 6. Similarly, we turn to the second equality to write

%XHLA_lRy — %XHLA_lRy (105)
1 _ _
:MXHLA_I (A—A)A 'Ry (106)
1 -
- WXHLA_I (coxx" + c1yy™ + coyx" + coxy™) A”'Ry (107)
o) 1 tr (A~'R
9 7 (eix"LA™ "y + ,x"LA'x) % (108)
o, cEA AR ) e@A)e@A R)a G
=169 — — (2 A
M M 1+tr(;t[ 1) M M 1+tr(?4 1)
where equality(a) is obtained from using Lemma 4 and Lemma 3 and equéityollows from
Lemma 6. [ |
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