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Abstract

Obtaining accurate Channel State Information (CSI) at the transmitters (TX) is critical to many

cooperation schemes such as Network MIMO, Interference Alignment etc. Practical CSI feedback and

limited backhaul-based sharing inevitably creates degradations of CSI which arespecificto each TX,

giving rise to adistributed form of CSI. In the Distributed CSI (D-CSI) broadcast channel setting,

the various TXs design elements of the precoder based on their individual estimates of the global

multiuser channel matrix, which intuitively degrades performance when compared with the commonly

used centralized CSI assumption. This paper tackles this challenging scenario and presents a first analysis

of the rate performance for the distributed CSI multi-TX broadcast channel setting, in the large number

of antenna regime. Using Random Matrix Theory (RMT) tools, we derive deterministic equivalents

of the Signal to Interference plus Noise Ratio (SINR) for thepopular regularized Zero-Forcing (ZF)

precoder, allowing to unveil theprice of distributednessfor such cooperation methods.

Index Terms

Multiuser channels, Cooperative communication, MIMO, Feedback Communications

I. INTRODUCTION

Network (or Multi-cell) MIMO methods, whereby multiple interfering TXs share user mes-

sages and allow for joint precoding, are currently considered for next generation wireless net-

works [1]. With perfect message and CSI sharing, the different TXs can be seen as a unique

http://arxiv.org/abs/1502.03654v1
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virtual multiple-antenna array serving all RXs in a multiple-antenna broadcast channel (BC)

fashion, and well known precoding algorithms from the literature can be used [2]. Joint precoding

however requires the feedback of an accurate multi-user CSIto each TX in order to achieve

near optimal sum rate performance [3].

Although the case of imperfect, noisy or delayed, CSI has been considered in past work [3],

[4], literature typically assumescentralizedCSIT, i.e., that the precoding is done on the basis of

a single imperfect channel estimate which is common at every TX. Although meaningful in the

case of a broadcast with a single transmit device, this assumption can be challenged when the

joint precoding is carried out across distant TXs linked by heterogeneous and imperfect backhaul

links or having to communicate without backhaul (over the air) among each other, as in the case

of direct device-to-device cooperation. In these cases, itis expected that the CSI exchange will

introduce further delay and quantization noise. It is thus practically relevant for joint precoding

across distant TXs to consider a CSI setting where each TX receives itsown channel estimate.

This setting is referred to as distributed CSI (D-CSI) in therest of this paper.

From an information theoretic perspective, the study of transmitter cooperation in the D-CSI

broadcast channel setting raises several intriguing and challenging questions.

First, the capacity region of the broadcast channel under a general D-CSI setting is unknown. In

[5], a rate characterization at high SNR is carried out usingDoF analysis for the two transmitters

scenario. This study highlighted the severe penalty causedby the lack of a consistent CSI shared

by the cooperating TXs from a DoF point of view, when using a conventional precoder. It was

also shown that classical (regularized) robust precoders [6] do not restore the DoF. Although a

new DoF-restoring decentralized precoding strategy was presented in [5] for the two TXs case,

the general case of more than2 TXs remains open. At finite SNR, the problem of designing

precoders that optimally tackle the D-CSI setting is open for any number of TXs. The use of

conventional linear precoders that are unaware of the D-CSIstructure is expected to yield a loss

with respect to a centralized (even imperfect) CSI setting.Yet the quantifying of this loss in the

finite SNR region has not been addressed previously. This is precisely the question addressed

by this paper.

We study the average rate achieved when the number of transmit antennas and the number of

receive antennas jointly grow large with a fixed ratio, thus allowing to use efficient tools from

the field of RMT. Although RMT has been applied in many works tothe analysis of wireless
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communications [See [7]–[11] among others], its role in helping to analyze cooperative systems

with distributed information has not been highlighted before.

Our main contribution consists in providing a deterministic equivalent for the average rate

per user in a D-CSI setting where each TX receives itsown estimate of the global multi-user

channel matrix with the quality (in a statistical sense) of this estimate varying from TX to TX.

II. SYSTEM MODEL

A. Transmission Model

We study a so-called Network MIMO transmission wheren TXs serve jointlyK receivers

(RXs). In order to simplify our analysis we restrict ourselves to linear precoding structures. Each

TX is equipped withMTX antennas such that the total number of transmit antennas is denoted by

M , nMTX. Every RX is equipped with a single-antenna. We assume that the ratio of transmit

antennas with respect to the number of users is fixed and givenby

β ,
M

K
≥ 1. (1)

We further assume that the RXs have perfect CSI so as to focus on the imperfect CSI feedback

and exchange among the TXs. We consider that the RXs treat interference as noise. The channel

from then TXs to theK RXs is represented by the multi-user channel matrixH ∈ C
K×M .

The transmission is then described as










y1
...

yK











= Hx+ η =











hH
1 x
...

hH
Kx











+











η1
...

ηK











(2)

whereyi ∈ C is the signal received at thei-th RX, hH
i = eH

i H ∈ C
1×M is the channel from

all transmit antennas to RXi, andη , [η1, . . . , ηK ]
T ∈ C

K×1 is the normalized Gaussian noise

with its elements i.i.d. asCN (0, 1).

The transmitted multi-user signalx ∈ C
M×1 is obtained from the symbol vectors , [sT

1 , . . . , s
T
K ]

T ∈
C
K×1 with its elements i.i.d.NC(0, 1) as

x = Ts =
[

t1, . . . , tK

]











s1
...

sK











(3)
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with T ∈ C
M×K being themulti-userprecoder andti , Tei ∈ C

M×1 being the beamforming

vector used to transmit to RXi. We consider for clarity the sum power constraint‖T‖2F = P .

Our main figure-of-merit is the average rate per user

R ,
1

K

K
∑

k=1

E [log2 (1 + SINRk)] (4)

whereSINRk denotes the Signal-to-Interference and Noise Ratio (SINR)at RX k and is defined

as

SINRk ,

∣

∣hH
k tk
∣

∣

2

1 +
∑K

ℓ=1,ℓ 6=k |hH
k tℓ|

2 . (5)

B. Distributed CSIT Model

In the distributed CSIT model studied here, each TX receivesits own CSI based on which

it designs its transmission parameters without any additional communication to the other TXs.

Specifically, TXj receives the multi-user channel estimateĤ(j) ∈ C
K×M and designs its transmit

coefficientsxj ∈ C
MTX×1 solely as a function of̂H(j). For ease of exposition, we assume that

the imperfect multi-user channel estimate is modeled by

Ĥ(j) ,

√

1− (σ(j))2H+ σ(j)∆(j) (6)

with ∆(j) ∈ C
K×M having its elements i.i.d.NC(0, 1). We then denote by(ĥ(j)

k )H the kth row

of Ĥ(j), i.e., the estimate at TXj of the channel from all the transmit antennas to RXk. The

approach described in this work extends to a more general information structure allowing for a

non uniform description quality at each TX as well as correlation in the multi-user channel. The

calculations will be provided in an upcoming work.

Remark1. The D-CSI model encompasses the imperfect centralized CSI model by takingn =

1.

C. Regularized Zero Forcing with Distributed CSIT

We address the performance of a classical MISO broadcast precoder, namelyregularized ZF

[6], [12], when faced with distributed CSIT in the large system regime. Hence, the precoder

designed at TXj is assumed to take the form

T
(j)
rZF ,

(

Ĥ(j)(Ĥ(j))H +MαIM

)−1

Ĥ(j)

√
P√
Ψ

(7)
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with regularization factorα > 0. We also define

C(j) ,
Ĥ(j)(Ĥ(j))H

M
+ αIM (8)

such that the precoder at TXj can be rewritten as

T
(j)
rZF =

1

M
(C(j))−1Ĥ(j)

√
P√
Ψ(j)

. (9)

The scalarΨ(j) corresponds to the power normalization at TXj. Hence, it holds that

Ψ(j) = ‖
(

Ĥ(j)(Ĥ(j))H +MαIM

)−1

Ĥ(j)‖2F. (10)

Upon concatenation of all TX’s precoding vectors, the effective global precoder denoted by

TDCSI
rZF , is equal to

TDCSI
rZF ,















EH
1T

(1)
rZF

EH
2T

(2)
rZF

...

EH
KT

(K)
rZF















(11)

whereEH
j ∈ C

MTX×M is defined as

EH
j ,

[

0MTX×(j−1)MTX
IMTX

0MTX×(n−j)MTX

]

. (12)

We furthermore denote thekth column ofTDCSI
rZF (used to serve RXk) by tDCSI

rZF,k.

Although the finite SNR rate analysis under the precoding structure (11) and the distributed

CSI model in (6) is challenging in the general case because ofthe dependency of one user

performance on a all channel estimates, some useful insights can be obtained in the large antenna

regime, as shown below.

III. D ETERMINISTIC EQUIVALENT OF THE SINR

The Stieltjes transform has proven very useful many times inthe analysis of wireless networks

[9], [10] and we will also follow this approach. Hence, our approach will be based on the

following fundamental result.

Theorem 1. [10], [13] Consider the resolvent matrixQ ,

(

H
H
H

M
+ αIM

)−1

with the matrixH

defined according to Section II andα > 0. Then the equation

x =
1

M
tr

(

(

αIM +
IM

β (1 + x)

)−1
)

(13)
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admits a unique fixed point which we will denote byδ in the following. Let

Qo ,

(

αIM +
IM

β (1 + δ)

)−1

(14)

and let the matrixU be any matrix with bounded spectral norm. Then,

1

M
tr (UQ)− 1

M
tr (UQo)

a.s.−−−−−→
K,M→∞

0. (15)

The fixed pointδ can easily be obtained by an iterative algorithm given in [9], [11] and

recalled in Appendix A for the sake of completeness. Using this theorem and the definition ofδ,

we can now state our main result.

Theorem 2. Considering the D-CSI BC described in Section II, thenSINRk − SINRo
k → 0 with

SINRo
k defined as

SINRo
k ,

1
n

∑n

j=1

√

1− (σ(j))2 δ
1+δ

Iok +
Γo

P

(16)

with Iok ∈ R given by

Iok ,

n
∑

j=1

Γo

(1 + δ)2n2

[

n+ 2δ
(

−1 + n + (σ(j))2
)

+δ2
(

−1 + n+ (σ(j))2
)

+ δ4
(

−(σ(j))6 + (σ(j))8
)

+(σ(j))5
√

1− (σ(j))2
√

(σ(j))2 − (σ(j))4
]

+

n
∑

j=1

n
∑

j′=1,j′ 6=j

Γo
j,j′δ

(1 + δ)2n2

[

−2 + (σ(j))2 + (σ(j′))2

+δ
(

−1 + (σ(j))2 + (σ(j′))2
)]

(17)

while Γo ∈ R andΓo
j,j′ ∈ R are respectively defined as

Γo ,

δ2

β(1+δ)

[

(1− δ) + δ2

(1+δ)

]

(

1− 1
β

δ2

(1+δ)2

) (18)

Γo
j,j′ ,

√

(1−(σ(j))2)(1−(σ(j′))2)δ2

β(1+δ)

[

(1− δ) + δ2

(1+δ)

]

(

1− 1
β
(1− (σ(j))2) (1− (σ(j′))2) δ2

(1+δ)2

) . (19)
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IV. PROOF OFTHEOREM 2

Our calculation is built upon results from both [9] and [10].We also make extensive use of

classical RMT lemmas recalled in Appendix A. Note that Lemma7 and Lemma 8 are novel. In

particular, Lemma 7 extends [10, Lemma15] and is an interesting result in itself.

During the calculation we use the notationx ≍ y to denote thatx− y
a.s.−−−−−→

K,M→∞
0.

A. Deterministic Equivalent forΨ(j)

We start by finding a deterministic equivalent forΨ(j). In fact, a deterministic equivalent for

Ψ(j) is provided in [9]. However, it can also be obtained using Lemma 7 withσ(j) = σ(j′) = 0,

which gives

Ψ(j) ≍ Γo. (20)

Looking at the definition ofΓo in (18), it can be noted that, as expected, this deterministic

equivalent does not depend onσ(j).

B. Deterministic Equivalent forhH
k t

DCSI
rZF,k:

Turning to the desired signal at RXk, we can write

hH
k t

DCSI
rZF,k =

n
∑

j=1

1

M

√
P√
Ψ(j)

hH
kEjE

H
j (C

(j))−1ĥ
(j)
k (21)

(a)≍
√

P

Γo

n
∑

j=1

1
M
hH

kEjE
H
j (C

(j)
[k] )

−1ĥ
(j)
k

1 + 1
M
hH

k (C
(j)
[k] )

−1hk

(22)

(b)≍
√

P

Γo

n
∑

j=1

√

1− (σ(j))2
1
M
hH

kEjE
H
j (C

(j)
[k] )

−1hk

1 + 1
M
hH

k (C
(j)
[k] )

−1hk

(23)

(c)≍
√

P

Γo

n
∑

j=1

√

1− (σ(j))2
1
M

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

1 + 1
M

tr
(

(C
(j)
[k] )

−1
) (24)

(d)≍
√

P

Γo

1

n

n
∑

j=1

√

1− (σ(j))2
δ

1 + δ
(25)

where we have defined

C
(j)
[k] ,

Ĥ
(j)
[k] (Ĥ

(j)
[k] )

H

M
+ αIM , ∀j (26)
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with

(Ĥ
(j)
[k] )

H ,

[

ĥ
(j)
1 . . . ĥ

(j)
k−1 ĥ

(j)
k+1 . . . ĥ

(j)
K

]

, ∀j. (27)

Equality (a) follows then from Lemma 2 and the use of the deterministic equivalent derived

for Ψ(j), (b) from Lemma 4,(c) from Lemma 3,(d) from Lemma 5 and the fundamental

Theorem 1. Note thatδ is defined in Theorem 1. It follows then directly that

∣

∣hH
k t

DCSI
rZF,k

∣

∣

2 ≍ P

Γo

(

1

n

n
∑

j=1

√

1− (σ(j))2

)2
δ2

(1 + δ)2
. (28)

C. Deterministic Equivalent for the Interference Term

Our first step is to write explicitly the interference term using the definition ofTDCSI in (18)

and replaceΨ(j) by its deterministic equivalent.

Ik ,

K
∑

ℓ=1,ℓ 6=k

|hH
k t

DCSI
rZF,ℓ|2 (29)

= hH
kT

DCSI
rZF (TDCSI

rZF )Hhk − hH
k t

DCSI
rZF,k(t

DCSI
rZF,k)

Hhk (30)

=
1

M2

n
∑

j=1

n
∑

j′=1

P√
Ψ(j)

√
Ψ(j′)

hH
kEjE

H
j (C

(j))−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk (31)

≍ P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk (32)

+
P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j

(

(C(j))−1 − (C
(j)
[k] )

−1
)

(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk. (33)

To obtain a deterministic equivalent for the second summation in (33) we use the following

relation

(C(j))−1 − (C
(j)
[k] )

−1 = (C(j))−1
(

C
(j)
[k] −C(j)

)

(C
(j)
[k] )

−1 (34)

=−(C(j))−1
(

c
(j)
0 hkh

H
k +c

(j)
1 δ

(j)
k (δ

(j)
k )H+c

(j)
2 δ

(j)
k hH

k +c
(j)
2 hk(δ

(j)
k )H

)

(C
(j)
[k] )

−1

(35)
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Inserting (35) in (33) yields

Ĩk

≍ P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

− P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j))−1
[

hkc
(j)
0 hH

k

]

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

− P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j))−1
[

δ
(j)
k c

(j)
1 (δ

(j)
k )H

]

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

− P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j))−1
[

δ
(j)
k c

(j)
2 hH

k

]

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

− P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j))−1
[

hkc
(j)
2 (δ

(j)
k )H

]

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

(36)

, A− B − C −D −E. (37)

We proceed by calculating each of the5 terms in (37) successively, using in particular Lemma 8:

A =
P

Γo

1

M2

n
∑

j=1

n
∑

j′=1

hH
kEjE

H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk (38)

≍ P

Γo

n
∑

j=1

n
∑

j′=1

tr
(

Ej′E
H
j′EjE

H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

− c
(j′)
0

tr
(

EjE
H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

1 + c
(j′)
1

tr

(

(C
(j′)
[k]

)−1

)

M

1 +
tr
(

(C
(j′)
[k]

)−1
)

M

+ (c
(j′)
2 )2

tr
(

EjE
H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

tr

(

(C
(j′)
[k]

)−1

)

M

1 +
tr
(

(C
(j′)
[k]

)−1
)

M

.

(39)

From the unitary invariance of the distribution ofH and∆(j), it can be shown that
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tr
(

EjE
H
j (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2
=

1

n

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

(40)

≍ 1

n
Γo
j,j′ (41)

where the last equality follows directly from applying Lemma 7. Inserting (41) in (39) and using

the fundamental Theorem 1 yields

A ≍ P

Γo

n
∑

j=1

n
∑

j′=1

Γo

n
1j=j′ − c

(j′)
0

Γo
j,j′

n

δ

n

1 + c
(j′)
1 δ

1 + δ
+ (c

(j′)
2 )2

Γo
j,j′

n

δ

n

δ

1 + δ
. (42)

We then proceed similarly for the remaining4 terms:

B =
P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

[

hH
kEjE

H
j (C

(j))−1hk

]

· c(j)0 ·
[

hH
k (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

]

(43)

≍ P

Γo

n
∑

j=1

n
∑

j′=1

c
(j)
0





tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

1 + c
(j)
1

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M





·
[tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1Ej′E
H
j′

)

M2

− c
(j′)
0

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

1 + c
(j′)
1

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M

+ (c
(j′)
2 )2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

tr(C−1)
M

1 + tr(C−1)
M

]

(44)

≍ P

Γo

n
∑

j=1

n
∑

j′=1

c
(j)
0

δ

n

1 + c
(j)
1 δ

1 + δ

(

Γo
j,j′

n
− c

(j′)
0 Γo

j,j′
δ

n

1 + c
(j′)
1 δ

1 + δ
+ (c

(j′)
2 )2Γo

j,j′
δ

n

δ

1 + δ

)

. (45)
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C =
P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

[

hH
kEjE

H
j (C

(j))−1δ
(j)
k

]

·c(j)1 ·
[

(δ
(j)
k )H(C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

]

(46)

=
P

Γo

1

M3

n
∑

j=1

[

hH
kEjE

H
j (C

(j))−1δ
(j)
k

]

· c(j)1 ·
[

(δ
(j)
k )H(C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HH
(j)
[k] (C

(j))−1EjE
H
j hk

]

(47)

≍ P

Γo

n
∑

j=1

c
(j)
1



−c
(j)
2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M





·
[

c
(j)
1 c

(j)
2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j)
[k] (C

(j)
[k] )

−1
)

M2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M

− c
(j)
2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j)
[k] (C

(j)
[k] )

−1
)

M2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

1 + c
(j)
1

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M

]

(48)

≍ P

Γo

n
∑

j=1

c
(j)
1 (−1)c

(j)
2

δ

n

δ

1 + δ

(

c
(j)
1 c

(j)
2 Γo δ

n

δ

1 + δ
− c

(j)
2 Γo δ

n

1 + c
(j)
1 δ

1 + δ

)

. (49)

D =
P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

[

hH
kEjE

H
j (C

(j))−1δ
(j)
k

]

· c(j)2 ·
[

hH
k (C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

]

≍ P

Γo

n
∑

j=1

n
∑

j′=1

c
(j)
2



(−1)c
(j)
2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M





·
[tr
(

Ej′E
H
j′(C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

− c
(j′)
0

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

1 + c
(j′)
1

tr(C−1)
M

1 + tr(C−1)
M

+ (c
(j′)
2 )2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j′)
[k] (C

(j′)
[k] )

−1
)

M2

tr
(

Ej′E
H
j′(C

(j′)
[k] )

−1
)

M

tr

(

(C
(j′)
[k]

)−1

)

M

1+
tr
(

(C
(j′)
[k]

)−1
)

M

]

(50)

≍ P

Γo

n
∑

j=1

n
∑

j′=1

c
(j)
2 (−1)c

(j)
2

δ

n

δ

1 + δ

(

Γo
j,j′

n
− c

(j′)
0 Γo

j,j′
δ

n

1 + c
(j′)
1 δ

1 + δ
+ (c

(j′)
2 )2Γo

j,j′
δ

n

δ

1+δ

)

. (51)
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E =
P

Γo

1

M3

n
∑

j=1

n
∑

j′=1

[

hH
kEjE

H
j (C

(j))−1hk

]

·c(j)2 ·
[

(δ
(j)
k )H(C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C

(j′))−1Ej′E
H
j′hk

]

(52)

=
P

Γo

1

M3

n
∑

j=1

[

hH
kEjE

H
j (C

(j))−1hk

]

·c(j)2 ·
[

(δ
(j)
k )H(C

(j)
[k] )

−1(Ĥ
(j)
[k] )

HH
(j)
[k] (C

(j))−1EjE
H
j hk

]

(53)

≍
n
∑

j=1

c
(j)
2





tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

1 + c
(j)
1

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M





·
[

c
(j)
1 c

(j)
2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j)
[k] (C

(j)
[k] )

−1
)

M2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M

− c
(j)
2

tr
(

(C
(j)
[k] )

−1(Ĥ
(j)
[k] )

HP[k]Ĥ
(j)
[k] (C

(j)
[k] )

−1
)

M2

tr
(

EjE
H
j (C

(j)
[k] )

−1
)

M

1 + c
(j)
1

tr
(

(C
(j)
[k]

)−1
)

M

1 +
tr
(

(C
(j)
[k]

)−1
)

M

]

(54)

≍
n
∑

j=1

c
(j)
2

δ

n

1 + c
(j)
1 δ

1 + δ

(

c
(j)
1 c

(j)
2 Γo δ

n

δ

1 + δ
− c

(j)
2 Γo δ

n

1 + c
(j)
1 δ

1 + δ

)

. (55)

The final expression is obtained after inserting all the deterministic equivalents derived inside the

interference expression (37). The compact expression of the theorem is obtained after algebraic

manipulations using the software Mathematica.

Remark2. It is important to differentiate the casesj = j′ and j 6= j′ when computingΓo
j,j′.

Indeed, in the casej = j′, it holds

Γo
j,j′ = Γo. (56)

V. SIMULATION RESULTS

We now verify using Monte-Carlo simulations the accuracy ofthe asymptotic expression

derived in Theorem 2. We consider a network consisting ofn = 3 TXs with a sum power

constraint given byP = 10 dB andα = 1/P . We focus in this work on the case of(σ(j))2 =

0.1, ∀j = 1, . . . , n so as to emphasize theprice of distributedness.

In Fig. 1, we show the rate per user as a function of the number of users for a square

setting whereM = nMTX = K (i.e., β = 1) in the distributed CSIT configuration where
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Fig. 1: Average rate per user as a function of the number of users K with (σ(j))2 = 0.1, ∀j.

(σ(j))2 = 0.1, ∀j = 1, . . . , n. For comparison purpose, we also show the rate per user obtained

in the case of imperfect centralized CSIT with(σCCSI)2 = 0.1 and with perfect CSIT (i.e.

(σCCSI)2 = 0 or equivalently(σ(j))2 = 0, ∀j). As note earlier, a deterministic equivalent for the

centralized case is obtained usingn = 1 in Theorem 2.

The large system deterministic equivalents are shown to be useful with just20 to 30 users

and antennas. In addition, the cost of having distributed information is also highlighted by the

losses compared to the centralized configuration. This shows the necessity to take properly

into account the CSI configuration when designing the feedback scheme and the precoder.

Considering the same network configuration, we show in Fig. 2the average rate per user in

terms of the regularization factorα. Quite interestingly it appears that the optimal regularization
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Fig. 2: Average rate per user as a function ofα for (σ(j))2 = 0.1, ∀j.

factors (represented with the * marker) are not the same in the centralized and distributed CSI

settings.

VI. CONCLUSION

We have studied in this work the joint transmission using regularized ZF in a distributed CSI

configuration. Using RMT tools, an analytical expression has been derived to approximate the

average rate per user. This expression becomes asymptotically exact in the large system limit

where the number of transmit antennas and the number of receive antennas go to infinity at the

same pace. This new deterministic equivalent reveals the cost related to not just CSI feedback

limitation, but also backhaul sharing limitations and can be helpful to design more robust systems.

The extensions to more general channel and CSI models are challenging and subject to ongoing
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work. Note that the price of distributedness is evaluated here for a conventional precoder. This

further motivates the development of novel precoding schemes that are more suitable to the

distributed CSI setting.

APPENDIX

A. Classical Lemmas from the Literature

Lemma 1 (Adapted from [9], [11]). Let α > 0 and (δk)k≥0 be the sequence defined as










δ0 =
1
α

δk = 1
M

tr
(

αIM + 1
β(1+δk−1)

IM

)−1

for k ≥ 1
. (57)

Thenδk
k→∞−−−→ δ, with δ being by construction a fixed point of(57).

Lemma 2 (Resolvent Identities [10], [11]). Given any matrixH ∈ C
K×M , let hH

k denote its

kth row andHk ∈ C
(K−1)×M denote the matrix obtained after removing thekth row from

H. The resolvent matrices ofH and Hk are denoted byQ ,
(

HHH+ αIM
)−1

and Qk ,
(

HH
kHk + αIM

)−1
, with α > 0, respectively. It then holds that

Q = Qk −
1

M

Qkhkh
H
kQk

1 + 1
M
hH

kQkhk

(58)

and

hH
kQ =

hH
kQk

1 + 1
M
hH

kQkhk

. (59)

Lemma 3 ( [10], [11]). Let (AN)N≥1,AN ∈ C
N×N be a sequence of matrices such that

lim sup ‖AN‖ < ∞, and (xN)N≥1,xN ∈ C
N×1 be a sequence of random vectors of i.i.d. entries

of zero mean, unit variance, and finite eighth order moment independent ofAN . Then,

1

N
xH
NANxN − 1

N
tr (AN)

a.s.−−−→
N→∞

0. (60)

Lemma 4 ( [10], [11]). Let (AN)N≥1,AN ∈ C
N×N be a sequence of matrices such that

lim sup ‖AN‖ < ∞, and xN ,yN be random, mutually independent with i.i.d. entries of zero

mean, unit variance, finite eighth order moment, and independent ofAN . Then,

1

N
xH
NANyN

a.s.−−−→
N→∞

0. (61)
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Lemma 5 ( [9], [11]). LetQ andQk be as given in Lemma 2. Then, for any matrixA, we have

tr (A (Q−Qk)) ≤ ‖A‖2. (62)

Lemma 6 ( [9], [11]). Let U,V,Θ be of uniformly bounded spectral norm with respect to

N and let V be invertible. Further, definex , Θz and y , Θq where z, q ∈ C
N have

i.i.d. complex entries of zero mean, variance1/N and finite8th order moment and be mutually

independent as well as independent ofU,V. Definec0, c1, c2 ∈ R
+ such thatc0c1− c22 > 0, and

let u , 1
N
tr (ΘV−1) and u′ , 1

N
tr (ΘUV−1). Then we have:

xHU
(

V + c0xx
H + c1yy

H + c2xy
H + c2yx

H
)−1

x− u′ (1 + c1u)

(c0c1 − c22)u
2 + (c0 + c1)u+ 1

→ 0

(63)

as well as

xHU
(

V + c0xx
H + c1yy

H + c2xy
H + c2yx

H
)−1

y − −c2uu
′

(c0c1 − c22)u
2 + (c0 + c1)u+ 1

→ 0

(64)

B. New Lemmas

Lemma 7. Let H′ and H′′ be two imperfect multi-user channel estimates as describedin

Section II. LetQ′ ,

(

H′HH′

M
+ αIM

)−1

and Q′′ ,

(

H′′HH′′

M
+ αIM

)−1

with α > 0. Let

A ∈ C
M×M be of uniformly bounded spectral norm with respect toM . Then,

1

M2
tr
(

AQ′H′HH′′Q′′
)

−
1
M

tr (A) δ2
√

c′0c
′′
0

β(1 + δ)



(1− δ) +

(

δ2 +
√

c′0c
′′
0Y0

)

(1 + δ)





a.s.−−→ 0 (65)

with c′0 , 1− σ′2, c′′0 , 1− σ′′2, Qo defined as in Theorem 1, andY0 defined as

Y0 ,

√
c′0c

′′

0 δ
2

β(1+δ)

[

(1− δ) + δ2

(1+δ)

]

(

1− 1
β
c′0c

′′
0

δ2

(1+δ)2

) . (66)

Note that in the case whereA = IM , the result simplifies to

1

M2
tr
(

Q′H′HH′′Q′′
)

− Y0
a.s.−−→ 0. (67)

Proof: We start by defining

Q′
ℓ ,

(

H′
ℓH

′H
ℓ

M
+ αIM

)−1

(68)
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with

H′H
ℓ ,

[

h′
1 . . . h′

ℓ−1 h′
ℓ+1 . . . h′

K

]

. (69)

We then define similarlyQ′′
ℓ andH′′H

ℓ . Let us start by writing the simple equality

Q′ −Qo = Qo

(

Q−1
o −Q′−1

)

Q′ (70)

= Qo

(

IK
β (1 + δ)

− H′HH′

M

)

Q (71)

We can then replaceQ′ using (71) to obtain

1

M2
tr
(

AQ′H′HH′′Q′′
)

(72)

=
1

M2
tr
(

AQoH
′HH′′Q′′

)

+
tr
(

AQoQ
′H′HH′′Q′′

)

M2β (1 + δ)
− 1

M3
tr
(

AQoH
′HH′Q′H′HH′′Q′′

)

(73)

, Z1 + Z2 + Z3. (74)

We will now calculate separately each of the termZi. Starting withZ1 gives

Z1 =
1

M2
tr
(

AQoH
′HH′′Q′′

)

(75)

=
1

M

K
∑

ℓ=1

1

M
h′′H

ℓ Q′′AQoh
′
ℓ (76)

(a)
=

1

M

K
∑

ℓ=1

1

M

h′′H
ℓ Q′′

ℓAQoh
′
ℓ

1 + 1
M
h′′H

ℓ Q′′
ℓh

′′
ℓ

(77)

(b)≍ 1

M

K
∑

ℓ=1

√

c′0c
′′
0

1
M

tr (Q′′
ℓAQo)

1 + 1
M

tr (Q′′
ℓ )

(78)

(c)≍ 1

M

K
∑

ℓ=1

√

c′0c
′′
0

1
M

tr (Q′′AQo)

1 + 1
M

tr (Q′′)
(79)

(d)≍ 1

β

√

c′0c
′′
0δ

2 1
M

tr (A)

1 + δ
. (80)

where equality(a) follows from Lemma 2, equality(b) from Lemma 3, equality(c) from

Lemma 5, and equality(d) from the fundamental Theorem 1. The following calculationsare

very similar and the same lemmas are used in the same way such that we will omit to mention

explicitly the lemmas used.
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Turning toZ3 gives

Z3 = − 1

M3
tr
(

AQoH
′HH′Q′H′HH′′Q′′

)

(81)

= − 1

M3

K
∑

ℓ=1

tr
(

h′H
ℓ Q′H′HH′′Q′′AQoh

′
ℓ

)

(82)

= − 1

M3

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′HH′′Q′′AQoh

′
ℓ

)

1 + 1
M
h′H

ℓ Q′
ℓh

′
ℓ

(83)

(a)
= − 1

M3

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′HH′′Q′′

ℓAQoh
′
ℓ

)

1 + 1
M
h′H

ℓ Q′
ℓh

′
ℓ

+
1

M4

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′HH′′Q′′

ℓh
′′
ℓh

′′H
ℓ Q′′

ℓAQoh
′
ℓ

)

(

1 + 1
M
h′H

ℓ Q′
ℓh

′
ℓ

) (

1 + 1
M
h′′H

ℓ Q′′
ℓh

′′
ℓ

)

(84)

, Z4 + Z5 (85)

with equality (a) obtained using Lemma 2. We also split the calculation in two and start by

calculatingZ4 as follows.

Z4 = − 1

M3

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′H
ℓ H′′

ℓQ
′′
ℓAQoh

′
ℓ

)

1 + 1
M
h′H

ℓ Q′
ℓh

′
ℓ

− 1

M3

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓh
′
ℓh

′′H
ℓ Q′′

ℓAQoh
′
ℓ

)

1 + 1
M
h′H

ℓ Q′
ℓh

′
ℓ

(86)

= − 1

M3

K
∑

ℓ=1

tr
(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓAQo

)

1 + 1
M

tr (Q′
ℓ)

− 1

M

K
∑

ℓ=1

√

c′0c
′′
0

1
M

tr (Q′
ℓ)

1
M

tr (Q′′
ℓAQo)

1 + 1
M

tr (Q′
ℓ)

(87)

≍ −K

M

1
M2 tr

(

Q′H′HH′′Q′′AQo

)

1 + 1
M

tr (Q′)
− K

M

√

c′0c
′′
0

1
M

tr (Q′) 1
M

tr (Q′′AQo)

1 + 1
M

tr (Q′)
(88)

≍ −Z2 −
δ
√

c′0c
′′
0

β

δ2 1
M

tr (A)

1 + δ
. (89)
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Finally, it remains to calculateZ5 as

Z5 ≍
1

M4

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′HH′′Q′′

ℓh
′′
ℓh

′′H
ℓ Q′′

ℓAQoh
′
ℓ

)

(1 + δ)2
(90)

≍ 1

M4

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓH
′H
ℓ H′′

ℓQ
′′
ℓh

′′
ℓh

′′H
ℓ Q′′

ℓAQoh
′
ℓ

)

(1 + δ)2

+
1

M4

K
∑

ℓ=1

tr
(

h′H
ℓ Q′

ℓh
′H
ℓ h′′

ℓQ
′′
ℓh

′′
ℓh

′′H
ℓ Q′′

ℓAQoh
′
ℓ

)

(1 + δ)2
(91)

≍ 1

M

K
∑

ℓ=1

c′0c
′′
0

1
M2 tr

(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓ

)

1
M

tr (Q′′
ℓAQo)

(1 + δ)2

+
1

M

K
∑

ℓ=1

√

c′0c
′′
0

1
M

tr (Q′
ℓ)

1
M

tr (Q′′
ℓ )

1
M

tr (Q′′
ℓAQo)

(1 + δ)2
(92)

≍ 1

M

K
∑

ℓ=1

c′0c
′′
0

1
M2 tr

(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓ

)

1
M

tr (QoAQo)

(1 + δ)2
+

K

M

√

c′0c
′′
0

δ2 1
M

tr (QoAQo)

(1 + δ)2
(93)

≍ 1

β
c′0c

′′
0

1
M2 tr

(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓ

)

δ2 1
M

tr (A)

(1 + δ)2
+

1

β

√

c′0c
′′
0δ

4 1
M

tr (A)

(1 + δ)2
. (94)

Adding all theZi gives

1

M2
tr
(

AQ′H′HH′′Q′′
)

(95)

≍
(

1

β

√

c′0c
′′
0δ

2

1 + δ
− δ
√

c′0c
′′
0

β

δ2

1 + δ
+

c′0c
′′
0

1
M2 tr

(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓ

)

δ2

β (1 + δ)2
+

√

c′0c
′′
0δ

4

β (1 + δ)2

)

tr (A)

M
(96)

≍
√

c0c
′
0δ

2 1
M

tr (A)

β(1 + δ)



(1− δ) +
δ2
(

1 +
√

c′0c
′′
0

1
M2 tr

(

Q′
ℓH

′H
ℓ H′′

ℓQ
′′
ℓ

)

)

(1 + δ)



 (97)

It remains then to calculate the caseA = IK to conclude the calculation. In that case, we have
(

1− c′0c
′′
0δ

2

β (1 + δ)2

)

1

M2
tr
(

Q′H′HH′′Q′′
)

≍
√

c′0c
′′
0δ

2

β(1 + δ)

[

(1− δ) +
δ2

(1 + δ)

]

(98)

Hence,

1

M2
tr
(

Q′H′HH′′Q′′
)

≍

√
c′0c

′′

0 δ
2

β(1+δ)

[

(1− δ) + δ2

(1+δ)

]

(

1− c′0c
′′

0 δ
2

β(1+δ)2

) = Yo. (99)

Inserting (99) inside (98) concludes the proof.
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Lemma 8. Let L,R, Ā ∈ C
M×M be of uniformly bounded spectral norm with respect toM

and let Ā be invertible. Letx,y have i.i.d. complex entries of zero mean, finite variance and

finite 8th order moment and be mutually independent as well as independent ofL,R, Ā. Then

we have:

xHLA−1Rx

M
≍ uLR − c0uLuR

1 + c1u

1 + u
+ c22uLuR

u

1 + u

xHLA−1Ry

M
≍ uLR + c1c2uLuR

u

1 + u
− c2uLuR

1 + c1u

1 + u

with

A = Ā+ c0xx
H + c1yy

H + c2xy
H + c2yx

H

with c0 + c1 = 1 and c0c1 − c22 = 0, and

u ,
tr(Ā−1)

M
, uL ,

tr(LĀ−1)

M
, uR ,

tr(Ā−1R)

M
, uLR ,

tr(LĀ−1R)

M
.

Proof: Focusing first on the first equality gives

1

M
xHLA−1Rx− 1

M
xHLĀ−1Rx (100)

=
1

M
xHLA−1

(

Ā−A
)

Ā−1Rx (101)

= − 1

M2
xHLA−1

(

c0xx
H + c1yy

H + c2yx
H + c2xy

H
)

Ā−1Rx (102)

(a)≍ − 1

M

(

c0x
HLA−1x + c2x

HLA−1y
) tr

(

Ā−1R
)

M
(103)

(b)≍ −c0
tr
(

LĀ−1
)

M

tr
(

Ā−1R
)

M

1 + c1
tr(Ā−1)

M

1 +
tr(Ā−1)

M

+ c22
tr
(

LĀ−1
)

M

tr
(

Ā−1R
)

M

tr(Ā−1)
M

1 +
tr(Ā−1)

M

(104)

where equality(a) is obtained from using Lemma 4 and Lemma 3 and equality(b) follows from
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Lemma 6. Similarly, we turn to the second equality to write

1

M
xHLA−1Ry− 1

M
xHLĀ−1Ry (105)

=
1

M
xHLA−1

(

Ā−A
)

Ā−1Ry (106)

=− 1

M2
xHLA−1

(

c0xx
H + c1yy

H + c2yx
H + c2xy

H
)

Ā−1Ry (107)

(a)≍ − 1

M

(

c1x
HLA−1y + c2x

HLA−1x
) tr

(

Ā−1R
)

M
(108)

(b)≍c1c2
tr
(

LĀ−1
)

M

tr
(

Ā−1R
)

M

tr(Ā−1)
M

1 +
tr(Ā−1)

M

− c2
tr
(

LĀ−1
)

M

tr
(

Ā−1R
)

M

1 + c1
tr(Ā−1)

M

1 +
tr(Ā−1)

M

(109)

where equality(a) is obtained from using Lemma 4 and Lemma 3 and equality(b) follows from

Lemma 6.
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