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Abstract—We present a high-rate (n, k,d = n — 1)-MSR code such that the resulting network continues to satisfy the dat
with a sub-packetizaﬁon level thB:t is polynomial_in t_he dinension collection and node_repair properties defining a regemat
k of the code. While polynomial sub-packetization level was code. An alternative to function repair &act repair (ER)

achieved earlier for vector MDS codes that repair systemati d hich d ds that th | t node st
nodes optimally, no such MSR code construction is known. In under which one demands that the replacement node store

the low-rate regime (i. e., rates less than one-half), MSR de Precisely the same content as the failed node.
constructions with a linear sub-packetization level are asilable. A cut-set bound based on network-coding concepts, tells
But in the high-rate regime (i. e., rates greater than one-h#), ys that given a code parameter get k,d), the maximum

the known MSR code.colnstructions required a sub-packetizédn possible size of a data file under FR, is upper bounded [1] by
level that is exponential ink. In the present paper, we construct .

an MSR code ford = n — 1 with a fixed rate R = &2, ¢t > 2,

achieveing a sub-packetization levet = O(k"). The ctode allows B = Z min{a, (d —£+1)5}. 1)
help-by-transfer rgpair, i e., no co_mputations are neededt the =1
helper nodes during repair of a failed node. The above bound is tight since the existence of codes adigjevi

Index Terms—Distributed storage, regenerating codes, sub-

packetization, msr this bound has been established using network-coding argu-

ments related to multicasting. For fixed valueqofk, d, B),

the bound in[(lL) characterizes a tradeoff betweeand 3,

referred to as the Storage-Repair Bandwidth tradeoff. Wue t
In a distributed storage system, the data file comprisirgtremal points in the tradeoff are respectively, the mimim

of B data symbols drawn from a finite fieldl,, is encoded storage regenerating (MSR) and minimum bandwidth regener-

using an error-correcting code of block lengtrand the code ating (MBR) points which correspond to the points at which

symbols are stored in nodes of the storage network. A naivehe storage and repair bandwidth are respectively minichize

strategy aimed at achieving resilience against node &slis At MBR point, we have

to store multiple replicas of the same data. Given the massiv i

amount of data being stored, sophisticated codes such a@s Ree a = dB, B = ka— < >ﬂ, 2

Solomon (RS) codes with low storage overhead are being 2

employed in practice. However, the amount of data downloadd at MSR point, we have

required to repair a single node-failure is quite large fier RS

codes. The framework of regenerating codes was introduced a = (d-k+1)8 B = ke ®)

in [1] to address this problem. In afn, k, d)-regenerating |t is proved that MSR and MBR points are achievable by ER

code, a file comprised oB symbols from a finite field®, codes as well. The focus of the current paper is on ER MSR

is encoded into a set afa coded symbols and then storedodes and for convenience we simply refer to them as MSR

acrossn nodes in the network with each node storingoded c¢odes.

symbols. The parameter is termed as theub-packetization

level of the code. A data collector can download the dafh MSR Codes

by connecting to anyt nodes. In the event of node failure, The MSR codes can be considered as codes over a vector

node repair is accomplished by having the replacement naaphabeff,. with dimensionk. Since they tolerate any.—k)

connect to anyl nodes and download < o symbols from node-erasures, and they have a file siz8ct ko, MSR codes

each node withe < df < B. The quantityds is termed are Maximum-Distance-Separable (MDS) codes over the vec-

the repair bandwidth. Here one makes a distinction betweetor alphabetf,~. The combination of these two properties is

functional and exact repair. Bfunctional repair (FR), it is therefore called th&®1DS property of MSR codes. On the other

meant that a failed node will be replaced by a new nodend, MSR codes in addition to being vector MDS codes can

repair a failed node with the least possible repair bandwidt
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parametergn,k = n — 2,d = n — 1) are constructed using A codeword of an MSR code can be treated as an array of
Hadamard designs. Ir][4], high-rate MSR codes, known aize (o« x n). We first introduce an indexing for the rows and
zigzag codes, are constructed for= n — 1; here efficient columns (nodes and columns are often used interchangeably)
node-repair is guaranteed only in the case of systematiesiof the codeword array. L, = {0,1,...,¢— 1} denote a fi-

This was subsequently extended to include the repair ofypanhite field of sizeg, and a2-tuple (i, 6),i € {1,2,3}, 0 € F, is
nodes as well in[[5]. A construction for MSR codes with= used to index the columns. The rows are indexed by elements
n — 1 > 2k — 1 using techniques of interference alignment iz, y, z) from Fg wherez,y,z € F,. ThusC(z,y, z; (¢,0))
presented in[[6] and [7]. I [8], authors showed the existencepresents one code symbol from the codeword array at the
of MSR codes for any value dfn, k, d). intersection of the rowx, y, z) and the noddi, 6). In order

B. Our Approach On Sub-packetization and Contributions to describe the code, we first introduce the following notati

A parameter of interest for MSR codes is the amount of
sub-packetizationd«) required for a given value ofn, k, d).
The MSR constructions known as zigzag codes that allow ) o )
arbitrarily high rates required a sub-packetization letgit 0 denote a linear combination involving each of the scalars
is exponential ink. Later in [9], a vector MDS codes thatiN {a1,az; ..., a,} with non-zero coefficients. The notation is
repair systematic nodes was constructed achiewﬁgrfil 0b||v!ous to the _parfucular choice qf non-zero coefﬂcu_emts
wherer := n — k. Recently in [ID], another vector MDs the linear combmaﬂon. The code. is descrlbedqﬁypanty-
code that repairs systematic nodes optimally was proposdtfck constraints. Throughout this paper, the synibplis
satisfying an additional property known ascess-optimality. used with a dlﬁereqt meaning. The terms withirp aare not
The construction required = £ n [11], authors derived a connected by the binary operater but by thed operator as

lower bound on the sub-packetization in termskptindr as defined in[(#). For everyz, y, 2) € o

n

a1®a2@~~~@an::2q.ai, ¢i #0, Vi € [n] (4)

=1

given below S Clayz(L0) & 3 Clay, = (2,0) @
2log, a(log(L) a+1)+1 > k. 0eF, 0eF,

Earlier in [12], authors constructed a vector MDS code with Z C(z,y,2(3,0) = 0, (5)

rate R = % requiring anx that is polynomial ink. They could 9cF,

also achieve polynomiak for any fixed rate in the regime

f% < rll? <1 Holweve_r, thesfe cqg:esfwere also I.imited(:m:githe Cla—Ay,z (L) & Cla,y—A7,2(2,y) @
act that optimal repair was feasible for systematic co

Quite similar to the approach in[12], we also restrict oune Cla,y,2 - 8:(3,2)) @ Z Cla,y,2:(1,0)) &
to the family of MSR codes with a fixed rafe = %,t > 2. 0k,
It is worthwhile to remark at this point that the family of ) ) _ *
Product-Matrix MSR codes [2] with rate restricted By< 1 QEZF Cla,y,2(2.6)) @OEZF Clay#(3,60) = 0, Ack,
required only a linear sub-packetization level. In the pres ! ! (6)
paper, we construct @, k,d = n—1)-MSR code with a fixed The parity-check constraint if](5) is referred to as the-
rate R = 151 wheret > 2 is an integer parameter. The cod@arity, and the that in[{6) is referred to as theparity. It can
will have a = (%)t To the best of our knowledge, these arbe observed that the first three terms in thgarity equations
the first MSR constructions that achieve a sub-packetizatiare entries that do not belong to the y, z)-row. These entries
level that is polynomial irk. These codes are help-by-transfeare referred to as thehifted entries. What remains is the
codes, by which we mean that the helper nodes need notidentification of coefficients in these parity-check coaistts
any computation during the repair of a failed node. so that the MDS property holds. Instead of constructingehes
coefficients explicitly, we will show in Se€_TI-A2 that such
) ] ) . coefficients indeed exist in a sufficiently large field. THere,

In this section, we provide the construction for MSR codgge description of the code is complete wilhh (5), (6).

II. MSR CoDE CONSTRUCTIONFOR RATE= %

H . t—=1 H H . . . .
with a rate, R = %= for some positive integer. The |4 the zigzag code 4], parity symbols are categorized into
construction is described _for a particular examplet 6f 3, 0 types, namely row-parities and zigzag parities. The row
and subsequently generalized. parities are made up of message symbols from the same row
A. Code Construction for R = % of the codeword array. But the zigzag parities are made up

of message symbols belonging to various rows such that one
message symbol is picked per column. In our construction
also, every parity-check constraint correspondingMo# 0

n=3gk=2,d=(n-1),a = ¢. involves shifted entries that do not belong to the row under
1 " . __consideration. In this manner, our construction is of a lsimi
The auxiliary parameter takes values from a finite-field,utto it is

sufficient to work with a finite-ring. This does not cause ekl of generality ﬂavor_ as that in m4] But the ma]or_ dlﬁgrence of our con-
in the principles used for the construction. struction from the zigzag construction lies in the symmetry

We have an auxiliary parameter= p™ for some primep,
andm a positive integer Then the code has parameters



of the parity-check constraints. It also differs in the fdtat where the matrices/ and E are given in [(B) and[{9). The
two symbols of the same column can be involved in the sarequation [(B) also illustrates the fact that the rowsJotan
parity-check constraint in the casef+# 0. Such an approach be decomposed into blocks of sizé, each corresponding
was earlier adopted in [10]. to parity-check constraints with a fixed. The first set of
1) Optimal Repair of a Failed Node : Without loss of ¢ parity-check constraints correspond to row-parities ipbgs
generality, assume that the nogle ¢,) failed. We download associated withA = 0.
symbols belonging the rows = {(6o,v,2) | v,z € F,}. In @), @), 12,0, respectively represent identity and all-
Clearly [T| = ¢°. Thus we have{C(fo,y,2;(i,0)) | i = zero matrix of sizeqg® x ¢*. The matrices{E}, | i €
1,2,3,0 # to,y,2 € Fy}. The rows are selected such tha{1,2,3},6 € Fy,0 € F,} are made up ols and zeros, and
x = 6y, because the first coordinate of the index of the nodepresent the shifted entries of the correspondirgarities.
is 1. If the first coordinate had beehor 3, we would have The matrices/, £ and henceH are block matrices of size
fixed y = 0y or z = 6, respectively. All the code symbols (¢ x 3¢q) where each block is a square matrix of siZe We
will show that the MDS property can be ensured by assigning
Cbo,y, 2 (1,60)), 4z €Fy suitable coefficients to locations identified by the suppdrt
are repaired using the row-parities. Hence we have all th&. Our method is quite similar to the method usedlin/ [10].
symbols belonging to rows it from all then nodes. Next, By [21, it is sufficient thatd restricted to any(n — k) = ¢
let us write the equation foA-parity, A € IF; corresponding thick columns has a rank equal §ox = q*. Let us assign an

to an arbitrary row(6y,y, z) € H. indeterminate: to all the locations determined by the support
of E. Now consider the square submatrik, obtained by
C(0o — Ay, 2:(1,600)) & C(o,y — A,2:(2,y) & restricting H to D C [n],|D| = (n — k) thick columns. If we
C(0o,y,z — A;(3,2)) @ Z C(bo,y,2;(1,0)) @ assume that all the coefficients @fare fixed, the determinant
0€F, of Hp will be a polynomial in the indeterminate Let us

Z C0o,y,2;(2,0)) @ Z C0o,y,2:(3,0)) = 0. (7) denote this polynomial byp(c). In the following Iemma, we
bcr, e prove thatpp (c) can be made a non-zero polynomial for every

choice of D C [n],|D| =n — k.
_ Except the termC(f — A, y, 2: (1, 60)), all other symbols | emma 2.2: There exists an assignment of coefficients to
involved in () are known to us. ThuS(6y — A, 4,2 (1,60)) 1 such thatpp(c) is a non-zero polynomial for every choice
can be repaired for all choices gf z. By making use of all 4 p [n],|D| =n — k.
_the A-parities, we can thus repair all the remaining symbols  proof: Consider a3¢,2¢]-RS code and its parity-check
in the node(1, 6). The total number of symbols downloadegnatrix A,y of size (¢ x 3¢). Clearly a(q x q)-matrix obtained

per node is by restrictingH ,qs to anyq columns has full rank. Let © B
) 7 a denote the Kronecker product of matricésand B. If we set

B = q *?* d—k+1’ J to Jy,
and thus the repair is bandwidth-optimal. Jo = Hmds® Iy, (20)

2) The MDS Property: In this section, we will show that :
, ) Iy ...then we must have,(0) evaluating to a non-zero value for
we can find an assignment of coefficients to the row-parities

and A-parities such that the code satisfies the MDS propergyery choice ofD C [n], | D] = n — k. Hencepp(c) must be
: ; non-zero polynomial for every valid choice HX. ]
We start with stating a useful fact.

Lemma 2.1: Let H be a((n — k) x n)-parity-check matrix Henceforth, we assume that the coefficients of the polynismia

of a linear codeC. If S C [n],|S| = (n — k) is such that pp(c) are fixed by the coefficients of as determined by

ranKH |s) = (n — k), then it is possible to decode everyLemmm' By the structure df, it is clear that

codeword ofC accessing symbols belonging to locatidits= dedpp(c)) < ¢* — ¢*. (11)
[\ S : . ; . Next, consider the polynomial

Based on the parity-constraints i (%), (6), we will detereni ’
the structure of the parity-check matrX. First, we vectorize plc) = H pp(c). (12)
the codeword array node-by-node so that the first ¢° DC[n),|D|=k

columns ofH represent the first node, the secaridcolumns
represent the second node and so on. The grogp eblumns
associated with a node is referred to athigk column. The
parity-check matrix thus obtained will be of sizg* x 3¢*)

with n thick columns each containingthin columns. In order
to describe the support and thereby the structurd ofve will

for a moment assume that all the coefficients are sét Tthis
matrix is denoted by, and is given by

Clearly p(c) is not identically zero, and its degree is upper
bounded by(})¢*(g — 1). Hence it is sufficient that we find
an non-zero assignment # 0 for ¢ such thatp(cg) # 0.
By Combinatorial NullstellansatZ [13], this is possiblewit
choose the field size greater théf)¢*(q — 1) + 1. Thus we
have proved the following theorem.

Theorem 2.3: There exists an assignment for the coeffi-
cients in the parity-check constraints [d (4)] (6) such that
H, = J+E, code described i I[ZA is an MSR code.
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Using the constant, guaranteed in the proof of Thrii_2.3,that in Sec[T[zA2. What remains is to present a repair sgsate

and Jp in (I0), the parity-check matri¥/ of the MSR code that is bandwidth-optimal.

takes the form 1) Optimal Repair of a Failed Node : Assume that the
node(ig, 6y) failed. We download symbols belonging the rows

H = Jot+cok. (13) I'= {.17 | Tj € Fq,Vj 75 10, Ti, = 90} CIearIy|F| = qt_l.
B. Code Construction for R = =1t > 2 Thus we have[C(z; (i,0)) | (4,0) # (io,00),z € I'}. All the
The principle of the constructlon is elucidated in the Ias(iOde symbols
sectlon completely, and the generalization to the casetef ra C(z; (io, 0)), z €T
R = =t > 2 is straightforward. For an auxiliary parameter
g=p m for some primep, andm a positive integer, the codeare repaired using the row-parities. Then we have all the
construction has parameters symbols belonging to rows it from all the n nodes. Next,
. let us write the equation foA-parity, A € IF; corresponding
n=tgk=_(t-1)¢d=(n-1),a=q. to an arbitrary rowz € T
A 2-tuple(z,0),i € {1,2, ._..,t}, 0 € I, is used to index the Clz1 — A, 2o, 2o (1,z1) @ - @
columns. The rows are indexed by elemefits, zo, ..., x)
from F, wherez; € F,. ThusC(z1,z2,...,2+; (i,0)) rep- C(xr, .. iy — A, ..., x4 (i0,00)) ® --- @

resents one code symbol from the codeword array at the
intersection of the row(zy,zs,...,7;) and the nodg(i,0). C(z1,z2,...,2;—A;(t,x¢)) @ Z C(z;(5,0)) = 0.

The code is described by *! parity-check constraints. For 0€F,,jelt]
everyz = (1,3,...,1;) € FY, (16)
Except the ternC(x1, ..., 2, — A, ..., 2¢; (i0,06p)), all other
Y Cla,0)e > Cl symbols involved in[{ZI6) are known to us. By varyidg we
O€er, 9€F, can thus repair all the remaining symbols in the néied, ).
S Z Oz (1,0)) = 0, (14) The total number of symbols downloaded per node is
0clF, B _ qt71 _ q_t _ L
Clr1—A,za, ...,z (L21)) @ Oy, 20—A, .. 245 (2,22)) B q d—k+1
and thus the repair is bandwidth-optimal.
- @ C(xr,ma, ... o — A; (t,24)) ZC’ P P
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