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is only need to skew the odds systematically in one’s favipr [1

markets has led to the deployment of high-speed communicath p. 74]. A recent article noted[8]:

links between distant financial centers. These links are ney and
so there is a need for coding. In this paper, we develop a game-
theoretic model of trading behavior where two traders compée to
capture latency arbitrage opportunities using binary sigralling.
Different coding schemes are strategies that trade off beteen

that high-frequency traders would much rather have
access to a communications channel that's faster
than every one else’s, even if it gets flaky every now
and then. A link that's second or third fastest isn't

reliability and latency. When one trader has a better channg
the second trader should not compete. With statistically ientical
channels, we find there are two different regimes of channelaise
for which: there is a unique Nash equilibrium yielding ties; and
there are two Nash equilibria with different winners.

of much use to them, even if it's always available.
That's a very different calculus than the one most
engineers use-but it's clearly the one you want to
follow if you're trying to get ahead of the pack.

“One guy says to me, ‘It doesn’t matter if I'm one second slowd?€Signing for such novel requirements suggests new prablem
or one microsecond; either way | come in second place.” at the intersection of communication theory and game theory
— Flash Boys: A Wall Street Revolf]1, p. 63] @nd provides a concrete reason to step back from infinity.&Som
previous work on low-latency communication did not conside
the competitive nature of the communication [9].

One should be careful not to confuse low-latency trading

The traditional view in information theory is that commuWith “high-frequency trading.” Low-latency refers to thbila
nication reliability is to be obtained by paying a penalty i#y to quickly route and execute orders irrespective of ithei
latency. Though there is growing interest in finite blociggm Position-holding time, whereas high-frequency refers fte t
information theory[[2]-]4], motivated by general notiomemt fast turnover of capital that may require low-latency exeeu
latency is problematic, few works have put forth explicifapability [6]. Although academic study of low-latencydnag
reasons for needing to meet latency constraints[&f. [5].  has been limited, Moallemi and Saglam put forth three main

When there are latency arbitrage opportunities in financig@sons for wanting low latency in tradirig [10]:
markets, however, latency is a key performance metfric [6].1) StalenessA trader with significant latency will make
One must be faster than one’s competitors. Indeed, the speed trading decisions based on information that is stale.
of light is a key constraint and physical distance a key abnsi 2) Relative LatencyA trader will want to act to exploit
eration when building communication channels, whetherfibe  a discrepancy before a price correction takes place, i.e.
optic or microwave([1],7]. before competitors are able to act.

When prices of the same financial instrument in different 3) Ordering Modern markets treat orders differentially
financial markets (say Chicago and New York) diverge for ~ based on time of arrival.

a short period of time, this is called a latency arbitrag€hey focus on a model that captures staleness, but do not
opportunity. Low-latency traders jump in and trade awagonsider relative latency. The goal herein is to look attiega
the price discrepancies. As an example, a low-latency tradatency through a mathematical model of repetitive binary
would sell pork bellies in the market where the commodit§ignalling that is essentially a decoding game, where dagod

is temporarily overpriced, while simultaneously buyingrit time is the strategy.

the distant market where the commodity trades too cheaplyOur main results show that when one trader has a better
In the process, the demand and supply produced by the lasttannel, the second trader should not compete. With sta-
latency trader equilibrates market prices in markets therew tistically identical channels, we find there are two diffare
previously divergent. Then, the low-latency trader qujcklregimes of channel noise for which: there is a unique Nash
reverses his position to capture the gain, and investors eafuilibrium yielding ties; and there are two Nash equikibri
all frequencies can be assured that prices on traded fianeiith different winners, respectively. A question commonly
instruments are consistent across the globe, upholding iwhaasked by market participants and regulators alike is how
called thelaw of one price[6]. much speed is enough? Clearly, the race for speed will end

What are the communication requirements for a lateneyhen there is equilibrium: when an additional dollar spemt o
arbitrageur? Some unreliability is allowable since thar@dt technology no longer generates extra retlrn [6]. Our rgsult
a need for perfect information to make riskless profits; eéhealso take steps to answering this question.

I. INTRODUCTION
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Il. PROBLEM FORMULATION B. Strategy Space

The strategy space of each firm is a nonnegative integer,
denoted byTy and Tz, respectively which is the delay in
before decoding the message. Specifically, the decisioa tim
of firm A, T4, and the decision time of firm B[z are the

Let us assume there are two firms A and B who want ténes when the agents in market Il of each firm decide to
exploit latency arbitrage between markets | and II. Both dirnflecode the message and act based on their estimates of the
have agents in both markets. There is a single commoditansmitted message. The fundamental speed-accuraepftfad
under consideration and the values of trades are fixed. He§é® be parameterized K. the larger the decoding delay for
there are just two types of messages: “Buy” and «dbirhe a firm, the smaller probability of error it has on average.§hu
message is transmitted by the agent of each firm in markethe expected payoff would be highéi,it is the first firm to
The agents in market Il try to recover their message cogrecflecode and actBut as the delay increases, it gets less likely
with high probability and as fast as possible. Payoffs afer a firm to be the first actor.
determined by _the order in which the firms act. So we descrip;e_ Communication Scheme
payoffs accordingly.

We put forth a stylized model of low-latency trading.

A. Arbitrage Payoffs

. . o , ) For concreteness, let us suppose that we are communicating
. F|r§t Firm: The first firm to act in market_ll based on itsy, or 4 discrete-time AWGN channel with power constrdit
estimate of the message has the following payoffs: e noise power is assumed to b, so that the signal-to-
— If the transmitted message is “Buy,” and the agemoise ratio of the channel iS = P/N.
in market Il correctly recovers it, the firm earh$ We assume that each agent in market | uses binary phase-
dollars. If the agent makes a mistake and assumsisift keying (BPSK) repetition coding. Admittedly, this &
the transmitted message was a “Sell,” the firm losegry simple model of the communication channel and coding
V1 dollars (i.e., the payoff is-V; dollars). scheme. But we believe that studying this model captures the
— If the transmitted message is “Sell,” and the agewissence of the latency-accuracy tradeoff that is of intéovess.
in market Il correctly recovers it, the firm eards If the message is “Buy,” the agent sengs into the AWGN
dollars. If the agent makes a mistake and assumeisannel; the received symbol is a normally-distributedican
the transmitted message was a “Buy,” the firm losegriable ' (+a, Ny). Similarly, if the message is “Sell,” the
Va2 dollars (i.e., the payoff is-V;, dollars). agent sends-a into the AWGN channel; the received symbol
« Second Firm Since we assume the market has equilis @ normally-distributed random variabl(—a, No). The
brated after the first transaction, the second firm decodiRgwer constraint implies the optimal choige= v/P.
the message will have zero payoff whether or not it The agent at market Il estimates the transmitted message
recovers the message correctly. after receivingl’ symbols,yi, ..., yr. The sufficient statistic
. Simultaneous Decodingf both firms perform decoding Of the received symbols ig -, y;. The decoder compares
and act upon it at the same time, each of them receivé4s sufficient statistic with a chosen threshdid;The optimal
half of the payoff that the first firm would receive. method to choose the threshold will be discussed later. , Thus
. Efficient Market We assume that after tim@,, the optimal decoding is:

market becomes efficient through the action of high- 1 Buy
latency traders and the arbitrage opportunity disappears. 7 Z% ; WP
i=1 Sell

We assume the prior probabiliti€y and P, for the messages
“Buy” and “Sell,” where P, + P, = 1. Furthermore, each There are two types of error events:

transaction has a cost for any firm since there are real costs If the transmitted message was “Buy” and the decoder
associated with accessing an exchange, ranging from paymen decided “Sell,” we have the error event of type 1. The
for direct market feeds to managing routing logic: we assame  probability of this error event is:

cost of c dollars per transaction. Further, we assume that each

firm pays dS dollars to use a channel with signal-to-noise Pe,1 = IP(errofBuy)

ratio S; this is a linear function of signal power as in most 1 &

physical communication transmitters. The maximum signal- = P(T Z% < hVP|Buy)

to-noise ratio of the channel iS,. i=1

. Cl_early, this is a firs.t st.ep to_wards modeling the payoffs — Q(Ta - h\/]_D) =Q( T£(1 — h)?)
in high-speed trading in financial markets. There are other VI Ny No
possible ways to model payoffs depending on the market under = Q(\/2TSv1) ~ exp(—TS1)

consideration. . : o .
whereQ(-) is the cumulative distribution function of the

1In the real system, messages are transmitted via a Findnéimmation standard normal distribution, and
eXchange (FIX) protocol. A typical FIX message is composkd beader, a 2
body containing order execution directives, and a checkfiLith 1= (1 - h) /2- (1)



« If the transmitted message was “Sell” and the decodé&r Optimal Decoding
decided “Buy,” we have the error event of type 2. The

probability of this error event is: We study an optimal adaptive decoding strategy in which

the threshold value and tradeoff point between two erroesyp

P. , = P(errofSell) of the decoder depends on its chosen value of delay.
1z Let the decoder choose its decoding threshold knowing the
=P(x ; y; > hv/P|Sell) decision time:
a+hV/P P h\(Ta,Sa) = argmax P V;[1 — 2~ Ta%am.4)

= Q™) = Q[T (1 + 1)?) " s

VT No 0 + PVl — 2¢~TaSar2.4]
= Q(V2T'572) ~ exp(=T572) _ PiVi — PoVy

where PiVi+ (1 —2T4S4) P,V
_ 2
72 = (1+h)°/2. (2 Note that this choice of threshold captures the tradeoféapp
D. Expected Payoff ing due to different expected payoff of transmitted message

. Expected payoff of the first firmAs mentioned, with The decoder can reduce the probability of error given the

probability P, the transmitted message is “Buy” and WitHness?geﬂ\]NafSa”"‘,Buy” at the cost of a higher probability of
probability P, it is “Sell”. The first firm decodes the errorfor the el messages.

transmitted message based on its own estimation of the N (1 w12

message and makes a transaction (and therefore pays the 7 (1) = (1= h*(T,§%))°/2

transaction fee ot dollars). Thus, the expected payoff

of the first firm is as following: 7 (T) = (1+h*(T,5%))%/2.
E[payoff of first firm We will also need to define the following functions for use in
= E[payoffbeing first — ¢ — dS equilibrium analysis:

= P,E[payoffmessage is Buy and fifst
+ P;E[payoffmessage is Sell and fitst ¢ — dS
=P [(1=Pe1)Vi+ Pea(—W1)]
+ Py [(1= Poo)Va + Pos(~Va)] — ¢ — dS
= PVi(1 = 2P, ) + P,Va(1 — 2P, 5) — ¢ — dS
~ PUVi[L — 2751 4 PyVa[l — 2¢-T5%] — ¢ —qs  F'8(TB)

i =PVi(1 —=2P.15) + PVa(l —2P. 2 B)

« Expected payoff of the second firithe expected payoff TESEAT o (Ts) CTRSEAi 5 (Ts)
of the second firm is—dS regardless of its decoding ™~ PVl —2e sTpEE] 4 PVa(l — 2e »ee]
probability of error, since the payoff of the transaction
is zero. The second firm does not pay the transaction e
as it does not make any transaction. The transmitter needs to determine the allocated signal-

If the decision time of firms ard’y = T and Tz, and to-noise ratio ahead of time before the communication takes

also the signal-to-noise ratios &t8+; 4, 2572,4, 2571, and  place, since this is typically not adaptable at short tirakes:
2572, then the expected payoff of firm A would be: We further assume the signal-to-noise ratio is determined
not knowing the actual decision time. Thus, the allocated

Fa(Ty)
=PVi(1—=2P.1,4) + PoVo(1 —2P. 5 4)
~ PVl — 2efTASZ'Vl*,A(TA)] + P Va1 — QefTASA’Y;,A(TA)]

Optimal Power Allocation

(T, Tp) g signal-to-noise ratio is assumed to be optimal for a chosen
=T < min{Tp, To}} [P1Vi[1 — 2¢~T5474] decision time. We assume that the chosen decision time which
+ P Vs[l — ze—TSMM] —c— dSA} determines the signal-to-noise ratio is the time markedtress
+I{T = min{Tp, To}} [P1Vi[l — 2~ 547041 /2 efficient, Tp.
+ PoVa[l = 2e7T54924] /2 — ¢ — dS 4] S* = arg Imax PVi[1 —2e"Tom) /2
. <So
+ H{T > min{Tg, T —dS -
{ { B 0}}[ A] +P2‘/§[1—267T572]/2—C—d5
and symmetrically for the other firm.
[1l. OPTIMIZATIONS where
Having defined the players, the strategies, and the payoffs PVi + (1= 2T08) P, Vs

in this standard form game, we can now consider some opti-
mization problems, before turning to questions of equdibr  and~; and~, are defined as i {1) anfl(2).



IV. EQUILIBRIA Proof: Let us look atT* such thatF'(T* — 1) < ¢ <

Now we consider Nash equilibria for the game. We obser\f;(T:)' Wf can obse*rve simpIySthlt if(j.;*) >*2C’ then
that the expected payoff of firm A when it chooses the optimgl(T 1/2 = max{f(T —1),¢}. Simi arly 1 BT +1) >
decoder is the following: 2F(T), then F(T* +1)/2 > max{F(T"), c}

[ |
TA(Ta, Tg) =1{Ta < min{Tg,To}} [Fa(Ta) — c — dSa4] Now we prove the equilibrium properties under the TIE and
+{Ts = min{Ts, To}} [Fa(Ta)/2 — ¢ — dSa] WIN conditions, respectively.
+I{Ta > min{Tp, To}} [~dSa] (3) Theorem 1. Suppose that both agents start the game for some

(T4, Tg), the repeated game under the best response dynamics
converges to one of the possible Nash equilibria. If the et o
conditions given in equatio(®) is satisfied for som&™, the
agents converge to simultaneous decoding at time If the

T +1, c¢>max{F(Tp —1),Fa(Tp)/2} set of conditions given in equatid@) is satisfied for som&*,
Ti(Tg) = Ts —1, Fa(Ts —1) > max{c, Fa(T5)/2} depending on the starting point, they convergéfa, Tz) =

Ty, Fa(Tp)/2 > max{ Fa(Ts — 1).c} (T*, T*+1) or (Ta,T) = (T*+1,T*).
4) Proof: We can construct the best response state graph of
Similarly for firm B. Now we try to find the equilibrium of the game. Each state in this graph corresponds to one p@ssibl
this game in the symmetric case. In this scenario, the fansti strategy set. The transitions correspond to better/bsgoreses
Fa(-) and Fp(-) behave similarly. of any one of the players to the strategy given in the previous
We are interested in identifying the long-term behavior aftate (in each transition, we assume that only one player can
the system when this game is repeated many times. Thus, si®ange its strategy). The transitions could be determirad f
assume the agents follow the best response dynamics defittedequations given ifil(4). The pure state Nash equilibria of
as follows: the game is repeated many times and each firmaagjame is the sink states of this state graph as no player can
each repetition of the game chooses the best strategy bageithterally improve his payoff in these states. the sirgtest
on the strategy of the competitor in the previous repetitioof this state graph. We could have two possible types of state
Conditioned on the monotonicity of the payoff function, whe graphs depending which of these equatioh$ (5) anld (6) are
there exists a Nash equilibrium in the game, the best resposatisfied. Due to the monotonicity of the functiéi{-), in any
dynamics converges [112]. case this state graph is acyclic and starting from any sitate,
We observe we can expect two types of behavior frosonverges to one of the sink states. ]
this game depending on the regime in which parameters aréNotice that the TIE conditions specify that the payoff in-
defined: creases faster than exponentially as a function of timeredse
TIE For someT*, there is Nash equilibriun{T4,75) = the WIN conditions specify that the payoff increases slower
(T*,T*) and(Ta, Tp) = (T*,T*). This is a valid Nash than exponentially as a function of time. Since the quality o

equilibrium of the game if the following properties holdthe channel determines the rate at which the error probabili
decays/ payoff increases, it seems that the stronger clsanne

F(T7)/2 = max{F(T" — 1), c} (5)  would impose the TIE result between the agents, whereas the
weaker channels would impose inequality in the results ef th
game.is possible to win a trading race (in equilibrium) when
the channel is not so noisy.

Since F4(T4) is a strictly increasing function, givefis
andTj, the optimal strategy for firm A is as follows:

WIN For someT™*, we have two Nash equilibriél’y, Tg) =
(T* 4+ 1,7*) and (T4, TB) = (T*,T* + 1). This is
a valid Nash equilibrium of the game if the following

roperties hold:
brop V. NON-IDENTICAL CHANNELS

< ) < . . .
€= lj(T ) <2 . Thus far we have been discussing games where the noise
F(T™ +1) < 2F(T") (6) powers for the two players are identically,. For complete-
F(I*-1) < ness, let us state what happens when the channels do not have

We first show that the TIE conditions and the WIN condition'éjlem'cal statistics. If different firms have channels diefnt

partition the possibilities. Note that the monotonicitynddion qg\?\,lg’v\;:li dsi)gengil;ftgr-gr?tl?gr reaa:?h E;?:Iq t_?ﬁeog)?rgilt;;an;'g'ﬁ of
of the lemma is clearly true under optimal decoding: more oB: ' P pay

servations lead to lower error probabilities and highereexgd each. firm still fqllows the equat_lor_E](B). The Ngsh equilioniu
payoffs. of this game will be asymmetric in the following sense. Let

us assume thaf;'(c) < F,'(c). The equilibrium will be
Lemma 1. Let us assume functioR(-) is strictly increasing (Ta,T5) = ([Fy'(c)| + 1,[F;'(c)]). This equilibrium is
and F(0) < ¢ < F(Tp). Then there exists & < T* < T, intuitive as we expect the firm with the better (or cheaper)
that satisfies either the condition set given in equaf@@nor communication channel to be more powerful and exploit
the condition set given in equatid@). the arbitrage in the market. This is what is observed with



an incredibly expensive arms race to build better physicags)
communication channels. o]

[10]

We have formulated a stylized model of the communication
race that forms the heart of low-latency trading to take adva
tage of latency arbitrage opportunities in financial magket
We found the existence of Nash equilibrium communicatidi?]
strategies: for one set of channel parameters, there isqaueni
equilibrium that corresponds to ties where the two firms
share the arbitrage opportunity. For another set of channel
parameters, there are two possible equilibrium when one or
the other firm wins the opportunity.

Our modeling approach cast time as discrete, but one
might wonder what happens in continuous-time models of
communication races. Rather than settling into Nash daiali
best response dynamics may go into a limit cycle since it is
possible tojust act more quickly than one’s opponent; the
discontinuity prevents equilibria for the real-valuedastgy
space. Even within a discrete-time model that comes from
continuous time, the relationship between clocking speet a
noise could make clocking a part of the strategy space.

Herein we have used various simplifications that can be
relaxed in future work. We can consider markets with more
than two messages; advanced methods in coding theory would
then become important rather than simply having BPSK repe-
tition. Moreover, microwave links that are now deployedunc
fading in addition to noise; the role of outage in tradingIldou
be intriguing. Considering the game with many competitive
firms rather than just two is another possible extension ¢o th
basic framework.

Finally, we have focused here on expected payoffs, as
is typical in game theory, but in many financial settings,
risk is also a strong consideration. By considering risk in
addition to expected payoff as part of performance criteria
new optimizations and equilibria may arise.

VI. CONCLUSION
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