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Abstract—The column Hamming distance of a convolutional
code determines the error correction capability when streaning
over a class of packet erasure channels. We introduce a metri
known as the column sum rank, that parallels column Hamming
distance when streaming over a network with link failures.
We prove rank analogues of several known column Hamming
distance properties and introduce a new family of convolunal
codes that maximize the column sum rank up to the code
memory. Our construction involves finding a class of super-
regular matrices that preserve this property after multiplication
with non-singular block diagonal matrices in the ground fiel.

Index Terms—Column distance, maximum rank distance
(MRD) codes, network coding, super-regular matrices,
maximum-distance profile (MDP) codes.

I. INTRODUCTION

to transmit packets for a given time instance, the rank of the
channel matrix decreases, making packet recovery infieasib
One solution is to use end-to-end schemes to precode chan-
nel packets before transmission. Rank metric codes such as
Gabidulin codes [13]/[14] are capable of protecting pasket
rank-deficient channels. The minimum rank distance of a code
determines the maximum permissible rank loss in a channel
matrix. This method can be considered for single-shot netwo
coding [15], [16] or for multishot extensions [17], [18].

In this work we study a streaming setup that extends the
single-link model of [[2]-]4] to a network. We assume that
the intermediate nodes implement linear network coding and
produce a channel transfer matrix relating the transmiéiredi
received packets. To combat link failures, the source strea
is further precoded at the source usingteeaming codeWe

In streaming communication, source packets arrive sequéigfine a new metric, the column sum rank and introduce a new
t|a||y at the transmitter and are on'y usefu' for p|aybacf@m|ly Of COﬂVOlutional COdeS that attain the maximum Value
by the receiver in the same order. Erased packets mustf8ethis metric. These are rank metric analoguesieMDS
recovered within a given maximum delay or be consideré@des|[7]. Just as the column Hamming distance determines
permanently lost. Streaming codes recover packets witifife maximum allowable number of erasures in single link
these decoding deadlines and have previously been studié@aming, we show that the column sum rank determines the

for single-link communication_[2]=]5]. The works referett

maximum rank deficiency of the channel. Interestingly, ¢her

in [2]_[4] focused primar”y on |Ow_de|ay recovery againshas been little prior work on rank metriC COﬂV_Olutional CS.de
burst losses, which are the predominant erasure patterns/fhour knowledge, the only previously studied construction

Internet streams [6]. Alternatively, [[4].][5] consideredding
for channels with arbitrary erasure patterns, restriatinky the

appears in[18], where the authors consider the active aolum
sum rank as the metric of importance. Consequently, their

number of erasures in a window. It was shown that the colur@RProach and results differ from the present work both in the
Hamming distance determines the maximum tolerable numis&de constructions and applications.

of erasures that can occur in any window of the stream for This paper is outlined as follows. The network streaming
decoding to remain successful. If there are fewer erashess tProblem is introduced in Sectidnl Il. We provide an overview
the distance in every sliding window, each source symbol @ rank metric block codes aneh-MDS codes in Section
recovered within a given delay. A family of memany convo- [l The column sum rank is defined in Sectidn] IV, where

lutional codes, known as-Maximum Distance Separablew

we derive several properties and establish their relevimce

MDS) codes, attain the maximum column Hamming distanétwork streaming. Codes that maximize the column sum
up to the code memory. Furthermore, these are constructagk are referred to as Maximum Sum Rank (MSR) codes.
from block Toeplitz super-regular matricés [5] [7]-[9]hd@se We introduce a class of super-regular matrices in Se¢fion V
codes can also be used as constituent codes in the cormtrudfiat preserve super-regularity after multiplication wittock

of Optimaj burst error correction codes for Streaming syiste diagonal matrices in the ground field and use these to cantstru
). an MSR code in Sectidn VI. We conclude this paper with code

Suppose that a transmitter sends packets to several u§g@mples and a discussion on the necessary field size.

through a series of intermediate nodes. Using generatised
linear network codes, the problem of decoding is reduced to

inverting the channel transfer matrix between the trartehit ] ) . .
and received packets [10]=[12]. If links in the network fail The streaming problem is defined in three steps: the encoder,
i network model, and decoder. Encoding is performed in a

II. NETWORK STREAMING PROBLEM
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causal fashion, as the incoming packets are not known until
the time at which they must be transmitted. A linear network
code has been applied to the network and each node receives
and sends linear combinations of the symbols in the channel
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packet. Consequently the network is abstracted to a chanRahnk-Deficient Sliding Window Network C#(S, W) has the
matrix, which is assumed to be known to the receiver [12property that in any sliding window of lengilV, the rank of
The decoder observes linear combinations of the symbolstire block diagonal channel decreases by no more thare.,
each transmitted packet and must recover the source withitf")" " p; > nW — S for eacht > 0.

the imposed deadline. In analysis, we disregard the linearly dependent columns

of the channel matrix and the associated received symbols.
A. Encoder At each time instance, the receiver effectively obsenyves=

Let ¢ be a prime power and/ > 0. At each time instance x:Af, whereA; € F;*7+ contains only the linearly indepen-
t > 0, a source packes; € F¥,, arrives at the transmitter dent columns ofA, and is referred to as the reduced channel

node. A channel packet;, € IFZM is constructed via a causalmatrix.

function of the previous source packefs(so,...,s:). We Remark 1. A sliding window model has been used in prior
con5|der the class of linear time invariant encoders A raleorks on delay-constrained coding over single-link chsine
R = {; encoder with memoryr generates the channel packefz) 21]. In these works, the channel is adversarially piéted
to erase symbols in each channel packet up to a maximum
Xt = Zst—i -G, (1) number of erasures within each sliding window. The Rank-
Deficient Sliding Window Network can be viewed as an
using a set of generator matric€k € F"<* for 0 < i < m. €xtension of this model, where the channel introduces rank
1 deficiencies rather than erasures.

B. Network Model

The transmitter node sends one channel packet through %e
network at each time instance. Although there is a naturalLet T' be the maximum delay permissible by the receiver
delay in the end-to-end transmission due to link delays, we@de. A packet received at time must be recovered by
assume that such delays are sufficiently small so that oree titime ¢ + 7' using a delay-constrained decoder, .., =
instance contains the encoding, transmission, and degadin 7:(yo, - - ., y:+7) is the reconstructed packet. If the decoded
a single channel packetThe transmission of a single channesource packes, is equal tos,, then the source packet is
packet over one time instance is referred to ashat In perfectly recovered by the deadline; otherwise, it is deda
each shot, the destination node obseryes= x;A;, where lost. A linear codeC over F » is defined asfeasible for
A; € F;*" is the channel matrix at time, and is known CH#(S,W) if the encoding and decoding functions for the
to the receiver. In practice, the coefficients for the line@ode are capable of perfectly recovering every source packe
transformations applied by each node can be encoded itt@ansmitted over the channel with deldy
header bits, which the receiver uses to reconstruct thengthan In this paper we will assume that the window length satisfies
matrix [12]. W =T+ 1. A source packet, must be decoded by time

Each shot is independent of all others. Communication ovet 1" at the receiver. Thus its active duration spans the interval
a window [t t + W — 1] of W shots is described using [t,t + T], which maps to a window length dfV = T + 1.

Decoder

Vit i+ w—1] = X[t,t4+W— 1]A[t t+w—1],» Where A, w_q = Nevertheless, we will also discuss how our codes can handle
diag (A4, ..., Aryw—1) is a block dlagonal channel matrixthe case whemV # T + 1.
[17], [19]. Let pté rank (A;) denote the rank of;, for all Our objective in this paper is to construct codes that

t > 0. The sum of the ranks of the individual channel matricedarantee recoverability under the worst channel contio

is equal to the rank of the channel matrix in the windowor a fixed delay and rate, i.e., identifying the largest rank
ie., Zt+W ' pi = rank (Ajt..+w—1)). Suppose that at any deficiencyS for which a code with a given rate is feasible.

time instance, a link in the network may fail to transmit it§owards this end, we introduce a new metric called the column

intended symbol. Intermediate nodes that do not receive $i#m rank distance of a convolutional code. We show that it
intended symbol simply do not include that symbol in thés both a necessary and sufficient metric to determine the
linear combination they transmit. If all links are functarin Maximum rank deficiency from which the code guarantees
the shot at any time, thenp, = n, but failing links may result perfect recovery. Thus, maximizirgreduces to finding codes
in a rank-deficient channel matrix at that time. One failimg| With maximum column sum rank distance over the interval
can eliminate at most one of the min-cut paths connecting tite 7).
transmitter and receiver. It follows thaink (A,) is reduced ~ Codes which achieve the maximum column sum rank
by at mostl for every failing link [20]. We introduce a sliding distance will be referred to as Maximum Sum Rank (MSR)
window model to characterize rank deficiencies in the networcodes in this paper. Furthermore the column sum rank distanc
_ ) possess a profile property. Achieving the maximum distance a
Definition 1. Consider a network Whege for al > 0, gne point implies that it is also maximized at all points biefo
the receiver observeg; = x;A¢, with p;=rank (A¢). The ji Operationally we show that this property guaranteesttiea

1 . . . product of the generator matrix with elements of a specific se
For example in audio streaming, coded speech packets aesateth once

every 20 ms. When the propagation delays are much smaller than thie,va of channel matrice§ is full-rank. Fi.na”.y we pltoplosg a fe;mil
they can be ignored. super-regular matrices that permit this multiplicatioogerty



of the generator matrix, which we then use to construct MSRhere a channel matrbA € Fj*" transforms symbols of
codes. Our proposed family of codes uses the propertiestioé transmitted channel packet [16], [19]. For a source g@iack
rank metric block codes andh-MDS convolutional codes, s € F’;M encoded by a Gabidulin code, a receiver observes
which are introduced as preliminaries in the following #®tt y = sGA. By Theoren(lL, the produd&kA is an invertible
matrix as long asank A > k.
I1l. BACKGROUND
A. Rank Metric Codes B. The Column Hamming Distance

Let C[n, k, m] be a linear time-invariant convolutional code,

Consider a vectok < F™,, over the extension field. We ’
i wherem is the code memory. For a source packet sequence

refer tox as a channel packet. The vectoover the extension

field is isomorphic to am x M matrix over the ground field S(0.j] = (So;---,8;) € Fzﬁﬁl),_the channel packet sequefice
F,. Formally, a bijective mapping,, : F7,, — F;* allows X[, = S(0,j) G} is determined using the extended form
for the conversion of this vector to a matrix over the groun@€nerator matrix

field. We more thoroughly detail this mapping in Appendix A. Gy G ... Gy

Noting that a normal basis can describe every element in the Go ... G,

extension field, the elements Bf . are mapped to linearized G?X = ) i , (2)
polynomials evaluated at a normal element, whose coeffiien ' :

form column vectors. A row vector iff”,, then maps to a Go

matrix whose columns are the coefficients of the correspand
linearized polynomials.

The rank ofx is defined as the rank of its associated matr
¢n(x). Therank distancébetween any two vectoss x € FZM
is defined as

'whereGj € F’;ﬁ” andG; = 0 for j > m [22, Chapter 1].
We assume from here on th&t, always has full row rank.
Hhis guarantees thﬂ;EX also possesses full row rank, which
is a property used in subsequent results.

The Hamming weight of, ; is a sum of the Hamming
dr(x,%) £ rank (¢, (x) — dn(X)). weight of each channel packet for 0 < ¢ < j. The j-th

) ] ) ) column Hamming distance of a convolutional code is defined
The rank distance is a metric and is upper bounded by the

Hamming distance [13]. For any linear block cafle, k] over du(j) = N Iéléns 40 wta (X[0,5]);

Fgn, the minimum rank distancés defined as the smallest o [U_’J] ’ 0_

rank amongst all non-zero channel packets. Similar to tRé the minimum Hamming weight amongst all channel packet
minimum Hamming distance, the minimum rank distance geduences for which the initial source paclsgt is non-

a code must satisfy a Singleton-like bound, iér(C) < 2zero [7], [23]. Note that becaus& is full-rank, sy # 0

min {1, 2} (n — k) + 1 [L3]. We simplify the notation when immediately implies thak, 7 0 as well.

C is obvious. It is assumed that/ > n from here on:dg Several properties pertaining to the column Hamming dis-
is then bounded exactly by the classic Singleton bound. Akgnce were treated inl[5[.[7]. We summarize two relevansone
code that meets this bound with equality is referred to asPglow. In Sectio IV, we prove analogous properties to these
Maximum Rank Distance (MRD) code. Such codes possd&§ the rank metric.

the following property. Property 1 (Tomas et al.,[[5]) Consider an erasure channel

Theorem 1 (Gabidulin, [13]) Let G ¢ IF’;AX,” be the generator being used for each > 0, where the prior'source sequence
matrix of an MRD code. The product @ with any full-rank Sjo.t—1] iS known to the decoder by time+ j. If there are at
matrix A € F*<* satisfiesrank GA — k. mostdg (j) — 1 symbol erasures in the windol; ¢ + j], then

I s; is recoverable by time + j. Conversely, there is at least

A complementary theorem was proven(inl[13] for the parity;,e hypothetical channel windof#, t + 5] containingdy (5)
check matrix of an MRD code. We use the equivalent generaiqhsyres for whicls, is not recoverable by time-+ ;.

matrix property, which arises from the fact that the dualf a o .

MRD code is also an MRD codé [13]. Property[1 states that for sliding window erasure channels
Gabidulin codes are an important family of MRD codes. Tiaturing windows of lengtiV’, a convolutional code with

construct a Gabidulin code, g4, .. ., g1 € F,u be a set of column Hamming distancéy (W — 1) can guarantee perfect

elements that are linearly independent ofgr The generator decoding with delay?’ — 1, provided that there are less than

matrix for a Gabidulin cod€|n, k] is given by d (W —1) erasures in the window [4].
9 a0 R Property 2 (Gluessing-Luerssen et al. [7]The j-th column
9[1] g[l] gm Hamming distance of a code is upper bounded by a Singleton-
c=| " oo ot like bound, i.e.dy (j) < (n—k)(j+1)+1. If dgz(5) meets this

: : . : bound with equality, thed (i) meets its respective bound for
k—1 k—1 k—1 ; ;
S G e alli < j.
where we use the notatl(y‘ij]égqj to denote thej-th Frobe- In network coding literature, eacky € F™,, is referred to asa generation
of n channel packets. We denate as a channel packet containingsymbols

nius power qu = .]FqM (See Appendb[l\). Gabidulin COdeSand X[t,t+5] @S @ sequence of packets. Similar notation is used for the
can be applied directly as end-to-end codes over netwossrce.



This property asserts a convolutional code extension of the an analogue of the column Hamming distance. Unlike the
Singleton bound. The desirability of achieving large cotumj-th active column sum rank distance, this metric permits
Hamming distances is given in the previous Propéity 1. heturning to the zero-state before tinje For example, the
conjunction with this, a code capable of recovering frormhannel packet sequence generated in Elg. 1 is valid for
dp(j) — 1 erasures with delay can be shown to be furtherthe column sum rank distance. As a result, this metric is
capable of the respective maximum recovery foriad! ;. stronger than the active version, i.éz(j) < d%(j). In the

There exist several families of codes which achieve tHellowing theorem, we show that the column sum rank distance
maximumdg (7) for some given;j [7], [8], [24]. One such of a convolutional code is both necessary and sufficient to
class of codes are:-MDS codes. These achieve the uppeguarantee low-delay decoding ov&H (S, W).
bound up'to the code memory i.@y ;) - (n_k)@H)Jrl . Theorem 2. Let C[n, k, m| be a convolutional code used over
for 0 < j < m. The MSR codes, which we introduce in . N oy

. ) the window([0, W — 1]. For0 <t¢ < W — 1, let A} € Fr>r
this work, are rank metric analogues @f-MDS codes. One . N . « o

. : be full-rank matrices and\?, ,, ,, = diag (Ag,..., Ay ;)

approach to constructing the generator matrix mefMDS : PaW 1] :

) : ; be a channel matrix. The following statements are true:
codes is by taking a sub-matrix d@f(m + 1) rows from a Wl .
block Toeplitz super-regular matrix|[7]. A prior constriogt 1) If dr(W —1) > nW — 55" ;" pi, thens, is always
of a block Toeplitz super-regular matrix was givenlin [9]. As  recoverable by timél” — Lo _
this construction is modified for our purposes, we include &) If dr(W —1) < nW —5," ;" p;, then there exists at
summary of this construction in Sectibn V, as well as a review least one channel packet sequence and channel matrix for

of Super-regu|ar matrices in Appenm A. which So is not recoverable by tim& — 1.
Proof: Due to code linearity, we only need to show that
C. The Active Column Sum Rank Distance all output channel packet sequences are distinguishatuhe fr
] o ] . the all-zero sequence. We prove this by contradiction. @ens
Let C[n, k,m] be a linear time-invariant convolutional code, o rce packet sequeneg y_1 = (so, .-, sw_1), where

over F,u, whose codewords are generated using (2). The . o, Suppose that this sequence generates the channel
active column sum rank distangea metric for convolutional packet sequencey, i 1), for which Xjo.w 1A% 11 = 0.

codes that was proposed in a prior workl[18]. This metric p,ig implies thatank (¢, (x;)) < n —rank (A}) for 0 < t <
defined using the state Trellis graph of the convolutionakco y;, _ | By summing each of the inequalities, we arrive at the

Let Cf be the set of all channel packet sequenkgs) that  ¢q1owing contradiction on the sum rank of the channel packe
are constructed by exiting the zero-state of the Trellisraét sequence:

0 and not re-entering it fol < ¢ < j — 1. The j-th active

column sum rank of a linear convolutional co@pr, k, m] is =
then defined as as the minimum sum rank of all channel packet rank (¢ (x)) < nW = 3 py
sequences ig?, i.e., = =0

—

Ww-1

< dR(W — 1)
J
d%(j) 2 min Zrank(¢n(xt)), For the converse, lesjgw_1] = (so,...,sw—1), With
X10.71€C5 1 so # 0 be a source packet sequence that mapgd@y_1j,

whereg, () is the previously introduced mapping from vectorfor which ity rank (¢n(x1)) = dr(W — 1), Foro<¢<
in the extension field to matrices in the ground field irW*_ L, Ixet pt. = n— rank(%(*xt))' There eX|§t matrices
Section TI-A. A.t € 7+ such that eack;A; = 0. We I_etA[07W_1j
Note that by restricting itself to only consider channeéiag (A, Ay,_,) be 'ihe channel matrix. Summing all
packet sequences i@i¢, the active column sum rank of a0f the p, revealsrank (Af, y,_y) = nW — dp(W - 1).
convolutional code does not impose any guarantees on the StthiNerMore sy, w1 is indistinguishable from the all-zero
rank of any channel packets that enter the zero state befoP&rce packet sequence over this channel. u
time j. An example of such a sequence is provided in Eig. Remark 2. The constraint thats, # 0 is necessary in
Consequently, the active column sum rank is not a sufficiegifder to differentiate the first source packet from the all-
metric to guarantee delay-constrained decoding over aglid zero source packet. Note however, that there is no necessary
window channel, as we show in the next section. constraint on the state Trellis transitions; any non-zeurce
packet sequence should be differentiable from the all-zero
sequence. Using the active column sum rank in place of the
column sum rank in the above Theorem then leads to a partial
Let C[n, k,m] be a linear time-invariant convolutional codeyuarantee. I, w_1] € Ciy_y, then the active column sum
over T ., constructed in the same manner as in the previognk determines the maximum rank deficiency in the channel
section. We introduce thg-th column sum rank distance of afrom which the first source packet is recoverable. However,

IV. THE COLUMN SuM RANK DISTANCE

code if xow_1) & C&_,, then theW — 1-th active column
J sum rank does not provide any guarantees on recoverability.
N A . . .
dr(j) =  min E rank (¢, (x¢)), Consequently, we view the active column sum rank as an over-
X[owj]GC,So#O

t=0 estimate of the recovery capability of the code.
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Fig. 1: A hypothetical transition along the state Trellisygin is highlighted. The active column sum rank dista#i€5) does
not guarantee the sum rank of the channel packet sequeneeagahby this path, i.exy 5 ¢ C2. In this work, we introduce
the column sum rank, which does consider this channel pasgdmience.

For time-invariant encoders, Theordmh 2 can be used E{;Ol rank (¢,(x;)) = dgr(j — 1) holds. We argue that
guarantee that all source packets are recovered with delais sequence can be augmented to incluge such that
at mostW — 1 over a sliding window channel. Assuming}"/_ rank (¢,(x:)) < (n — k)(j + 1) < dg(j) holds. This
all prior packets have been decoded, we recover eachwill complete the contradiction.
using the windowt, ¢ + W —1]. The contributions 0§y ;1 To exhibit such a choice ofx; recall that x; =
can be negated from the received packet sequence usedzl‘:qgé s:Gj—¢ +s;Go. The summation up tg — 1 produces
decoding. Theorefd 2 is then effectively a rank metric anaoga vector whose Hamming weight is at most Because
to Property L from Sectidn IlI-B, which describes how columpank (G) = k, the source packet; can be selected specif-
Hamming distance bounds the number of tolerable erasuresdally in order to negate up td& non-zero entries of the
single-link streaming[[5]. first summation. This implies thavty (x;) < n — k and

. - . tl k (o, (x:)) < n — k. Therefore, bound
Remark 3. Aside from rank-deficient channel matrices, adveﬁ:)gssi?:ergnirzgw(? (x;)) < n erefore, we boun
5J

sarial errors can also be considered using rank metric codes

Consider a single-link single-shot system where the receiv J
observesy = x + e, with e € F7,, being an additive error Zrank (¢n(xt)) = dr(j — 1) + rank (¢n(x;))
vector. If rank (¢, (e)) < %21, the decoder for an MRD t=0

code can recover the sour¢e [13]. MRD codes reflect a rank
analogue of the error correcting capability of MDS codes. It
can easily be shown that the column sum rank can ensgre

. ble by time in the ch 7 as required. u
'S recoverable by img In n(iﬁ) anney(o,;) = X(o,;] ¥ €041 Codes achieving the Singleton bound digr(1n) are referred

if the sum rank ok ;) € F»; ™ is constrained to be at mosty, 45 MSR codes. They directly paralleMDS codes, which

4d)=1 The proof follows similarly to that for Theoref 2. maximize them-th column Hamming distancé[7]. In fact,

.sincedr(j) < dp(j), MSR codes automatically maximize

IEB] First, we bound the column sum rank byp(j) < e column Hamming distance and can be seen as a special
_ case ofm-MDS codes.

(n—k)(j+ 1)+ 1. The sum rank of a channel packet cannot By Theorem(®, an MSR code with memofy = W — 1

exceed its Hamm.ing WEight’ r_negning that the upper IOOuPéjcovers source packets with deldy when the rank of the
on column Hamming distance is inherited by the rank metrG - nnel matrix is at least(T + 1) in each sliding window

analogug. Furthermore, we show tha_‘t if teh column sum f length W. We prove the existence of MSR codes in the
rank achieves its upper bm_md, all prior column sum ranks ﬁ%xt section, but first discuss a matrix multiplication pFdp

so as well for their respective bounds. for the generator matrix. The following theorem serves as an
Lemma 1. If dr(j) = (n — k)(j + 1) + 1, thendg(i) = extension of Theorerh]1 to convolutional codes transmitted
(n—k)(i+1)+1foralli<j. over independent network uses.

dr(j—1)+n—k
(

<
<=k +1),

Proof: It suffices to prove foi = j— 1. LetCln, k,m] be 1heorem 3. For0 <t <j, let0 < p, < n satisfy

a code for whichdr(j — 1) does not attain the upper bound t

i.e.,dr(j —1) < (n—k)j, butdg(j) achieves the maximum > pi <k(t+1) 3)
i.e.,dr(j) = (n—k)(j4+1)+1. We will argue by contradiction i=0

that such a code cannot exist. for all t < 5 and with equality fort = j. The following are

Consider a source packet sequengg;_; that gener- equivalent for any convolutional code:
ates xp ;_;; whose sum rank equal tag(j — 1) ie, 1) dr(j)=n—Fk)(j+1)+1



2) For all full- rankAEk = = diag (Ag, ..., A7) constructed appropriateA; for whichx;Ay = 0. Forall0 <t <m -1,
from full-rank bIocksA* e F;*7* andp, that satisfy[[(B), we have that:
the productG?XAr 0] is non-singular.

Proof: We first provel = 2. Suppose there exists sz =nlt+1) Zmnk(%(xz)) ©
an A, ; whose blocks satisfy[]3), for whiclG XA, | a <h(t+1)— 1: )
is singular. Then there exists a channel packet sequence

X0,5], Wherexjg, J]A[O g =0 We show that this leads to aconfirming that[(B) is satisfied far< m — 1. Note that in[[¥)
contradiction of 1. The contradiction is immediatexif # 0. we apply the inequality i {4). We next specify an approgriat
In this case the sum rank ofjy ;; is at leastdg(j), i.e., choice forp,,. We will select:

Zt Orank(gbn(xt)) > dgr(j) must hold. Note however that:

m—1
Pm m + 1 Z Pt (8)
t=0

J
Zrank On(xt)) <n(j+1) Zpt
t=0 and show that there exists an associafef] € ;= that
=n-Fk)(G+1) will satisfy x,, A% = 0. It thus suffices to show that,, also

> i '
contradictsdr(j) = (n — k)(j + 1) + 1. Note that we use [3) salisfiespm < n — rank(¢n(xm)). Note that

with equality att = j in the second step. m—1
If xo = 0, then the sum rank ok ; is not constrained n=pm=n—(m+1Lk+ Z pi ©)
by dr(j). Let I = argmin, x; # 0 be the smallest index for =0
whichx; is non-zero and consider the channel packet sequence _ '«
x[1,j, Whose sum rank is at leagk (j —1). Becauses; A} = 0 = (n=k)(m+1) Z rank (¢n(x:)) - (10)
for t = 1,...,j, we boundrank (¢, (x;)) < n — p; in this ,,:
window. The sum rank ok ; is bounded: =(n—k)(m+1) Zrank (fn(x:))
; =0
J
Z rank (¢, (x¢)) <n(j —1+1) Z Pt + rank (¢ (Xm)) (11)
t=l > rank (¢, (Xm)), (12)

<=k _l+ 1)' where [10) follows by using[{6) with = m —1 and [12)
The second line follows fronZ{:l pi > k(j —141), which follows via the inequality in[(5). Finally, our choicgl(8)sal
can be derived wheri](3) is met with equality for= j. Due guarantees thaAy, . has dimensior{m + 1)n x (m + 1)k
to Lemmal, the column sum rank achievegj —1) = (n— as claimed.

k)(j —1+1)+1. The sum rank oky, ;) is less thanir(j —1),  The remainingAZ,,,,..., A’ can be any full-ranka x k
which is a contradiction. matrices, thus satlsfymg](S) for al < j. The product
We prove2 = 1 by using a code withiz(j) < (n— k:)(j—i— GEXAF@ ;] €an be written as

1) and constructing a full-ranlf, ; for which GF*Aj i
singular. Letm = argmin, dg(i) < (n—k)(i+1) be the f|rst GPXA’ GEX X\ [(Am
instance where the column sum rank fails to attain its upper 0.4 = Y Fm+173]
bound and consider the sequencg,,, with the minimum EX .
column sum rank. We show that there exist full-rank matrices _ G A [0,m] XA[m+1 4
A; € Fj*re satisfying both[(B) anet; A; = 0for 0 < ¢ < m.
In addition, we aim to have equality ifll(3) at= m and thus where X andY denote the remaining blocks that comprise

Ao,y Will be of dimension(m + Ln x (m + 1)k. This is GYX. The blockG;*Ar . is a square matrix with a zero
relevant later in the proof. [0,m]

EX A *
Whenm = 0, the column rank of, cannot exceed — k. determmant- Thereforelet Gj~ A, Is also zero. -
For everypy < n — rank (¢, (xo)), there exists am} for Although in this work, we do not propose a general de-
which xgA% = 0. Clearly we can always choose &j; with coding algorithm for MSR codes, we remark that decoding

Al

rank py = k. in the network streaming problem can be reduced to matrix
Whenm > 0, the sum rank ok, satisfies inversion. COI’]SIdeI.’ a scenario where an MSR code with
memoryT = W —1 is used and that all source packets before
time ¢ have been recovered. To ensure thats recoverable
Zrank (én(xi)) 2 (n = k)t +1) +1 ) within its deadline of timef + T, we consider increasingly
=0 larger windowsit,t + j] for 0 < j < T. Theoren{ P states
for0<t<wm—1,and that if 3277 p; < k(t 4+ j + 1), then the decoder cannot
guarantee recovery by timeé + j. The window lengthj
> rank(én(x:)) < (n— k)(m +1). (5) is incremented at each time instance up to the first point
=0 where 747 p; > k(t 4+ j + 1) is achieved. By Theorem

Let p; = n—rank (¢, (x)) for 0 < t < m—1 and choose the 3, the rank conditions in{3) are satisfied a6* A, .



is non-singular. We therefore invert this matrix and solee f described with the following inequalities:
s[t,t+], recovering all packets in the window simultaneously. o _ , B

Consequently, packets encoded by an MSR code can bd‘r-regq I(r ’5:) > degq Tj(r,5), 0<r< T/ =n—1, (163)
recovered for the network streaming problem with compyexit degq 7(r, s') > degq Tj(r,s), 0<s<s <n-—1, (16b)

:1.\3
O((7F)7)- , forall 0 < j <m.
In the next section, we construct an extended ge”eratorCombining all of theT; to constructT in (I4) preserves
. . . J
matrix. Theorer_r[](Bj IS thenf use(;ulf_afterwards to vgnfy that thye property ofj-degrees strictly increasing downwards (along
generator matrix does in fact define an MSR code. a single column) or rightwards (along a single row) now for

the block Hankel matrix, i.e.,
V. PRESERVATION OFSUPER-REGULARITY

_ ) _deg Ty (1, s) > degq Tj(r,s), 0<j<j <m, (17a)

In [[7], the authors provided a construction for a Toeplitz degy Ty (r,8") > degy Tj(r,s), 0<j<j < (17b)
super-regular matrix that exists i, for a primeg. From B 21T 8 8a £3\1> 5)y =)=
(@), the generator matrix of a convolutional code is bloclor all 0 < r, 7/ <n—1and0<s,s <n— 1.
Toeplitz and we focus on super-regular matrices with simila To show thafT is super-regular, |dD be anyl x! sub-matrix
structure. For simplicity, we consider block Hankel masc of T. All sub-matrices ofT preserve the degree inequalities
and later convert the structure to block Toeplitz beforeecogh (I6) and [IV). T being super-regular is equivalent to
construction. det D # 0 for every D with a non-trivial determinant.

The determinant is evaluated using the Leibniz formula as a
polynomial D(a) = g sgn(o)D,. Each non-zero term

) ) _in the formula,D,, is a product of linearized monomials
A block Hankel super-regular matrix construction, which

we outline below, was proposed inl [9] fdt,» whereq is a =
! q _ . .
prime power andV/ is sufficiently large. Do = H}DW a(i)).

A. Block Hankel Super-regular Matrices

Theorem 4 (Almeida et al., [[9]) For n,m € N, let M = Note that the determinant polynomial itself is not lineadz

¢~ Leta € Fyu be a primitive element and a rootysing [16) and[(17), the degree of this polynomial can be
of the minimal polynomiak,(X). For0 < j < m, let the pounded.

blocksT; € F”;;" be defined by _ . _
4 Lemma 2 (Almeida et al., [[9]) 