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Message Authentication Code over a Wiretap Channel

Dajiang Chen, Shaoquan Jiang, Zhiguang Qin

Abstract—Message Authentication Code (MAC) is a keyed
function fK such that when Alice, who shares the secretK
with Bob, sends fK(M) to the latter, Bob will be assured of
the integrity and authenticity of M . Traditionally, it is assumed
that the channel is noiseless. However, Maurer showed that
in this case an attacker can succeed with probability2−

H(K)
ℓ+1

after authenticating ℓ messages. In this paper, we consider the
setting where the channel is noisy. Specifically, Alice and Bob are
connected by a discrete memoryless channel (DMC)W1 and a
noiseless but insecure channel. In addition, an attacker Oscar is
connected with Alice through DMC W2 and with Bob through
a noiseless channel. In this setting, we study the frameworkthat
sendsM over the noiseless channel and the traditional MAC
fK(M) over channel (W1,W2). We regard the noisy channel as
an expensive resource and define the authentication rateρauth as
the ratio of message length to the numbern of channelW1 uses.
The security of this framework depends on the channel coding
scheme forfK(M). A natural coding scheme is to use the secrecy
capacity achieving code of Csisźar and Körner. Intuitively, this is
also the optimal strategy. However, we propose a coding scheme
that achieves a higherρauth. Our crucial point for this is that in
the secrecy capacity setting, Bob needs to recoverfK(M) while
in our coding scheme this is not necessary. How to detect the
attack without recovering fK(M) is the main contribution of
this work. We achieve this through random coding techniques.

Index Terms—Authentication, wiretap channel, information
theoretical security

I. I NTRODUCTION

In cryptography, a Message Authentication Code (MAC) is
a short piece of information used to authenticate a message
that it was sent by a specified legitimate sender and to provide
integrity assurance on the message. Toward this, we must first
specify an adversary model. That is, what an attacker can do
and how much power he has. A widely adopted model is to
allow an attacker to play a man-in-the-middle attack. Under
this, an attacker Oscar can send any message to receiver Bob
in the name of legitimate sender Alice. Besides, any message
from Alice must first go through Oscar, who can choose to
block, modify or faithfully deliver it. Finally, Oscar is said to
succeedif Bob accepts a source messageM while Alice has
never authenticated it. To prevent attacks, Alice and Bob usu-
ally share a secret keyK. If the attacker tries to authenticate
a source message to Bob before seeing any communication
between Alice and Bob, it is called animpersonation attack.If
the attacker tries to modify the message from Alice so that Bob
accepts it as an authentication of another source message, it is
called asubstitution attack.In this paper, we study the above
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general model where the attacker can play an arbitrary man-
in-the-middle attack and see a polynomial number of message
authentications.

An adversary power is usually defined in two classes:
computationally bounded or unbounded. In the first class, an
adversary only has a polynomial computing power. In the
second class, an adversary has an infinite computing power.
In this paper, we are interested in an unbounded adversary.
In our work, the attacker Oscar attempts to fool Bob to
accept a fake authentication. Since a legal Bob is always
polynomially bounded, we will restricted Oscar to activateBob
with incoming messages for a polynomial number of times.

Usually, message authentication implicitly assumes the
communication channel between Alice and Bob is noiseless.
For a detailed treatment, see Simmons [10] and also Maurer
[11]. However, under this model, any new authentication will
cause an entropy loss of the secret key and the adversary
success probability will increase. In fact, Maurer [11] showed
that afterℓ times of authentication, an adversary can succeed
in an attack with probability at least2−H(K)/(ℓ+1), which
quickly approaches 1 withℓ. In this paper, we investigate the
authentication problem where the channel is noisy.

A. Related works

A noise in the real world usually plays an unwanted role.
The task of digital communication is mainly to remove the
effect of a channel noise. However, in 1975, Wyner [1] was
trying to guarantee that the rate of leaked information went
to zero as block-length goes to infinity. In his model, the
channel from Alice to Bob is less noisy than one between
Alice and the attacker. This result was generalized by Csiszár
and Körner [6]. Since then, the secret sharing problem has
been extensively studied (e.g., [12], [13], [14], [18]).

Even though secret sharing over noisy channels has been
extensively studied, the attention to its siblingmessage au-
thenticationis far from enough. Korzhik et al [3] considered
the authentication problem over a (noiseless) public discussion
channel under the initialization from the noisy channels sothat
the sender, the receiver and the attacker hold some correlated
data. So they essentially considered the authentication inthe
noiseless channel with a noisy initialization (or simply inthe
source model [8]). This framework was further studied in [19].
Lai, ElGamal and Poor [20] considered the authentication over
a wiretap channelX → (Y, Z). When Alice sendsX , Bob
will receiveY via a DMCW1 : X → Y and the attacker will
receiveZ via DMC W2 : X → Z. Alice and Bob share
a secretK. The channel between the attacker and Bob is
noiseless. They showed that as long asI(X ;Y ) > I(X ;Z),
they can build an authentication protocol which can authen-
ticate many source messages without significantly increasing
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Fig. 1. The communication model.

S’ 

M’ or ^ 

S 

Zn 

Yn M 

K 

Alice Bob 
Xn 

Noiseless Channel S’ 

Oscar 

Fig. 2. The authentication model.

an adversary success probability. From Maurer [11], this is
impossible when the channel is completely noiseless. Baracca,
Laurenti and Tomasin [2] studied the authentication problem
over MIMO fading wiretap channels. They protocol assumes
no shared key between Alice and Bob. They only considered
an impersonation attack and also assume an authenticated way
for a sender to send some preliminary data to a receiver. This
framework was further studied in [4].

B. Contribution

In this paper, we consider an authentication model as
follows. A legitimate transmitter Alice plans to send a message
and authenticate it to receiver Bob in the presence of an
adversary Oscar. It is assume that Alice and Bob share a secret
key K, and there is a DMCW1 : X → Y from Alice to Bob
and an one-way noiseless channel from Alice to Bob goes
through Oscar. In addition, there is a DMCW2 : X → Z
from Alice to Oscar and a noiseless channel from Oscar to Bob
(see Fig. 1 for an illustration). Practically, Internet, Telephone,
or a wireless communication system with an error correcting-
code can serve as this channel. We also assume that Oscar
has unbounded computing resources, and can play an arbitrary
man-in-the-middle attack and see a polynomial number of
message authentications (details in Section III).

We study the message authentication code (MAC) in these
noisy model (see Fig. 2 for an illustration): Alice encodesM
to a codeword(S,Xn) with S sent over the noiseless channel
andXn sent over the wiretap channel(W1,W2), which arrives
at Bob as(S′, Y n), wheren is the length of codeword over the
noisy channelW1 andS′ is the received version ofS by Bob
through Oscar. Upon(S′, Y n), Bob decides to reject or accept
the authentication by checking the consistency of(S′, Y n).
We regard the transmission over the wiretap channel as an
expensive resource and define an efficiency measure for the
MAC as authentication rateρauth = |M|

n , where|M | denotes
the bit length ofM .

The goal of the paper is to propose a MAC protocol in
the above model achieving a multi-messages authentication
with the same secret keyK. The main efficiency criterion is a

minimization of the wiretap channel usage while keeping the
probability of Oscar mounting a successful attack negligible.
To achieve the goal with high efficiency, we present a natural
MAC scheme as follows. Alice first generates a traditional
message authentication codeT of M and uses an channel
coding to encodeT to Xn. Finally, the codeword is(M,Xn),
whereM is for the noiseless channel andXn is for channel
(W1,W2). Upon (M ′, Y n), Bob’s verification is to check the
consistency ofM ′ and Y n. The main challenge is how to
design a channel coding with completeness and authentication
(details of completeness and authentication in Section III). We
addresses this issue by leveraging random coding techniques
(details in Section IV).

In the proposed scheme, we can rewriteρauth = ρtag ·ρchan,
where ρchan = |T |

n is called channel coding rateand
ρtag = |M|

|T | is called the rate of tag. ρtag is mainly
determined by purely cryptographic techniques whileρchan
is determined by channel coding techniques. The latter is our
main focus. With secrecy capacityCs of Csiszár and Körner
[6] in mind, if we naturally encodeT to Xn using their code,
we get ρauth = ρtagCs, which can be trivially generalized
from Lai’s work [20]. This intuitively seems to be the best
possible result as we have to protectT in its full secrecy.
However, we propose a new coding technique, achieving
ρauth = ρtag(H(X |Z) − δ) for any smallδ > 0. As shown
in [6], when channelW1 is less noisy than channelW2, then
Cs = H(X |Z) − H(X |Y ). So the ratio of authentication
rate of the natural scheme to ours is arbitrarily close to
1 − H(X |Y )/H(X |Z) < 1. Our crucial point for this is
that the secrecy capacity guarantees that Bob can recoverT
while in the setting, this is unnecessary because in case of no
attack, it can be computed fromM ′ = M andK and in case
of an attack, Bob only needs to detect the inconsistency of
M ′ andY n and reject. How to detect the attack without fully
recoveringT is the non-trivial part of our work. We achieve
this through random coding techniques.

This paper is organized as follows. Section II introduces
basic concepts and results that will be used in this paper.
Section III introduces our authentication model. Section IV
introduces our MAC. Section V proves an authentication
theorem of our MAC. Section VI discusses the efficiency of
our MAC. The last section is a conclusion.

II. PRELIMINARIES

In this paper, we use the following notations or conventions.

• A random variable (RV) is denoted by an upper case letter
(e.g.,X,Y ); its realization is denoted by a lower case
letter (e.g.,x, y); its domain is denoted by a calligraphic
letter (e.g.,X ,Y); X ←U X means thatX is chosen
uniformly at random fromX .

• xn denotes a sequencex1, · · · , xn of length n. For a
positive integers, define[s] = {1, · · · , s}.

• Probabilities P (X = x) and P (X = x|Y = y)
are denoted byPX(x) andPX|Y (x|y). Pn

Y |X(yn|xn) is
defined as

∏n
i=1 PY |X(yi|xi)
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• Pxn(·) is a distribution over alphabetX , where for any
a ∈ X , Pxn(a) is the fraction ofa in sequencexn.
Similarly,Pxnyn(a, b) is the fraction of(a, b) in sequence
(x1, y1), (x2, y2), · · · , (xn, yn).

• Distance between RVsX and X ′ is SD(X ;X ′) =∑
x |PX(x)− PX′(x)|. Conditional distance betweenX

givenY andX ′ is

SD(X |Y ;X ′) =
∑

y,x

PY (y)|PX|Y (x|y)− PX′(x)|.

• Entropy H(X) = −
∑

x PX(x) logPX(x); mutual in-
formation I(X ;Y ) =

∑
x,y PXY (x, y) log

PXY (x,y)
PX (x)PY (y) ;

conditional entropy

H(X |Y ) = −
∑

x,y

PXY (x, y) logPX|Y (x|y).

• RVs X1, · · · , Xm form a Markov chain, denoted by
X1 → · · · → Xm, if PXi|Xi−1···X1

(xi|xi−1 · · ·x1) =
PXi|Xi−1

(xi|xi−1), for any i = 2, · · · ,m.

The following lemma [7, Lemma 1] shows the relationship
between mutual information and distance.

Lemma 1: [7] Let X and Y be two RVs overX and Y
respectively.|X | ≥ 4. Let ∆ = SD(X |Y ;X). Then

1

2 ln 2
∆2 ≤ I(X ;Y ) ≤ ∆ log

|X |
∆

. (1)

A. ǫ-almost strongly universal hash function

A universal hash function essentially is a family of com-
pression functions that has an almost uniformly distributed
output. It was introduced by Wegman and Carter [15] and
further developed in [16], [17]. We now introduce theǫ-almost
strongly-universal hash function.

Definition 1: A finite family of hash functionsH from
alphabetM to a finite alphabetT is ǫ-almost strongly-
universal(ǫ-ASU) if the following holds

- |{h ∈ H : h(x) = t}| = |H|
|T | , ∀x ∈ M, ∀t ∈ T ,

- |{h ∈ H : h(x1) = t1, h(x2) = t2}| ≤ ǫ|H|
|T | , ∀x1, x2 ∈

M (x1 6= x2), ∀t1, t2 ∈ T .
We remark that domainM is not necessarily finite butT and
H are both finite. In this paper,H is indexed by elements in
a setK. We can writeH = {hk}k∈K. So |K| = |H| andhk

is uniformly random inH whenk is so inK.
A construction of ǫ-ASU hashing function with a good

input/output ratio will be used in this paper. Stinson [17]
showed that there exists a scheme that compresses2s log q
length tolog q length. We state it as follows.

Lemma 2: [17] Let q be a prime power and lets ≥ 1 be an
integer. Then there exists ansq -ASU hash function fromM to
T with key spaceK0, where|K0| = qs, |M| = q2

s

, |T | = q.

B. Discrete memoryless channel

A discrete memoryless channel(DMC) with input alphabet
X and output alphabetY is characterized by a stochastic
matrix W = {W (y|x)}x∈X ,y∈Y, whereW (·|x) is the distri-
bution of the channel outputY when the input isX = x,

i.e., W (y|x) = PY |X(y|x). In this case, we sayX and
Y are connected by channelW . If the input sequence is
xn and the output sequence isyn, then PY n|Xn(yn|xn) =∏n

i=1 PY |X(yi|xi) =
∏n

i=1 W (yi|xi). For simplicity, we de-
note

∏n
i=1 W (yi|xi) by W (yn|xn).

A n-length codeC for a DMC W : X → Y with message
spaceT is a pair of functions(f, φ), wheref : T → Xn is
the encoding function,φ : Yn → T ∪ {⊥} is the decoding
function, and⊥ denotes a detection of error. Fort ∈ T ,
f(t) ∈ Xn is called acodeword. When a sender wants to
send messaget, he sendsf(t). When a receiver receives
vector yn ∈ Yn, he decodes it toφ(yn). If φ(yn) 6= t,
an error occurs. Theerror probability of a code is defined
e(C) = P (φ(Y n) 6= T ), whereY n is the channel output with
messageT that is uniformly random overT .

C. Typical sequences

Let xn be a sequence overX . Then the distributionPxn(·)
is called thetypeof xn overX , wherePxn(a) is the fraction
of occurrences ofa in xn. For a typeP overX , type setTn

P

denotes the set of alln-length sequences overX with typeP.
Definition 2: Let X be a RV over alphabetX . xn ∈ Xn is

ǫ-typical if |Pxn(a)−PX(a)| ≤ ǫ
|X | for all a ∈ X , and further

it holds thatPxn(a) = 0 for any a with PX(a) = 0. The set
of ǫ-typical sequences forX is denoted byTn

[X]ǫ .
Note that if xn ∈ Tn

[X]ǫ , then the whole type setTn
Pxn

is included inTn
[X]ǫ . So Tn

[X]ǫ is a union of some type sets
whose type is “close” toPX . Note the form ofX could be
arbitrary. Especially, it could be a vector such asX = (Y, Z).
If xn = (yn, zn) is ǫ-typical forX = (Y, Z), we say(yn, zn)
is jointly ǫ-typical. The set of jointlyǫ-typical sequences for
Y andZ is denoted byTn

[Y Z]ǫ .

Definition 3: Let X andY be RVs over alphabetX andY
respectively.yn ∈ Yn is conditionally ǫ-typical given xn ∈
Xn, if |Pxnyn(a, b)−Pxn(a)PY |X(b|a)| ≤ ǫ

|X |·|Y| for all a ∈
X and b ∈ Y, and further it holds thatPxnyn(a, b) = 0 for
anya, b with PXY (a, b) = 0. The set of conditionallyǫ-typical
sequences forY , givenxn, is denotedTn

[Y |X]ǫ(x
n). If X and

Y are connected by DMCW , Tn
[Y |X]ǫ(x

n) is also denoted by
Tn
[W ]ǫ(x

n).

We now introduce some basic properties of typical se-
quences, which are well-known and can be found in existing
information theory books (e.g. [9, Chap 1.2]).

Lemma 3:Let X1, X2, X be RVs overX andY be a RV
overY. Then,

1. For any typeQ of Xn,

(n+ 1)−|X | · 2nH(Q) ≤ |Tn
Q| ≤ 2nH(Q).

2. There exists constantc > 0 s.t. for∀ǫ > 0, ∀xn ∈ Tn
[X]ǫ ,

2−n[H(X)+cǫ] ≤ Pn
X(xn) ≤ 2−n[H(X)−cǫ],

(1− ǫ)2n[H(X)−cǫ]
∗
≤ |Tn

[X]ǫ | ≤ 2n[H(X)+cǫ].

where inequality (∗) holds whenn large enough.
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3. There exists constantc > 0 s.t. for∀ǫ > 0, ∀xn ∈ Tn
[X]ǫ ,

∀yn ∈ T[Y |X]ǫ(x
n),

2−n[H(Y |X)+cǫ] ≤ Pn
Y |X(yn|xn) ≤ 2−n[H(Y |X)−cǫ],

(1− ǫ)2n[H(Y |X)−cǫ]
∗
≤ |Tn

[Y |X]ǫ(x
n)| ≤ 2n[H(Y |X)+cǫ].

where inequality (*) holds whenn large enough.
4. There exists constantsλ1 andλ2 > 0 such that whenn

large enough, for anyxn ∈ Tn
[X]ǫ

Pn
Y (T

n
[Y ]ǫ) ≥ 1− 2−nλ1ǫ

2

,

Pn
Y |X(Tn

[Y |X]ǫ(x
n)|xn) ≥ 1− 2−nλ2ǫ

2

.

III. MAC FOR A WIRETAP CHANNEL: THE MODEL

Syntax Model. Assume that there is a DMCW1 : X →
Y from Alice to Bob. There is also an one-way noiseless chan-
nel from Alice to Bob. There is a DMCW2 : X → Z from
Alice to Oscar and a noiseless channel from Oscar to Bob.
In this section, we will formulate themessage authentication
code in this channel model. It allows Alice to authenticate a
message to Bob while preventing attacks from Oscar. LetM
be the message space. The system is described by anencoding
function F : M× K → S × Xn and adecoding function
G : K × S × Yn → M∪ {⊥}. The authentication syntax is
as follows.

• If Alice wishes to authenticateM ∈ M to Bob, she
computes(S,Xn) = F (M,K). She then sendsS over a
noiseless channel to Bob, and sendsXn over a wiretap
channel(W1,W2). Through Oscar,S will arrive at Bob
as S′. Let Xn, throughW1, arrive at Bob asY n and,
throughW2, arrive at Oscar asZn.

• Upon (S′, Y n), Bob computesM ′ = G(K,S′, Y n). If
M ′ 6=⊥, he outputsM ′ as the authenticated message
from Alice; otherwise, he rejects.

Note if Alice does not use the noisy channel, then our model
degenerates to a traditional MAC model. So naturally, we call
(F,G) a message authentication code (MAC) over channel
(W1,W2) and call (S,Xn) the codeword of M . For our
convenience, we define adecision bitD : K×S×Yn → {0, 1}
such thatD(K,S′, Y n) = 0 if and only if G(K,S′, Y n) = ⊥
(i.e., Bob rejects).

Adversary Model. An authentication failure could come
from a completeness error or an attack from Oscar. If MAC
is designed properly, the completeness error is negligible.
So we focus on attacks. In our model, Oscar can arbitrarily
modify S over the noiseless channel. We assume that the
channel from Oscar to Bob is noiseless and hence Oscar
can launch impersonation attacks. We also allow Oscar to
learn the decision bit for each authentication. Granting Oscar
to learn this is not artificial. For instance, if Bob rejects
the authentication, he could request Alice to re-authenticate
the message. This allows Oscar to learn the decision bit
b = 0. For another instance, ifM is one message in a serial
authentication procedure (such as a stream authentication),
Bob could feedback an updated message index that represents
the current successfully authenticated message. This implicitly

allows Oscar to learn the decision bit. We also wish to capture
the concern that even if Oscar hasadaptivelyattacked many
authentication instances, he still cannot cheat Bob to accept a
false authentication. The formal model is as follows.

I. Let Mi, i = 1, 2, · · · , be the sequence of messages
authenticated by Alice. Let(Si, X

n
i ) be the codeword

of Mi. Alice sendsSi over the noiseless channel to
Bob andXn

i over channel(W1,W2). Oscar can revise
Si to arbitraryS′

i ∈ S. Let Xn
i arrive at Bob asY n

i

and at Oscar asZn
i . Let M ′

i = G(K,S′
i, Y

n
i ) and

bi = D(K,S′
i, Y

n
i ). Besides(Si, Z

n
i ), Oscar also learns

bi.
Note here we consider an adaptive Oscar. So he deter-
minesS′

i based onSi, his local random sourceR and
the information collected previously:{(Sj , Z

n
j )}i−1

j=1 and
decision bits{bj}i−1

j=1 in stage I and decision bits{b̂j} in
stage II below.

II. Oscar can adaptively send̂St ∈ S and Ŷ n
t ∈ Yn to

Bob noiselessly. Oscar will learn Bob’s decision bitb̂t =
D(K, Ŝt, Ŷ

n). He succeeds if̂bt = 1.
Here(Ŝt, Ŷ

n
t ) is computed based onR and the informa-

tion collected previously:{(Sj , Z
n
j , bj)} and{b̂j}t−1

j=1.

In the model, Oscar can arbitrarily interleave Type I attacks
and Type II attacks. We usesucc to denote the success in a
Type I or Type II attack.

Authentication Property. After introducing the adversary
model, we now define the authentication property formally.
It consists of completeness and authentication. Completeness
essentially states that when Oscar does not present, Bob should
acceptM with high probability. Authentication states that
Oscar can succeed in the above two types of attacks only with
a negligible probability.

Definition 4: A message authentication code(F,G) over
channelW1 : X → Y,W2 : X → Z is secureif the following
holds (wheren is the number of channelW1 uses).

1. Completeness. If Oscar does not present, then Bob
rejects with exponentially (inn) small probability.

2. Authentication. If the number of Type II attacks is
polynomially bounded (inn), Pr(succ) is negligible.

Remark. Restriction on the number of Type II attacks is
unavoidable as Oscar can always choose a messageM and
impersonate with every possible(s, yn) ∈ S × Yn to Bob.
As S andYn are finite sets, he can always succeed for some
pair (s, yn). The number of Type II attacks is chosen as be
polynomially bounded as each attack will involve Bob (as
a verifier) and it is impractical to require him to be in a
complexity class beyond a polynomial. For the same reason,
the number of Type I attacks is also polynomially bounded
(implicitly), although we do not require this.

Efficiency. We regard the communication over a wiretap
channel as an expensive resource. It is desired to minimize the
use of it. For convenience of analysis, we define the efficiency
measure for a MAC. It is calledauthentication rate, defined
asρauth = log |M|

n , which is the ratio of the source message
length to the codeword length.
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IV. OUR SCHEME

A. Random coding theorem

To construct our scheme, we will prove the existence of a
channel coding scheme that satisfies many strong properties.
It essentially states that, there exists a setC ⊆ Tn

P such that:
(1) C can be divided into subsets{Cij}i,j (as shown in Fig.

3) such that each columnC1j ∪· · ·∪CIj is a code for channel
W1;

(2) If I is uniform random andJ is an arbitrary RV but
independent for I, then for̂Xn uniformly random overCIJ
that is transmitted over a wiretap channel(W1,W2), the output
Ẑn of channelW2 is almost independent of(I, J);

(3) In item 2, if the output ofW1 is Ŷ n, then for any
adversarially chosenJ ′ (that satisfies certain properties), it is
unlikely that Ŷ n can be decoded usinggJ′ into a codeword
in CIJ′ . The formal statement is as follows.

C11 · · · C1j · · · C1J

...
. . .

...
. . .

...
Ci1 · · · Cij · · · CiJ

...
. . .

...
. . .

...
CI1 · · · CIj · · · CIJ

Fig. 3. The codebook used in our construction.

Theorem 1:Let X,Y, Z be RVs overX ,Y,Z respectively
such thatPY |X = W1, PZ|X = W2 for DMCs W1,W2 and
that PX = P for a typeP overX with P (x) > 0, ∀x ∈ X .
AssumeI(X ;Y ) > I(X ;Z) + τ for someτ > 0. Then, for
any integersI, J with

0 ≤ 1

n
log J < H(X |Y ) + τ, (2)

0 ≤ 1

n
log I < I(X ;Y )− I(X ;Z)− τ , (3)

there exists disjoint subsetsCij ⊂ Tn
P , i ∈ [I], j ∈ [J] s.t. when

n large enough

1. For eachj, C·j
def
=
⋃

i Cij is a code(fj , gj) for chan-
nel W1 that has an exponentially small average error
probability, wherefj encodes a messagem to themth
codeword inC·j.

2. For any RVJ over [J] and I over [I] with PIJ = PJ

I
,

let Ẑn be the output of channelW2 with input X̂n ←U

CIJ . Then,I(I, J ; Ẑn) ≤ 2−nβ2, for someβ2 > 0 (not
depending onPJ ).

3. For any RVJ over [J] andI over [I] with PIJ = PJ

I
, let

Ŷ n be the output of channelW1 with input X̂n ←U CIJ .
Assume RVJ ′ over [J] with J ′ 6= J satisfying
a. SD(PJ′J ;PJ′J|I) ≤ δ1;
b. J ′ → IJ → X̂n → Ŷ n is a Markov chain;
c. PJ′J (j

′, j) ≤ 2n
ω

J(J−1) + d(j′, j) for any j, j′ and a
functiond(·, ·) s.t.

∑
j′,j d(j

′, j) < δ2, whereω is a
constant in(0, 1).

Then, whenn large enough,

P
(
gJ′(Ŷ n) ∈ CIJ′

)
≤ 2−nω

+ δ1 + δ2.

Proof: Please refer to the Appendix.

B. Construction

Now we describe the construction of our MAC. LetW1 :
X → Y, W2 : X → Z be the wiretap channel. Assume
I(X ;Y ) > I(X ;Z) + τ for someτ > 0 andPX be a type
P with P (x) > 0 for any x ∈ X . Let Cij , i = 1, · · · , I, j =
1, · · · , J be the subsets ofTn

P obtained in Theorem 1. Set
K1 = {1, · · · , I}. Let h : M× K0 → T be a ǫ-ASU hash
function with key spaceK0, where rangeT ⊂ {1, · · · , J}.
Alice and Bob share a secret keyK = (K0,K1) ∈ K0 ×K1.
We now describe the encoding and decoding procedures.

1. Encode. To authenticateM , Alice computesT =
hK0(M), and randomly takesXn from CK1T . Then the
codeword ofM is (M,Xn), whereM is sent over the
noiseless channel andXn is sent over channel(W1,W2).

2. Decode.Upon(M ′, Y n), Bob computesT ′ = hK0(M
′).

If gT ′(Y n) ∈ CK1T ′ , he acceptsM ′; otherwise, he
rejects, wheregj is the decoder of codeC·j .
Note: In the codeC·j at Theorem 1, encoderfj encodes
messageℓ to the ℓth codeword inC·j , gj(Y

n) must
decode to⊥ or a codeword’s index inC·T ′ . As an index
is 1-1 correspondent to its codeword, we assumegj(Y

n)
decodes to⊥ or the codeword itself.

V. SECURITY ANALYSIS

In this section, we prove the authentication property of
our MAC. We begin with two lemmas. The first lemma
shows that Oscar obtains no significant amount of information
about secret key(K0,K1), after eavesdroppingJ times of
authentications that gives Oscar informationM1Z

n
1 · · ·MJZ

n
J .

The idea is as follows. LetTj = hK0(MJ). From Theorem
1(2), it is easy to see thatI(K1Tj ;Z

n
j |Mj = mj) ≈ 0.

Note that givenMj = mj , K0K1 → K1Tj → Zn
j forms a

Markov chain asZn
j is decided byK1Tj and some randomness

independent ofK0K1. So by data processing inequality,
I(K0K1;Z

n
j |Mj = mj) ≤ I(K1Tj;Z

n
j |Mj = mj) ≈ 0.

As K0K1 is independent ofMJ , I(K0K1;M
JZn

1 · · ·Zn
J ) =

I(K0K1;Z
n
1 · · ·Zn

J |MJ). Finally, by standard information
theory techniques, we can show that this is bounded by∑J

j=1 I(K0K1;Z
n
j |MJ = mJ), which is now known small.

The lemma follows by averaging onMJ . We implement the
strategy formally in the following lemma.

Lemma 4:Let (K0,K1) be uniformly distributed over
K0 × K1 and M1, · · · ,MJ be J arbitrary messages inM
authenticated by Alice. Forj = 1, · · · , J, let Zn

j be the output
of W2 when Alice sendsXn

j (w.r.t. Mj). Then, there exists
β2 > 0 such that whenn large enough,

I(K0K1;M1Z
n
1 · · ·MJZ

n
J ) ≤ J · 2−nβ2. (4)

Proof: For j = 1, · · · , J, let Tj = hK0(Mj). Define
MJ = M1 · · ·MJ and mJ = m1 · · ·mJ for mj ∈ M.
Then, PK1Tj |MJ (k1, tj |mJ) = PK1(k1)PTj |MJ (tj |mJ) as
K1 is independent ofMJ and K0. Reformatting this, we
have PK1Tj |MJ=mJ (k1, tj) = PK1(k1)PTj |MJ=mJ (tj) =
PTj |MJ=mJ (tj)/|K1|. That is, if we rewrite the joint distri-

bution of K1, Tj whenMJ = mJ , asPmJ

K1Tj
, thenPmJ

K1Tj
=
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PmJ

Tj
/|K1|. Hence, by Theorem 1 (property 2), whenn suffi-

ciently large, we haveI(K1, Tj;Z
n|MJ = mJ) ≤ 2−nβ2 for

someβ2 > 0, whereβ2 does not depend onmJ .

Given MJ = mJ , we have that(K0,K1) → (Tj ,K1) →
Zn
j forms a Markov chain. Hence, by data processing inequal-

ity, we haveI(K0K1;Z
n
j |MJ = mJ ) ≤ I(K1Tj ;Z

n
j |MJ =

mJ) ≤ 2−nβ2 . Thus, averaging overmJ , we have
I(K0K1;Z

n
j |MJ) ≤ I(K1Tj;Z

n
j |MJ) ≤ 2−nβ2.

Further, for anyj ∈ {1, · · · , J} and whenMJ = mJ ,

Zn
1 · · ·Zn

j−1 → K0K1 → Zn
j

forms a Markov chain asXn
j is determined by (K0K1, mJ )

and the randomness of samplingXn
j from CK1Tj

, andZn
j is

determined byXn
j and the noise in channelW2. Hence,

I(K0K1;Z
n
j |Zn

1 · · ·Zn
j−1,M

J = mJ)

≤ I(K0K1;Z
n
j |MJ = mJ).

Averaging overmJ , we have

I(K0K1;Z
n
j |Zn

1 · · ·Zn
j−1M

J) ≤ I(K0K1;Z
n
j |MJ). (5)

Hence, by chain rule of mutual information,

I(K0K1;Z
n
1 · · ·Zn

JM
J)

= I(K0K1;M
J) + I(K0K1;Z

n
1 · · ·Zn

J |MJ)

= I(K0K1;Z
n
1 · · ·Zn

J |MJ), (K0K1 is indep ofMJ)

≤
∑

j

I(K0K1;Z
n
j |MJ) ≤ J2−nβ2 .

This concludes our proof.
The second lemma will be used to show that the conditional

distribution of secret key on the decision bit is almost uniform.

Lemma 5:Let K andV be RVs overK andV respectively.
Then for anyv ∈ V and anyKv ⊆ K,

|PK|V=v(Kv)− PK(Kv)| ≤
1

2
SD(PK|V=v;PK). (6)

Proof: As SD(PX1 ;PX2) = 2maxA⊆X {PX1(A) −
PX2(A)} for any RVs X1, X2 over X , PK|V =v(Kv) −
PK(Kv) ≤ 1

2SD(PK|V =v;PK). Similarly, −PK|V=v(Kv) +
PK(Kv) ≤ 1

2SD(PK|V=v;PK). Hence, the lemma follows.
The following lemmas will useful in our security proof later.

Lemma 6 means thatT ′T andK are almost independent. It
will be used to assign a value forδ1 in Theorem 1 (3-a).

Lemma 6:Let {hk0}k0∈K0 beany family of functions from
M to T . Let K0,K1, U,M

′,M be RVs overK0,K1,U ,M
andM respectively withM ′,M being deterministic inU .
AssumeK1 is independent of(K0,M). Let T ′ = hK0(M

′)
andT = hK0(M). Then, for∆ = SD(K0K1|U ;K0K1),

SD(PT ′T |K1
;PT ′T ) ≤

√
2∆ ln

|K0||K1|
∆

. (7)

Proof: We have

I(T ′;K1|T ) ≤ I(UK0;K1|T )
= I(U ;K1|TK0), (asI(K0;K1|T ) = 0)

= H(K1|TK0)−H(K1|UTK0)

= H(K1)−H(K1|UK0),

(K1 is ind. of TK0; K0U determinesT )

= I(K1;UK0)

= I(K1;U |K0), (K0 andK1 are ind.)

≤ I(K0K1;U).

On the other hand, by Lemma 1,

I(T ′;K1|T = t)

≥
(∑

k1
PK1|T=t(k1)SD(PT ′|T=t;PT ′|K1T=k1t)

)2

2 ln 2
.

By the convexity off(x) = x2, we have

I(T ′;K1|T ) =
∑

t

PT (t)I(T
′;K1|T = t)

≥

(∑
k1,t

PK1T (k1, t)SD(PT ′|T=t;PT ′|K1T=k1t)
)2

2 ln 2
.

So
∑

k1,t

PK1T (k1, t)SD(PT ′|T=t;PT ′|K1T=k1t)

≤
√
2I(K0K1;U) ln 2.

Independence betweenK1 andT together with Lemma 1 gives
the result (after reformatting the left side).

The following lemma will be used to assign a value forδ2
in Theorem 1 (3-c) and to show that the third condition in
Theorem 1 (3) can be satisfied.

Lemma 7:Let {hk0}k0∈K0 be a family of ǫ-ASU hash
functions fromM to T . LetU,M ′,M be RVs overU ,M and
M respectively s.t.M ′,M are deterministic inU . Let K0 be
uniformly random overK0, T ′ = hK0(M

′) andT = hK0(M).
If P (M ′ = M) = 0, then there exists functiond(t′, t) s.t.∑

t′,t d(t
′, t) ≤ SD(K0|U ;K0) and

PT ′T (t
′, t) ≤ d(t′, t) +

ǫ

|T | .

Proof: Let K0(u, t
′, t) be the set ofk0 so thathk0(m

′) =
t′ and hk0(m) = t, where m′,m are the values of
M ′ and M determined by U = u. Let d(t′, t) =∑

u |PK0U (K0(u, t
′, t), u)− PK0(K0(u, t

′, t))PU (u)|. Then,

PT ′T (t
′, t) =

∑

u

PK0U (K0(u, t
′, t), u)

≤ d(t′, t) +
∑

u

PK0(K0(u, t
′, t)PU (u)

≤ d(t′, t) +
ǫ

|T | , as |K0(u, t
′, t)| ≤ ǫ|K0|

|T |



7

For anyu, {K0(u, t, t
′)}t,t′ are disjoint. Hence,

SD(K0|U ;K0)

=
∑

k0,u

|PK0U (k0, u)− PK0(k0)PU (u)|

≥
∑

t,t′,u

|PK0U (K0(u, t
′, t), u)− PK0(K0(u, t

′, t))PU (u)|

=
∑

t,t′

d(t′, t).

This completes the proof.

A. Authentication Theorem

Now we prove our authentication theorem. We need to show
that sender Alice can authenticate polynomial number of mes-
sages using(K0,K1), where the attacker Oscar can adaptively
interleave two types of attacks. In Type I attack, when Alice
sends out(M,Xn), Oscar can reviseM toM ′(6= M); in Type
II attack, Oscar can send any pair(M̂, Ŷ n) to Bob noiselessly.
Oscar succeeds, ifgT ′(Y n) ∈ CK1T ′ in a Type I attack (where
T ′ = hK0(M

′)), or gT̂ (Ŷ
n) ∈ CK1T̂

in a Type II attack (where
T̂ = hK0(M̂)). Our proof idea is as follows. We use bitbℓ = 1
to denote the success of Oscar in theℓth attack (either Type
I or Type II). In a type I attack, there are two cases: (1)
hK0(M

′) = hK0(M) (i.e., T = T ′), in which case Oscar
succeeds with high probability by the completeness of the
coding scheme(f, g); (2) gT ′(Y n) ∈ CK1T ′ but T 6= T ′. For
case (1), ifM ′ is independent ofK0, then the success of Oscar
occurs with probabilityǫ by the property ofh. Conceivably,
if M ′ is almost independent ofK0 (i.e., SD(K0|M ′;K0) is
small), Oscar still succeeds with a small probability. Notice
that M ′ is determined by the viewUℓ of Oscar. Hence, it
suffices to show thatSD(K0|Uℓ;K0) is small. For case (2),
we can use Theorem 1 (3) to show that the success probability
is small. For type II attack, if(M̂, Ŷ ) (determined byUℓ)
is independent ofK1, then gT̂ (Ŷ

n) ∈ CK1T̂
holds with

probability 1
|K1|

. Conceivably, ifSD(K1|Uℓ;K1) is small, then
this should hold with a small success probability change. As
SD(Kc|Uℓ;Kc) ≤ SD(K0K1|Uℓ;K0K1) for c = 0, 1, we
only need to prove thatSD(K0K1|Uℓ;K0K1) is small, which
can be done by properly combining Lemmas 4-7.

Theorem 2:Let I(X ;Y ) ≥ I(X ;Z) + τ , whereY, Z are
the outputs ofW1,W2 with inputX andPX is a typeP with
P (x) > 0, ∀x ∈ X . Assumeh : M × K0 → T is an ǫ-
ASU hash function withǫ = min{2−Ω(logn), 2n

ω

|T | } for some

ω ∈ (0, 1) and |K1| = 2Ω(logn), whereg(n) = Ω(log n) if
limn→∞

g(n)
logn =∞. Then, our MAC is secure.

Proof: From Theorem 1 (1), the completeness of the
MAC holds. Now we concentrate on the authentication prop-
erty.

Let Mν = M1 · · ·Mν be the sequence of messages au-
thenticated from Alice to Bob andXn

i , Z
n
i be the input and

output w.r.t.Mi over channelW2. Note Mν is chosen by
Alice according to distributionPMν (especially independent
of Oscar’s random tapeR); Xn

i is determined by(K0K1,Mi)
together with the randomness of samplingXn

i from CK1T ; Zn
i

is determined byXn
i together with the noise in channelW2.

It follows that (Mν ,K0K1, X
n
1 Z

n
1 · · ·Xn

ν Z
n
ν ) is independent

of R and hence has the same distribution as when Oscar does
not present. Hence, by Lemma 4,I(K0K1;M

jZn
1 · · ·Zn

j ) ≤
j2−nβ2, for a constantβ2 > 0 and anyj ≤ ν.

As (M j,K0K1, X
n
1 Z

n
1 · · ·Xn

j Z
n
j ) is independent ofR,

I(K0K1;RM jZn
1 · · ·Zn

j ) ≤ j2−nβ2. Let K
def
= K0K1 and

Vj
def
= RM jZn

1 · · ·Zn
j . By Lemma 1,

SD(K|Vj ;K) ≤
√
2j ln 2 · 2−nβ2/2. (8)

According to the adversary model, Oscar can adaptively
interleave the following attacks.

I. When Alice sends out(Mj , X
n
j ), Oscar can reviseMj

to M ′
j(6= Mj). He succeeds if Bob accepts(M ′

j , Y
n
j ).

II. At any time, Oscar can send a pair(M̂, Ŷ n) to Bob
noiselessly. He succeeds if Bob accepts this pair.

We use bitbℓ to denote the result of theℓth attack (either type
I or type II above) and setbℓ = 1 if and only if he succeeds.

Assume the authentication ofM jℓ−1 by Alice has been
completed before Oscar launches theℓth attack. Then,
the view of Oscar right before theℓth attack is Uℓ :=
(Vjℓ−1, b1, · · · , bℓ−1), where a party’s view is defined as his
random tapeR and the data received externally.

If the ℓth attack is Type I, thenbℓ = 1 iff gT ′

jℓ

(Y n
jℓ
) ∈

CK1T ′

jℓ

for T ′
jℓ
= hK0(M

′
jℓ
). If we define eventT ′

jℓ
= Tjℓ(:=

hK0(Mjℓ)) by colℓ, and eventgT ′

jℓ

(Y n
jℓ
) ∈ CK1T ′

jℓ

with Tjℓ 6=
T ′
jℓ

, by misℓ, thenP (bℓ = 1) = P (colℓ) + P (misℓ).

If the ℓth attack is Type II, thenbℓ = 1 iff gT̂ℓ
(Ŷ n

ℓ ) ∈ CK1T̂ℓ

for T̂ℓ = hK0(M̂ℓ), where(M̂ℓ, Ŷ
n
ℓ ) is Oscar’s output in this

attack.
If L is the upper bound on the number of attacks by Oscar,

then his success probability isPr
(
∨Lℓ=1bℓ = 1

)
.

As every successful attacker must experience the first suc-
cessful attack, we restrict to an attacker who will stop after the
first successful attack. Sobℓ = 1 impliesb1 = · · · = bℓ−1 = 0.

Denote the original authentication game byΓ. Now we

modify Γ to Γ′ such that in Type I attack,bℓ
def
= colℓ (instead

of bℓ
def
= colℓ ∨misℓ).

Consider an adversary Oscar′ for Γ′ who simply follows the
code of Oscar by setting each (unknown)misℓ as 0 (even if
it is 1). The view of Oscar′ in Γ′ differs from that of Oscar
in Γ only if misℓ = 1 in Γ′ for someℓ. Thus,

P (succ(Γ)) ≤ P (succ(Γ′)) +
∑

ℓ

P (misℓ(Γ′)). (9)

As P (succ(Γ′)) ≤
∑L

ℓ=1 P (bℓ(Γ
′) = 1), we only need to

boundP (bℓ(Γ
′) = 1) andP (misℓ(Γ

′)).

BoundingP (misℓ(Γ′)). We have the following lemma.

Lemma 8:P (misℓ(Γ′)) ≤ 2−ςnω

+
√
2∆ ln |K0||K1|

∆ + ∆

for a constantς > 0, where∆ = SD(K|Uℓ;K).
Proof. We first show thatUℓMjℓ → K1Tjℓ → Xn

jℓ
→ Y n

jℓ
forms a Markov chain. This follows from two facts:

(a) Given Xn
jℓ

, Y n
jℓ

is completely determined by the
noise in channelW1 while this noise occurs after fixing
(Xn

jℓ
,K1TjℓUℓMjℓ) and hence is independent of the latter;
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(b) GivenK1Tjℓ , X
n
jℓ

is determined by the randomness
for sampling it fromCK1Tjℓ

, which is independent ofUℓMjℓ .
By Theorem 1(3) with δ1 from Lemma 7

and δ2 from Lemma 6, together with the fact
SD(K0|Uℓ;K0) ≤ SD(K0K1|Uℓ;K0K1) (from triangle
inequality), the lemma follows. �

BoundingP (bℓ(Γ
′) = 1). Our analysis is forΓ′. Let Ūℓ =

(V, b1, · · · , bℓ−1), whereV = RMνZn
1 · · ·Zn

ν . We useŪ0
ℓ to

denote the set of possible values forŪℓ with b1 · · · bℓ−1 =
0ℓ−1. SoP (bℓ = 1) =

∑
uℓ∈Ū0

ℓ
P (bℓ = 1, Ūℓ = uℓ).

For givenV = v, let uℓ = v|0ℓ−1, ℓ = 1, · · · , L.

Type I attack case: In this case,bℓ = colℓ. As M ′
jℓ
,Mjℓ

are deterministic inUℓ (part of Ūℓ),

Euℓ

def
= {(k0, k1) ∈ K : hk0(M

′
j) 6= hk0(Mj)}

is completely determined bȳUℓ = uℓ. Hence,

Pr(bℓ = 1|Ūℓ = uℓ) = PK|Ūℓ=uℓ
(Ecuℓ

)

≤ PK(Ecuℓ
) +

1

2
SD(PK|Ūℓ=uℓ

;PK) (by Lemma 5)

≤ ǫ+
1

2
SD(PK|Ūℓ=uℓ

;PK).

Averaging overŪℓ, Pr(bℓ = 1) ≤ ǫ+ 1
2SD(PK|Ūℓ

;PK).

Type II attack case: In this case, given̄Uℓ = uℓ, since view
Uℓ of Oscar′ is part ofŪℓ, it follows (M̂ℓ, Ŷ

n
ℓ ) is deterministic

in uℓ. SinceC·t is a code with decodergt(·), gT̂ℓ
(Ŷ n

ℓ ) ∈ CK1T̂ℓ

holds for at most oneK1 whenK0 and uℓ are fixed. Thus,
given Ūℓ = uℓ, bℓ = 1 holds for at most|K0| choices of
(K0,K1). Let Euℓ

= {(k0, k1) : gT̂ℓ
(Ŷ n

ℓ ) =⊥}. Then

Pr(bℓ = 1|Ūℓ = uℓ)

≤ PK|Ūℓ=uℓ
(Ecuℓ

)

≤ 1

|K1|
+

1

2
SD(PK|Ūℓ=uℓ

;PK) (by Lemma 5)

Averaging overŪℓ, Pr(bℓ = 1) ≤ 1
|K1|

+ 1
2SD(PK|Ūℓ

;PK).

BoundingSD(PK|Ūℓ
;PK). Given Ūℓ = uℓ = v0ℓ−1, we

must haveK ∈ Eui
for any i < ℓ. SoK ∈ Kℓ

v
def
= ∩ℓ−1

i=1Eui
.

In Type I attack,bℓ in Γ′ is determined by(K0,M
′
jℓ
,Mjℓ),

which is further determined by(K0, Vjℓ , b1, · · · , bℓ−1). In
Type II attack, bℓ in Γ′ is determined by(K, M̂ℓ, Ŷℓ),
which is further determined by(K,Vjℓ , b1, · · · , bℓ−1). It fol-
lows that (b1, · · · , bℓ) is deterministic in(K,V ). As Ūℓ =
(V, b1, · · · , bℓ−1), from rule PAB = PAPB|A, we have
PKŪℓ

(k, uℓ) = PKV (k, v) if (b1, · · · , bℓ−1) determined by
(k, v) is 0ℓ−1; 0 otherwise. NoteKℓ

v is the set of all possible
k such that(b1, · · · , bℓ−1) determined by(k, v) is 0ℓ−1. Thus,

PŪℓ
(uℓ) =

∑

k∈Kℓ
v

PKV (k, v) = PKV (Kℓ
v, v). (10)

Hence,

SD(PK|Ūℓ
;PK)

=
∑

v

∑

k∈Kℓ
v

|PKV (k, v)− PKV (Kℓ
v, v)PK(k)|

+
∑

v

∑

k 6∈Kℓ
v

|PKV (Kℓ
v, v)PK(k)|

≤SD(K|V ;K) + 2
∑

v

PKV (K\Kℓ
v, v)

≤2SD(K|V ;K) + 2
∑

v

PK(K\Kℓ
v)PV (v), (Lemma 5)

≤2SD(K|V ;K) + 2(ℓ− 1)ǫ′,

whereǫ′ = max(ǫ, 1
|K1|

).

Finalizing the bound onP (succ(Γ)). As Uℓ is part of Ūℓ,
it follows that SD(K|Uℓ;K) ≤ SD(K|Ūℓ;K). Notice
SD(K|V ;K) ≤

√
2ν ln 2·2−nβ2/2. By Lemma 8 and calculus

analysis, there existsς ′ > 0 andω′ < ω such thatP (misℓ(Γ′))
is bounded by

2−ς′nω′

+

√

4(ℓ− 1)ǫ′ ln
|K0||K1|
2(ℓ− 1)ǫ′

+ 2(ℓ− 1)ǫ′.

Summarizing the bound onP (bℓ = 1), we haveP (bℓ = 1) ≤√
2ν ln 2 · 2−nβ2/2 + ℓǫ′.
As P (succ(Γ′)) ≤ ∑ℓ P (bℓ(Γ

′) = 1) and ν is polynomi-
ally bounded, Eq. (9) gives

P (succ(Γ))

≤
∑

ℓ

P (misℓ(Γ′)) +
∑

ℓ

P (bℓ(Γ
′) = 1)

≤ 2−ς′′nω′

+

L∑

ℓ=1

(

√
4(ℓ− 1)ǫ′ ln

|K0||K1|
2(ℓ− 1)ǫ′

+ 3ℓǫ′)

≤ 2−ς′′nω′

+ 2L

√
Lǫ′ ln

|K0||K1|
ǫ′

+ 3L2ǫ′,

for someς ′′ > 0. This is negligible asL is polynomial inn
andǫ′ is negligible. This completes our theorem.

VI. EFFICIENCY

The following definitions are defined in the introduction
and we repeat them here for convenience. In the proposed
MAC scheme, the authentication rateρauth can be rewritten
as ρauth = ρtag · ρchan, whereρtag = log |M|

log |T | and ρchan =
log |T |

n . We callρtag the tag rateandρchan thechannel coding
rate. Tag rateρtag is mainly determined by cryptographic
techniques.

For our construction, the constraint forT is T ⊂ [J]. The
constraint forJ is log J

n < H(X |Y ) + τ (Theorem 1), where
τ only has the constraintH(X |Z) > H(X |Y ) + τ (Theorem
1 and Theorem 2). So for anyδ ∈ (0, H(X |Z)−H(X |Y )),
we can defineτ = H(X |Z) − H(X |Y ) − δ/2 and then set
|T | = J = 2n(H(X|Z)−δ). Under this, log |T |

n = H(X |Z)− δ.
We can summarize this observation as follows.
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Corollary 1: Keep conditions in Theorem 2. For anyδ ∈
(0, H(X |Z)−H(X |Y )), let τ = H(X |Z)−H(X |Y )− δ/2.
Then our MAC is secure withρauth = [H(X |Z)− δ] · ρtag.

A. Comparison with A Natural Scheme

In our MAC construction, we first computeT and then
encode it toXn using the code in Theorem 1. A natural variant
scheme is similar to ours, except thatT is encoded toXn using
the classic secrecy code of Csiszár and Körner [6], where the
decoding is simply to decodeT and check its consistency
with M ′. The security of this scheme is straightforward as
T is fully protected. Let the secrecy capacity of the wiretap
channel(W1,W2) is Cs. Then the authentication rate of this
scheme isρauth = ρtagCs. According to [6], if channelW1 is
less noisy than channelW2, thenCs = H(X |Z)−H(X |Y ).
Under this, the ratio of the authentication rate of this scheme
to ours is arbitrarily close to1−H(X |Y )/H(X |Z) < 1 (as
δ can be arbitrarily small).

The above observation is surprising. Indeed, sinceT in the
natural scheme is encoded using the capacity achieving code,
the above comparison seems to signify that our MAC does
not protectT in its full secrecy because we have achieved a
higher rate. Our explanation for this is as follows. The secrecy
capacity of a wiretap channel has two tasks: (a) the adversary
has no information about the secret message; (b) the legal
receiver Bob should be able to recover the secret message. In
our setting, we only need to handle task (a) but not (b), as Bob
can recoverT from M ′ in the noiseless channel (ifM ′ = M )
while whenM ′ 6= M , his job is only to realize and reject the
authentication. So in our scheme, there is no guarantee that
Bob can recoverT from Y n.

B. Realization of our MAC

To realize our scheme, we only need to specifyhk and
K0,K1 and τ. Let τ = H(X |Z) − H(X |Y ) − δ/2 as in
Corollary 1. Then,ρauth = [H(X |Z) − δ] · ρtag. Further,
we realizehk with s

q -ASU in Lemma 2, where|K0| = qs,

|M| = q2
s

and |T | = q. Let |K1| = 2log
2 n. It is easy

to verify that under this setup, the security condition in
our authentication theorem is satisfied as long ass < 2n

ω

for some ω ∈ (0, 1). As a result,ρtag = 2s and hence
ρauth = [H(X |Z)−δ]2s, wheres < 2n

ω

for someω ∈ (0, 1).

VII. C ONCLUSION

We considered an authentication problem, in which Alice
authenticated a sourceM over a wiretap channel(W1,W2)
under the assistant of a noiseless channel. Alice and Bob
shared a secret key. We studied the framework, where Alice
sent the insecure informationS over the noiseless channel
and an encoded tagT over the wiretap channel. We proposed
an efficient MAC scheme for wiretap channel(W1,W2), in
which the authentication rate beat the intuitively best possible
result. An immediate open problem is how to construct a
computationally efficient protocol (instead of channel efficient
one studied in this paper).
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APPENDIX

In this Appendix we provide the proof of Theorem 1.

A. Preparation

Let X,Y be RVs over X and Y respectively with
a joint distribution PXY . Let (Xn, Y n) be n indepen-
dent outputs according toPXY . In this case,(Xn, Y n) is
called adiscrete memoryless multiple source(DMMS) with
generic variablesX,Y . For A ⊆ Xn, let P̃XnY n be the
joint distribution of (Xn, Y n), conditional onXn ∈ A.

That is, P̃XnY n(xn, yn)
def
= Pn

XY (x
n, yn)/Pn

X(A) for any
xn ∈ A, yn ∈ Yn. Marginal distributionsP̃Xn(xn) =∑

yn∈Yn Pn
XY (x

n, yn)/Pn
X(A) = Pn

X(xn)/Pn
X(A) and

P̃Y n(yn) =
∑

xn∈A Pn
XY (x

n, yn)/Pn
X(A).

For any index setB, any collection of disjoint subsets
{Ab}b∈B with ∪b∈BAb = A forms a partition ofA. Of course,
a partition ofA does not depend on the index setB. The
generality ofB is only for our ease of presentation.

For a partition{Ab}b∈B of A, let P̃Y n|b(y
n)

def
= P̃ (Y n =

yn|Xn ∈ Ab). That is,

P̃Y n|b(y
n) =

∑

xn∈Ab

P̃XnY n(xn, yn)/P̃Xn(Ab) (11)

=
∑

xn∈Ab

Pn
XY (x

n, yn)/Pn
X(Ab). (12)

In other words,P̃Y n|b equals the marginal distribution ofY n

in Pn
XY , conditional onXn ∈ Ab.

A partition can also be characterized through a mapping.

Specifically, for mappingσ : A → B, let Ab
def
= σ−1(b) for

b ∈ B. Then {Ab}b∈B forms a partition ofA. On the other
hand, given a partition{A}b∈B, we can defineσ : A → B by
σ(x) = b for all x ∈ Ab. Thus, when the context is clear, we
will simply call a mappingσ a partition of size|B| for A.

For any partitionσ : A → B, σ(Xn) has a distribution
induced by random variableXn. As σ(xn) = b if and only
if xn ∈ Ab, we havePr(σ(Xn) = b) = P̃Xn(Ab) =
Pn
X(Ab)/P

n
X(A). Thus, underP̃XnY n for (Xn, Y n),

SD(Y n|σ(Xn);Y n)

=
∑

b∈B

P̃Xn(Ab)
∑

yn∈Yn

|P̃Y n|b(y
n)− P̃Y n(yn)|

=
∑

b∈B

P̃Xn(Ab)SD(P̃Y n|b; P̃Y n). (13)

If PX = P for a typeP andA = Tn
P , Csiszár [7] showed

that whenk is not too large, there exists a partitionσ that
partitionsTn

P into k subsets of almost equal size so thatσ(Xn)
is almost independent ofY n. This is the following.
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Lemma 9: [7] DMC W : X → Y has inputX and output
Y , whereX is according to a typeP with P (x) > 0, ∀x ∈ X .
Then, for anyτ > 0, there existsβ > 0 such that whenn
large enough andk ≤ |Tn

P |2−n(I(X;Y )+τ), Tn
P has a partition

σ : Tn
P → {1, · · · , k} satisfying

|Ai| =
|Tn

P |
k

(1+ǫi), SD(Y n|σ(Xn);Y n) < 2−nβ, (14)

whereAi = σ−1(i) and |ǫi| ≤ 2−nβ. Moreover, if σ is
uniformly random among all possible partitions, then Eq. (14)
holds, except for an exponentially small (inn) probability.

Remark. This lemma can be trivially generalized to the
setting σ′ : Tn

P → B with |B| = k as the result does not
depend on the choice ofB. Specifically, for anyσ in the
lemma andB = {b1, · · · , bk}, define σ′ = σ ◦ π, where
mappingπ : B → {1, · · · , k} with π(bi) 7→ i is one-one. With
Abi = Ai, σ satisfies Eq. (14) if and only ifσ ◦ π satisfies
the corresponding properties with index setB. Later, we will
reference this lemma for a generalB without a justification.

For any setA, there arek|A| partitions of sizek. One can
sample a uniformly random partitionσ : A → B by assigning
σ(x) to a uniformly random elementb in B for eachx ∈
A, b ∈ B. This view will be used in the following theorem.

B. Useful lemmas

Now, we present some lemmas that will be used to prove
theorem 1 later. The first lemma boundsE[|(T[W ]ǫ(Z

n
1 ) ∩

T[W ]ǫ(Z
n
1 )|] for randomly chosenZn

1 , Z
n
2 with type PX .

Our idea is to notice that for a random subsetB of S,
E(|B|) =

∑
y∈S P (y ∈ B). So we only need to bound
∑

yn

P (yn ∈ T[W ]ǫ(Z
n
1 ) ∩ T[W ]ǫ(Z

n
1 )). (15)

It is easy to show thatyn ∈ T[W ]ǫ(Z
n) for a typicalZn (Zn

with typePX satisfies this) impliesZn ∈ Tn
[X|Y ]ǫ(y

n). So Eq.
(15) is bounded by

∑
yn P (Zn

1 , Z
n
2 ∈ Tn

[X|Y ]ǫ(y
n)). Notice

that Zn
1 , Z

n
2 are independent andP (Zn ∈ Tn

[X|Y ]ǫ(y
n)) ≈

2−nI(X;Y ). The desired bound for Eq. (15) can be obtained
by direct calculations.

Lemma 10:Assume RVsX andY are connected by DMC
W : X → Y wherePX = P for some typeP . Let (Zn

1 , Z
n
2 )

be a uniformly randomly pair fromTn
P . Then, there exists a

constantc > 0 such that for anyǫ > 0, whenn large enough,

E
(
|Tn

[W ]ǫ(Z
n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 )|
)
≤ 2n[H(Y |X)−I(X;Y )+cǫ]. (16)

Proof: For a fixed setS and its random subsetB ⊆
S, E(|B|) = E(

∑
y∈S 1B(y)) =

∑
y∈S P (y ∈ B), where

1B(y) = 1 if y ∈ B and 0 otherwise. Thus,

E
(
|Tn

[W ]ǫ(Z
n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 )|
)

(17)

=
∑

yn∈Yn

P (yn ∈ Tn
[W ]ǫ(Z

n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 )). (18)

Notice thatyn ∈ T[W ]ǫ(x
n) for xn ∈ Tn

P implies

|Pxnyn(a, b)− PX(a)PY |X(b|a)| ≤ ǫ

|X ||Y|

for all a, b asPX = P . Summation overa implies

|Pyn(b)− PY (b)| ≤
ǫ

|Y| . (19)

This further implies that|Pxnyn(a, b)− Pyn(b)PX|Y (a|b)| ≤
c′ǫ

|X ||Y| for some constantc′ > 0. So for xn ∈ Tn
P , yn ∈

T[W ]ǫ(x
n) implies xn ∈ Tn

[X|Y ]c′ǫ
(yn). It follows that {xn ∈

Tn
P : yn ∈ Tn

[W ]ǫ(x
n)} ⊆ {xn ∈ Tn

P : xn ∈ Tn
[X|Y ]c′ǫ

(yn)} ⊆
Tn
[X|Y ]c′ǫ

(yn), which has a size at most2n[H(X|Y )+c′′ǫ] for
some constantc′′ > 0 by Lemma 3 (3). So Eq. (18) gives

∑

yn∈Yn

P (yn ∈ Tn
[W ]ǫ(Z

n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 ))

=
∑

yn∈Tn
[Y ]ǫ

P (yn ∈ Tn
[W ]ǫ(Z

n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 ))(by Eq. (19))

≤
∑

yn∈Tn
[Y ]ǫ

P (Zn
1 , Z

n
2 ∈ T[X|Y ]n

c′ǫ
(yn))

∗
≤

∑

yn∈Tn
[Y ]ǫ

2n[H(X|Y )+c′′ǫ]

|Tn
P |

× 2n[H(X|Y )+c′′ǫ]

|Tn
P | − 1

≤ 2(n+ 1)2|X |
∑

yn∈Tn
[Y ]ǫ

2−2n[I(X;Y )−c′′ǫ] (Lemma 3(1))

≤ 2−n[I(X;Y )−H(Y |X)−(2c′′+c∗+1)ǫ] (Lemma 3(2)),

for somec∗ > 0. Ineq (*) holds asZn
1 , Z

n
2 is a uniformly

random pair inTn
P . The lemma holds withc = 2c′′ + c∗ + 1.

The second lemma essentially states that if we randomly
sample a subsetA of size at most2n(I(X;Y )−τ) from Tn

P

for someτ > 0, then most likelyA is an error-correcting
code with an exponentially small error. The basic idea
is simple. By the previous lemma, if the sampled set is
{Zn

1 , · · · , Zn
ℓ }, thenTn

[W ]ǫ(Z
n
i ) ∩ ∪j 6=iT

n
[W ]ǫ(Z

n
j ) has a size

of roughly2n(H(Y |X)−τ), which is an exponentially small part
of Tn

[W ]ǫ(Z
n
i ). So A is a code under a typical decoding that

has an exponentially small error. The formal proof is to make
the above rough idea rigorous through probability arguments.

Lemma 11:Let P be a type overX . Assume integerℓ ≤
2n(I(X;Y )−τ) for someτ > 0 and RVsX andY are connected
by DMC W : X → Y with PX = P . LetA := {Zn

1 , · · · , Zn
ℓ }

(indexed randomly) be a purely random subset ofTn
P of size

ℓ. Let (f, g) be a code with codebookA, where encodingf :
[ℓ] → A, f(i) 7→ Zn

i , and decodingg(Y n) = i if there exists
a uniquei s.t. Y n ∈ Tn

[W ]ǫ(Z
n
i ) and g(Y n) =⊥ otherwise.

Then, there exist constantsλ > 0, ǫ0 > 0 (not depending on
ℓ) such that with probability at least1 − 2−nτ/2 (over the
choice ofA), we havee(A) ≤ 2−nλǫ2 , for any ǫ < ǫ0 and
whenn large enough.
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Proof: We first compute

E(|Tn
[W ]ǫ(Z

n
i ) ∩ ∪j 6=iT

n
[W ]ǫ(Z

n
j )|)

≤
∑

j∈[ℓ]\{i}

E
(
|Tn

[W ]ǫ(Z
n
i ) ∩ Tn

[W ]ǫ(Z
n
j )|
)

≤ ℓ ·E
(
|Tn

[W ]ǫ(Z
n
1 ) ∩ Tn

[W ]ǫ(Z
n
2 )|
)

(Zn
1 , · · · , Zn

ℓ are symmetric)

≤ ℓ · 2−n[I(X;Y )−H(Y |X)−cǫ] (by Lemma 10)

≤ 2n[H(Y |X)−τ+cǫ], n large enough

for some constantc > 0. Hence,
n∑

i=1

1

ℓ
E(|Tn

[W ]ǫ(Z
n
i ) ∩ ∪j 6=iT

n
[W ]ǫ(Z

n
j )|) ≤ 2n[H(Y |X)−τ+cǫ].

By Markov inequality, with probability1− 2−nτ/2 (overA),
n∑

i=1

1

ℓ
|Tn

[W ]ǫ(Z
n
i ) ∩ ∪j 6=iT

n
[W ]ǫ(Z

n
j )| ≤ 2n[H(Y |X)− τ

2 +cǫ].

Denote the collection of suchA by A.
By Lemma 3 (3), there exists constant̂c > 0 s.t.

Pn
Y |X(yn|xn) ≤ 2−n[H(Y |X)−ĉǫ], ∀ǫ > 0, ∀xn ∈ Tn

P , ∀yn ∈
T[W ]ǫ(x

n). So there exists constantc′ > 0 s.t. for anyA ∈ A,
whenI is uniformly random in[ℓ],

P
(
Y n ∈ Tn

[W ]ǫ(Z
n
I ) ∩ ∪j 6=ITn

[W ]ǫ(Z
n
j )
)
≤ 2−n(τ/2−c′ǫ). (20)

Note an error occurs only ifY n ∈ Tn
[W ]ǫ(Z

n
I ) ∩

∪j 6=ITn
[W ]ǫ(Z

n
j ) or if Y n 6∈ Tn

[W ]ǫ(Z
n
I ). Thus, by Lemma 3

(4), there exists constantλ0 > 0 s.t. e(A) ≤ 2−n(τ/2−c′ǫ) +
2−nλ0ǫ

2

. Lemma follows withλ < λ0 and ǫ0 small enough
(dependent onτ, c′, λ0).

The lemma below states that a random subsetA of Tn
P with

|A| = ℓ is uniformly random over all subsets with sizeℓ.
Lemma 12:For a typeP and integers, a subsetA ⊆ Tn

P

is sampled by including eachxn ∈ Tn
P with probability 1/s.

Then given|A| = ℓ, A is uniformly random over all possible
subsets ofTn

P of size ℓ.
Proof. Let N = |Tn

P |. Then, a particular setA of size ℓ is
sampled with probabilitys−ℓ(1 − 1/s)N−ℓ, which does not
depend on the specific element ofA. So given|A| = ℓ, A
occurs with probability1/

(
N
ℓ

)
. �

For s < |Tn
P |2−n(I(X;Y )−θ), in the following lemma, we

want to claim that for a random partitionA1, · · · ,As of Tn
P ,

with high probability, most ofAj ’s are codes. Our proof
strategy is mainly to repeatedly use the following fact: if
E(X) ≤ L for L > 0 and RVX , thenP (X > uL) ≤ 1/u
for any u > 0. This fact is a simple consequence of Markov
inequality.

Lemma 13:Let RVs X,Y be connected by DMCW .
For a type P and s = |Tn

P |2−n(I(X;Y )−θ), A1, · · · ,As

is a random partition ofTn
P : for each xn ∈ Tn

P , take a
uniformly randomi ∈ [s] and putxn into Ai. RegardAj

with |Aj | ≤ 2I(X;Y )−θ/2 as a code in Lemma 11 andAj

with |Aj | > 2I(X;Y )−θ/2 as a code of error 1. Then, there
exist constantsλ > 0, ǫ0 > 0 such that, with probability

1 − 2−nθ/8+1 (over the randomness of partition), there are
at most2−nθ/8s possiblej’s with e(Aj) > 2−nλǫ2 , for any
ǫ < ǫ0.

Proof: By Lemma 12, given|Aj | = ℓ, Aj is uniformly
random over all possible subsets ofTn

P of sizeℓ. So by Lemma
11, given|Aj | = ℓ ≤ 2I(X;Y )−θ/2, there exist constantsλ > 0
and ǫ0 > 0 (not depending onℓ) such that, with probability
1− 2−nθ/4, Aj is a code with

e(Aj) ≤ 2−nλǫ2 , (21)

for anyǫ < ǫ0. Here by symmetry ofA1, · · · ,As, we have that
ǫ0 andλ are invariant withj. On the other hand, asE(|Aj |) =
|Tn

P |/s = 2n(I(X;Y )−θ), from Markov inequality,

P (|Aj | > 2n(I(X;Y )− θ
2 )) ≤ 2−nθ/2. (22)

Define Boolean functionF (Aj) = 1 if and only if either
Aj violates Eq. (21) or|Aj | > 2n(I(X;Y )− θ

2 ). In other words,
F (Aj) = 1 if and only if e(Aj) > 2−nλǫ2 . Then,P (F (Aj) =
1) < 2−nθ/4+1. Thus,

E
(1
s

s∑

j=1

F (Aj)
)
≤ 2−nθ/4+1. (23)

Thus, by Markov inequality,

P
(1
s

s∑

j=1

F (Aj) > 2−nθ/8
)
≤ 2−nθ/8+1 (24)

That is, with probability1 − 2−nθ/8+1 (over the randomness
of a partition),1s

∑s
j=1 F (Aj) ≤ 2−nθ/8. In other words, with

probability1− 2−nθ/8+1, there are at most2−nθ/8s possible
j’s with e(Aj) > 2−nλǫ2 (i.e., F (Aj) = 1).

C. Proof of Theorem 1

Proof idea. We first explain the idea for properties 1 and
2. For 0 < θ < τ , 0 < s1 ≤ 2n[I(X;Y )−I(X;Z)−τ ] and
s2 = | Tn

P |2−n[I(X;Y )−θ], consider independent and uniformly
random partitionsσ1 : Tn

P → {1, · · · , s1} and σ2 : Tn
P →

{1, · · · , s2} for Tn
P . Then,σ = (σ1, σ2) is a random partition

of sizes1s2 for Tn
P . Let Aij = σ−1(i, j). Then by Lemma 9,

|Aij | =
|Tn

P |
s1s2

(1 + ǫij) (25)

SD(Zn|σ(Xn);Zn) < 2−nβ1 (26)

for someβ1 > 0 and smallǫij ≥ 0. As A·j := A1j ∪ · · · ∪
As1j = σ−1

2 (j) is a random subset ofTn
P , by Lemma 13,

most ofA·1, · · · ,A·s2 are codes with small errors. If all of
A·1, · · · ,A·s2 are codes with small errors andǫij = 0, then
properties 1-2 follows by definingCij = Aij , as in this case,
property 2 is just Eq. (26). For the general case, sinceǫij is
small and most ofA·j ’s are good codes, we can discardA·j

(that is not a good code) and defineCij to beAij (whereA·j

is a good code) except cutting off a small subset ofAij (to
makeCij having an equal size). As the changes are minor, the
resultingC·j ’s will remain a good code and satisfy property
2. The main effort in the proof is to make the above idea
rigorous.
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Then, we explain the idea for property 3. We need a fact:
Fact 1. For RVsU, V overU ,V and functionF : U×V →
R+ with F (u, v) ≤ α for any u, v and someα > 0, let
PUV (u, v) ≤ βQUV (u, v)+ δuv for someβ > 0, δuv > 0 and
any distributionsPUV , QUV . Then,

E(F (U, V )) ≤ α
∑

u,v

δuv + β
∑

u,v

QUV (u, v)F (u, v).

Now we come back to the idea for property 3. Notice
that Ŷ n is obtained as follows. We sampleI, J and sam-
ple X̂n from CIJ randomly and finally sendŝXn through
channelW1. As Ŷ n is typical with X̂n, with high prob-
ability Ŷ n ∈ Tn

[W1]ǫ(CIJ). However, under the typicality
decodingg (in property 1), property 3 requires to bound
P (Ŷ n ∈ Tn

[W1]ǫ(CIJ′)) (denoted byµ). We can define
F (i, j, u, j′) = P (Ŷ n ∈ Tn

[W1]ǫ(CIJ′)|IJX̂nJ ′ = ijuj′).
Under this, µ = E(F ). By condition (b) in property
3, PJ′IJX̂n = PJ′|IJPIJX̂n , which is further equal to
PJ′|IJPX̂n|IJPIPJ = PJ′IJ/r, where |Cij | = r. By Fact
1 (with α = β = 1, QUV = PUPV ) and condition (a) in
property 3,µ ≤ δ1 + µ∗, whereµ∗ is E(F ) with PIJX̂nJ′

defined asPIPJJ′/r. Similarly, by condition (c) in property
3 and Fact 1 (withβ = 2n

ω

, α = 1 and QJJ′ = 1
J(J−1) ),

we haveµ ≤ δ1 + δ2 + 2n
ω

µ′, where µ′ = E(F ) with
PIJX̂nJ′ = 1

rJ(J−1)I . In this case,PIJX̂nJ′ is now explicit
and simple. We calculate based on Lemma 10 to show that
µ′ is roughlyr2−nI(X;Y ), which is of 2−nη for someη > 0,
asI(X ;Y )− I(X ;Z) > 0 and we can setr = 2n(I(X;Z)−η).
Sincenη > nω for ω < 1, µ is dominated byδ1 + δ2. This
completes property 3.

With the above ideas in mind, we now implement the proof
details rigorously.

Proof. Part I (for properties 1-2). From our assump-
tion, PX = P . Hence, PXY (x, y) = P (x)W1(y|x)
and PXZ(x, z) = P (x)W2(z|x). Let P̃XnZn(xn, zn)

def
=

Pn
XZ(x

n, zn)/Pn
X(Tn

P ) for xn ∈ Tn
P and zn ∈ Zn. Then

its marginal distributionP̃Xn(xn) is P̃Xn(xn) = 1
|Tn

P
| for

xn ∈ Tn
P .

For anyθ ∈ (0, τ), let s1, s2 be any integers with

1 ≤ s1 ≤ 2n[I(X;Y )−I(X;Z)−τ ],

s2 = | Tn
P |2−n[I(X;Y )−θ].

Consider independent and uniformly random partitions ofTn
P ,

σ1 : Tn
P → {1, · · · , s1} andσ2 : Tn

P → {1, · · · , s2}.
Then,σ = (σ1, σ2) is a partition of sizes1s2 for Tn

P . Let
A = Tn

P . By Lemma 9 withZ in the role ofY and σ =
(σ1, σ2) (henceB = [s1]× [s2] in the remark after this lemma
and notice thatk = s1s2 ≤ |Tn

P |2−n(I(X;Z)+(τ−θ))), there
existsn1 > 0, α1 > 0 and β1 > 0 such that the following
holds with probability1− 2−nα1 (overσ),

|Aij | =
|Tn

P |
s1s2

(1 + ǫij) (27)

SD(Zn|σ(Xn);Zn) < 2−nβ1 (28)

for n ≥ n1, whereAij = σ−1
1 (i)∩σ−1

2 (j) and |ǫij | ≤ 2−nβ1.

LetA·j = ∪iAij . Then,A·j = σ−1
2 (j) and hence{A·j}s2j=1

is the explicit representation of partitionσ2. By Lemma 13,
there exist constantsλ > 0 and ǫ0 > 0 such that with
probability1−2−nθ/8+1 (overσ), there are at most2−nθ/8s2
possiblej’s with e(A·j) > 2−nλǫ2 , for any ǫ < ǫ0.

Define Bad(σ) to the event: underσ, either Eqs. (27)(28)
fails, or e(A·j) > 2−nλǫ2 occurs to more thans22−nθ/8 pos-
sible j’s. ThenPr[Bad(σ)] ≤ 2−nc+2 for c = min(α1, θ/8).

From Eqs. (13)(28) andB = [s1]× [s2], noticing

P̃Xn

(
σ−1
1 (i) ∩ σ−1

2 (j)
)
= P̃Xn

(
σ−1
1 (i)

)
· P̃Xn

(
σ−1
2 (j)

)

(asσ1, σ2 are independent), we have

SD(Zn|σ(Xn);Zn)

=
∑

i,j

P̃Xn(Aij)SD(P̃Zn|(i,j); P̃Zn)

=

s2∑

j=1

P̃Xn(A·j)

(
s1∑

i=1

P̃Xn(Ai·)SD(P̃Zn|(i,j); P̃Zn)

)

≤ 2−nβ1 . (29)

where P̃Xn(Aij) =
|Aij |
|Tn

P | = 1
s1s2

+
ǫij
s1s2

for |ǫij | ≤ 2−nβ1.

Let ǭ·j =
∑s1

i=1 ǫij/s1. We haveP̃Xn(A·j) =
1
s2

+
ǭ·j
s2

with
|ǭ·j| ≤ 2−nβ1. Thus, asSD(Q1;Q2) ≤ 2 for any distribution
Q1, Q2, Eq. (29) implies

1

s2

s2∑

j=1

(
s1∑

i=1

P̃Xn(Ai·)SD(P̃Zn|(i,j); P̃Zn)

)
< 2−nβ1+2. (30)

Similarly, we obtain

1

s1s2

s2∑

j=1

(
s1∑

i=1

SD(P̃Zn|(i,j); P̃Zn)

)
< 2−nβ1+4. (31)

When Eq. (31) holds, Markov inequality implies the number
of j’s with

1

s1

s1∑

i=1

SD(P̃Zn|(i,j); P̃Zn) < 2−nβ1/2+4 (32)

is at leasts2(1− 2−nβ1/2).
For anyσ with ¬Bad, we already know that Eq. (31) holds

and the number ofj’s with e(A·j) > 2−nλǫ2 is bounded by
s22

−nθ/8. Hence, if we letJ ′ be the set ofj such that Eq.
(32) holds ande(A·j) ≤ 2−nλǫ2 , then for anyσ with ¬Bad,

|J ′| ≥ s2(1 − 2−nθ/8 − 2−nβ1/2).

For eachj ∈ J ′, make |Aij | =
|Tn

P |
s1s2

(1 − 2−nβ1) by
cutting auniformly randomsubset of a proper size fromAij .
After this, for j ∈ J ′ and i ∈ [s1], denoteAij ,Ai·,A·j

respectively by Cij , Ci·, C·j. Let C = ∪i∈[s1],j∈J ′Cij .
Also update P̃XnZn(xn, zn) = Pn

XZ(x
n, zn)/Pn

X(A) to
P̃XnZn(xn, zn) = Pn

XZ(x
n, zn)/Pn

X(C). Correspondingly up-
date P̃Xn(xn), P̃Zn . Then, we haveP̃Xn(Ci·) = 1/s1. Note
now SD(P̃Zn|(i,j); P̃Zn) is updated by a multiplicative factor
Pn
X(A)/Pn

X(C). Hence, Eq. (32) is now updated to

1

s1

s1∑

i=1

SD(P̃Zn|(i,j); P̃Zn) < 2−nβ1+5 (33)
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for every j ∈ J ′. Let J be a uniformly randomsubset of
J ′ of size J and let I = s1. Then, with probability at least
1− 2−nc+2 overσ (i.e., when¬Bad occurs), we getJ s.t.

1. For anyj ∈ J , C·j is a code(fj , gj) with average error
probability at most2−nλǫ2+1 as the cutting treatment on
Aij can increase the average error probability by at most
1+2−nβ1

1−2−nβ1
< 2.

2. For anyj ∈ J , 1
s1

∑s1
i=1 SD(P̃Zn|(i,j); P̃Zn) < 2−nβ1+5.

So, for anyPIJ = PJ/s1, SD(P̃Zn|(J,I); P̃Zn) < 2−nβ

for β < β1 (not depending onPJ) andn large enough.

Note that limn→∞
1
n log(s2(1 − 2−nθ/8 − 2−nβ1/2)) =

H(X |Y ) + θ and θ is arbitrary in (0, τ). So we can define
J to be any value as long as1n log J < H(X |Y )+ τ. SoJ and
I can take any value in the required condition.

So far we have proved that for1 − 2−nc+2 fraction of σ
(denoted by setGood), uniformly randomJ from J ′ and
uniformly randomCij from Aij will satisfy properties 1-2.
Note the uniformity ofJ andCij is unnecessary for property
1-2 and it is for the proof of property 3 in the following.

Part II (continue for property 3).We continue to prove prop-
erty 3, based on setGood, the uniformity of Cij ,J above
and properties 1-2. We will show that for a large fraction of
Good, there exists some choice ofJ and Cij (in properties
1-2) that further satisfies property 3.

Let r =
|Tn

P |
s1s2

(1 − 2−nβ1), Cij = {u1, · · · , ur} and Cij′ =
{v1, · · · , vr} where elements are ordered uniformly randomly.
Sincegj uses typicality decoding (Lemma 11), for anyσ,

P
(
gJ′(Ŷ n) ∈ CIJ′

)
≤ P

(
Ŷ n ∈ T[W ]ǫ(CIJ′)

)

=
∑

i,j′,j,t

PIJJ′X̂n(i, j, j
′, ut)×

P
(
Ŷ n ∈ T[W ]ǫ(Cij′ )|IJJ ′X̂n = ijj′ut

)

=
∑

i,j′,j,t

PIJJ′(i, j, j′)
1

r
×

P
(
Ŷ n ∈ T[W ]ǫ(Cij′ )|X̂n = ut

)

(J ′ → IJ → X̂n → Ŷ n Markovity assumption)

≤
∑

i,j′,j,t

PJJ′(j, j′)P
(
Ŷ n ∈ T[W ]ǫ(Cij′ )|X̂n = ut

)

rI

+δ1, (from condition (a) in property 3)

Further by condition (c) in property 3, we have

P
(
Ŷ n ∈ T[W ]ǫ(CIJ′)

)
− δ1 − δ2

≤
∑

i,j′,j,t

2n
ω

P
(
Ŷ n ∈ T[W ]ǫ(Cij′ )|X̂n = ut

)

rJ(J− 1)I
. (34)

Notice
∑

i,j′,j,t
1

IJ(J−1)rP
(
Ỹ n ∈ T[W ]ǫ(Cij′ )|X̂n = ut

)

equalsP
(
Ŷ n ∈ T[W ]ǫ(CIJ′)

)
but with PIJJ′X̂n = 1

rIJ(J−1)

(i.e., I, (J, J ′) independent and each uniformly random and

X̂n uniformly random inCIJ ). We now boundP
(
Ŷ n ∈

T[W ]ǫ(CIJ′)
)

under this setting. By Lemma 3 (4),

P
(
Ŷ n ∈ T[W ]ǫ(CIJ′)

)
− 2−nλ1ǫ

2

≤ P
(
Ŷ n ∈ T[W ]ǫ(X̂

n) ∩ T[W ]ǫ(CIJ′)
)

=
∑

i,j′,j,t

P
(
Ŷ n ∈ T[W ]ǫ(ut) ∩ T[W ]ǫ(Cij′ )|X̂n = ut

)

IJ(J− 1)r

≤
∑

i,j′,j,t,t′

∣∣∣T[W ]ǫ(ut) ∩ T[W ]ǫ(vt′)
∣∣∣

IJ(J − 1)r2n(H(Y |X)−ǫ)
, (35)

for someλ1 > 0, where Cij = {u1, · · · , ur} and Cij′ =
{v1, · · · , vr}.

Let ξ be the randomness to selectJ from J ′ and to select
Csd from Asd for all s, d. Let η be the randomness to order
elements inCsd for all s, d. So far we have assumedξ, η and
σ are fixed. AsJ 6= J ′ (sout 6= vt′ ), it is not hard to see that,
over the randomness of(ξ, η, σ), RV (ut, vt′) for fixed (t, t′)
has a probability distance2−nγ from a uniformly random pair
(U, V ) in Tn

P for some constantγ > 0. So

E
( ∑

i,j′,j,t,t′

∣∣∣T[W ]ǫ(ut) ∩ T[W ]ǫ(vt′ )
∣∣∣

IJ(J − 1)r2n(H(Y |X)−ǫ)

)

≤ 2−n(γ−2ǫ) + E
( ∑

i,j,t,j′,t′

∣∣∣T[W ]ǫ(U) ∩ T[W ]ǫ(V )
∣∣∣

IJ(J− 1)r2n(H(Y |X)−ǫ)

)

≤ 2−nγ/2 + r2−n(I(X;Y )−c′ǫ), (c′ constant, Lemma 10)

= 2−nγ/2 + 2−n(θ−c′ǫ) ≤ 2−nγ′′+1,

for γ′′ < min{γ/2, θ/2}. So for1− 2−nγ′′/2+1 fraction ofσ,
there existsξ andη so that

∑

i,j′,j,t,t′

|T[W ]ǫ(ut) ∩ T[W ]ǫ(vt′)|
IJ(J− 1)r2n(H(Y |X)−ǫ)

≤ 2−nγ′′/2. (36)

Denote this set ofσ by Good′. Then forσ ∈ Good∩Good′,
from Eq. (35)(36), we know that Eq. (34) is bounded by
2−nλǫ2+nω

+ 2−nγ′′/2+nω

. Hence, property 3 is satisfied if

we takeǫ = 3

√
1

n1−ω , as 2n
ω−nγ′′/4 + 2−nλ1ǫ

2+nω

< 2−nω

whenn large enough.
As a summary, forP (Good ∩ Good′) > 1 − 2−nc+2 −

2−nγ′′/2+1 fraction ofσ, properties 1-3 are satisfied. �
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