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Abstract—A continuous-time Wiener phase noise channel with
an integrate-and-dump multi-sample receiver is studied. Alower
bound to the capacity with an average input power constraint
is derived, and a high signal-to-noise ratio (SNR) analysisis
performed. The capacity pre-log depends on the oversampling
factor, and amplitude and phase modulation do not equally
contribute to capacity at high SNR.

I. I NTRODUCTION

Instabilities of the oscillators used for up- and down-
conversion of signals in communication systems give rise to
the phenomenon known asphase noise. The impairment on
the system performance can be severe even for high-quality
oscillators, if the continuous-time waveform is processedby
long filters at the receiver side. This is the case, for example,
when the symbol time is very long, as happens when using
orthogonal frequency division multiplexing.

Typically, the phase noise generated by oscillators is a
random process with memory, and this makes the analysis of
the capacity challenging. The phase noise is usually modeled
as a Wiener process, as it turns out to be accurate in describing
the phase noise statistic of certain lasers used in fiber-optic
communications [1]. As the sampled output of the filter
matched to the transmit filter does not always represent a
sufficient statistic [2], [3], oversampling does help in achieving
higher rates over the continuous-time channel [4]–[6].

To simplify the analysis, some works assume a modified
channel model where the filtered phase noise does not consider
amplitude fading, and thus derive numerical and analytical
bounds [7]–[10].

The aim of this paper is to give a capacity lower bound
without any simplifying assumption on the statistic of filtered
phase noise. Specifically, we extend the existing results for
amplitude modulation, partly published in [5], and presentnew
results for phase modulation.

Notation: Capital letters denote random variables or random
processes. The notationXn

m = (Xm, Xm+1, . . . , Xn) with
n ≥ m is used for random vectors. WithN (0, σ2) we denote
the probability distribution of a real Gaussian random variable
with zero mean and varianceσ2. The symbol

D
= means equality

in distribution.
Given a complex random variableX , we use the notation
|X | and ∠X to denote the amplitude and the phase of

X , respectively. The binary operator⊕ denotes summation
modulo [−π, π).

The operatorsE [·], h (·), and I (· ; ·) denote expectation,
differential entropy, and mutual information, respectively.

II. SYSTEM MODEL

The output of a continuous-time phase noise channel can
be written as

Y (t) = X(t)ejΘ(t) +W (t), 0 ≤ t ≤ T (1)

wherej =
√
−1,X(·) is the data bearing input waveform, and

W is a circularly symmetric complex white Gaussian noise.
The phase process is given by

Θ(t) = Θ(0) + γ
√
TB(t/T ), 0 ≤ t ≤ T, (2)

where B(·) is a standard Wiener process, i.e., a process
characterized by the following properties:

• B(0) = 0,
• for any 1 ≥ t > s ≥ 0, B(t)−B(s) ∼ N (0, t− s)

is independent of the sigma algebra generated by
{B(u) : u ≤ s},

• B(·) has continuous sample paths.

One can think of the Wiener phase process as an accumulation
of white noise:

Θ(t) = Θ(0) + γ

∫ t

0

B′(τ) dτ, 0 ≤ t ≤ T, (3)

whereB′(·) is a standard white Gaussian noise process.

A. Signals and Signal Space

SupposeX(·) is in the setL2[0, T ] of finite-energy signals
in the interval[0, T ]. Let {φm(t)}∞m=1 be an orthonormal basis
of L2[0, T ]. We may write

X(t) =

∞∑

m=1

Xm φm(t), W (t) =

∞∑

m=1

Wm φm(t) (4)

where

Xm =

∫ T

0

X(t) φm(t)⋆ dt, (5)

x⋆ is the complex conjugate ofx, and the{Wm}∞m=1 are
independent and identically distributed (iid), complex-valued,
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circularly symmetric, Gaussian random variables with zero
mean and unit variance.

The projection of the received signal onto then−th basis
function is

Yn =

∫ T

0

Y (t) φn(t)
⋆ dt (6)

=
∞∑

m=1

Xm

∫ T

0

φm(t) φn(t)
⋆ ejΘ(t) dt+Wn (7)

=

∞∑

m=1

Xm Φmn +Wn. (8)

The set of equations given by (8) forn = 1, 2, . . . can be
interpreted as the output of an infinite-dimensional multiple-
input multiple-output channel, whose fading channel matrix is
Φ = [Φmn].

B. Receivers with Finite Time Resolution

Consider a receiver whose time resolution is limited to∆
seconds, in the sense that every projection must include at
least a∆-second interval. More precisely, we setML∆ = T ,
whereM is the number of independent symbols transmitted
in [0, T ] and L is the oversampling factor, i.e., the number
of samples per symbol. The integrate-and-dump receiver with
resolution time∆ uses the basis functions

φm(t) =

{

1/
√
∆, t ∈ [(m− 1)∆,m∆)

0, elsewhere.
(9)

for m = 1, . . . ,ML. With the choice (9), the fading
channel matrixΦ is diagonal and the channel’s output for
n = 1, . . . ,ML is

Yn = Xn
1

∆

∫ n∆

(n−1)∆

ejΘ(t) dt+Wn

= Xn e
jΘ((n−1)∆) 1

∆

∫ n∆

(n−1)∆

ej(Θ(t)−Θ((n−1)∆)) dt+Wn

D
= Xn e

jΘn
1

∆

∫ ∆

0

ejγ
√
∆Bn(t/∆) dt+Wn (10)

(a)
= Xn e

jΘn

∫ 1

0

ejγ
√
∆Bn(t) dt+Wn

= Xn e
jΘnFn +Wn, (11)

where we have used the notationΘn = Θ((n − 1)∆) and
Fn =

∫ 1

0 e
jγ

√
∆Bn(t) dt. In (10) we have used (2), the property

B(t/T ) − B((n − 1)∆/T )
D
= B(t/T − (n − 1)∆/T ), the

substitution
{
t← t− (n− 1)/∆
Bn(t/T )← B(t/T − (n− 1)∆/T ),

(12)

and the property
√
TBn(t/T )

D
=
√
∆Bn(t/∆). Finally, in

step(a) we have used the substitutiont← t/∆.
Since the oversampling factor isL, we haveXkL+1 =

XkL+2 = . . . = XkL+L for k = 0, . . . ,M − 1, and we can
write the model (11) as

Yn = X⌈n/L⌉L e
jΘnFn +Wn (13)

for n = 1, . . . ,ML.
The vectorsXML

1 , FML
1 , andWML

1 are independent of
each other. The variables{XkL}Mk=1 are chosen as iid with
zero mean and varianceE

[
|Xn|2

]
, and the average power

constraint is

E

[

1

T

∫ T

0

|X(t)|2 dt
]

=
1

ML∆

ML∑

n=1

E
[
|Xn|2

]

=
E
[
|Xn|2

]

∆
≤ P . (14)

Since we set the power spectral density ofW to 1, the power
P is also the SNR, i.e.,SNR = P .

Using (3), the variablesΘML
1 follow a discrete-time Wiener

process:

Θn = Θn−1 +Nn−1, n = 1, . . . ,ML, (15)

where theNn’s are iid Gaussian variables with zero mean and
varianceγ2∆. The fading variablesFn’s are complex-valued
and iid, andFn is independent ofΘn1 . In other words,Fn
is correlated only toNn, and is independent of the vector
(Nn−1

1 , NML
n+1).

Note that for any finite∆, or equivalently for any finite
oversampling factorL, the vectorYML

1 does not represent
a sufficient statistic for the detection ofX given Y in the
model (1).

III. L OWER BOUND ON CAPACITY

We compute a lower bound to the capacity of the
continuous-time Wiener phase noise channel (13)-(15). For
notational convenience, we use the following indexing for
i = 1, . . . , L andk = 1, . . . ,M :

Y(k−1)L+i = Xk e
jΘ(k−1)L+iF(k−1)L+i +W(k−1)L+i, (16)

and we group the output samples associated withXk in the
vectorYk = Y

(k−1)L+L
(k−1)L+1 .

The capacity is defined as

C (SNR) = lim
M→∞

1

M
sup I

(
XM

1 ;YM
1

)
(17)

where the supremum is taken among the distributions ofXM
1

such that the average power constraint (14) is satisfied.
The mutual information rate can be lower-bounded as

follows:

1

M
I
(
XM

1 ;YM
1

)
=

1

M

M∑

k=1

I
(
Xk;Y

M
1

∣
∣Xk−1

1

)

(a)
=

1

M

M∑

k=1

I
(
|Xk|;YM

1

∣
∣Xk−1

1

)
+ I

(
∠Xk;Y

M
1

∣
∣Xk−1

1 , |Xk|
)

(b)

≥ 1

M

M∑

k=1

I
(
|Xk|2 ; ||Yk||2

)
+ I

(
∠Xk;Y

k
k−1

∣
∣Xk−1, |Xk|

)

= I
(
|X1|2 ; ||Y1||2

)

︸ ︷︷ ︸

I||

+ I
(
∠X1;Y

1
0

∣
∣X0, |X1|

)

︸ ︷︷ ︸

I∠

(18)



where step(a) follows by polar decomposition ofXk, step(b)
holds by a data processing inequality, by reversibility of the
map x 7→ x2 for non-negative reals, and becauseXk−1

1 is
independent of(Xk,Yk). Finally, the last equality follows by
stationarity of the processes.

A. Amplitude Modulation

By choosing a specific input distribution that satisfies the
average power constraint we always get a lower bound on the
mutual information, so we choose the input distribution as

p|Xk|2(x) =

{
1
λ exp

(

−x−∆−t

λ

)

x ≥ ∆−t

0 elsewhere
(19)

whereλ = SNR∆−∆−t > 0 with t > 0. Note that with this
choice the average power constraint is satisfied with equality,
i.e., E

[
|Xk|2

]
= SNR∆.

Similar to the method used in [5], we give here a lower
bound to the first term on the right hand side (RHS) of (18)
in the form

I|| ≥ E [− ln qV (V )]− E
[
− ln qV | |X1|2(V | |X1|2)

]
(20)

whereV = ||Y1||2 and

qV (v) =

∫ ∞

0

p|X1|2(x)qV | |X1|2(v|x) dx. (21)

Specifically, we choose theauxiliary channel distribution as

qV | |X1|2(v|x) =
1√
πνx

exp

(

− (v − L(1 + xE [G]))2

νx

)

(22)
whereG = ||F1||2/L andν > 0, for which we have1

E
[
− ln qV | |X1|2(V | |X1|2)

]
=

1

2
ln (πν) +

1

2
E
[
ln(|X1|2)

]

+
L

ν

(

E
[
|X1|2

]

∆
Var [G] + 2E [G] + E

[
1

|X1|2
])

≤ 1

2
ln (πνλ) +

∆−t

2λ
+
L

ν

(
SNR · Var [G] + 2 + ∆t

)
(23)

where the inequality is due toE [G] ≤ 1, E
[
|X1|2

]
≤ SNR∆,

the boundE
[
|Xk|−2

]
≤ ∆t which follows from the support

of |Xk|2, and

E
[
ln |X1|2

]
=

∫ ∞

∆−t

1

λ
exp

(

−x−∆−t

λ

)

ln(x) dx

= lnλ+

∫ ∞

∆−t/λ

exp

(

−
(

u− ∆−t

λ

))

ln(u) du

≤ lnλ+
∆−t

λ
. (24)

By substituting (22) and (19) into (21), and by following
similar steps to those of [5], we get

E [− ln qV (V )] ≥ −∆−t

λ
+

1

2
ln(L2µ2λ2 + λν). (25)

1Details are provided in the extended version of the paper.

By putting together (23) and (25) we obtain

I|| ≥ −
3∆−t

2λ
+

1

2
ln(L2µ2λ2 + λν)− 1

2
ln (πνλ)

− L

ν

(
SNR · Var [G] + 2 + ∆t

)
. (26)

In the limit of large time resolution we have

lim
∆→0

Var [G]

∆3
=
γ2

45
. (27)

Now we let the time resolution grow as a power of the SNR,
i.e., ∆−1 = ⌈SNRα⌉, and the parameterν = ρ∆−β, with
ρ > 0. By using (27) into (26), in order to find a tight bound
in the interval1/3 ≤ α ≤ 1 we need to satisfy the conditions2

α < 1/(t+1) andβ ≥ 1. The tightest bound is obtained with
β = 1 andρ = 4:

lim
SNR→∞

{

I|| −
1

2
ln(SNR)

}

≥ −1

2
ln(4πe). (28)

For 0 < α < 1/3 we need to satisfy the conditionsα <
1/(t+1) andα ≥ 1/(β+2), and the tightest bound is obtained
by choosingβ = α−1 − 2 andρ = 2γ2/45:

lim
SNR→∞

{

I|| −
3α

2
ln (SNR)

}

≥ −1

2
ln

(
2πγ2e

45

)

. (29)

B. Phase Modulation

The second term in the RHS of (18) can be lower-bounded
as follows

I
(
∠X1;Y

1
0

∣
∣X0, |X1|

) (a)

≥ I (∠X1; Φ |X0, |X1|)
≥ E

[
− ln qΦ|X0,|X1|(Φ|X0, |X1|)

]
− E

[

− ln qΦ|X1
0
(Φ|X1

0 )
]

(30)

where step(a) is due to a data processing inequality with

Φ = ∠(Y1(Y0e
−j∠X0)⋆)

= ∠X1 ⊕ ∠(|X1|F1 +W1)⊕ ∠(|X0|F ⋆0 ejN0 +W ⋆
0 ),

(31)

and the last inequality follows by choosing the auxiliary
channel

qΦ|X1
0
(φ|x10) =

exp(ζ cos(φ− ∠x1))

2πI0(ζ)
(32)

whereI0(·) is the zero-th order modified Bessel function of
the first kind, andζ is a positive real number. Since we assume
an uniform input phase distribution, the output distribution is
also uniform:

qΦ|X0,|X1|(φ|x0, |x1|) =
∫ 2π

0

qΦ|X1
0
(φ|x10)

1

2π
d∠x1 =

1

2π
.

(33)

2Details are provided in the extended version of the paper.



Using (32), the second term in the RHS of (30) can be upper-
bounded as follows for any∆ ≤ ∆̄ <∞:

E

[

− ln qΦ|X1
0
(Φ|X1

0 )
]

= ln(2πI0(ζ)) − ζE [cos(Φ− ∠X1)]

≤ ln(π
√
π) +

1

2
ln

(
1

ζ

)

+ ζρ

=
1

2
ln
(
2π3eρ

)
(34)

where the inequality is due toI0(ζ) ≤
√
π/2 · eζ/√ζ derived

in [11, Lemma 2], and from the result of Appendix A with

ρ = 1−E
[
F0e

−jN0
]
E [F1]+2e−3γ2∆/8

E
[
|X1|−2

]
K∆̄ (35)

whereK∆̄ > 1 is a finite number3. The last step in (34) is
obtained by choosingζ = (2ρ)−1.

In the limit of large time resolution we have

lim
∆→0

{ ρ

∆
− 2K∆̄∆

t−1
}

≤ 2

3
γ2 (36)

where the inequality follows from the boundE
[
|X1|−2

]
≤ ∆t.

Choosingt = 1 and putting together (30) and (33)-(36) we
get

lim
∆→0

{

I∠ +
1

2
ln(∆)

}

≥ 1

2
ln

(
3

πe(γ2 + 3K∆̄)

)

, (37)

and letting the time resolution grow as a power of the SNR,
i.e., ∆−1 = ⌈SNRα⌉, for 0 < α ≤ 1/2 we have

lim
SNR→∞

{

I∠ −
α

2
ln(SNR)

}

≥ 1

2
ln

(
3

πe(γ2 + 3K∆̄)

)

.

(38)

IV. D ISCUSSION

As a byproduct of (28), (29), and (38), a lower bound to
the capacity pre-log is

lim
SNR→∞

C (SNR)

ln(SNR)
≥







2α 0 < α ≤ 1/3
(1 + α)/2 1/3 ≤ α ≤ 1/2
3/4 1/2 ≤ α < 1.

(39)

Figure 1 shows the lower bounds on the capacity pre-log
versus the parameterα, as reported by (39). The contributions
of amplitude and phase modulation are also shown separately:
Amplitude modulation reaches full degrees of freedom by
sampling more than3

√
SNR samples per symbol, while phase

modulation achieves at least half of the available degrees of
freedom by using a time resolution that scales as1/

√
SNR.

The input distribution that achieves the capacity lower
bound is uniform in phase and the square amplitude is dis-
tributed as a shifted exponential (19). The statistic used for
detecting|Xk| is ||Yk||, and the one used for detecting∠Xk

is ∠

(

Y(k−1)L+1

(
Y(k−1)Le

−j∠Xk−1
)⋆
)

.

3For example, choosingγ2∆ = 0.01 gives K
∆̄

= 8.1353. See the
extended version of the paper for a detailed derivation.

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ap

ac
ity

 p
re

-lo
g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prelog lower bound
Amplitude modulation
Phase modulation

Fig. 1. Capacity pre-log lower bounds as a function ofα at high SNR. The
oversampling factorL is L = ⌈SNR

α⌉.

V. CONCLUSIONS

We have derived a lower bound to the capacity of
continuous-time Wiener phase noise channels with an average
transmit power constraint. As a byproduct, we have obtaineda
lower bound to the capacity pre-log at high SNR that depends
on the growth rate of the oversampling factor used at the
receiver. If the oversampling factor grows proportionallyto
SNR

α, then a capacity pre-log as high as that reported in (39)
can be achieved.

APPENDIX A
A LOWER BOUND TOE [cos(Φ− ∠X1)]

The expectation can be simplified as follows:

E [cos(Φ− ∠X1)]

(a)
= E

[
cos(∠(|X1|F1 +W1)− ∠(|X0|F0e

−jN0 +W0))
]

(b)
= E [cos(∠(|X1|F1 +W1))] E

[
cos(∠(|X0|F0e

−jN0 +W0))
]

+ E [sin(∠(|X1|F1 +W1))] E
[
sin(∠(|X0|F0e

−jN0 +W0))
]

= E [cos(∠(|X1|F1 +W1))]E
[
cos(∠(|X0|F0e

−jN0 +W0))
]

(40)

where step(a) is due to (31), step(b) to the addition formula
for cosine and independence of random variables, and the last
step follows becauseE [sin(∠(|X1|F1 +W1))] = 0 asF1 and
W1 have symmetric pdfs with respect to the real axis.

The first expectation on the RHS of (40) can be written as

E

[

ℜ{ej∠(|X1|F1+W1)}
]

= E

[

ℜ{ej∠F1ej∠(|X1F1|+W1)}
]

= E [cos(∠F1) cos(∠(|X1F1|+W1))]
(41)

where the first step is due to the circular symmetry ofW1,
and the second step because of the symmetric pdfs ofF1 and



W1. A lower bound to (41) is given by

E

[

ℜ{ej∠(|X1|F1+W1)}
] (a)

≥ E [ℜ{F1} cos(∠(|X1F1|+W1))]

(b)

≥ E

[

ℜ{F1}1(ℜ{F1} ≥ 0)

(

1− 1

|X1F1|2
)]

+ E [ℜ{F1}1(ℜ{F1} < 0)]

(c)

≥ E

[

ℜ{F1} − 1(ℜ{F1} ≥ 0)
1

|X1F1|2
]

(d)

≥ E

[

ℜ{F1} −
1

|X1F1|2
]

≥ 2

γ2∆

(

1− e−γ2∆/2
)

− E

[
1

|X1|2
]

K∆̄ (42)

where step(a) holds because|F1| ≤ 1, (b) follows by
cos(x) ≤ 1 and by4

E [cos(∠(ρ+W1))] ≥ 1− 1

ρ2
, ρ > 0, (43)

step(c) becauseℜ{F1} ≤ 1, step(d) is obtained by subtract-
ing E

[
1(ℜ{F1} < 0) |X1F1|−2

]
, and the final inequality uses

E
[
|F1|−2

]
≤ K∆̄ for a finite suitable∆̄ 5.

Following an analogous derivation used for finding (42), for
the second factor on the RHS of (40) we have

E

[

ℜ{ej∠(|X0|F0e
−jN0+W0)}

]

≥ E

[

ℜ{F0e
−jN0} − 1

|X0F0|2
]

≥
√

2π

γ2∆
erf

(√

γ2∆

8

)

e−3γ2∆/8 − E

[
1

|X0|2
]

K∆̄ (44)

where erf(·) is the error function, and the closed form for
E
[
F0e

−jN0
]

is provided in Appendix B. Using (42) and (44)
into (40), withℜ{E [F1]} ≤ 1, ℜ{E

[
F0e

−jN0
]
} ≤ e−3γ2∆/8,

E
[
|X0|−2

]
≥ 0, andE

[
|F0|−2

]
≥ 0, the final result is

E [cos(Φ− ∠X1)] ≥ E
[
F0e

−jN0
]
E [F1]

− 2e−3γ2∆/8
E

[
1

|X1|2
]

K∆̄. (45)

APPENDIX B
EVALUATION OF E

[
F0e

−jN0
]

Knowing thatN0 = σ
∫ 1

0
B(τ) dτ with σ = γ

√
∆, we

compute

Var [σB(t) −N0] = σ2
Var [B(t)] + Var [N0]− 2σE [B(t)N0]

= σ2(t+ 1)− 2σ2

∫ 1

0

E [B(t)B(τ)] dτ

= σ2(t2 − t+ 1) (46)

4The proof is provided in the extended version of the paper.
5The proof is provided in the extended version of the paper.

where the last step follows from the property of Wiener
processesE [B(t)B(τ)] = min{t, τ}. Thus we have

E
[
F0e

−jN0
]
=

∫ 1

0

E

[

ej(σB(t)−N0)
]

dt

(a)
=

∫ 1

0

e−Var[σB(t)−N0]/2 dt

=

√

2π

σ2
e−

3
8σ

2

erf

(√

σ2

8

)

(47)

where in step(a) we used the characteristic function of a
Gaussian random variable, and in the last step we used (46).

ACKNOWLEDGMENT

L. Barletta and G. Kramer were supported by an Alexander
von Humboldt Professorship endowed by the German Federal
Ministry of Education and Research.

REFERENCES

[1] G. Foschini and G. Vannucci, “Characterizing filtered light waves
corrupted by phase noise,”IEEE Trans. Inf. Theory, vol. 34, no. 6, pp.
1437–1448, Nov 1988.

[2] L. Barletta and G. Kramer, “On continuous-time white phase noise
channels,” inIEEE Int. Symp. Inf. Theory (ISIT), June 2014, pp. 2426–
2429.

[3] ——, “Signal-to-noise ratio penalties for continuous-time phase noise
channels,” inInt. Conf. on Cognitive Radio Oriented Wirel. Networks
(CROWNCOM), June 2014, pp. 232–235.
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APPENDIX C
AUXILIARY CHANNEL

Choose the auxiliary channel distribution

qV | |X1|2(v|x) =
1√
πνx

exp

(

− (v − L(1 + xµ))2

νx

)

(48)

where

V = ||Y1||2 = |X1|2LG+ Z0 + 2|X1|Z1 (49)

and

G =
||F1||2
L

, Z0 = ||W1||2, Z1 =

L∑

i=1

ℜ{FiW ⋆
i }.

(50)
Squaring the output statistic gives

V 2 = |X1|4L2G2 + 4|X1|3LGZ1 + 2|X1|2(2Z2
1 + LGZ0)

+ 4|X1|Z0Z1 + Z2
0 , (51)

thus

(V − L(1 + |X1|2µ))2

= V 2 − 2V L(1 + |X1|2µ) + L2(1 + |X1|2µ)2

= |X1|4L2G2 + 4|X1|3LGZ1 + 2|X1|2(2Z2
1 + LGZ0)

+ 4|X1|Z0Z1 + Z2
0 + L2(1 + |X1|2µ)2

− 2(|X1|2LG+ Z0 + 2|X1|Z1)L(1 + |X1|2µ)
= |X1|4L2(G− µ)2 + 2|X1|2(2Z2

1 + L(Z0 − L)(G− µ))
+ 4|X1|3LZ1(G− µ) + 4|X1|Z1(Z0 − L) + (Z0 − L)2.

(52)

Taking expectations gives

E

[
(V − L(1 + |X1|2µ))2

ν|X1|2
]

=
L2

ν
E
[
|X1|2

]
E
[
(G− µ)2

]
+

4L

ν
E [|X1|]E [Z1(G− µ)]

+
2

ν
(2E

[
Z2
1

]
+ LE [(Z0 − L)(G− µ)])

+
4

ν
E

[
1

|X1|

]

E [Z1(Z0 − L)] +
1

ν
E

[
1

|X1|2
]

E
[
(Z0 − L)2

]

=
L2

ν
E
[
|X1|2

]
E
[
(G− µ)2

]
+

2L

ν
E [G] +

L

ν
E

[
1

|X1|2
]

(53)

which is minimized by choosingµ = E [G].

The conditional entropy is

E
[
− ln qV | |X1|2(V | |X1|2)

]

=
1

2
ln(πν) +

1

2
E
[
ln(|X1|2)

]
+ E

[
(V − L(1 + |X1|2µ))2

ν|X1|2
]

=
1

2
ln (πν) +

1

2
E
[
ln(|X1|2)

]

+
L

ν

(

E
[
|X1|2

]

∆
Var [G] + 2E [G] + E

[
1

|X1|2
])

≤ 1

2
ln (πνλ) +

∆−t

2λ

+
L

ν

(

SNR · Var [G] + 2E [G] + E

[
1

|X1|2
])

(54)

where in the last inequality we have used the bound (24).
The output distribution is

qV (v) =

∫ ∞

0

p|X1|2(x)qV | |X1|2(v|x) dx

=

∫ ∞

∆−t

1

λ
exp

(

−x−∆−t

λ

)
1√
πνx

exp

(

− (v − L(1 + xµ))2

νx

)

dx

≤ exp

(
∆−t

λ

)∫ ∞

0

1

λ
exp

(

−x
λ

) 1√
πνx

exp

(

− (v − L(1 + xµ))2

νx

)

dx

= exp

(
∆−t

λ

)∫ ∞

0

1

Lµλ
exp

(

− y

Lµλ

)
1

√

πνy/(Lµ)

exp

(

− (v − L− y))2
νy/(Lµ)

)

dy

= exp

(
∆−t

λ

)
1

√

Lµλ(Lµλ+ ν/(Lµ))

exp

(
2Lµ

ν

[

v − L− |v − L|
√

1 +
ν

L2µ2λ

])

, (55)

and the entropy of the output of the auxiliary channel is

E [− ln qV (V )] = −∆−t

λ
+

1

2
ln(Lµλ(Lµλ+ ν/(Lµ)))

− 2Lµ

ν

[

E [V − L]− E [|V − L|]
√

1 +
ν

L2µ2λ

]

(a)

≥ −∆−t

λ
+

1

2
ln(Lµλ(Lµλ+ ν/(Lµ)))

+
2Lµ

ν
E [V − L]

[√

1 +
ν

L2µ2λ
− 1

]

≥ −∆−t

λ
+

1

2
ln(L2µ2λ2 + λν). (56)

where step(a) holds becauseE [| · |] ≥ E [·], and the last
inequality holds because of

E [V − L] = E
[
|X1|2LG+ Z0 + 2|X1|Z1 − L

]

= E
[
|X1|2||F1||2

]
≥ 0. (57)



The lower bound to the mutual information rate for the
amplitude modulation is

I|| ≥ E [− ln qV (V )]− E
[
− ln qV | |X1|2(V | |X1|2)

]

≥ −3∆−t

2λ
+

1

2
ln(L2µ2λ2 + λν)− 1

2
ln (πνλ)

− L

ν

(

SNR · Var [G] + 2E [G] + E

[
1

|X1|2
])

. (58)

Using λ = SNR∆−∆−t and choosingν = ρ∆−β , and∆ =
L−1 = SNR

−α gives

I|| ≥ −
3

2

1

SNR
1−α(t+1) − 1

+
1

2
ln
(
SNR

2α(E [G])2

(SNR1−α − SNR
αt)2 + ρ(SNR1−α(1−β) − SNR

α(t+β))
)

− 1

2
ln

(

πρSNR1+α(β−1)

(

1− 1

SNR
1−α(t+1)

))

− ρ−1
SNR

α(1−β) (
SNR · Var [G] + 2E [G] + SNR

−αt) .
(59)

For large SNR we have

lim
∆→0

E [G] = 1, lim
∆→0

Var [G]

∆3
=
γ2

45
(60)

that gives

lim
SNR→∞

I
(
|X1|2 ;V

)
≥ lim

SNR→∞

{

− 3

2

1

SNR
1−α(t+1) − 1

+
1

2
ln
(

(SNR− SNR
α(t+1))2 + ρ(SNR1−α(1−β) − SNR

α(t+β))
)

− 1

2
ln

(

πρSNR1+α(β−1)

(

1− 1

SNR
1−α(t+1)

))

− ρ−1
SNR

α(1−β)
(

SNR
1−3α · γ

2

45
+ 2 + SNR

−αt
)}

= lim
SNR→∞

{

− 3

2

1

SNR
1−α(t+1) − 1

+
1

2
ln

(

(SNR− SNR
α(t+1))2

SNR
1+α(β−1)

+ ρ
SNR

1−α(1−β) − SNR
α(t+β)

SNR
1+α(β−1)

)

− 1

2
ln

(

πρ

(

1− 1

SNR
1−α(t+1)

))

− ρ−1
SNR

α(1−β)
(

SNR
1−3α · γ

2

45
+ 2 + SNR

−αt
)}

= lim
SNR→∞

{

− 3

2

1

SNR
1−α(t+1) − 1

+
1

2
ln
(

SNR
1+α(1−β) − 2SNRα(t−β+2) + SNR

α(2t−β+3)−1

+ρ− ρ

SNR
1−α(t+1)

)

− 1

2
ln

(

πρ

(

1− 1

SNR
1−α(t+1)

))

− ρ−1
SNR

α(1−β)
(

SNR
1−3α · γ

2

45
+ 2 + SNR

−αt
)}

.

(61)

In order to have a tight bound, we need to satisfy the
constraints







1− α(t+ 1) > 0
α(1 − β) + 1− 3α ≤ 0
α(1 − β) ≤ 0
α(1 − β)− αt ≤ 0
1 + α(1 − β) > α(t− β + 2)

(62)

that reduce to







α < 1/(t+ 1)
α(1 − β) + 1− 3α ≤ 0
α(1 − β) ≤ 0.

(63)

Next we consider the two cases1/3 < α < 1 and 0 < α <
1/3.

If α > 1/3, i.e., 1− 3α < 0, then we have to satisfy

{
α < 1/(t+ 1)
β ≥ 1.

(64)

to get

lim
SNR→∞

{

I
(
|X1|2 ;V

)
− 1 + α(1 − β)

2
ln (SNR)

}

≥ −1

2
ln (πρ)− 2

ρ
, (65)

and the tightest bound is obtained by choosingβ = 1 and
ρ = 4:

lim
SNR→∞

{

I
(
|X1|2 ;V

)
− 1

2
ln (SNR)

}

≥ −1

2
ln (4πe) .

(66)

If α < 1/3, i.e., 1− 3α > 0, then we have to satisfy

{
α < 1/(t+ 1)
α ≥ 1/(β + 2).

(67)

By choosingβ = α−1 − 2 andρ = 2γ2/45 we get

lim
SNR→∞

{

I
(
|X1|2 ;V

)
− 3α

2
ln (SNR)

}

≥ −1

2
ln

(
2πγ2e

45

)

.

(68)

APPENDIX D
A LOWER BOUND TOE [cos(∠(ρ+W ))]

The pdf ofΨ = ∠(ρ+W ) is [12]

pΨ(ψ) =
1

2π
e−ρ

2

+
1√
4π
ρ cos(ψ)e−ρ

2 sin2(ψ) erfc(−ρ cos(ψ))
(69)



where erfc : x 7→ 1 − erf(x) is the complementary error
function. A lower bound toE [cos(Ψ)] is6:

E [cos(Ψ)]
(a)
= 2

∫ π

0

cos(ψ)pΨ(ψ) dψ

(b)
=

∫ π

0

ρ√
π
cos2(ψ)e−ρ

2 sin2(ψ) erfc(−ρ cos(ψ)) dψ

(c)

≥
∫ π/2

0

ρ√
π
cos2(ψ)e−ρ

2 sin2(ψ) erfc(−ρ cos(ψ)) dψ

(d)

≥
∫ π/2

0

ρ√
π
cos2(ψ)e−ρ

2 sin2(ψ)(2− e−ρ2 cos2(ψ)) dψ

=

∫ π/2

0

2ρ√
π
cos2(ψ)e−ρ

2 sin2(ψ) dψ −
√
π

4
ρe−ρ

2

(70)

where (a) follows by symmetry,(b) follows by using (69)
and

∫ π

0 cos(ψ) dψ = 0, (c) holds because the integrand
is non-negative over the interval[π2, π], (d) holds because
erfc(ρ cos(ψ)) ≥ 2−e−ρ2 cos2(ψ) andcos2(ψ)e−ρ

2 sin2(ψ) ≥ 0,
and finally the last step follows by direct integration.

We bound the integral in (70) as follows

∫ π/2

0

2ρ√
π
cos2(ψ)e−ρ

2 sin2(ψ) dψ

(a)

≥ 2ρ√
π

∫ π/2

0

(1− ψ2)e−ρ
2ψ2

dψ

=

(

1− 1

2ρ2

)

erf
(πρ

2

)

+
1

2
√
πρ
e−π

2ρ2/4

≥ erf
(πρ

2

)

− 1

2ρ2
(71)

where inequality(a) follows from cos2(ψ)e−ρ
2 sin2(ψ) ≥ (1−

ψ2)e−ρ
2ψ2

, and the last step holds becauseerf(·) ≤ 1 and the
last term is non-negative. Substituting back into (70) yields

E [cos(Ψ)] ≥ erf
(πρ

2

)

− 1

2ρ2
−
√
π

4
ρe−ρ

2

(a)

≥ 1− e−π2ρ2/4 − 1

2ρ2
−
√
π

4
ρe−ρ

2

(b)

≥ 1− 4

π2ρ2e
− 1

2ρ2
−
√
π

4ρ2

(
3

2e

)3/2

≥ 1− 1

ρ2
(72)

where step(a) is due toerfc(x) ≤ e−x2

, and inequality(b) fol-
lows from ρ3e−ρ

2 ≤ (3/(2e))3/2 ande−π
2ρ2/4 ≤ 4/(π2ρ2e).

6The proof is the one proposed in the Ph.D. thesis of H. Ghozlan.

APPENDIX E
AN UPPER BOUND TOE

[
|F1|−2

]

DenotingZ = |F1|, we compute an upper bound as follows

E
[
Z−2

]
= lim

δ↓0

∫ ∞

δ

1

x2
pZ(x) dx

(a)
= lim

δ↓0

{

−Pr(Z ≤ δ)
δ2

+

∫ ∞

δ

2

x3
Pr(Z ≤ x) dx

}

(b)

≤
∫ ∞

0

2

x3
E [1(Z ≤ x)] dx

=

∫ ε

0

2

x3
E [1(Z ≤ x)] dx+

∫ ∞

ε

2

x3
E [1(Z ≤ x)] dx

≤
∫ ε

0

2

x3
E [g(Z)] dx+

1

ε2
(73)

whereε is a suitably chosen positive number, step(a) follows
by integrating by parts, inequality(b) holds because the cumu-
lative function is always positive, and the last inequalityholds
by choosing a functiong(Z) ≥ 1(Z ≤ x) for the first integral
(i.e., for 0 < x < ε) and the inequalityE [1(Z ≤ x)] ≤ 1 for
the second integral, that can be computed in closed form.

As for the functiong(Z) we choose

g(Z) = a(1− Z2)
(
1− Z2ρ1

) (
1− Z2ρ2

)

= a
[
1− Z2 (1 + ρ1 + ρ2) + Z4(ρ1 + ρ2 + ρ1ρ2)− Z6ρ1ρ2

]
,

(74)

a polynomial whose positive roots are{1, ρ−1/2
1 , ρ

−1/2
2 }, and

with g(0) = a > 1. To guarantee the positivity ofg(Z) for
0 ≤ Z ≤ 1, we can design the rootsρ−1/2

1 andρ−1/2
2 to be

greater than 1, henceρ1 andρ2 less than 1.
If the polynomialg(Z) satisfies the conditionE [g(Z)] = 0,

then we have a finite bound in (73):

E
[
Z−2

]
≤ 1

ε2
. (75)

Imposing the conditionE [g(Z)] = 0 in (74) gives

ρ2 =
−1 + E

[
Z2
]
(1 + ρ1)− E

[
Z4
]
ρ1

−E [Z2] + E [Z4] (1 + ρ1)− E [Z6] ρ1
. (76)

We wantρ2 to be positive, for this we distinguish two cases. In
the first case we have both numerator and denominator of (76)
positive, and this is satisfied if

ρ1 ≥ max

{

E
[
1− Z2

]

E [Z2(1− Z2)]
,
E
[
Z2(1− Z2)

]

E [Z4(1− Z2)]

}

≥ 1, (77)

so this situation is not wanted. The other case is where both
numerator and denominator are negative, i.e., for

ρ1 ≤ min

{

E
[
1− Z2

]

E [Z2(1− Z2)]
,
E
[
Z2(1− Z2)

]

E [Z4(1− Z2)]

}

. (78)

Moreover, we wantρ2 ≤ 1, and imposing this condition
on (76) when numerator and denominator are negative means

ρ1 ≥
E
[
(1− Z2)2

]

E [Z2(1− Z2)2]
(79)



Conditions (78) and (79) can be numerically checked by
considering that [5]

E
[
Z2
]
=

2

α2

(
−1 + e−αt + αt

)
(80)

E
[
Z4
]
=

1

α4

(
87

2
− 392

9
e−α +

1

18
e−4α − 30α+ 8α2

−40

3
αe−α

)

(81)

E
[
Z6
]
=

1

α6

(

−100α3e−α + 144α3 − 3

25
αe−4α

− 11991

8
αe−α + 1499α− 1

200
αe−9α

−2123

3
α2e−α +

4

15
α2e−4α − 792α2

)

(82)

whereα = γ2∆/2. For example, fora = 1.3 andγ
√
∆ = 0.1

the roots areρ−1/2
1 ≫ 1, ρ

−1/2
2 ≈ 1.0001 > 1.

The last thing to check is that

g(Z) ≥ 1, for 0 ≤ Z ≤ x and all0 ≤ x ≤ ε. (83)

Studying the convexity ofg(Z), we find that the function is
concave in0 ≤ Z ≤ ε∩ with

ε2∩ =
ρ1 + ρ2 + ρ1ρ2

5ρ1ρ2
−
√
(
ρ1 + ρ2 + ρ1ρ2

5ρ1ρ2

)2

− 1 + ρ1 + ρ2
15ρ1ρ2

.

(84)
Moreover, we haveg(ε1) = 1 with ε21 given by Cardano’s
formula. Condition (83) is verified ifε ≤ min{ε1, ε∩},
because for all0 ≤ Z ≤ ǫ we can guaranteeg(Z) ≥ 1
thanks tog(0) ≥ 1, g(ǫ) ≥ 1, and concavity forg(Z). For
example, fora = 1.3 andγ

√
∆ = 0.1 we haveε1 ≈ 0.3506

and ε∩ ≈ 0.5774, so we chooseε = 0.3506. Using (75) this
gives a boundE

[
|F |−2

]
≤ 8.1353 for all γ

√
∆ ≤ 0.1.
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