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Abstract—A continuous-time Wiener phase noise channel with X, respectively. The binary operatgy denotes summation
an integrate-and-dump multi-sample receiver is studied. Aower modulo [, 7).
bound to the capacity with an average input power constraint The operatorsE [], h(-), and I (-;-) denote expectation

is derived, and a high signal-to-noise ratio (SNR) analysiss . . . - .
performed. The capacity pre-log depends on the oversamplin differential entropy, and mutual information, respedijve

factor, and amplitude and phase modulation do not equally

contribute to capacity at high SNR. Il. SYSTEM MODEL
The output of a continuous-time phase noise channel can

I. INTRODUCTION be written as

Instabilities of the oscillators used for up- and down- Y(t) = X()e’®® + W(t), 0<t<T 1)

conversion of signals in communication systems give rise to _ _ N
the phenomenon known gshase noise. The impairment on wherej = v/—1, X(-) is the data bearing input waveform, and

the system performance can be severe even for high—qua+ IS 2 circularly Syf‘“m?‘”c gomplex white Gaussian noise.
oscillators, if the continuous-time waveform is procesbgd € phase process Is given by

long filters at the receiver side. This is the case, for exampl O(t) = ©(0) +vVTB(t/T), 0<t<T, 2)
when the symbol time is very long, as happens when using . . _
orthogonal frequency division multiplexing. where B(-) is a standard Wiener process, i.e., a process

Typically, the phase noise generated by oscillators ischaracterized by the following properties:
random process with memory, and this makes the analysis o# B(0) = 0,
the capacity challenging. The phase noise is usually mddele « for any 1 > ¢t > s > 0, B(t) — B(s) ~ N(0,t — s)
as a Wiener process, as it turns out to be accurate in desgribi  is independent of the sigma algebra generated by
the phase noise statistic of certain lasers used in fibéc-opt {B(u) : u < s},
communications [[1]. As the sampled output of the filter « B(:) has continuous sample paths.
matched to the transmit filter does not always representOme can think of the Wiener phase process as an accumulation
sufficient statistic[[2],[[B], oversampling does help in @sfng  of white noise:
higher rates over the continuous-time chanhél [4]-[6]. '

To simplify the analysis, some works assume a modified O(t) = 0(0) +7/ B'(r)dr, 0<t<T, (3
channel model where the filtered phase noise does not conside 0
amplitude fading, and thus derive numerical and analyticahere B'(-) is a standard white Gaussian noise process.
bounds [[7]-[10]. ,

The aim of this paper is to give a capacity lower boun’é‘ Signals and Signal Space
without any simplifying assumption on the statistic of fikd ~ SupposeX (-) is in the set£?[0, T of finite-energy signals
phase noise. Specifically, we extend the existing results o the intervall0, 7. Let{¢,,(t) }7_; be an orthonormal basis
amplitude modulation, partly published [fi [5], and preseaw of £2[0,T]. We may write
results for phase modulation. oo oo

Notation: Capital letters denote random variables or random X (t) = Z Xm Om(t), W(t) = Z W om(t)  (4)
processes. The notatioN], = (X, Ximt1,.-.,Xy) with m=1 m=1
n > m is used for random vectors. With"(0, %) we denote \yhere
the probability distribution of a real Gaussian random afale T
with zero mean and variane€. The symbolg means equality X, = / X (t) o ()" dt, (5)
in distribution. 0

Given a complex random variabl¥, we use the notation z* is the complex conjugate of, and the{IV,,}>_, are
|X| and £ZX to denote the amplitude and the phase afdependent and identically distributed (iid), complexued,
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circularly symmetric, Gaussian random variables with zefor n =1,..., M L.
mean and unit variance. The vectorsXML, FME and WML are independent of
The projection of the received signal onto theth basis each other. The varlable~§XkL}k,:1 are chosen as iid with

function is zero mean and variance [| X, |*], and the average power
T constraint is
Yo= [ Y(t)éult)" dt (6) - i
0
o0 E|= X dt| = ——— [ Xn
_ g * jO(t) T/0| ® ] MAZ: | |
=3 X [ Om(t) ou(®) OO dt+ W, (7) n=1
m= 0 E[|X,]?
1 _ B[P - . (14)
- Z Xon Prnn + W ® .
e Since we set the power spectral density/ifto 1, the power
The set of equations given b{1(8) far = 1,2,... can be P is also the SNR, i.eSNR =P.

: . ML . . i
interpreted as the output of an infinite-dimensional midtip Using (3), the variable®;"" follow a discrete-time Wiener

input multiple-output channel, whose fading channel magi
D = [D,,,].

B. Receivers with Finite Time Resolution
Consider a receiver whose time resolution is limitedo

seconds, in the sense that every projection must includeaal iid, and 7,

least aA-second interval. More precisely, we S&tLA =T,

where M is the number of independent symbols transmitte(an 1

process:

0,=0,_1+N,_1, n=1,..., ML, (15)
where theN,,’s are iid Gaussian variables with zero mean and
variancey2A. The fading variableg”,’s are complex-valued
is independent of?. In other words,F,

is correlated only toN,,, and is independent of the vector

 Na3)-

in [0,7] and L is the oversampling factor, i.e., the number Note that for any finiteA, or equivalently for any finite
of samples per symbol. The integrate-and-dump receivér wifyersampling factor’,, the vectorY»~ does not represent

resolution timeA uses the basis functions

dm(t) = { 0, elsewhere ©
for m = ,ML. With the choice [[P), the fading
channel matrlxtl) is diagonal and the channel’s output for
n=1,...,MLis

1 nA .
Y, = X, 700 dt + W,
A (n—1)A
1 nA
_x, ej@((nﬂ)A)_/ IOD-6((-1)8) g4 4 1,
A Jn-1a

A
. ejen% / GIWVEBL/A) 4t 4, (10)
0
1
@ X, e/ / STVAB) qt 4 W,
0
=X, e/®"F, +W,, (11)

where we have used the notatiéh, = O((n — 1)A) and

F, = f eIVVABL () d¢. In dﬂ]) we have used(2), the property

B(t/T) — B((n — 1)A/T) B(t/T — (n — 1)A/T), the
substitution
t+—t—(n—-1)/A
{ B:(t/T><*B(t/Tf(n71)A/T>, (12)

and the propertw/TB,,(t/T) £ VAB,(t/A). Finally, in
step(a) we have used the substitution— ¢/A.

Since the oversampling factor i, we have X1 =
Xkpyo = ... = Xypqp for k =0,...,M — 1, and we can
write the model[(Tl1) as

Y, = X[n/L]L ejenFn + Wy (13)

a sufficient statistic for the detectlon of givenY in the
model [3).

We compute a lower bound to the capacity of the
continuous-time Wiener phase noise chanhel (L3)-(15). For
notational convenience, we use the following indexing for
Landk=1,...,M:

L OWER BOUND ON CAPACITY

i=1,...,

Yig-yngi = Xp 9014 Fy yr i+ Wio1yp4i, (16)

and we group the output samples associated Within the

vectorY, = Y((k’:l))LLflL .

The capacity is defined as
C(SNR)

. 1 M. ~xM
= Ib}gnoo i sup [ (X1 ;Y] ) a7

where the supremum is taken among the distribution¥ {f
such that the average power constraini (14) is satisfied.

The mutual information rate can be lower-bounded as
llows:

b
Il
—

T(1 X5 I RI1P) + T (£X0 Yooy | Xeo1, | Xk])

=I(x |2 Y1) + 1 (£X1 Y5 | Xo, [ X1]) (18)

IH I,



where stef{a) follows by polar decomposition oXy, step(b) By putting together[(23) and (25) we obtain
holds by a data processing inequality, by reversibility loé t

map z — x> for non-negative reals, and becaukg ' is I > _SA_t + lln(L2M2)\2 ) — lln (mv\)

independent of X}, Y). Finally, the last equality follows by - A2 2

stationarity of the processes. L (SNR - Var [G] + 2 + A') . (26)
1%

A. Amplitude Modulation In the limit of large time resolution we have

By choosing a specific input distribution that satisfies the X
average power constraint we always get a lower bound on the lim Var [G] _ 27)
mutual information, so we choose the input distribution as A—0 A3 45

L exp (_ fo*t) > At Now we let the time resolution grow as a power of the SNR,
Pix,2(z) =4 A A - (19) ie., A~' = [SNR®], and the parameter = pA—7, with
0 elsewhere p > 0. By using [27) into[(2b), in order to find a tight bound
where\ = SNRA — A—t > 0 with ¢ > 0. Note that with this N the intervall /3 < o < 1 we need to satisfy the conditi¢hs
choice the average power constraint is satisfied with eyyali < 1/(¢+1) and > 1. The tightest bound is obtained with

i.e., E [|Xk?] = SNRA. f=1landp =4

Similar to the method used inl[5], we give here a lower 1 1
bound to the first term on the right hand side (RHS)[of (18) SN%IE {I ~3 ln(SNR)} > D) In(4me). (28)
in the form >

For 0 < a < 1/3 we need to satisfy the conditions <

2
By 2 El-lngy(V)] - E [~ Ingyxa: (VX)) (20) 1/(t+1) anda > 1/(8+2), and the tightest bound is obtained

whereV = ||Y;||> and by choosing3 = a~! — 2 andp = 242 /45:
= . 3o 1. (2192
qv(v) = /0 Pix, 2 (@)av| x,)2 (v]7) da. @ lim {I -5 In (SNR)} > —§1n( 475 ) . (29)
Specifically, we choose thauxiliary channel distribution as B. Phase Modulation
a1, (v]e) = L o (_ (v—L(1+2E [G]))Q) The second term in the RHS ¢f{18) can be lower-bounded
' VYT vz (22) as follows

whereG = ||F4||?/L andv > 0, for which we ha (a)
[/ v & I(£X0; Y8 | Xo, | Xi]) > T(£X15® | Xo, | X1])

E I:* hqu‘ |X1|2(V| |X1|2)] = %IH (ﬂ'l/) + %E [1H(|X1|2)} Z E [— lnq¢|X07‘X1‘(<I>|X0, |X1|)} —E |:— lnq¢|x[} ((I)|X01):|
2 (30)
L <MVar[G] +2E[G] +E [ ! ])

v A | X1 where step(a) is due to a data processing inequality with

1 ATt L )
<3 In(mvA) + —— + - (SNR - Var [G] + 2+ A") (23) d = (Y1 (Ype 74%0)¥)

2A
. o = /X1 ® L(|X1|Fy + Wh) @ Z(| Xo|Fyel™No + W
where the inequality is due B[G] < 1, E [|X1]?] < SNRA, 1@ (Xl W) @ £(1XolFge™ + W),

1
the boundE [|X;|~2] < A’ which follows from the support (31)
of | X[?, and and the last inequality follows by choosing the auxiliary
S s At channel
E[In|X:]*] = / —exp ( ) In(z) dz
—t A A exp(( cos(op — Lz
s oy (ola) = SREO_Zn)) )

oo —t
=1InA\ Jr/ exp ( (u - A—)) In(u) du 2mlo(6)

AT/ A where I(-) is the zero-th order modified Bessel function of
<)+ A__t (24 the first kind, and is a positive real number. Since we assume
- A an uniform input phase distribution, the output distribatis

By substituting [Z2) and{19) intd (21), and by followingalso uniform:
similar steps to those of][5], we get
At 1

E[-Ingv(V)] > ———+3 In(L?p°A° + \v).  (25)

27
1 1
do130, )@, 1) = [ awyx Gl g Aoy = o
0

2w
(33)

1Details are provided in the extended version of the paper. 2Details are provided in the extended version of the paper.



Using [32), the second term in the RHS [of](30) can be uppt
bounded as follows for anA < A < oc:

i
1

Prelog lower bound
Amplitude modulation
Phase modulation

54
©

o
©

E [— In gy x3 (<I>|Xg)} = In(271o(¢)) — CE [cos(® — £X)]

<In(my/T) + %hl <%) +¢Cp

= % In (27r36p) (34)

e
3
T

g
o
T

o
3}
T

Capacity pre-log
o
=

where the inequality is due th(¢) < /7/2-e¢/+/C derived
in [I1, Lemma 2], and from the result of AppendiX A with

o
w
T

o
N}

o
-

p=1-E [Foe Vo] E[]+2¢~37"A/%E [|X| 7% K5 (35)

o

where Kz > 1 is a finite numbék The last step in[(34) is 0 01 02 03 04 05 06 07 08 09 1

obtained by choosing = (2p) .
In the limit of large time resolution we have
Fig. 1. Capacity pre-log lower bounds as a functiomoét high SNR. The

: P _At—1 2 2 oversampling factod. is L = [SNR.
lim {— —2KzA } <= 36
ATL LA A =37 (36)

where the inequality follows from the bouiid | X[ ~2] < A’

Choosingt = 1 and putting togethel (30) anf (38)-[36) we V. CONCLUSIONS

get We have derived a lower bound to the capacity of
continuous-time Wiener phase noise channels with an agerag
. 1 1 3 . : )
lim <1, +-In(A)p > -In | ————, (37) transmit power constraint. As a byproduct, we have obtained
A=0 2 2 \me(y? 4+ 3K,) lower bound to the capacity pre-log at high SNR that depends
and letting the time resolution grow as a power of the SNRN the growth rate of the oversampling factor used at the
ie., A1 = [SNR], for 0 < o < 1/2 we have receiver. If the oversampling factor grows proportionétty
- SNR<, then a capacity pre-log as high as that reportefih (39)
1 i .
lim {14 B gln(SNR)} > Ly 3 . can be achieved
SNR—o00 2 2 me(y? + 3K 4)
(38) APPENDIXA

A LOWER BOUND TOE [cos(® — £ X)]
V. DISCUSSION
The expectation can be simplified as follows:
As a byproduct of[(28),[(29), and_(38), a lower bound to

the capacity pre-log is E [cos(® — £X)]

2 0<a<1/3 W E [cos(Z(| X1 Fy + W) — Z(|Xo| Foe ™™o + Wp)))

- :()’1/2_ e 1;3 i Z i 1/2 - [cos(£ (| X1|Fy + Wh))] E [cos(Z(|Xo|Foe N + Wy))]

))IE
Fiqure Tl shows the | ound N ’ o E [sin(Z(|X1|Fy + Wh))] E [sin(£(| Xo| Foe ™0 + Wo))]
igure[1 shows the lower bounds on the capaci re-lo -

ve%sus the parameter, as reported by[(39). The Eontri)i)ul?tionsg E fcos(£(1X1Fy + W))] E [eos(£(| X0l Foe ™™ + WEZE)])

of amplitude and phase modulation are also shown separately

Amplitude modulation reaches full degrees of freedom byhere stepa) is due to[31L), stegh) to the addition formula
sampling more thar/SNR samples per symbol, while phaseor cosine and independence of random variables, and the las
modulation achieves at least half of the available degréesggep follows because [sin(Z(|X1|Fy + W1))] = 0 asF} and
freedom by using a time resolution that scalesl A&¢SNR. 1}, have symmetric pdfs with respect to the real axis.

The input distribution that achieves the capacity lower The first expectation on the RHS @f{40) can be written as
bound is uniform in phase and the square amplitude is dis-

tributed as a shifted exponenti@[{19). The statistic usad fE [@}e{eié(lelFlJrWl)}} —E [?}e{ejAFlejé(|XlFl‘+Wl)}:|
detecting| X« | is || Y||, and the one used for detecti ,

. 9IXs| is |[Yx[l, and the one AgY: — E [cos(LF) cos(Z(|1 X1 Fr | + W)
is / (1V(,€_1)L+1 (Yiporype34%e1) ) (41)

1 C(SNR)
SNR- In(SNR)

3For example, choosingA = 0.01 gives Kz = 8.1353. See the Where the first step is due to the circular symmetrylif,
extended version of the paper for a detailed derivation. and the second step because of the symmetric pdf§ @ind



W1. A lower bound to[(41) is given by

where the last step follows from the property of Wiener

processes [B(t)B(7)] = min{¢,7}. Thus we have

E [&e{eﬂ(le\FﬁWﬂ}} IR} cos(Z(1X 1P| + W)

(b) 1 >}
| X1 P12

Ve [ RANGA) 2 0) (1
1
|X1F1|2]

+ER{FMIL(R{F1} <0)]

RFY - 1R(F > 0)

I 1
_%{Fl} - |X1F1|2}

2 2 1
_eTA/2Y - _

— A2

where step(a) holds becauséF;| < 1, (b) follows by
cos(z) <1 and bfl

1

Ecos(Z(p+W1))] = 1 - 2

p >0, (43)

step(c) becauseR{F;} < 1, step(d) is obtained by subtract- [2]
ing E [L(R{F1} < 0) | X1 F1|~?], and the final inequality uses
E [|F1|7%] < K3 for a finite suitableA A 3

Following an analogous derivation used for findiagl (42), for
the second factor on the RHS ¢f {40) we have 4]

E [éﬁ{eﬂ(‘XU'Fve’jN”Wo)}} >E [?R{Foe_jN"} -

JPPAN —apras g1
T < 3 )e E |X0|2

whereerf(-) is the error function, and the closed form for
E [Foe7No] is provided in AppendiXB. Usind_(42) an{44)
into (@0), with R{E [F1]} < 1, R{E [Fye 7No]} < e 31°A/8,

E [|Xo[7?] = 0, andE [|Fy|~2] > 0, the final result is

1
| X0 Fy2 ] (5]
[6]
[7]

(8]

E [cos(® — £X1)] > E [Foe /N E[FY)] (9]

2 1
—2e ABE | —— | K5, (45
€ |X1|2 A ( ) [10]
APPENDIXB
EVALUATION OF E [Fye 7MV0] (11]
Knowing that Ny = o‘folB(T) dr with ¢ = vV/A, we

compute
Var [0 B(t) — No] = 0*Var [B(t)] + Var [Ny] — 20E [B(t) N
— o2t 41) - 202/ E[B(t)B(r)] dr
0

= (t* —t+1) (46)

4The proof is provided in the extended version of the paper.
5The proof is provided in the extended version of the paper.

1
E [FoeN0] :/ E [e/(@FO-N) |y
0

(@)

1
/ o~ Varlo B(t)=Nol /2 g4
0

2—7‘-6_%02 erf | 4/ 0—2
o2 8

(47)

where in step(a) we used the characteristic function of a
Gaussian random variable, and in the last step we Uiséd (46).
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APPENDIXC
AUXILIARY CHANNEL

Choose the auxiliary channel distribution

1 v— L(1+ zu))?
where
V = ||Y1|]? = | X1]2LG + Zy + 2| X1| 7, (49)
and
4] -
_ _ 2 _ _
G="0m Zo=|WilP, Zi= ) R{EWL

=1

(50)

Squaring the output statistic gives

V2 =X [*L*G? + 4 X1 P LGZy + 2| X1|*(22F + LG Zy)
+4|1X1|Z0 21 + 22,

thus

(V =L+ X1 )

=V? 2 2VL(1 + | X1)?p) + L2(1 + | X1 *p)?

= | X1 [*L?G? + 4| X1’ LGZ, + 2| X112 (22} + LG Zy)
+ 4| X1| 202y + Z3 + L2(1 + | X1 2 p)?
—2(1X1 LG + Zo + 2| X1 | Z1) L(1 + | X, )

= [X1|'LY(G = p)® +21X1 2 (227 + L(Zo — L)(G — )
+ 4 X1PLZy (G — p) + 4 X1 Z1(Zo — L) + (Zo — L)*.

(52)

Taking expectations gives

e [V B L)

= L efie - w + Legxiez(c - w)

+ (9 (23] + LE[(Z0 — )(G — )
4 1

= ZE[NPIE[G - ] + SEIG)+E [|X11|2]

which is minimized by choosing = E [G].

(51)

] E[(Zo— L)?]

The conditional entropy is

E [7 lan| |X1‘2(V| |X1|2)}

= Lingro) + S (i) o € [ HLE )

v|X1|?
1 1 ,
=—In(nv) + §E [In(|X1]%)]

2
L (E[xF i

_|_

—t

1Il(7Tl/>\)+A2—)\

+£ SNR - Var [G] +2E[G] + E L
> ar X7

<

|~

(54)

where in the last inequality we have used the bolindl (24).

The output distribution is

av () = / " b (@av) xap (vlz) da

/OO 1 r— ATt 1
= — exX —_
At )\e P A VT

= (5) [z (o) v
= eX N ——— eXxX —
P\ o T TP\ L) rg i

oo (T )

o (5)
~OP\N ) VLo@er o) Tn)

exp<@[vL|vL| 1+L2L2)\), (55)
v V 7

and the entropy of the output of the auxiliary channel is

E [~ gy (V)] = 2+ L (LML + v/ (L)

_QLTM[E[V—L]—EHV_LH\/%]

(@ A7t 1
2 —— + 5 In(LuA(LpA +v/(Lp)))

2Lu v
+TE[V—L] {Ml—i—LQ—/ﬂ)\—l}

Aft

> — + %m(L?;ﬁA? + ). (56)
where step(a) holds becausé& || -|] > E[], and the last
inequality holds because of

E[V — L] =E[|X1]’LG + Zo + 2|X1|Z: — L]
= E[| X1 ?[|Fy][*] > 0. (57)



The lower bound to the mutual information rate for thén order to have a tight bound, we need to satisfy the

amplitude modulation is
I > El-Ingy (V)] — E [~ Ingy||x, 2 (V] | X1]*)]

3ATH 1 9 9.9 1
> - _ =
) +21n(L PN+ W) 21n(7r1/)\)

L <SNR Var [G] + 2E[G] + E [ﬁ]) . (58)

v

Using A = SNRA — A~* and choosing’ = pA~#, and A =
L~! = SNR™“ gives

3 1 1

I > +5n (SNR**(E[G])?

= 2gNRITeHD
(SNR'™ — SNR)? 4 p(SNR!~*(1=5) _ SNRW“”))

1 L+a(-1) 1

— p~'SNR* =P (SNR - Var [G] + 2E [G] + SNR™) .
(59)

For large SNR we have

Var[G]  +?

lim E[G] =1, lim xS —

A—0 A—0

(60)

that gives

3 1
: 2. > | e 4L
SNléIBOOI (|X1| ’V) - SNlFlzgloo { 2 gNRITe(+D) _q

1

1 1+a(f-1) 1
-3 In (ﬂ'pSNR 1-— SNRI—a(+D)

2
— p'SNR*(=A) <SNR1_30‘ : 1—5 +2+ SNR_C”> }

o 3
T SNRDo 2 gNRI—@(t+D) _

1
+ —1In

+ 5 In ((SNR — SNRA(FDY2 4 p(SNRI—(=A) _ SNRO‘(H'&));

SNRI—@(1=8) _ gNRe(t+5)

2

1 ! 1 1
B 5 n 7Tp B SNRl—a(t-‘rl)

2
— p'SNR*(=A) <SNR1_30‘ : 1—5 +2+ SNR_C”> }

((SNR — SNR*(tH1))2

SNR! (=1 SNRM (=1

o 3
T SNRDo 2 gNRI—@(+D) _

+ %m (SNR“C*(H’) — 2SNR(=F+2) | gNR(-AF) 1

P
+p - SN lea(tJrl) )

1 ! 1 1
- 5 n 7Tp - SNRl*O{(tJrl)

2
— p~ISNR*(1=A) (SNRlBa : 1—5 +2+SNR™
(61)

constraints

l—a(t+1)>0
a(l-=05)+1-3a<0
a(l—p8)<0
a(l=35)—at <0
1+a(l—-08)>alt—5+2)

(62)

that reduce to

al—B)+1—-3a<0
a(l=p5)<0.

{ a<1/(t+1)
(63)

Next we consider the two caség3 < o < 1 and0 < o <
1/3.
If «>1/3,i.e.,1—-3a <0, then we have to satisfy

a<1/(t+1)
{ B>1. (64)
to get
i {1 (1X1%;V) — W ln(SNR)}
> 5 In(mp) -~ 2, (65)

nd the tightest bound is obtained by choosihg= 1 and
p=4:

lim

2 1 1
X2 L 51 _
sam {I (1X1%:V) 5 In (SNR) ¢ > 5 In (47e)

(66)
) If « <1/3,i.e.,1—3a>0,then we have to satisfy

{ a<1/(t+1) (67)

a>1/(8+2).

By choosings = a~! — 2 and p = 272/45 we get

{1 (1X12;V) — 3§1n(SNR)} > féln (27” e) .

lim
SNR— 00

APPENDIXD
A LOWER BOUND TOE [cos(Z(p + W))]

The pdf of U = /(p+ W) is [12]

ie*PQ +

pw(v) 5

p cos(z/;)e*p2 sin® () erfe(—pcos(y))
(69)

1
Var



whereerfc :  — 1 — erf(z) is the complementary error
function. A lower bound tcE [cos(¥)] i

E [cos(¥)] = @y /” cos(¥)pe (¥) dy

/ — COS
71'/2

p

(b) _p2 sin?(v) erfc(—p COS('L/J)) dy
(¢)

> jﬁ :7?‘Xﬂ2<w> e 5 exfe(— p cos()) d
/2

ey §§;<xm2<w)e—p2ﬂ““¢0<2Afe-*90°§<¢>>d¢
/2

/0 %cos (p)e=?" ") qy — \/_Pe o (70)

where (a) follows by symmetry,(b) follows by using [(€D)
and [ cos(¢)dyy = 0, (¢) holds because the integran
is non-negative over the intervak?, 7], (d) holds because
erfe(peos(yp)) > 2—e=r" co*(¥) andcos? (1h)e#" 5in*(¥) > 0,
and finally the last step follows by direct integration.

We bound the integral i .(Y0) as follows

~= cos? (w)e"’2 sin® (1)) dvp

/71'/2 )
0

Nz
(a) 2p

/2
v

(1
(1 - i) erf (
> ef (

_ 1/}2)6—921&2 de)
1

)+ 375

Vp

mp
2

2 2
e~ TP /4
2p2

1

7Tp)
22

2
where inequality(a) follows from cos? (1h)e=¢" sin* () > (1 —
¥?)e=*"¥* and the last step holds becausg(-) < 1 and the
last term is non-negative. Substituting back irig] (70) dsel

(71)

e 1 \/E 9
> _ - _ N7 P
E [cos(T)] erf( 5 ) 551
(@) 2 2 1 ﬁ 2
> 1_e TP /A _ = N o-p
= 202 4 P¢
(b) 3/2
D4 1 Vr(3
- m2p2e  2p%  4p2% \ 2¢
1
>1- 2 (72)
where stefa) is due toerfe(z) < e=*°, and inequality(b) fol-

lows from p3e—¢" < (3/(2¢))3/2 ande=""P"/4 < 4/(x2p2e).

6The proof is the one proposed in the Ph.D. thesis of H. Ghozlan

APPENDIXE
AN UPPER BOUND TOE [|F;|7?]

DenotingZ = |F}|, we compute an upper bound as follows
<1
—27 _ 7: L
E [Z ] = 1(51?01 : prZ(ac)dx
(a) ,. Pr(Z <9) o 9
2 =7 - <
151%1{ 5 + o Pr(Z <z)dx
() [
<[ ZENZ <)
0 x
€2 2
= —E[I(Z <2)]dz + —E[( < x)]dz
o ¥ €

2
3

1

Elg(Z )]dz+5—2 (73)

<
0

wheree is a suitably chosen positive number, step follows
by integrating by parts, inequality) holds because the cumu-

Abative function is always positive, and the last inequatiolds

y choosing a functiog(Z) > 1(Z < x) for the first integral
(i.e., for0 < = < ¢) and the inequalityE [1(Z < z)] < 1 for
the second integral, that can be computed in closed form.

As for the functiong(Z) we choose
9(2)=a(l—2%) (1—Z%p1) (1 = Z°p2)

=a[l— 221+ p1+p2) + Z*(p1 + p2 + p1p2) — Z°p1p2) ,

(74)

a polynomial whose positive roots afe, pfl/Q,pz_l/Q}, and
with ¢(0) = a > 1. To guarantee the positivity af(Z) for
0 < Z < 1, we can design the roofs; '/ and p; /* to be
greater than 1, hence andp. less than 1.

If the polynomialg(Z) satisfies the conditiok [¢(Z)] = 0,
then we have a finite bound in_(73):
_ 1
E[77] < 5. (75)
Imposing the conditiork [¢(Z)] = 0 in (Z4) gives
-1+E[Z%] (1 —E[z4
pp=—tELZNQ ) B2 n g

—E[Z?]+ E[ZY (1 +p1) —E[Z%] ;1

We wantps to be positive, for this we distinguish two cases. In
the first case we have both numerator and denominatér bf (76)
positive, and this is satisfied if

} >1, (77)

plzmaX{E

so this situation is not wanted. The other case is where both
numerator and denominator are negative, i.e., for

PlSmin{E ElZ (1Z)]} (78)

E[z4(1 - 2?)]
Moreover, we wantp, < 1, and imposing this condition
on (Z6) when numerator and denominator are negative means
E[(1—2%)7?]
>t 000 4
M= Ea-27

E[1-27
(221 = 22))"

E[22(1 - 27)
E[Z4(1 — Z?)]

Ef1- 2]
(22(1 = 22)]

(79)



Conditions [[78) and[{79) can be numerically checked by
considering that 5]

E[Z?] = % (-1+e "+ at) (80)
E[Z'] = é (8—27 — S—ng—a - 1—18e—4a — 30 + 8a?
Z;)—()cm_o‘) (81)

1 3
E[Z°] = — (—1000436_0‘ + 14403 — 2—5ae‘40‘

11991 1
o —« 14 o -9«
ae” " 4 1499« 200ae
2123 4
—TaQew‘ + Ea2674°‘ — 79202
(82)

wherea = y2A /2. For example, for = 1.3 andyv/A = 0.1
the roots argy; /% > 1, p, /% ~ 1.0001 > 1.

The last thing to check is that

9(Z)y>1,for0<Z<zandall0 <z <e. (83)

Studying the convexity of;(Z), we find that the function is
concave in0 < Z < en with

2 _
n =

p1+p2+pip2 (p1+p2+p1p2>2_1+p1+p2
5p1p2 5p1p2 15p1ps
(84)

Moreover, we havey(s;) = 1 with £ given by Cardano’s
formula. Condition [(8B) is verified ife < min{ey,en},
because for al0 < Z < ¢ we can guaranteg(Z) > 1
thanks tog(0) > 1, g(e) > 1, and concavity forg(Z). For
example, fora = 1.3 andyv/A = 0.1 we haves; ~ 0.3506
anden ~ 0.5774, so we choose = 0.3506. Using [75) this

gives a boundE [|F|~2] < 8.1353 for all yv/A < 0.1.
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