arXiv:1502.06871v1l [cs.IT] 24 Feb 2015

On the Multiple Threshold Decoding of LDPC
codes over GF(q)

Alexey Frolov and Victor Zyablov
Inst. for Information Transmission Problems
Russian Academy of Sciences
Moscow, Russia

Email: {alexey.frolov, zyabloy@iitp.ru

Abstract—We consider the decoding of LDPC codes over called the Tanner graphl[3] (see Fig. 1). The graph consists
GF(q) with the low-complexity majority algorithm from [1Il  of N variable nodesv;,vs,...,vxy and M check nodes
A modification of this algorithm with multiple thresholds is ¢1.¢s.....cnr. We assume all the check nodes to have the

suggested. A lower estimate on the decoding radius realizeoly .
the new algorithm is derived. The estimate is shown to be bedt same degree, and all the variable nodes to have the same

than the estimate for a single threshold majority decoder. Athe degreel. Such Tanner graphs are called regular ones. We
same time the transition to multiple thresholds does not affct associate constituent codes to each of the check nodeheAll t

the order of complexity. constituent codes are the same (we denote the constitugat co
by Co). We assumé&, to be a lineafng, Ry, do]-code overF,.

) ) ] Let us denote the parity-check matrix of the constituentesod
In this paper we consider the decoding of LDPC codés [Zdy H,. The matrix has sizeu x no, wheremg = (1— R )no.
[3] over F, with the low-complexity majority algorithm from

[1]. In [1] Theorem 1] a lower estimate on the relative dengdi
radius p realized by the low-complexity majority algorithm Ho Hy Hy Hy
is derived. Let us describe the result in more detail. Net l l l l
denote the code length. Inl[1] it is proved that there exist
LDPC codes oveF, (with probabilitypy : imy 00 pxv — 1)

1 C2 Ci CMm
capable of correcting any error vector of WeE;fW < pN
with the decoding complexity)(N log N). We first improve 4\ 4\ 7@(% 4\
14

|I. INTRODUCTION

the estimate om.
Then we consider multiple threshold decoding of LDPC RS, P \/
codes oveF,. Multiple threshold majority decoding for binary N/ N/ N/ N/
LDPC codes was first introduced inl [4]. Inl[4] it was shown @ @ @ @
that transition to multiple thresholds increases the diexgpd
radius of the majority algorithm (in the binary case the
algorithm is usually called bit-flipping algorithm_I[5]_1[B] Fig. 1. Tanner graph
without affecting the order of complexity. In this paper we
generalize the ideas of![4] to the case of non-binary LDPC To check ifr = (ry,72,...,7n) € Ff;’ is a codeword of
codes. C we associate the symbols ofto the variable nodesy( =
Our contribution is as follows. We first improve the estimatg;, ; = 1,..., N). The wordr is called a codeword of if all
on the relative decoding radius for the single threshold the constituent codes are satisfied (the symbols which come t
case. Then we suggest the majority decoding algorithm withe codes via the edges of the Tanner graph form codewords
multiple thresholds for LDPC codes ovEy. A lower estimate of the constituent codes).
on the decoding radius realized by the new algorithm is |t is clear the resulting cod€ is linear, so it has a parity-
derived. The estimate is shown to be at lelagll times better check matrix associated to it. We denote the matri¥hyThe
than the estimate for a single threshold majority decodeér. &ode is oveif, and has the lengtv. The following inequality
the same time analogously the result frorm [4] the transition follows for the rate of the codé
multiple thresholds does not affect the order of complexity

N

R(C)>1—-4(1— Ry).
1. PRELIMINARIES o ]
In what follows for the simplicity we consider only the case

when the constituent code is dng,no — 1] single parity-
cReck (SPC) code ovéf,. The generalization to the case of a

IHere and in what follows by weight we mean the Hamming weight, StrONger constituent code is simple. It will be briefly esxpéa
a number of non-zero elements in a vector. in Remark4.

Let us consider the construction of LDPC cadeverF,,.
To construct such a code we use a bipartite graph, which


http://arxiv.org/abs/1502.06871v1

As usually we calculate the syndrome of the sequanee  And the last thing we have not mention yet is a stopping
(ri,7e,...,7N) € Fév to be decoded as follows criterion. We stop the algorithm if no changesrinvere made

during the iteration.
S =Hr’.

| h o1t | d that th st LDPC cod Algorithm 1 Single threshold majority decoding algorithm
n [1, Theorem 2] it is proved that there exist codes Input: received sequenag thresholdd : 0 < 0 < ¢

over F, (with probability px : J\}im pny — 1) such that the Output: decoded sequenae failure flag F

following inequality holds for thgosoyndrome weight Initialization: S « HrT: b+« 1
while b =1 do
8> LOW) = o M peo
forall 1 <i< N do
for all error vectors of weightV < W*(R, () = w*(R,/)N. calculate/ messages for;
To prove Theorem 2 in[[1] a Gallager-like ensemble of Amax + maximal subset of equal non-zero mes-
LDPC codes was used. The only difference to the binary casesages
was in multiplication of the parity-check matrix columns by a < |Amax|; v < value from Apay
non-zero elements from,. In what follows we do not need z + number of zero messages
the ensemble, so we omit the definition of the ensemble here. if a— 2> @ then
In what follows we need just an LDPC code ov&y which ri v
satisfies the property](1). We denote the codeCby updateS
We note, that at the same time the following trivial upper b1
bound on the syndrome weight holds end if
end for
SI<UW) =Wt end while
I1l. SINGLE THRESHOLD MAJORITY DECODING Fel
ALGORITHM cer
if |S| =0 then

Let us describe a single-threshold majority decoding algo- F «

rithm from [1]. See Algorithni Il for full description, herere end if

give some comments and explanations. The algorithm is an

iterative hard decision decoding algorithm. On each iterat | eqymg 1 ([T, Theorem 3]): Let
the algorithm checks all the symbols from the sequence to be W
decoded = (r1,72,...,7n)). For each of the symbols the S| > —
replacement criterion (see below) is checked. If the symbol ) 2

satisfies the criterion, then its value is replaced with a néf{en there exist a symbol whose replacement leads to the

value, syndrome is updated and the algorithm continues wi§ndrome weight reduction (at least by.
the next symbol. Proof: A more general proof will be given in the next

Section. ]
fTheoreml ([1, Theorem 4]): Let C* be an LDPC code
satisfying [(1). If the number of errors in the received

Remark 1: It is important to note, that the algorithm work
with the symbols consequently. This means, that in case o
replacement all the changes are introduced to the sequencgvte”Fq'
be decoded and to the syndrome and then the algorithm gggguence .
to the next symbol. W <w*/2,

Now let us consider the replacement criterion. Assume thige Algorithm1 (with & = 0) will correct all the errors with
algorithm is considering the symbet. The corresponding the complexityO (N log N).
variable nodev; is connected to/ constituent codes. Each Here we refine the result of the previous theorem
of these codes sends a messagevitacalculated based on  Theorem 2 (Sngle threshold): Let C* be an LDPC code
values of another variable nodes connected to it (usualagessoverF,, satisfying [(1). If the number of errors in the received
passing rule). So we havemessages coming tg. Let A,,.x sequence
denote a subset of equal hon-zero messages of maximal cardi- W< w® = E“_Q
nality, leta = | Anax| andv be a value of the messages from - 2 L+1
Anax. Let a threshold) be an integer such thét < 6 < ¢. the Algorithm1 (with & = 0) will correct all the errors with
At last let z be a number of zero messages. The replacemeé complexityO(N log N).
criterion is as follows. Ifa — z > 6 we replace the symbaj; Proof: To prove the theorem we need to prove that the
with v. number of errors at each step of the algorithm is less or equal

Remark 2: Note, that within the sectiod = 0, we intro- to W* (see condition[{1) and Lemnia 1).
duced the parameter here just for our convenience. We willAny error vector can mapped to a point of the following
use it in the next section. coordinate system: “syndrome weight — number of errors8 (se



Fig. [d). At the same time it is clear, that each point in theecoding radius realized by Algorithin We have
coordinate system corresponds to multiple error vectarst,F

let us add the line& (W) andU (W) to Fig.[2. Recall, that the oS > we = o) u*.

syndrome weight of any error vector willy’ < W* satisfies N

the inequality In the next section we will increase the estimate by means
LOW) < |S| < U(W). of transition to multiple decoding thresholds.

IV. DECODING WITH MULTIPLE THRESHOLDS
Let us first introduce the sequence of integer thresholds (le

it =

U(W) = P(¢, W)

0=01<by<...<0; <.

Now we are ready to describe the multiple threshold decod-
ing algorithm. The idea of the new algorithm is in consequent
applying the Algorithml with different replacement thresholds
to the sequence to be decoded. We start from the largest
LOV) = P(6,, W) thresholdd, and end withf; = 0. Please see Algorithrg
full description below for more details.

Algorithm 2 Multiple threshold majority decoding algorithm

i Input: received sequence t thresholds) = 0, < 65 <
E <0<t

Output: decoded sequenag failure flag F'
Initialization: S < Hr”

! - forall 0<i<¢—1do

w2 W w* %% Apply Algorithm 1 with 0 = 6,_;

r < output of Algorithm1

Fig. 2. Single threshold end for
F+1

Let us consider the decoding process. It corresponds to som
trajectory in the coordinate system. We start from the ahiti
error vector. With each replacement the syndrome weight
decreases (we move down at least jyand the number of
errors increases (we can introduce errors) or decreasds by ) )

(so we move right or left by). The decoding is successful if Remark 3: We note, that the implementation of the Algo-
we finish at the origin. rithm 2 is not optimal. It is much better to implement it in

The area of correctable error vectors is filled by gray colGHCh & way. First calculate the syndrome, then sort all the
in Fig.[2. Let us explain this fact. Assume we start from th&YMPOIS in a descending order of- > value (see previous
point C (see FigJ2) and only introduce errors. In this siarat S€ction), then change the symbols consequently and upuate t
we move right and down by with each step (move a|0ngsorted list. But nevertheless we see here that the comyplexit
the line CB). We can not come to the point B as it lies ofif Algorithm 2 is no more thant times the complexity of
the (strict) lower bound. (W) so it is clear that the numberAlgorithm 1. So the order of complexity i©(N log V).
of errors can not become greater thft. In this case the 10 estimate the decoding radius of the Algoritrwe need
decoding (and the trajectory) finishes at origin. To finish tth€ following Lemma.
proof we just need to calculate the coordinate of intereacti LemMMa 2: Let 6 be an integer) < 6 < ¢, let

cC<rT
ﬁ|S|:0then

F+0
end if

of two lines: U(W) and CB (starts inW* and has a slope {406
equal to—1). The previous estimatdi(* /2, point A) is also S| > P(0,W) =W 2
shown in Fig[D.

_ . L ) then there exist a symbol whose replacement leads to the
The proof of the complexity estimate coincides with thgyndrome weight reduction by at least byt 1.
proof from [1]. We Om't it here. ] Proof: Consider a subgraph of the Tanner graph that
Corollary 1: Let us introduce a notation contains only erroneous symbols (the number of errors is
equal tol) and constituent codes connected to these symbols.
£+2 - ; .
m Within the proof we work with this subgraph only.
Let us introduce the following notation:

and consider the asymptotitV(— co) estimate of the relative « A is the set of codes that detect an errot|(= |S|);

(S) —



e A;,i=1,...,n9, is the subset ofi containing only the  After some transformations, we have
codes with precisely incoming edgesd; = |A;]); W

e Aso = A\A, is a subset ofd containing only the codes ay — Ze(cé) > 2|S| — W.
with at least2 incoming edgesd>2 = |A>2]); =

. tChei?nth@efsTtCT)f codes that contain errors but do not deteCtyys jmmediately implies that if the condition of the Lemma

@) ; . ~holds then
« ¢, is the number of edges outgoing from a symbol W @)
and incoming toA; ; ar > el +Wo.
. eg) is the number of edges outgoing from a symbahd i=1
incoming toC. u

Theorem 3 (Multiple thresholds): LetC* be an LDPC code
overF,, satisfying [[). Let0 =6, <6< ... <6, <l bea
sequence of thresholds. If the number of errors in the redeiv

sequence
W < Wiga,
where
0+ 36— 2
W, =W;_1 + s Wy =W*, 01 =4,

0+20,_1+6;,+2’

the Algorithm 2 will correct all the errors with complexity
O(NlogN).

Fig. 3. A subgraph of Tanner graph

. Fig.[4. For now the area is more difficult because the slope
In Fig.[3 we present an example of a subgraph of the Tann .
. . . at threshold; is equal tod; + 1. To prove the Theorem we
graph and illustrate the introduced notation. X .
) . o need to consequently calculate coordinates of interseatio
First note, that if the condition

_ _ the area bound and lind3(6;, V).
esz > e(cz) +0

holds for thei-th symbol, then the replacement of it will lead ‘S‘ 1
to the syndrome weight reduction by at least by 1. To
prove this it is sufficient to mention that the codes with the
only error will give equal messages.

Then we claim that if

w
ar >y e + W,

=1

then there exist a symbalsuch thatesz > eg) +0.

And to finish the proof we need to count the edges in the
subgraph. The number of edges outgoing fridfmerroneous
symbols isW¢. These edges can come to either codes that
have detected an errod(= A; U A>5) or to codes that have
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not detected errors but contain thei)( Let us estimate the Wit Wy Ws Wp - W %%
number of edges incoming to each of the three sets of codes:
« The number of edges leading to codes of the Agtis Fig. 4. Multiple thresholds
W
> el = an;

=1 . . u
« The number of edges leading to codes of the/et is  The most interesting case for us is the case when we have
at least2(|S| — a1) (here we use the fact every code hagj| the thresholds frond to ¢ — 1. In this case
at least two incoming edges);

i , -1 .
« The number of edges leading to codes of the Geis W) — (+3i+2 .,
WG 1lyy3;4+3"
Z ec - =0
=1 Let us introduce a notation
Thus

/—1 .
oy _ T itsit?
Lrsits

M=
N

s
Il
-

Wi >ay+2(S| —a1) + «

Proof: The area of correctable error vectors is shown in



TABLE |
RESULTS FORq = 16

TABLE Il
RESULTS FORg = 64

R ¢ w* p(5) p(M) R ¢ w* p(5) p(M)

0.125; 45| 0.0103 | 0.0053 | 0.0065 0.125; 21| 0.0156 | 0.0082 [ 0.0099
0.25; 43 | 0.0095 | 0.0049 | 0.0060 0.25; 24 | 0.0131 | 0.0068 | 0.0083
0.375; 40 | 0.0085 | 0.0044 | 0.0054 0.375; 20| 0.0104 | 0.0054 | 0.0066
0.5; 31 0.0072 | 0.0037 | 0.0046 0.5; 22 0.0081 | 0.0042 | 0.0052
0.625; 24| 0.0053 | 0.0028 | 0.0034 0.625; 27| 0.0059 | 0.0031 | 0.0038
0.75; 24 | 0.0033 | 0.0017 | 0.0021 0.75; 24 | 0.0037 | 0.0019 | 0.0024
0.875; 26 | 0.0015 | 0.0008 | 0.0010 0.875; 26| 0.0017 | 0.0009 | 0.0011

and consider the asymptoti®'(— oo) estimate of the relative  We note, that the value gf™)/p(5) > 1.21 for all the
decoding radius realized by Algorithth (when we have all rates we considered. So transition to multiple threshaddds
the thresholds). We have

In Fig.[d the comparison of(®) anda™) is shown.
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Fig. 5. The dependency af(*) and () on ¢

At last let us calculate the value of ™) when/ is big. It

is easy to check, that

Remark 4 (Generalized LDPC codes): Here we briefly

lim o) = 272/3 = 0.6300...

l— 00

to the gain in the decoding radius without affecting the oafe
complexity. To the best knowledge of the authors the obthine
estimates are currently the best estimates of the decoding
radius for low-complexity majority decoder of LDPC codes
overF,.

VI. CONCLUSION

We improved the estimate on the relative decoding radius
for the single threshold majority decoder of LDPC codes over
IF,. The majority decoding algorithm with multiple thresholds
is suggested. A lower estimate on the decoding radius ezhliz
by the new algorithm is derived. The estimate is shown to
be at leastl.21 times better than the estimate for a single
threshold majority decoder. At the same time analogougy th
result from [4] the transition to multiple thresholds doext n
affect the order of complexity.

All the results are obtained for the case when the constituen
codes are SPC codes ovE,. The case of more powerful
constituent codes is considered. It is shown that analdgous
to [1] the transition to generalized LDPC codes does not lead
to a gain in the decoding radius.

To the best knowledge of the authors the obtained estimates
are currently the best estimates of the decoding radius¥er |
complexity majority decoder of LDPC codes ov&y.

ACKNOWLEDGMENT

consider the case of generalized LDPC codes, i.e. the casdhis work was partially supported by Russian Science
when the constituent codes are not SPC codes but some nfe@endation grant 14-50-00150.

powerful codes. All our theorems work in this case if we use
the so-called generalized syndrome rather then an ordinar ] o ]
syndrome. Generalized syndrome consists of syndromes! fé'ngrrg'g‘gr?gga\élengg’_‘gryﬁ_sgggtggdgmf"f'r?fr.‘T?;;Q%f‘%"n‘lg’f
constituent codes. The weight of generalized syndromests ju no. 2, pp. 142-159, 2010.

the number of unsatisfied constituent codes. We would like # R. G. Gallagerlow-Density Parity-Check Codes. Cambridge: MIT Press,
point out, that analogously t0][1] the transition to genieeal [3] R. Tanner. A recursive approach to low complexity codd=EE Trans.

LDPC codes does not lead to a gain in the decoding radius. Inf. Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.

[4] S. Kovalev, Decoding of Low-Density Code®robl. Inf. Transm., vol.
27, no. 4, pp. 51-56, 1991.

. . . [5] V. Zyablov and M. Pinsker, Estimation of the error-catien complexity
The numerical results are given in Table | ipr: 16 and for Gallager low-density codesProbl. Inf. Transm., vol. 11, no 1, pp.

Table[] for ¢ = 64. In each Table the dependenciesuof, 23-36, 1975.

p(S) and p(M) on the code ratek are presented. Note, that [6] M. Sipser and D.A. Spielman, Expander CodH=EE Trans. Inf. Theory,
(in each case) is chosen to maximize the functions. For our 1996, vol. 42, no. 6, pp. 1710-1722.

case the maximal values af*, p>) and p(*) were achieved

for the sam¢/, the value of? is also given in the Tables.

REFERENCES

V. NUMERICAL RESULTS



	I Introduction
	II Preliminaries
	III Single threshold majority decoding algorithm
	IV Decoding with multiple thresholds
	V Numerical results
	VI Conclusion
	References

