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Abstract—We consider the decoding of LDPC codes over
GF (q) with the low-complexity majority algorithm from [1].
A modification of this algorithm with multiple thresholds is
suggested. A lower estimate on the decoding radius realizedby
the new algorithm is derived. The estimate is shown to be better
than the estimate for a single threshold majority decoder. At the
same time the transition to multiple thresholds does not affect
the order of complexity.

I. I NTRODUCTION

In this paper we consider the decoding of LDPC codes [2],
[3] over Fq with the low-complexity majority algorithm from
[1]. In [1, Theorem 1] a lower estimate on the relative decoding
radius ρ realized by the low-complexity majority algorithm
is derived. Let us describe the result in more detail. LetN
denote the code length. In [1] it is proved that there exist
LDPC codes overFq (with probabilitypN : limN→∞ pN → 1)
capable of correcting any error vector of weight1 W ≤ ρN
with the decoding complexityO(N logN). We first improve
the estimate onρ.

Then we consider multiple threshold decoding of LDPC
codes overFq. Multiple threshold majority decoding for binary
LDPC codes was first introduced in [4]. In [4] it was shown
that transition to multiple thresholds increases the decoding
radius of the majority algorithm (in the binary case the
algorithm is usually called bit-flipping algorithm [5], [6])
without affecting the order of complexity. In this paper we
generalize the ideas of [4] to the case of non-binary LDPC
codes.

Our contribution is as follows. We first improve the estimate
on the relative decoding radiusρ for the single threshold
case. Then we suggest the majority decoding algorithm with
multiple thresholds for LDPC codes overFq. A lower estimate
on the decoding radius realized by the new algorithm is
derived. The estimate is shown to be at least1.21 times better
than the estimate for a single threshold majority decoder. At
the same time analogously the result from [4] the transitionto
multiple thresholds does not affect the order of complexity.

II. PRELIMINARIES

Let us consider the construction of LDPC codeC overFq.
To construct such a code we use a bipartite graph, which is

1Here and in what follows by weight we mean the Hamming weight,i.e.
a number of non-zero elements in a vector.

called the Tanner graph [3] (see Fig. 1). The graph consists
of N variable nodesv1, v2, . . . , vN and M check nodes
c1, c2, . . . , cM . We assume all the check nodes to have the
same degreen0 and all the variable nodes to have the same
degreeℓ. Such Tanner graphs are called regular ones. We
associate constituent codes to each of the check nodes. All the
constituent codes are the same (we denote the constituent code
by C0). We assumeC0 to be a linear[n0, R0, d0]-code overFq.
Let us denote the parity-check matrix of the constituent codes
by H0. The matrix has sizem0×n0, wherem0 = (1−R0)n0.
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Fig. 1. Tanner graph

To check if r = (r1, r2, . . . , rN ) ∈ F
N
q is a codeword of

C we associate the symbols ofr to the variable nodes (vi =
ri, i = 1, . . . , N ). The wordr is called a codeword ofC if all
the constituent codes are satisfied (the symbols which come to
the codes via the edges of the Tanner graph form codewords
of the constituent codes).

It is clear the resulting codeC is linear, so it has a parity-
check matrix associated to it. We denote the matrix byH. The
code is overFq and has the lengthN . The following inequality
follows for the rate of the codeC

R(C) ≥ 1− ℓ(1−R0).

In what follows for the simplicity we consider only the case
when the constituent code is an[n0, n0 − 1] single parity-
check (SPC) code overFq. The generalization to the case of a
stronger constituent code is simple. It will be briefly explained
in Remark 4.
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As usually we calculate the syndrome of the sequencer =
(r1, r2, . . . , rN ) ∈ F

N
q to be decoded as follows

S = Hr
T .

In [1, Theorem 2] it is proved that there exist LDPC codes
over Fq (with probability pN : lim

N→∞
pN → 1) such that the

following inequality holds for the syndrome weight

|S| > L(W ) =
Wℓ

2
(1)

for all error vectors of weightW ≤W ∗(R, ℓ) = ω∗(R, ℓ)N .
To prove Theorem 2 in [1] a Gallager-like ensemble of

LDPC codes was used. The only difference to the binary case
was in multiplication of the parity-check matrix columns by
non-zero elements fromFq. In what follows we do not need
the ensemble, so we omit the definition of the ensemble here.
In what follows we need just an LDPC code overFq which
satisfies the property (1). We denote the code byC∗.

We note, that at the same time the following trivial upper
bound on the syndrome weight holds

|S| ≤ U(W ) = Wℓ.

III. S INGLE THRESHOLD MAJORITY DECODING

ALGORITHM

Let us describe a single-threshold majority decoding algo-
rithm from [1]. See Algorithm III for full description, herewe
give some comments and explanations. The algorithm is an
iterative hard decision decoding algorithm. On each iteration
the algorithm checks all the symbols from the sequence to be
decoded (r = (r1, r2, . . . , rN )). For each of the symbols the
replacement criterion (see below) is checked. If the symbol
satisfies the criterion, then its value is replaced with a new
value, syndrome is updated and the algorithm continues with
the next symbol.

Remark 1: It is important to note, that the algorithm works
with the symbols consequently. This means, that in case of
replacement all the changes are introduced to the sequence to
be decoded and to the syndrome and then the algorithm goes
to the next symbol.

Now let us consider the replacement criterion. Assume the
algorithm is considering the symbolri. The corresponding
variable nodevi is connected toℓ constituent codes. Each
of these codes sends a message tovi calculated based on
values of another variable nodes connected to it (usual message
passing rule). So we haveℓ messages coming tovi. Let Amax

denote a subset of equal non-zero messages of maximal cardi-
nality, let a = |Amax| andv be a value of the messages from
Amax. Let a thresholdθ be an integer such that0 ≤ θ < ℓ.
At last let z be a number of zero messages. The replacement
criterion is as follows. Ifa− z > θ we replace the symbolri
with v.

Remark 2: Note, that within the sectionθ = 0, we intro-
duced the parameter here just for our convenience. We will
use it in the next section.

And the last thing we have not mention yet is a stopping
criterion. We stop the algorithm if no changes inr were made
during the iteration.

Algorithm 1 Single threshold majority decoding algorithm
Input: received sequencer, thresholdθ : 0 ≤ θ < ℓ
Output: decoded sequencec, failure flagF
Initialization: S← Hr

T ; b← 1
while b = 1 do

b← 0
for all 1 ≤ i ≤ N do

calculateℓ messages forri
Amax ← maximal subset of equal non-zero mes-

sages
a← |Amax|; v ← value fromAmax

z ← number of zero messages
if a− z > θ then

ri ← v
updateS
b← 1

end if
end for

end while
F ← 1
c← r

if |S| = 0 then
F ← 0

end if

Lemma 1 ([1, Theorem 3]): Let

|S| >
Wℓ

2

then there exist a symbol whose replacement leads to the
syndrome weight reduction (at least by1).

Proof: A more general proof will be given in the next
section.

Theorem 1 ([1, Theorem 4]): Let C∗ be an LDPC code
overFq, satisfying (1). If the number of errors in the received
sequence

W ≤W ∗/2,

the Algorithm1 (with θ = 0) will correct all the errors with
the complexityO(N logN).

Here we refine the result of the previous theorem
Theorem 2 (Single threshold): Let C∗ be an LDPC code

overFq, satisfying (1). If the number of errors in the received
sequence

W ≤W (S) =
W ∗

2

ℓ+ 2

ℓ+ 1
,

the Algorithm1 (with θ = 0) will correct all the errors with
the complexityO(N logN).

Proof: To prove the theorem we need to prove that the
number of errors at each step of the algorithm is less or equal
to W ∗ (see condition (1) and Lemma 1).

Any error vector can mapped to a point of the following
coordinate system: “syndrome weight – number of errors” (see



Fig. 2). At the same time it is clear, that each point in the
coordinate system corresponds to multiple error vectors. First,
let us add the linesL(W ) andU(W ) to Fig. 2. Recall, that the
syndrome weight of any error vector withW ≤ W ∗ satisfies
the inequality

L(W ) < |S| ≤ U(W ).

W

|S|

W (S) W ∗W ∗/2

L(W ) = P (θ1,W )

U(W ) = P (ℓ,W )

A B

C

Fig. 2. Single threshold

Let us consider the decoding process. It corresponds to some
trajectory in the coordinate system. We start from the initial
error vector. With each replacement the syndrome weight
decreases (we move down at least by1) and the number of
errors increases (we can introduce errors) or decreases by1
(so we move right or left by1). The decoding is successful if
we finish at the origin.

The area of correctable error vectors is filled by gray color
in Fig. 2. Let us explain this fact. Assume we start from the
point C (see Fig. 2) and only introduce errors. In this situation
we move right and down by1 with each step (move along
the line CB). We can not come to the point B as it lies on
the (strict) lower boundL(W ) so it is clear that the number
of errors can not become greater thanW ∗. In this case the
decoding (and the trajectory) finishes at origin. To finish the
proof we just need to calculate the coordinate of intersection
of two lines: U(W ) and CB (starts inW ∗ and has a slope
equal to−1). The previous estimate (W ∗/2, point A) is also
shown in Fig. 2.

The proof of the complexity estimate coincides with the
proof from [1]. We omit it here.

Corollary 1: Let us introduce a notation

α(S) =
ℓ+ 2

2(ℓ+ 1)

and consider the asymptotic (N →∞) estimate of the relative

decoding radius realized by Algorithm1. We have

ρ(S) ≥
W (S)

N
= α(S)ω∗.

In the next section we will increase the estimate by means
of transition to multiple decoding thresholds.

IV. D ECODING WITH MULTIPLE THRESHOLDS

Let us first introduce the sequence of integer thresholds (let
t ≥ 1)

0 = θ1 < θ2 < . . . < θt < ℓ.

Now we are ready to describe the multiple threshold decod-
ing algorithm. The idea of the new algorithm is in consequent
applying the Algorithm1 with different replacement thresholds
to the sequence to be decoded. We start from the largest
thresholdθt and end withθ1 = 0. Please see Algorithm2
full description below for more details.

Algorithm 2 Multiple threshold majority decoding algorithm
Input: received sequencer, t thresholds0 = θ1 < θ2 <
. . . < θt < ℓ
Output: decoded sequencec, failure flagF
Initialization: S← Hr

T

for all 0 ≤ i ≤ t− 1 do
Apply Algorithm 1 with θ = θt−i

r← output of Algorithm1
end for
F ← 1
c← r

if |S| = 0 then
F ← 0

end if

Remark 3: We note, that the implementation of the Algo-
rithm 2 is not optimal. It is much better to implement it in
such a way. First calculate the syndrome, then sort all the
symbols in a descending order ofa − z value (see previous
section), then change the symbols consequently and update the
sorted list. But nevertheless we see here that the complexity
of Algorithm 2 is no more thant times the complexity of
Algorithm 1. So the order of complexity isO(N logN).

To estimate the decoding radius of the Algorithm2 we need
the following Lemma.

Lemma 2: Let θ be an integer,0 ≤ θ < ℓ, let

|S| > P (θ,W ) = W
ℓ+ θ

2

then there exist a symbol whose replacement leads to the
syndrome weight reduction by at least byθ + 1.

Proof: Consider a subgraph of the Tanner graph that
contains only erroneous symbols (the number of errors is
equal toW ) and constituent codes connected to these symbols.
Within the proof we work with this subgraph only.

Let us introduce the following notation:

• A is the set of codes that detect an error (|A| = |S|);



• Ai, i = 1, . . . , n0, is the subset ofA containing only the
codes with preciselyi incoming edges (ai = |Ai|);

• A≥2 = A\A1 is a subset ofA containing only the codes
with at least2 incoming edges (a≥2 = |A≥2|);

• C is the set of codes that contain errors but do not detect
them (c = |C|);

• e
(i)
A1

is the number of edges outgoing from a symboli
and incoming toA1;

• e
(i)
C is the number of edges outgoing from a symboli and

incoming toC.
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Fig. 3. A subgraph of Tanner graph

In Fig. 3 we present an example of a subgraph of the Tanner
graph and illustrate the introduced notation.

First note, that if the condition

e
(i)
A1

> e
(i)
C + θ

holds for thei-th symbol, then the replacement of it will lead
to the syndrome weight reduction by at least byθ + 1. To
prove this it is sufficient to mention that the codes with the
only error will give equal messages.

Then we claim that if

a1 >

W∑

i=1

e
(i)
C +Wθ,

then there exist a symboli such thate(i)A1
> e

(i)
C + θ.

And to finish the proof we need to count the edges in the
subgraph. The number of edges outgoing fromW erroneous
symbols isWℓ. These edges can come to either codes that
have detected an error (A = A1 ∪A≥2) or to codes that have
not detected errors but contain them (C). Let us estimate the
number of edges incoming to each of the three sets of codes:

• The number of edges leading to codes of the setA1 is
W∑
i=1

e
(i)
A1

= a1;

• The number of edges leading to codes of the setA≥2 is
at least2(|S| − a1) (here we use the fact every code has
at least two incoming edges);

• The number of edges leading to codes of the setC is
W∑
i=1

e
(i)
C .

Thus

Wℓ ≥ a1 + 2(|S| − a1) +

W∑

i=1

e
(i)
C .

After some transformations, we have

a1 −

W∑

i=1

e
(i)
C ≥ 2|S| −Wℓ.

This immediately implies that if the condition of the Lemma
holds then

a1 >

W∑

i=1

e
(i)
C +Wθ.

Theorem 3 (Multiple thresholds): Let C∗ be an LDPC code
overFq, satisfying (1). Let 0 = θ1 < θ2 < . . . < θt < ℓ be a
sequence of thresholds. If the number of errors in the received
sequence

W ≤Wt+1,

where

Wi = Wi−1
ℓ+ 3θi−1 + 2

ℓ+ 2θi−1 + θi + 2
, W1 = W ∗, θt+1 = ℓ,

the Algorithm 2 will correct all the errors with complexity
O(N logN).

Proof: The area of correctable error vectors is shown in
Fig. 4. For now the area is more difficult because the slope
at thresholdθi is equal toθi + 1. To prove the Theorem we
need to consequently calculate coordinates of intersection of
the area bound and linesP (θi,W ).

W

|S|

W ∗

A B

W2W3WtWt+1

L(W ) = P (θ1,W )

P (θ2,W )

P (θ3,W )

P (θt,W )

U(W ) = P (ℓ,W )

.

.

.

…

…

Fig. 4. Multiple thresholds

The most interesting case for us is the case when we have
all the thresholds from0 to ℓ− 1. In this case

W (M) =

ℓ−1∏

i=0

ℓ+ 3i+ 2

ℓ+ 3i+ 3
W ∗.

Let us introduce a notation

α(M) =

ℓ−1∏

i=0

ℓ+ 3i+ 2

ℓ+ 3i+ 3



TABLE I
RESULTS FORq = 16

R; ℓ ω∗ ρ(S) ρ(M)

0.125; 45 0.0103 0.0053 0.0065
0.25; 43 0.0095 0.0049 0.0060
0.375; 40 0.0085 0.0044 0.0054
0.5; 31 0.0072 0.0037 0.0046
0.625; 24 0.0053 0.0028 0.0034
0.75; 24 0.0033 0.0017 0.0021
0.875; 26 0.0015 0.0008 0.0010

and consider the asymptotic (N →∞) estimate of the relative
decoding radius realized by Algorithm2 (when we have all
the thresholds). We have

ρ(M) ≥
W (M)

N
= α(M)ω∗.

In Fig. 5 the comparison ofα(S) andα(M) is shown.
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Fig. 5. The dependency ofα(S) andα(M) on ℓ

At last let us calculate the value ofα(M) whenℓ is big. It
is easy to check, that

lim
ℓ→∞

α(M) = 2−2/3 = 0.6300...

Remark 4 (Generalized LDPC codes): Here we briefly
consider the case of generalized LDPC codes, i.e. the case
when the constituent codes are not SPC codes but some more
powerful codes. All our theorems work in this case if we use
the so-called generalized syndrome rather then an ordinary
syndrome. Generalized syndrome consists of syndromes of
constituent codes. The weight of generalized syndrome is just
the number of unsatisfied constituent codes. We would like to
point out, that analogously to [1] the transition to generalized
LDPC codes does not lead to a gain in the decoding radius.

V. NUMERICAL RESULTS

The numerical results are given in Table I forq = 16 and
Table II for q = 64. In each Table the dependencies ofω∗,
ρ(S) andρ(M) on the code rateR are presented. Note, thatℓ
(in each case) is chosen to maximize the functions. For our
case the maximal values ofω∗, ρ(S) andρ(M) were achieved
for the sameℓ, the value ofℓ is also given in the Tables.

TABLE II
RESULTS FORq = 64

R; ℓ ω∗ ρ(S) ρ(M)

0.125; 21 0.0156 0.0082 0.0099
0.25; 24 0.0131 0.0068 0.0083
0.375; 20 0.0104 0.0054 0.0066
0.5; 22 0.0081 0.0042 0.0052
0.625; 27 0.0059 0.0031 0.0038
0.75; 24 0.0037 0.0019 0.0024
0.875; 26 0.0017 0.0009 0.0011

We note, that the value ofρ(M)/ρ(S) ≥ 1.21 for all the
rates we considered. So transition to multiple thresholds leads
to the gain in the decoding radius without affecting the order of
complexity. To the best knowledge of the authors the obtained
estimates are currently the best estimates of the decoding
radius for low-complexity majority decoder of LDPC codes
overFq.

VI. CONCLUSION

We improved the estimate on the relative decoding radiusρ
for the single threshold majority decoder of LDPC codes over
Fq. The majority decoding algorithm with multiple thresholds
is suggested. A lower estimate on the decoding radius realized
by the new algorithm is derived. The estimate is shown to
be at least1.21 times better than the estimate for a single
threshold majority decoder. At the same time analogously the
result from [4] the transition to multiple thresholds does not
affect the order of complexity.

All the results are obtained for the case when the constituent
codes are SPC codes overFq. The case of more powerful
constituent codes is considered. It is shown that analogously
to [1] the transition to generalized LDPC codes does not lead
to a gain in the decoding radius.

To the best knowledge of the authors the obtained estimates
are currently the best estimates of the decoding radius for low-
complexity majority decoder of LDPC codes overFq.
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