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Abstract—A distributed hypothesis testing (HT) problem
is considered, comprising two nodes and a unidirectional
communication link. The receiving node is required to make a
decision as to the probability distribution in effect. A binning
process is used in order to minimize the probability of error,
resulting in a new achievable error-exponent. A sub-class of HT
problems with general hypotheses is defined, which contains
many interesting and relevant problems. The advantage of the
binning strategy in comparison to the non-binning approach
is demonstrated by means of a binary symmetric example.

I. INTRODUCTION

The subject of hypothesis testing (HT) is a familiar one
in statistics. In HT problems, the interest lies in the ability
to make a decision as to the probability distribution (or
“law”) of a certain random variable (RV) X , based on
n available realizations. Typically, two possible “options”
are known, named H0 and H1, and implying probability
distributions P0(x) and P1(x), respectively. Two error events
can be defined. We name the event that P1 is declared the
probability distribution in effect while P0 is true an error
of the first type (with probability αn), while the opposite
event is named an error of the second type (with probability
βn). Stein’s Lemma (see e.g. [1]) determines the optimal
exponential rate of decay for the probability of error of the
second type, under a fixed constraint over the probability of
error of the first type (αn ≤ ε, ε > 0), to be

θn , − lim
n→∞

1

n
log β∗n = D(P0||P1) . (1)

Notice that the optimal exponential rate of decay of βn does
not depend on the specific constraint over the probability of
error of the first type αn.

In distributed HT problems (see e.g. [2], [3]) different RVs
are assumed to be sampled in different locations (“nodes”)
of the system. Different communication constraints can be
imposed on the system, implying that the entirety of the
information can not be obtained in a single place, and thus
that Stein’s Lemma can not be directly applied. Throughout
this paper we will focus on the system depicted in Figure 1,
comprising two nodes and a single one-directional rate-
limited link. In [4], the same system was studied under
the assumption of testing against independence, where the
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Fig. 1: Two-node detection model, with a unidirectional
communication link

alternative hypothesis H1 consists of X and Y being in-
dependent, while maintaining the same marginal distribu-
tions implied by H0 (i.e., P1,XY (x, y) = P0,X(x)P0,Y (y),
∀x ∈ X , y ∈ Y). An optimal region was proved for the joint
detection and lossy compression problem, by which when
node B detects that the sources are dependent (i.e. H0 is the
true hypothesis) it also attempts to estimate the realizations
of X with maximal average distortion D.

The authors in [5] investigate HT in a multi-node system.
It is shown that in the case that under H1 the sources are
conditionally independent given some additional information
Z, optimality can be achieved through the use of a binned
codebook. The achievable error exponent (which then turns
out to also be optimal) is the result of a trade-off between
the exponential rates of decay of the probabilities of two
different error events. This tension between different error
events will be key in this paper as well.

In this paper, we concentrate on HT with general hypothe-
ses. An achievable error exponent was proposed for this
setting in [3]. Naturally, the performance is limited by the
available rate. Our approach improves upon the achievable
error-exponent proposed in [3] by using a binned codebook.
Although binning for distributed HT problems with general
hypotheses was first mentioned previously in [6], no proof
of the claimed result is available in literature. Binning
allows for a codebook containing more sequences, making a
“closer” description of the observed source sequence more
likely. However, as the binning process introduces to the
system a new type of error event which is nonexistent in the
non-binned approach (namely, the event where the wrong
sequence is picked from the bin at the decoder’s side), it is
still unclear weather this approach induces any performance
gain. After establishing the achievable error-exponent in the
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system by using the binning approach and technical tools
inspired by [7], we present a specific class of problems we
call “HT with degraded hypotheses”, and show through a
specific example, that the binning approach does lead to
performance gain in distributed HT. This is, however, a
general result, as explained subsequently.

The rest of this paper is organized as follows: In section II
the system model is presented. Section III gives our main
result - an achievable error exponent for the two-node HT
problem with general hypotheses. Section IV gives the code-
book construction, coding and decoding strategies, as well
as an outline of the calculation of the probability of error
of the second type, under the suggested achievable scheme.
In Section V the class of HT problems “with degraded
hypotheses” is introduced. An example for a problem in this
class is given, where the source is assumed to be binary
and symmetric. Finally, Section VI gives our concluding
remarks.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notation

We use upper-case letters to denote random variables
(RVs) and lower-case letters to denote realizations of RVs.
Vectors are denoted by bold-face letters. Qx denotes the
empirical distribution, or “type”, of the vector x. The set of
all vectors of length n in x ∈ Xn with a specific type Q
is denoted by Tn(Q), while the set of all vectors that are
δ-typical (in the usual entropy sense) is denoted by Tnδ (Q).
Using Csiszár’s notation [8], we let H(P ) denote the entropy
of a RV distributed according to P , I(PX ;PY |X) the mutual
information between X and Y while assuming that PXPY |X
governs the pair, and D(P ||P ′) the KL divergence between
the distributions P and P ′.

B. Two-Node System Model

We consider a distributed system comprised of two nodes,
as depicted in Fig. 1. Node A and node B see n realizations
of the RVs X and Y , respectively. X and Y are jointly
distributed in one of two possible ways, P0,XY (x, y) and
P1,XY (x, y), and are assumed to be discrete and i.i.d under
each of these options. We further assume that the marginal
distributions of both RVs are identical under each of the
hypotheses, i.e.,

P0X(x) = P1X(x) ∀x ∈ X ,

P0Y (y) = P1Y (y) ∀y ∈ Y .
(2)

As the encoder only sees X , for the remainder of this
paper we often take the encoder’s point of view and
define three RVs in the system - X , Y0 and Y1, with
probability distributions PX(x),

∑
x∈X

PY0|X(y|x)PX(x) and∑
x∈X

PY1|X(y|x)PX(x), respectively. After having received

information from node A with rate R[ bits
symbol ], node B is

expected to make a decision about the joint distribution of
the two RVs.

In a similar fashion to Stein’s Lemma and to previous
work on distributed HT ([2]–[4]), we consider two types of
error probabilities

αn , Pr(H1|XY ∼ P0(x, y)) ,

βn , Pr(H0|XY ∼ P1(x, y)) .
(3)

The performance of the system, for a given rate of com-
munication from node A to node B, R, is measured by
the exponential rate of decay of the probability of error of
the second type βn, when a fixed constraint is set over the
probability of error of the first type αn ≤ ε (ε > 0). We
denote this error exponent by E.

III. MAIN RESULT

Our main result is a new achievable error exponent for
the general distributed HT problem.

Proposition 1 (Achievable error exponent). The following
error exponent, as a function of R, is achievable for the
two-node HT problem, for any two hypotheses:

E = inf
QX

sup
Q∗

U|X

inf
QY

inf
QUXY

QU|X=Q∗U|X{
min

{
G[QUXY , R], min

ŨX̃Ỹ ∈L (U)
D(PŨX̃Ỹ ||PU1X1Y1

)
}}
,

(4)
with U being an auxiliary RV such that the Markov chain
U −
−X−
− (Y0, Y1) is respected. The function G[QUXY , R]
and the set L(U) appear in equations (5) and (6), respec-
tively, at the top of the next page.

The expression for E encapsulates the innate tension
between two possible error events, when a binning approach
is taken. Choosing a strategy such that the description of
x is fine, the decoder is able to perform HT with a very
large probability of success, when the correct description of
the vector x, u, is available. However, such a choice would
also induce a very large codebook, which, for a given R,
would cause each bin to be very large in order to satisfy
the rate constraint, making likely a mistake in choosing
the sequence from the bin. When a crude description is
chosen, the codebook is smaller, and thus so is each bin
(if binning is at all necessary). The binning process is thus
not likely to hurt performance significantly. However, the
retrieved sequence is much less valuable for the sake of HT,
because of the crude nature of the description it supplies
about the source.

In order to ensure the achievability of the error exponent
proposed in Proposition 1, a “worst-case” approach is taken.
The first line in the expression for the error exponent in
(4) can thus be read as follows: For every possible type
of the observed vector x, the encoder is allowed to choose
its strategy of transmission (this is achieved by taking the
supremum over Q∗U |X ). Having chosen the law for U , the
proposed approach should apply for any type of the observed
vector y, as well as for any joint type of u,x and y, as long
as Q∗U |X is respected.
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G[QUXY , R] = min
i∈{0,1}

{D(QUXY ||PiQU |X}+
[
R− I(QX ;QU |X) + I(QY ;QU |Y )

]+
I(QX ;QU |X) > R

∞ else

(5)

L (U) = {PŨX̃Ỹ ∈ P(U × X × Y) : PŨX̃(u, x) = PUX(u, x), PŨỸ (u, y) = PUY (u, y),∀u, x, y} , (6)

IV. PROOF OUTLINE FOR PROPOSITION 1

In this section we first describe the codebook construction,
as well as coding and decoding strategies, that lead to the
achievable region of Proposition 1. We then offer an outline
to the analysis of error probability of the second type. Our
approach uses some of the tools offered in [7] to calculate
the error-exponent for the Wyner & Ziv problem [9], as well
as the method of types in [8].

A. Encoder and Decoder Strategies

Codebook Construction: For a given block-length n
we operate on a type-by-type basis. For each type QX
set a unique index k(QX). Then, fix a conditional type
Q∗U |X(QX). Randomly and uniformly choose a set of code-
words, CnU (QX), from the resulting marginal type class TnQ∗U ,
induced by QX and Q∗U |X(QX). The size of CnU (QX) is an
integer satisfying:

expnI(QX ;Q∗U|X(QX)) +(|U||X |+ 2) log(n+ 1)

≤ CnU (QX) ≤
expnI(QX ;Q∗U|X(QX)) +(|U||X |+ 4) log(n+ 1) .

(7)

Define fU : Tn(QX) → CnU (QX). The function fU (x)
determines the codeword that would be chosen by the
encoder (“node A”) in order to describe x, and sent to the
decoder (“node B”), as subsequently explained. We define
Un , fU (Xn).

Encoding: Given a sequence x ∈ Tn(QX), search for a
sequence ui in the codebook that belongs to the type of x,
such that (ui,x) ∈ Tnµ (UX). The encoder’s message then
consists of two parts:

M1 = {1, 2, . . . ,M1 , exp [nR]} ,
M2 = {1, 2, . . . ,M2 , (n+ 1)|X |} .
M =M1 ×M2 .

(8)

The encoder sends the type of x, k(Qx), with zero rate
(“M2”), as well as an index, that is determined by the
chosen codeword u, F (fU (x)). The nature of this index
is dependent on the type of the observed sequence x. There
are two cases to consider:

1 log |CnU (QX)| < nR, in which case we can map each
member of CnU (QX) to an element of M1 in a one-to-
one manner.

2 log |CnU (QX)| ≥ nR, in which case we assign each dis-
tinct member of CnU (QX) to M1 uniformly at random.

Let F (fU (x)) denote the element to which fU (x) is mapped.
The encoder can be expressed mathematically as

Ψ(x) = (F (fU (x)), k(Qx)) . (9)

Decoding: The decoder is aware of the type of the
observed sequences at both nodes, and is free to optimize
its strategy accordingly. It attempts to discover the word u,
by using the information sent to it by the encoder, as well
as the vector of realizations y, available at node B.

1 If log |CnU (QX)| < nR the codeword can be decoded
without error.

2 If log |CnU (QX)| ≥ nR the decoder receives a bin index
and uses the side information to pick the best u in the
bin. Given the bin number, the type of x and the side
information y, the decoder’s strategy is

φ(F (fU (x)), k(QX),y) = û , (10)

if û ∈ F (fU (x)) and ∀ũ ∈ F (fU (x)), ũ 6= û,
H(ũ|y) > H(û|y). H(u|y) denotes the empirical
entropy

H(u|y) , E
[
− logQu|y

]
= −

∑
u∈U
y∈Y

Quy(u, y) logQu|y(u|y) . (11)

Note that since our chosen test is over empirical entropies,
it does not matter at this stage which hypothesis is the true
one, for the sake of choosing the sequence from the bin. The
true joint distribution of the sources is important for the sake
of analyzing the error, but imperatively not important for
the strategy of the decoder. After having retrieved a single
sequence from the bin, the decoder can continue to perform
HT by using a similar strategy to [3] .

B. Analysis of the Probability of Error

Using the union bound, the probability of error in detec-
tion can be bounded by

P (n)
e ≤ P (n)

r + P
(n)
d , (12)

where P
(n)
r is the probability of retrieving the wrong se-

quence from the bin, and P
(n)
d is the probability of an

erroneous detection despite using the correct sequence. We
start by evaluating P

(n)
r for a finite block-length n and

then use a continuity argument to show that in the limit
of n → ∞, Pr ≤ G[QUXY , R]. Since choosing the wrong
sequence can only happen in case binning occurs, we are

2799



only interested in the following subspace of the sequence
space:

A = {(u,x,y) : x ∈ Xn,y ∈ Yn,
u ∈ TnQ∗

U|X
, log |CnU (QX)| ≥ nR} . (13)

We first evaluate the probability of choosing the wrong
sequence within the set A by using the following lemma,
brought here without proof, which resembles the proof given
in [7]:

Lemma 1. Let (u,x,y) ∈ A. Let B be the event that u 6=
φ(ψ(x),y). If log |CnU (Qx)| ≥ nR then

Pr (B|Un = u,Xn = x,Yn = y) ≤ exp−n(R−J(Quxy)−δn) ,
(14)

with

J(Quxy) = I(Qx;Q∗U |X(Qx))− I(Qu|y;Qy) (15)

and
δn =

1

n
log(n+ 1)|U|(1+|X |+|Y|)+4 . (16)

In order to bound the probability of choosing the wrong
sequence from the bin, we use Lemma 1 while counting
the sequences in the set A. Changing the counting order to
count types first and the sequences within each type second
allows for the bounding of P (n)

r . As a final step, continuity
arguments are used in order to demonstrate the result of
Proposition 1 when n→∞.

The second aspect of the error exponent analysis is the
investigation of the detection error, under the assumption
that the right sequence has been chosen from the bin. The
probability that, given the right sequence u, node B makes a
wrong decision was investigated in detail in [3]. That result,
however, is dependent on a specific codebook, conceived
specifically to allow detection with high probability. As we
use a random codebook in our scheme, it is essential to adapt
the method of [3].

We propose here a slight modification to [3]. Intuitively,
since we investigate the exponential decay of βn while
only enforcing a fixed upper bound on αn, the “penalty”
of replacing the codebook construction in [3] with random
coding can be fully absorbed into αn, leaving the error
exponent result of βn unmodified. From the construction of
the codebook (specifically the size of the set CnU (QX)), the
number of sequences in the code book per type of X can
be expressed by

M , expn[I(QX ;Q∗U|X(QX))+η] . (17)

Assuming without loss of generality that u1 = fU (x), the
decoder declares H0 if (û,y) ∈ Tnµ (UY ) and H1 otherwise.
Note that typicality is checked relative to the distribution
implied by H0 only. αn can thus be expressed as follows:

αn ≤ Pr{u1 6= φ(F (fU (x)), k(QX),y)}
+ Pr{(u1,y) /∈ Tnµ (UY )|H0} .

(18)

The first term here is not dependent on the hypothesis
(assumed to be H0 when analyzing αn) and goes to zero

as explained above. The second term goes to zero as
n → ∞, as was the case in [4], thanks to the asymptotic
equipartition property, the size of the codebook, the Markov
chain U −
−X −
− (Y0, Y1) and the Markov lemma. Thus,
for any ε > 0, αn ≤ ε is fulfilled, for n large enough.

With this analysis of αn, the analysis of the probability
of error of the second type can be carried over unchanged
from [3], and be applicable to our random codebook. Thus,
for a fixed constraint over the error probability of the first
type and a random codebook, one can conclude that

θL(R) , min
ŨX̃Ỹ ∈L (U)

D(PŨX̃Ỹ ||PU1X1Y1
) (19)

is an inner bound over the exponential rate of decay of
the error probability of the second type, when the correct
sequence is used at the decoder.

V. DOES BINNING IMPROVE PERFORMANCE?

Having proposed an approach to general HT, it is still
not clear that this approach improves upon the known non-
binning one [3]. In order to demonstrate the benefits of
binning, we define a sub-class of HT problems, called “HT
with degraded hypotheses”. An example for such a problem
is given subsequently, with numerical results.

Definition 1. Let the marginal distribution at each side of a
two-node HT problem be equal under both hypotheses. The
system can thus be described by the probability distributions
PX , PY0|X and PY1|X . Let H1 be a degraded hypothesis,
with relation to H0, if the channel from X to Y1 is a
stochastically degraded version of the channel from X to
Y0. That is, there exists a RV Ŷ1, such that

PY1|X(y1|x) =
∑
y0∈Y

PY0|X(y0|x)PŶ1|Y0
(y1|y0) . (20)

This subclass includes many interesting HT problems,
such as problems with additive channels. For the rest of
this paper, we assume that the channel from X to Y1 is
physically degraded with relation to the channel from X to
Y0, in order to improve readability. This assumption does
not change the results, as they are only dependent on the
marginal distributions PY0|X and PY1|X . In the next section
we give an example of a problem in this class, for which
we show that the results attained by applying Proposition 1
beat the traditional non-binning approach.

As an example for a HT testing problem with degraded
hypotheses, we take the following, scenario, composed of
binary symmetric channels (BSCs):

X ∼ Bern
(

1

2

)
,

{
H0 : Y = X ⊕ Z0,

H1 : Y = X ⊕ Z1,
(21)

where Z0 ∼ Bern(p), Z1 ∼ Bern(q) and q > p. Note that
the marginal distribution of Y is similar for both hypotheses,
making a decision without cooperation impossible.

Applying Proposition 1 to this setup, we choose to con-
sider only distributions in which QX is a binary symmetric
source ({0, 1} with probability 0.5), and U is the result
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Fig. 2: Error exponents for both error events in the BSC
case with p = 0.1, q = 0.2, R = 0.4. The resulting error
exponent for each δ is the minimum between the two. Inner
and outer bounds are dashed.

of passing X through a BSC with transition probability δ.
While this is not necessarily an optimal choice, it can be
justified as an optimal approach for the asymptotic regime
[9]. In order to calculate the resulting error exponent, we
need to calculate two values:

inf
QY

inf
QUXY

QU|X=Q∗U|X

G[QUXY , R] , (22)

as a function of Q∗U |X (i.e., under our assumptions, as a
function of δ), encapsulates the error exponent of the event
where the wrong sequence is chosen from the bin.

min
ŨX̃Ỹ ∈L (U)

D(PŨX̃Ỹ ||PU1X1Y1) , (23)

also as a function of Q∗U |X , is the error exponent of the
event where, while using the right sequence, an error occurs
in detection. Having calculated these two functions, we can
choose Q∗U |X such that the minimum between the two is
maximized.

The tension between the two possible error events is
shown in Figure 2, where the results for a binary symmetric
source are depicted, for p = 0.1, q = 0.2 and R = 0.4.
When δ is very small, a sequence u can be found with
high probability, such that x is very well described, but
the codebook contains many sequences u. Thus, given the
right sequence u, an error in HT is not likely, and the error
exponent of the event where HT fails is high. However, since
the rate of communication is fixed, each bin has to contain
many sequences when δ is small, enlarging the probability of
error in choosing the sequence. When δ grows, the accuracy
of the description of x by u is lower, making the probability
of error in HT, while using the correct sequence, higher. The
codebook, however, is smaller, making the task of choosing
the right sequence in the bin easier. Note that the error
exponent for choosing the sequence from within the bin has
a threshold, under which it is zero. This threshold in this
case is roughly δ ≈ 0.08, which is the value implied by

[9] as the minimal value for the binning approach, in the
asymptotic regime.

As the system is free to choose its strategy (which boils
down to choosing δ under our assumptions), it is clear
that the chosen value should be δ ≈ 0.12. This value
produces two error events with equal error exponents, and
thus maximizes the minimum between the two. Clearly, this
choice allows the binned approach to beat the non-binned
one, as depicted in Figure 2 by a dashed line. We emphasize
that this bound is not drawn as a function of δ, but rather
depicts the best possible performance under the assumptions
of [3]. Since this approach does not include binning, the size
of the codebook, and thus the quality of the descriptions u,
is limited by the given rate of communication R.

Remark 1. A bigger improvement in performance is also
possible, through a different approach by which the decoder
does not attempt to retract a single sequence from the bin.
Instead, HT is performed by checking all of the sequences in
the bin. For the case of HT with degraded hypotheses, this
approach can also be used to show that binning is always
beneficial, except when testing against independence.

VI. CONCLUDING REMARKS

In this paper, an achievable region for the two-node
HT problem with unidirectional communication was offered
for general hypotheses. A class of HT problems, called
“degraded hypotheses” was introduced. Using the example
of a binary symmetric source, the merit of the binning
approach taken in this paper was demonstrated, by show-
ing that it beats the traditional non-binning approach. One
possible suboptimal step in the offered approach could be
the separation of the decision process into two steps, by
first looking for the best sequence in the received bin and
then making the decision. Future work will concern further
improving performance in distributed HT problems with
general hypotheses.

REFERENCES

[1] E. Lehmann and J. Romano, Testing Statistical Hypotheses, ser.
Springer Texts in Statistics.

[2] R. Ahlswede and I. Csiszar, “Hypothesis testing with communication
constraints,” Information Theory, IEEE Transactions on, vol. 32, no. 4,
pp. 533–542, Jul 1986.

[3] T. Han, “Hypothesis testing with multiterminal data compression,”
IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 759–772, Nov 1987.

[4] G. Katz, P. Piantanida, R. Couillet, and M. Debbah, “Joint estimation
and detection against independence,” in Proc. of the 52-nd Annual
Allerton Conference on Coomunication, Control and Computing, 2014.

[5] S. Rahman and A. Wagner, “On the optimality of binning for distributed
hypothesis testing,” Information Theory, IEEE Transactions on, vol. 58,
no. 10, pp. 6282–6303, Oct 2012.

[6] H. Shimokawa, T. Han, and S.-I. Amari, “Error bound of hypothesis
testing with data compression,” in Inf. Theory, 1994 IEEE International
Symposium on (ISIT), Jun 1994, p. 114.

[7] B. Kelly and A. Wagner, “Reliability in source coding with side
information,” Information Theory, IEEE Transactions on, vol. 58, no. 8,
pp. 5086–5111, Aug 2012.

[8] I. Csiszár, “The method of types,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2505–2523, Oct 1998.

[9] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” Information Theory, IEEE
Transactions on, vol. 22, no. 1, pp. 1–10, Jan 1976.

2801


