
Reconciling Similar Sets of Data
Ryan Gabrys∗, Farzad Farnoud (Hassanzadeh)†

∗Spawar Systems Center San Diego †University of Virginia
ryan.gabrys@navy.mil farzad@virginia.edu

Abstract

In this work, we consider the problem of synchronizing two sets of data where the size of the symmetric difference between
the sets is small and, in addition, the elements in the symmetric difference are related through the Hamming distance metric. Upper
and lower bounds are derived on the minimum amount of information exchange. Furthermore, explicit encoding and decoding
algorithms are provided for many cases.
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I. INTRODUCTION

Suppose two hosts, A and B, each have a set of length-n q-ary strings. Let SA denote the set of strings on Host A and let
SB denote the set of strings on Host B. The set reconciliation problem is to determine the minimum information that must
be sent from Host A to Host B with a single round of communication so that Host B can compute their symmetric difference
SA 4SB = (SA \ SB) ∪ (SB \ SA) where |SA 4SB | ≤ t.

This problem has been the subject of study in many works such as [6], [7], [8], [11], [13], and [14]. The work in [6] provides
an approach to set reconciliation using polynomial interpolation. In [7] and [8], coding schemes were studied that were based
upon error-correcting codes and polynomial interpolation. In [11] and [13] algorithms for set reconciliation were considered
based upon Bloom filters. In [14], the authors consider the problem of synchronizing vector subspaces.

In this paper, we consider a variant of the traditional set reconciliation problem whereby the elements in the symmetric
difference SA 4SB are related. This setup could arise, for instance, when users are synchronizing files that are being edited
or when the data elements themselves are interrelated. This paper focuses on the generic setup where the symmetric difference
can be partitioned into subsets such that elements in each of these subsets are within a certain distance of each other. The
focus in this work will be on transmission schemes that minimize the amount of information exchanged between two hosts.

Specifically, the model studied in this work is motivated by the scenario where two hosts are storing a large number of
(potentially large) documents. Under this setup, information is never deleted so that each database contains many different
versions of the same document. Each document has a fixed number of fields and each field has a fixed size. When synchronizing
sets of documents between two hosts, a set of hashes is produced. For every document, a single hash is formed by concatenating
(in a systematic fashion) the result of hashing each field of the document.

In Figure 1, this setup is illustrated with the rectangles representing documents stored within a database. Each document
consists of a unique ID along with 4 additional name-value pairs. On the lefthand side of the diagram, we show a document
with the ID Y 92392, which we will refer to as document a for shorthand. Suppose hA = (0, 9, 5, 4, 3) ∈ Z5

10 is the result
of performing the hash described in the previous paragraph on document a. Suppose a single field on document a is updated
resulting in the document a′ (which is shown in Figure 1 as residing on Host B) and that ha′ = (0, 9, 5, 4, 5) ∈ Z5

10 is the
hash for a′. By the previous discussion, hA and ha′ differ only in the portion of ha′ which corresponds to the field that was
updated and the Hamming distance between hA and ha′ is one. Motivated by this setup, we study the problem of reconciling
sets of elements whereby subsets of elements in the symmetric difference are within a bounded Hamming distance from each
other.

The contributions of this work include bounds and coding schemes for reconciling sets of related strings that reduce the
information exchange. As will be discussed in more details, we derive transmission schemes that, under certain conditions,
require less information exchange than existing, alternative methods.

The paper is organized as follows. In Section II, we formally define our problem and introduce some useful notation. Upper
and lower bounds on the amount of required information exchange are provided in Section III. In Section IV, we provide a
coding scheme for reconciling certain sets of related information. In Section V, we consider an extension of the ideas from
Section IV that can be used for reconciling more generic sets of related information. Section VI concludes the paper.

II. MODEL AND PRELIMINARIES

For two strings x,y ∈ Fnq , let dH(x,y) denote their Hamming distance. We denote the Hamming weight of x as wt(x).
Throughout this paper, we assume q is a power of 2 and a constant.

This paper was presented in part at the International Symposium on Information Theory 2015 in Hong Kong and at the 55th Annual Allerton Conference
on Communication, Control, and Computing in 2017. [15], [16]
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Database A Database B

ID Field 1 Field 2 Field 3 Field 4
Y92392 Red 35 North 75

ID Field 1 Field 2 Field 3 Field 4
Y92392 Red 35 North 72

hA= (0, 9, 5, 4, 3) ha’= (0, 9, 5, 4, 5)

Fig. 1. Two Databases Synchronizing Related Sets of Information.

Definition 1. Let SA ⊆ Fnq and SB ⊆ Fnq . We say that (SA,SB) are (t, h, `)-sets if SA 4SB can be be written

SA 4SB =

j⋃
i=1

{xi,1, . . . ,xi,ki},

where
1) j ≤ t,
2) for 1 ≤ i ≤ j, ki ≤ h, and
3) for any u,w ∈ {xi,1, . . .xi,ki}, we have dH(u,w) ≤ `.

An illustration is given in Figure 2, where t = 3 and an example is provided next.

Example 1. Suppose SA,SB ∈ F5
2, where

SA = {(0, 0, 0, 0, 0), (1, 0, 1, 1, 1)},
SB = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 1)}.

Then we say that (SA,SB) are (1, 2, 3)-sets since

SA 4SB = {(1, 0, 1, 1, 1), (1, 1, 0, 0, 1)},

which can be decomposed into 1 set of size 2 whereby the Hamming distance between any two elements is at most 3.

In the next section, we begin by deriving upper and lower bounds on the required information exchange to synchronize
(t, h, `)-sets.

III. BOUNDS ON INFORMATION EXCHANGE

We begin this section by introducing a graphical interpretation of our problem and then revisiting a result from [7]. Afterwards,
we consider non-asymptotic and asymptotic upper and lower bounds for the synchronization of (t, h, `)-sets.

Consider the undirected graph G(t,h,`) where each vertex in G(t,h,`) represents a set of length-n q-ary strings. Notice that
under this setup, G(t,h,`) has exactly 2q

n

vertices. There exists an edge between two vertices in G(t,h,`) if and only if the two
vertices are (t, h, `)-sets.



SA∩SB

≤ l

⊂S A△S B

⊂S A△S B

⊂S A△S B

Fig. 2. An illustration for two (t, h, `)-sets SA (circles) and SB (triangles), where SA4SB is divided into t = 3 subsets each with at most h = 6 elements
such that any pair of elements within one of these subsets are at distance at most `.

The following proposition from [7] depicts a close connection between the minimum information exchange for our set
reconciliation problem and chromatic number of G2

(t,h,`). The square graph G2
(t,h,`) is a graph over the same vertex set as

G(t,h,`) where two vertices are adjacent if their distance in G(t,h,`) is 1 or 2.

Theorem 1. [7, Theorem 1] The minimum information exchange required in one round of communication for reconciling any
two (t, h, `)-sets is the chromatic number χ(G2

t,h,`).

As a consequence of Theorem 1, there exist hosts A and B where (SA,SB) are (t, h, `)-sets such that at least log2(χ(G2
(t,h,`)))

bits of information is necessary for Host A to transmit to Host B so that Host B can determine SA4SB . Theorem 2 provides
non-asymptotic upper and lower bounds for χ(G2

t,h,`).

Theorem 2. Let G = G(t,h,`) and suppose C is a q-ary code with length n and minimum Hamming distance `+ 1. We have

t∑
j=1

(
|C|
j

)(h−1∑
k=0

(
r1

k

))j

≤ χ(G2) ≤
2t∑
j=0

(
qn

j

)(h−1∑
k=0

(
r2

k

))j
,

with r1 =
∑b`/2c
i=1

(
n
i

)
(q − 1)i, r2 =

∑`
i=1

(
n
i

)
(q − 1)i.

Proof. In order to give a lower bound on χ(G2), we give a lower bound on the size of the largest clique in G2, which we
denote as ς(G2). The upper bound will be derived by providing an upper bound on the maximum degree of a vertex, which
we denote as ∆(G2). It is well-known (see [5] for instance) that ς(G2) ≤ χ(G2) ≤ ∆(G2) + 1.

We produce a lower bound for ς(G2) by considering the size of a clique in G2. Suppose that Host A contains no elements
from Fnq so that SA = ∅. Let S̃B ⊆ Fnq be such that |S̃B | ≤ t and for any x1,x2 ∈ S̃B , we have dH(x1,x2) ≥ ` + 1. Let
S̃B = {x1,x2, . . . ,xt′} where t′ ≤ t. We form the set SB , which represents the set of elements on Host B, from S̃B in the
following manner. First we initialize SB = S̃B . Then, for 1 ≤ i ≤ t′, add the elements of Si ⊆ Fnq to SB , where Si is chosen
such that for any y ∈ Si, dH(xi,y) ≤ b `2c and |Si| ≤ h− 1.
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Fig. 3. Upper and lower bounds on the rate of information exchange,
logq χ(G

2)
tnh

, for q = 2 and n, h→∞.

Under this setup, let v1 be the vertex in G representing the set SA and similarly let v2 be the vertex in G representing the
set SB . It is straightforward to observe that that since (SA,SB) are (t, h, `)-sets, the distance between v1 and v2 in G is one.
Let v2, v

′
2 be two vertices in G that represent two different possibilities for SB . Then, by design the distance between v2 and

v′2 is at most two so that the vertices are adjacent in G2. Thus, the vertices v1, v2, v
′
2 are all pairwise adjacent and they are

part of a clique. Let C ⊆ Fnq be a code with minimum Hamming distance ` + 1. From the previous discussion, notice that
there are at least

t∑
j=1

(
|C|
j

)
·

(
h−1∑
k=0

(
r1

k

))j

possible choices for the set SB where r1 =
∑b`/2c
i=1

(
n
i

)
· (q − 1)i.

We now produce an upper bound for ∆(G2). Since the number of neighbors for a vertex v ∈ G2 does not depend on
the choice of v, we will simply assume v ∈ G2 represents SA where, as before, SA = ∅. Notice that if v1, v2 ∈ G2 are
adjacent, then v1, v2 represent (2t, h, `)-sets. We now count the number of possible choices for SB so that the sets (SA,SB)
are (2t, h, `)-sets under the assumption that SA = ∅. We proceed similarly to before. Let S̃B ⊆ Fnq be any set of at most 2t

elements from Fnq . We form the set SB in a manner similarly to before (two paragraphs up) given the set S̃B . Under this
setup, there are at most

2t∑
j=1

(
qn

j

)
·

(
h−1∑
k=0

(
r2

k

))j

possible choices for the set SB where r2 =
∑`
i=1

(
n
i

)
(q − 1)i, which gives the upper bound in the lemma.

Asymptotic Bounds

We now provide asymptotic upper and lower bounds for the information exchange.

Theorem 3. Let λ = `
n and η =

logq h

n . Assume λ is between 0 and 1− 1/q and bounded away from both. If n, h→∞,

logq χ
(
G2
)

tnh
≥ Hq

(
λ

2

)
− η + o(1),

logq χ
(
G2
)

tnh
≤ 2(Hq(λ)− η) + o(1),

where for the upper bound we also need η < Hq(λ)− ε for some positive ε.

The proof is given in the appendix. We compare these bounds1 for fixed values of η in Fig. 3.
Assume q = 2. Then from Theorem 3, we have that the optimal number of bits of information exchange is at most

2thn(H(`/n)− lg h/n). Notice that if the approach from [6] was used, then at least thn bits of information, which for n, h
large enough and small `, is more than 2thn(H(`/n)− lg h/n). Thus, algorithms for reconciling (t, h, `)-sets have the potential
to reduce the amount of information exchanged between hosts. As a starting point, in the next section, we consider an approach
to reconciling (1, h, `)-sets.

1In [15], we had included an erroneous bound (eq. (5)) that has been removed here. Furthermore, we have simplified the bounds compared to [15].



IV. RECONCILING (1, h, `)-SETS

In this section, we consider transmission schemes for the problem of reconciling (1, h, `)-sets, where |SA 4 SB | ≤ h and
for all u,w ∈ SA 4 SB , we have dH(u,w) ≤ `. We first describe the encoding procedure and then discuss the decoding
method. Recall that the goal is to compute SA4SB where (SA,SB) are (1, h, `)-sets consisting of elements from Fnq , where
q is a power of 2.

The key idea behind the encoding and decoding is to encode the symmetric difference SA4SB by specifying one element
say X ∈ SA 4 SB and then specifying the remaining elements in SA 4 SB by describing their location relative to X . As
a result, as will be described shortly, the information transmitted from Host A to Host B can be decomposed into two parts
denoted w1 and w2. The information in the w1 part describes the locations of the elements in SA 4 SB relative to X . The
information in the w2 part will be used to fully recover X . Once X is known and the locations of the other elements in
SA 4SB are known relative to X , then the symmetric difference SA 4SB can be recovered.

We first introduce some useful notation. An [n, d]q code is a linear code over Fq of length n with minimum Hamming
distance d. Suppose r is a positive integer where r < n. Let α be a primitive element in Fqr . Furthermore, let H be an r × n
parity check matrix with elements from Fq . Suppose S = {x1,x2, . . . ,xs} ⊆ Fnq and define the syndrome of S under H as
the multiset

H · S = {H · x1, H · x2, . . . ,H · xs}.

Furthermore, define SH,i where 1 ≤ i ≤ qr as

SH,i = {x ∈ S : H · x = αi},

where with an abuse of notation, αq
r

= 0. We refer to the j-th element in SH,i, when ordered in lexicographic order, as
SH,i,j . Finally, let IH : {Fnq } → Zq

r

qn be defined as

IH(S) = (|SH,1|, |SH,2|, . . . , |SH,qr−1|, |SH,0|),

for S ⊆ {Fnq }. We provide the following example illustrating these definitions.

Example2. Suppose q = 2, n = 3, S = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 0, 1)}. We represent the elements of F4 as α1 = (0, 1)T ,
α2 = (1, 1)T , α3 = (1, 0), and α4 = (0, 0)T and let

H =
(
α3 α1 α2

)
=

(
1 0 1
0 1 1

)
.

We have IH(S) = (1, 2, 0, 1). In this case,

SH,1 = {(1, 0, 1)},
SH,2 = {(0, 0, 1), (1, 1, 0)},
SH,4 = {(0, 0, 0)}

and SH,2,2 = (1, 1, 0).

To describe the encoding (and subsequent decoding) procedure, we also make use of the following matrices:
1) H` ∈ Fr×nq , for some positive integer r, is the parity check matrix for an [n, 2`+ 1]q code C`.
2) HC ∈ Fu×q

r

2 , for some positive integer u, is the parity check matrix for a [qr, 2h+ 1]2 code CC .

3) HF ∈ Fn×nq , and H̄` ∈ F(n−r)×n
q are such that HF =

(
H`

H̄`

)
has full rank.

In addition to these, we will require one more tool to encode w2. We first introduce some additional notation similar to [10].
Let b = (b1, b2, . . . , bm) be a sequence of length m with elements from Fqn−r such that for any a ∈ {0, 1}m with at most
s nonzero entries, a · b 6= 0. Then, we refer to the sequence b as a Bs sequence. Notice that a Bs sequence can be formed
from the columns of a parity check matrix for an [m, d]q code with dimension n− (n− r) provided d ≥ s+ 1.

We now proceed by describing the encoding procedure followed by the decoding procedure.

A. Encoding

The following procedure is performed on both Host A and Host B but the notation corresponds to Host A. We assume that
m ≥ qr and that b = (b1, b2, . . . , bm) is a Bh sequence. In Lemma 1, we give a sufficient condition for the existence of such
b of length m ≥ qr so that the encoding procedure executes correctly.

1) Let zA = IH`(SA) mod 2.
2) Define wA

1 = HC · zA (in F2).



3) Let

wA
2 =

qr∑
i=1

bi ·
|SH`,i|∑
j=1

H̄` · (SA)H`,i,j

=
∑

x∈SA
blogα(H`·x) · H̄` · x

where the computations are performed over Fqn−r with n− r > r.
Then Host A transmits (wA

1 ,w
A
2 ) to Host B. Similarly, Host B computes and transmits (wB

1 ,w
B
2 ). Then decoding at each

host is performed based on w1 = wA
1 + wB

1 and w2 = wA
2 + wB

2 . Below, to give intuition to the encoding procedure, we
consider these quantities, in addition to z = zA + zB (in F2). Further details will be presented in Subsection IV-B, which
describes the decoding procedure.

To motivate the our encoding algorithm, first, note that points that lie in the intersection of SA and SB contribute to both
zA and zB , and so their contribution to z cancels out. Hence,

z = IH`(SA 4SB). (1)

Thus z contains only information that are relevant to reconciliation. The relationship between z and w1,

w1 = HC · (zA + zB) = HC · z, (2)

is that of compression since u� qr and furthermore we will show later that given w1, the decoder can compute z.
For w2 = wA

2 +wB
2 , since the characteristic of the field Fqn−r is 2, we have

w2 =
∑

x∈SA4SB
blogα(H`·x) · H̄` · x. (3)

We next present an example for the encoding and then we give a lemma providing a sufficient condition for the existence
of a Bh sequence required for the encoding. In Subsection IV-B, present the details of recovering SA4SB from w1 and w2.

Lemma 1. For any integers n, `, h, there exists a Bh sequence over F2n−r of length m ≥ qr if

Fn(2`+1)h ⊆ Fqn−r ,

and h+ 1 ≤ n2`+1.

Proof: We prove the result by considering a code of length M where M = qr. First, notice that by the BCH lower bound
r ≤ 2`dlogq(n)e [9] and so we assume r = 2`dlogq(n)e. In this case, we have that M = n2`+1. We make use of an extended
Reed-Solomon code of length M with minimum distance h+1. An extended Reed-Solomon code of this length and minimum
distance has a parity check matrix HRS ∈ Fh×MM of dimension h. Interpreting each column vector of HRS as unique element
from FMh (using an injective mapping similar to Example 2), we set the elements in Bh to be the elements from FMh that
correspond to columns of HRS . If FMh ⊆ Fqn−r then the elements in Bh are also from the field Fqn−r and so the result
follows.

We note that for the case where q = 2, we can strengthen Lemma 1 by using the BCH bound for binary codes. This is
given in the next claim.

Claim 1. For any integers n, `, h and q = 2, there exists a Bh sequence over F2n−r of length m ≥ qr if

Fn`h ⊆ F2n−r ,

and h+ 1 ≤ n 2`+1
2 .

B. Decoding

Suppose (wA
1 ,w

A
2 ) is the information transmitted by Host A to Host B and suppose (wB

1 ,w
B
2 ) is the result of the encoding

procedure if it is performed on Host B. We illustrate how to recover SA 4SB given (wA
1 ,w

A
2 ), (wB

1 ,w
B
2 ).

We first describe in words the ideas behind the decoding procedure. The decoding procedure has two broad stages whereby,
in the first stage we determine the locations of the elements in SA4SB relative to some x ∈ SA4SB and then in the second
stage the element x is recovered. The decoding begins by first recovering the syndromes of the elements in the set SA4SB .
More precisely, as a result of the error-correction ability of the code with a parity check matrix HC , we first recover the set
of syndromes SS = {H` · y : y ∈ SA 4 SB}. Next, we arbitrarily choose an element say xS ∈ SS . Given this setup, x
(described earlier) is precisely equal to the element which maps to xS under the map H`, i.e., xS = H` · x.

To determine the locations of the other elements in SA 4SB relative to x we add every element in the set SS to xS . Let
SL = {yS + xS : yS ∈ SS\xS}. As will be described below in more detail, from the set SL we can determine the values of



the elements in SA4SB relative to x. Next, the value of x is determined by canceling out some of the contributions of the
elements in (SA 4SB) \ x from the vector w2.

We now describe in more details the procedure before proving its correctness. Suppose DC : Fu2 → Fq
r

2 is the decoder for
the code CC which by assumption has minimum Hamming distance at least 2h+1. DC takes as input a syndrome and outputs
an error vector with Hamming weight at most h. Let D` : Frq → Fnq be the decoder for C`, which has Hamming distance 2`+1.
The decoder D` takes as input a syndrome and outputs an error vector with Hamming weight at most `. In the following, α
is a primitive element of Frq . The decoding algorithm is presented next:

1) Let ẑ = DC(wA
1 +wB

1 ).
2) Suppose ẑ has 1s in positions {k1, k2, . . . , kv}. If ẑ = 0, then let F = ∅, and stop.
3) Define ê2 = D`(αk1 + αk2), ê3 = D`(αk1 + αk3), . . . , êv = D`(αk1 + αkv ).
4) Let z′ = wA

2 +wB
2 +

∑v
i=2 bki · H̄` · êi.

5) Define s2 = z′/(bk1
+ bk2

+ . . .+ bkv ).
6) Let x̂ = H−1

F · (αk1 , s2)T .
7) F = {x̂, x̂+ ê2, . . . , x̂+ êv}.
As shown below, the vector ẑ essentially gives us the set SS mentioned before. Furthermore, xS = αk1 and {αk1 +

αk2 , . . . , αk1 + αkv} corresponds to SL described earlier.

Claim 2. At the end of step 1) of the decoding ẑ = IH`(SA 4SB).

Proof. From (2), we have w1 = wA
1 +wB

1 = HC · z. The minimum distance of CC is at least 2h+ 1 and the weight of z is
at most h. Thus

ẑ = DC(w1) = z = IH`(SA 4SB).

Theorem 4. F = SA 4SB when (SA,SB) are (1, h, `)-sets.

Proof. Suppose SA 4SB = {x1, . . . ,xT }, where T ≤ h. Since (SA,SB) are (1, h, `)-sets, we can write

SA 4SB = {x,x+ e2, . . . ,x+ eT } (4)

where x is any element in SA 4 SB and for 2 ≤ i ≤ T , wt(ei) ≤ `. Furthermore, since |SA 4 SB | = T , for any distinct
2 ≤ i, j ≤ T , we have ei 6= ej .

Let k1 = logα(H` · x) so that H` · x = αk1 . Suppose that x = c+ e for some c ∈ C` such that wt(e) is minimized (i.e.,
there does not exist some other c′ ∈ C` where wt(c′ + x) < wt(e)). Then, we have

H` · (SA 4SB) = {H` · e, H` · (e+ e2), . . . ,H` · (e+ eT )}.

Recall from the previous discussion that ei are distinct, nonzero, and have weight at most `, for 2 ≤ i ≤ T . It follows that
|H` · (SA 4 SB)| = |SA 4 SB | = T . For 2 ≤ i ≤ T , let ki = logα(H` · (e+ ei)). From Claim 2, we have that at step 2) ẑ
is non-zero in positions αk1 , αk2 , . . . , αkv , where v = T .

Notice that if ẑ = 0, then SA4SB = ∅. Since H` · x = αk1 and D` can correct up to ` errors, at step 3) of the decoding
ê2 = D`(αk1 + αk2) = D`(H` · x+H` · (x+ e2)) = D`(H` · e2) = e2 and similarly ê3 = e3, . . . , êv = ev .

From (3),

w2 = wA
2 +wB

2 = bk1
· H̄` · x+

v∑
i=2

bki · H̄` · (x+ ei)

=

(
v∑
i=1

bki

)
· H̄` · x+

v∑
i=2

bki · H̄` · ei.

Then, at step 4) of the decoding we have

z′ = wA
2 +wB

2 +

v∑
i=2

bki · H̄` · êi =

(
v∑
i=1

bki

)
· H̄` · x. (5)

Since T = v ≤ h and b = (b1, b2, . . . , bm) is a Bh sequence, we have s2 = H̄` ·x at step 5) of the decoding. Then, at step 6),
x̂ = x since αk1 = H` · x and HF has full rank. At step 7), since ê2 = e2, ê3 = e3, . . . , êT = eT , we have F = SA 4 SB
as desired.

We note that (w1,w2) requires approximately u + lg qn−r = u + (n − r) lg q bits where u is the dimension of the
parity check matrix for HC . If we approximate u = hr lg q and r = `(lg n + lg q), then (w1,w2) requires approximately
lg q(n+ (h− 1)`(lg n+ lg q)) bits of information. If q = 2, (w1,w2) requires approximately

n+ (h− 1)`(lg n+ 1). (6)



If the approach from [6] were used then at least h(n+1) bits of information exchange would be required which is significantly
more than the quantity in (6). Nevertheless, the upper bound on information exchange given in Theorem 3 for t = 1 is
≤ 2h`(Hq(λ)/λ) which for a constant λ is asymtotically smaller than the information exchange in (6), and so achieving
optimality is still an open problem.

Note that the basic approach taken in this section was to first determine the differences between elements in the symmetric
difference. Then, the idea was to use those differences so that at step 4) of the decoding, we produced a z′ which is basically
a scaled version of s2. Note that we can obtain z′, as shown in (5), by multiplying b (which is a Bh sequence) by a vector,
say u with at most h identical non-zero components so that u has rank at most 1. In the next section, we extend this idea
by showing how, given the relationship between elements in the symmetric difference which are close to each other, we can
recover the symmetric difference for certain classes of (t, h, `)-sets by solving for a low-rank vector.

V. RECONCILING CERTAIN CLASSES OF (t, h, `)-SETS

In this section, we will detail an approach that addresses the case where t ≥ 1. First we give an overview of our method
with a fair amount of detail, but postpone the proofs until later in the section. In Section V-A and Section V-B, we formally
present the encoding and decoding algorithms.

Let us now fix some notation. For a set I ⊆ [n], and a vector x ∈ Fn2 , let xI denote the vector that results by discarding the
components of x outside I . For example, if x = (1, 0, 1, 0), then x{1,3} = (1, 1). For a set of vectors S ⊆ Fn2 , let SI denote
the set of vectors that results from discarding the components of each element in S outside I .

The aim of this section is to describe an approach to synchronize two sets of data SA and SB where the symmetric difference
between the sets has the following structure. For given t, h, and `, SA 4 SB =

⋃j
i=1 Bi, where Bi = {xi,1, . . . ,xi,ki} and

the following hold:
1) j ≤ t;
2) for 1 ≤ i ≤ j, ki ≤ h;
3) for any u,w ∈ Bi, we have dH(u,w) ≤ `; and
4) ∃I ⊆ [n] such that:

a) For any i1 6= i2 and any x ∈ Bi1 ,y ∈ Bi2 , we have xI 6= yI ; and
b) For any x,y ∈ Bi, we have xI = yI .

Each set Bi is referred to as a (difference) block.
If the sets SA and SB satisfy the conditions 1)− 4), then (with a slight abuse of notation) SA, SB are called (t, h, `)-sets.

For the remainder of the paper, we assume (t, h, `)-sets are as defined in this section and not in Definition 1.
We note that our original definition for (t, h, `)-sets in Definition 1 was for general q-ary strings, and it did not require

condition 4). We chose to focus on binary strings for simplicity of presentation, but the ideas extend to the more general case.
The reason for including condition 4) here is that it is used during the encoding/decoding to group the elements in SA4 SB .
For the case where t = 1, which was considered in the previous section, there exists at most one difference block and so no
grouping was required.

Assuming that the elements of the symmetric difference are chosen at random but with the constraint that conditions 1)-3)
are satisfied, a simple argument shows that condition 4) is violated with probability at most

th2`|I|
n

+
t2h2

2|I|

which approaches 0 for |I| = lg(n) provided that t2h2` = o(n/ lg n). Furthermore, given the setup where database documents
are being synchronized, the set I could be derived from the document’s unique identifier for instance. Thus, the (t, h, `)-sets
considered here could arise in several different ways.

Before continuing, we revisit the example from Section II of a (t, h, `)-set in the context of the new definition.

Example 3. Suppose SA,SB ∈ F5
2, where

SA = {(0, 0, 0, 0, 0), (1, 0, 1, 1, 1)},
SB = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 1)}.

Then we say that (SA,SB) are (1, 2, 3)-sets since

SA 4SB = {(1, 0, 1, 1, 1), (1, 1, 0, 0, 1)},

which can be decomposed into 1 set of size 2 whereby the Hamming distance between any two elements is at most 3. Notice
here that I = {1, 5}.

Next, we give an overview of our method with a fair amount of detail, and postpone the formal presentation of the encoding
and decoding algorithms to Sections V-A and V-B, respectively. Similar to the algorithm for (1, h, `)-sets from Section IV,
and as discussed previously, the process of synchronizing (t, h, `)-sets will be broken down into 2 main stages:



Stage 1) Determine the differences between the elements in the symmetric difference.
Stage 2) Recover the elements in the symmetric difference.
Notice that under our setup, there exists a set Cen ⊆ Fn2 of size at most t containing one element ci from each difference

block Bi such that for each i and any y ∈ Bi, we have dH(y, ci) ≤ `. We refer to the set Cen as the center set and to each
ci as a block center.

Our goal during Stage 1) will be to recover the differences between the elements in each block. To this end, we represent
the information in the sets as length-N vectors over FQ, denoted z1 = (z1,1, . . . , z1,N ) ∈ FNQ , where FQ has characteristic
two. The values of Q and N are chosen to ensure the existence of three maps

M : Fn2 → [N ],

E : [N ]× [N ]→ Fn2 ,

f : F|I|2 → FQ

with certain properties that will be described shortly. Both maps are also used in the second stage of synchronization.
The map M is a function that will be used to assign to each x ∈ S (where S = SA or S = SB) a position in z1, that is,

M(x) ∈ [N ]. This assignment satisfies the following property.

Property 1. The map M is such that if x1,x2 ∈ Bi for some i ∈ [t], then x1 and x2 are mapped to different positions, i.e.,

M(x1) 6= M(x2). (7)

As a result, no two elements belonging to the same difference block are mapped to the same position.
The map E, which will be useful for determining the differences between elements in the symmetric difference, has the

following property.

Property 2. The map E is such that if x1,x2 ∈ Bi for some i ∈ [t], then

E(M(x1),M(x2)) = x1 + x2. (8)

We now turn to discussing the map f . For now, we assume this map has the following property. In Section V-A, we show
how to construct such maps.

Property 3. The map f is an invertible function such that for any X ⊆ F|I|2 , |X | ≤ 2t, we have∑
x∈X

f(x) 6= 0. (9)

For a subset S ⊆ Fn2 (in particular S = SA or S = SB), let

SM,i = {x ∈ S : M(x) = i}.

The vector z1 = (z1,j)j∈[N ] is defined as
z1,j =

∑
x∈SM,j

f(xI). (10)

The result of Property 3 is that for d ≤ t and x(1)
I ,x

(2)
I , . . . ,x

(d)
I ∈ SM,j , we can recover x(1)

I ,x
(2)
I , . . . ,x

(d)
I from their sum

z1,j =
∑

x∈SM,j f(xI).
Let zA1 and zB1 be the result of computing z1 according to (10) on Host A and Host B, respectively. Furthermore, let

ż = zA1 + zB1 . Each host transmits a compressed version of its z1 vector to the other one and so each can then compute ż.
The effect of elements in SA ∩ SB are canceled out in ż since they contribute to both zA1 and zB1 and FQ is an extension
field of F2. Hence,

żj =
∑

x∈(SA4SB)M,j

f(xI). (11)

Given ż, from the discussion following (10) and the invertibility of f , for each i we can recover the set
{
M(x) : x ∈ Bi

}
.

Using this information, we can then identify the differences between the elements of each Bi using the map E, which is the
goal of Stage 1). So based on the preceding discussion, from ż, we can find xI and f(xI) for each x ∈ SA4SB , the number
of difference blocks B, the number of elements in each block, and the differences between any two elements in each block.

As mentioned earlier, the hosts do not transmit zA1 and zB1 but rather a compressed version of these vectors. Let

HC ∈ Fr×NQ (12)

be a parity check matrix for a [N, 2th+ 1]Q code, denoted CC . Each host computes w1 = HC · z1 (resulting in wA
1 and wB

1 )
and transmits it to the other host. So each host can compute ẇ = wA

1 +wB
1 . Note that ẇ = HC · ż. Since wt(ż) ≤ th, the

hosts can find ż using a decoder DC for the code HC .



For Stage 2), the idea will be to use the differences between a center set and the remaining elements to encode (and
subsequently decode) the elements in the center set only. During the decoding, we will produce the symmetric difference given
knowledge of a center set and the differences.

In this stage, we represent our information using the vectors

z
(0)
2 = (z

(0)
2,1, . . . , z

(0)
2,N ),

...

z
(t−1)
2 = (z

(t−1)
2,1 , . . . , z

(t−1)
2,N ) ∈ (Fn−|I|2 )N .

For shorthand, let n̄ = n− |I| and Ī = [n] \ I , so that xĪ = x([n]\I). Suppose, as before, we are encoding the set S, where
S = SA or SB . We let

z
(k)
2,j =

∑
x∈SM,j

(f(xI))
2k · xĪ

for k ∈ {0, 1, . . . , t − 1}. For this stage we implicitly make use of a bijection between Fn̄2 and F2n̄ . Further, we assume
FQ ⊆ F2n̄ .

We need another matrix to fully describe the encoding process. Let

HF ∈ Ft×NR , (13)

where R ≥ N (2t−1)h, such that the following property holds.

Property 4. For any submatrix H ′F of HF , consisting of any c ≤ th nonzero columns from HF , and for any s ∈ Ft2n̄ , there
exists at most one choice of a vector v ∈ Fc2n̄ over F2n̄ with rk(v) ≤ t that satisfies

H ′F · v = s. (14)

Here rk(v) denotes the rank of v over F2 if v is interpreted as an n̄× c matrix.

Given the t×N matrix HF , Host A constructs

wA
2 = (w

A,(0)
2 , . . . ,w

A,(t−1)
2 )

where wA,(k)
2 = HF · zA,(k)

2 , and transmits it to Host B.
We now turn to describe decoding in Stage 2). For clarity of presentation, we assume that the vector ż = zA1 + zB1 from

Stage 1) has the following nonzero elements:

żj1 = σ1,

żj2 = σ1 + σ2,

żj3 = σ2,

where σ1,σ2 ∈ F|I|2 . Notice that under this setup, t = 2 and h = 2, so that the symmetric difference consists of two blocks,
B1 and B2, each with two elements. Without loss of generality, suppose that B1 = {X,X+e1} and B2 = {Y, Y +e2}, where

f(XI) = σ1, M(X) = j1,

f((X + e1)I) = σ1, M(X + e1) = j2,

f(YI) = σ2, M(Y ) = j2,

f((Y + e2)I) = σ2, M(Y + e2) = j3,

and where wt(e1) ≤ ` and wt(e2) ≤ `. Also note that (X + e1)I = XI and (Y + e2)I = YI . At this point, we still do not
know the values of X and Y , but from Stage 1) of the decoding we know the values of e1 and e2:

e1 = E(j1, j2), e2 = E(j2, j3). (15)

Let z̈(k) = z
A,(k)
2 + z

B,(k)
2 and ẅ(k) = w

A,(k)
2 + w

B,(k)
2 . When decoding, each node can compute ẅ(k), which equals

HF · z̈(k).
Because we have mapped the elements in SA 4SB to the same locations in both ż and z̈(k) using the map M , we know

z̈(k) has the following nonzero elements

z̈
(k)
j1

= σ2k

1 ·XĪ ,

z̈
(k)
j2

= σ2k

1 · (X + e1)Ī + σ2k

2 · YĪ ,

z̈
(k)
j3

= σ2k

2 · (Y + e2)Ī ,

for any k. At this point, we still do not know the values of X and Y but do know the values of e1 and e2.



The rank rk(z̈(k)) of z̈(k) is at most 3. Our goal now is to decrease the rank of this vector to at most t = 2 so that we can
use Property 4. To do so, from each block Bi, we arbitrarily pick an element as the block center and as described below, we
change every other appearance of an element of Bi in z̈(k) to look like the block center. In our current illustration, we pick
the element of B1 mapped to j1 and the element of B2 mapped to j2 as their respective centers, which we have named X and
Y .

Let u ∈ FN2n̄ be the all-zero vector except in position j2, where uj2 = σ2k

1 · (e1)Ī . Notice here that we again implicitly use
a bijective mapping between F2n̄ and Fn̄2 . We initialize Ŝ(k) = ẅ(k) = w

A,(k)
2 +w

B,(k)
2 and update it by adding HF ·u to it:

Ŝ(k) ← ẅ(k) +HF · u
= HF · (z̈(k) + u).

Note that the j2th position of z̈(k) + u, denoted (z̈(k) + u)j2 , is

(z̈(k) + u)j2 = z̈
(k)
j2

+ uj2

=
(
σ2k

1 · (X + e1)Ī + σ2k

2 · YĪ
)

+
(
σ2
k

1 · (e1)Ī

)
= σ2k

1 ·XĪ + σ2k

2 · YĪ .

So now both elements of B1 contribute a term of the form σ2k

1 ·XĪ .
We update Ŝ(k) again by letting Ŝ(k) ← Ŝ(k) +HF · u′, where u′j3 = σ2k

2 · (E(j2, j3))Ī , so that

(z̈(k) + u′)j3 = σ2k

2 · YĪ .

and that
Ŝ(k) = HF · V (k),

where the non-zero entries in V (k) are contained within the set

U (k) = {σ2k

1 ·XĪ + σ2k

2 · YĪ , σ2k

1 ·XĪ , σ
2k

2 · YĪ}.

Notice that rk(V (k)) ≤ 2 whereas rk(z̈) ≤ 3. Thus it is possible now to use Property 4 to recover V (k) for k ∈ {0, 1, 2, . . . , t−
1} given that t = 2 and h = 2. In particular, given:

σ2k

1 ·XĪ + σ2k

2 · YĪ
for k ∈ {0, 1} along with knowledge of σ1,σ2 (which we recovered from the first stage of the decoding using the vector ż),
we can recover XĪ and YĪ , which allows us to determine the center set {X,Y }. Then, with X,Y and ż = zA1 + zB1 can
recover B1 = {X,X + e1} and B2 = {Y, Y + e2}, so we are able to reconstruct the set SA 4SB .

A. Encoding

In this section, we formally state the encoding algorithm. We present the encoding procedure for Host A, but the same
applies to Host B as well.

Recall that for a set S, we let SM,i = {x ∈ S : M(x) = i} and that HC from (12) is a parity check matrix for a
[N, 2th+ 1]Q code, denoted Ccomp. Furthermore HF is as described in (13). The encoding is as follows.

1) Let zA1 = (zA1,1, z
A
1,2, . . . , z

A
1,N ) ∈ FNQ with

zA1,j =
∑

x∈SAM,j

f(xI),

and set
wA

1 = HC · zA1 .

2) Let zA,(k)
2 = (z

A,(k)
2,1 , z

A,(k)
2,2 , . . . , z

A,(k)
2,N ) ∈ FN2n̄ with

z
A,(k)
2,j =

∑
x∈SAM,j

(f(xI))
2k · xĪ

for k ∈ {0, 1, . . . , t− 1} and set
wA

2 = (HF · zA,(0)
2 , HF · zA,(1)

2 , . . . ,HF · zA,(t−1)
2 ).

The information wA = (wA
1 ,w

A
2 ) is then transmitted to Host B. The size of (wA

1 ,w
A
2 ) is given in Claim 6.

We now verify the existence of the maps introduced in earlier in this section. The proofs of the next three claims are
presented in the appendices.



Claim 3. There exists a map M : Fn2 → [N ] satisfying Property 1 with N = n`.

Claim 4. There exists a map E : [N ]× [N ]→ Fn2 satisfying Property 2.

The next claim follows using similar logic by using a parity check matrix with minimum distance 2t+ 1 along with a hash
function similar to [2].

Claim 5. There exists a map f : F|I|2 → FQ satisfying Property 3 where Q ≥ 2t|I| and Q has characteristic two.

We can apply the previous claim to determine the size of (wA
1 ,w

A
2 ).

Claim 6. Assuming |I| < log n, FQ ⊆ F2n̄ , R ≤ 2n, and N < 2n̄, (w1,w2) requires approximately

t2n+ 2th(`+ t) log n

bits of information.

Proof: From the encoding, we have that the information (wA
1 ,w

A
2 ) is transmitted. The vector wA

1 has dimension r which
is equal to the dimension of HC , a parity check matrix for an [N, 2th + 1]Q code. Approximating r = 2th(logN + logQ),
N = n` and Q = 2t|I| gives that wA

1 requires 2th(`+ t) log n bits of information. Since R ≤ 2n, wA
2 requires approximately

t2n bits of information which gives the statement in the claim.
Recall that if the method from [6] were used roughly thn bits of information exchange would be required so that the method

described here requires less information exchange when t� h and n is large enough.
We let the matrix HF ∈ Ft×NR from (13) be a parity check matrix of the following form:

HF =


γ1 γ2 · · · γN
γ2

1 γ2
2 · · · γ2

N

γ4
1 γ4

2 · · · γ4
N

...
. . .

γ2t−1

1 γ2t−1

1 · · · γ2t−1

N

,
where any subset of elements from {γ1, γ2, . . . , γN} of size (2t − 1)h is linearly independent over F2. Hence, we have that
γi ∈ FR where R ≥ N (2t−1)h (this statement follows using ideas similar to Claim 3). Recall n̄ = n − |I|. We assume
FR ⊆ F2n̄ . For a vector v ∈ FN2n̄ and an element σ ∈ F2n̄ , let σ(v) ⊆ [N ] return the set of positions in v that have value σ.
Furthermore, recall that rk(v) denotes the rank of v over F2 if v is interpreted as a n̄×N matrix over F2. The next lemma
can be used to show Property 4 holds.

Lemma 2. Suppose x ∈ FN2n̄ is such that rk(x) ≤ t. If, for every non-zero value σ ∈ x, |σ(x)| ≤ h, then HF · x 6= 0.

The proof of the lemma is given in an appendix.

B. Decoding

In this section, we present the decoding algorithm. Let DC be a decoder for the code with the parity check matrix HC ∈ Fr×NQ

from (12) so that for any vector v ∈ FNQ where wt(v) ≤ th, DC(HC · v) = v. Suppose wB = (wB
1 ,w

B
2 ) is the result of

performing steps 1) and 2) in the encoding section using the set SB (rather than SA) where wB
2 = (w

B,(0)
2 , . . . ,w

B,(t−1)
2 ).

We will also make use of a map F : F|I|2 × F2n̄ → Fn2 that outputs a length n binary vector x where xI is equal to the first
argument and xĪ is equal to the second argument. In the algorithm below, Ĉen contains the image of a center set under the
map f from (3). For i ∈ [N ], the sets Di and Gi contain elements in the same difference block. We now detail how to recover
SA 4SB given wA,wB .

1) Let ż = DC(wA
1 +wB

1 ) = (ż1, . . . , żN ) ∈ FNQ .
2) For i ∈ [N ], perform the following procedure to generate the sets D1, . . . , DN ⊆ FQ:

a) If żi = 0, then set Di = ∅.
b) Otherwise if żi = ζ ∈ FQ, then set Di = {ζ1, ζ2, . . . , ζT } ⊆ FQ where

∑T
j=1 ζi = ζ, T ≤ t.

3) Copy D1, . . . , DN to G1, . . . , GN so that G1 = D1, . . . , GN = DN .
4) For k ∈ {0, 1, . . . , t− 1}, set ẅ(k) = w

A,(k)
2 +w

B,(k)
2 .

5) From D1, . . . , DN update ẅ(0), . . . , ẅ(t−1) as follows:
a) Initialize i = 0 and Ĉen = ∅.
b) Set i← i+ 1. If i > N go to step 6).
c) If ∃Dj where |Di ∩Dj | 6= 0, do the following:

i) Let σ ∈ Di ∩Dj .
ii) For k ∈ {0, 1, . . . , t − 1}, update ẅ(k) ← ẅ(k) + HF · u(k) where u(k) is zero except in position j where

u
(k)
j = E(i, j)Ī · σ2k .



iii) Remove σ from Dj .
iv) Add (σ, i) to Ĉen. Repeat step 5c).

d) If @Dj where |Di ∩Dj | > 0, go to step 5b).
6) For k ∈ {0, 1, . . . , t − 1}, do the following: from ẅ(k), compute z̈(k) such that ẅ(k) = HF · z̈(k) where the locations

of the non-zero entries in z̈(k) are equal to the locations of the non-zero entries in ż, and rk(z̈(k)) ≤ t.
7) Initialize F = ∅.
8) Add the center set to F by setting i = 0, and doing the following:

a) Set i← i+ 1. If i > N , then exit.
b) If Gi = ∅, then go to step 8a).
c) Suppose Gi = {σ1, σ2, . . . , σT } where T ≤ t. Then let

Hi =

 σ1 σ2 . . . σT
σ2

1 σ2
2 . . . σ2

T

σ2t−1

1 σ2t−1

2 . . . σ2t−1

T

.
d) Define the t× 1 vector v = (v1, . . . , vt) so that vk = z̈

(k)
i . Let V = (V1, . . . , VT ) = H−1

i · v ∈ FT2n̄ .
e) For every j ∈ T where Vj 6= 0, if (σj , i) ∈ Ĉen add F (f−1(σj), Vj) to F . Otherwise, if (σj , i) 6∈ Ĉen, let p be

such that (σj , p) ∈ Ĉen. Add F (f−1(σj), Vj) + E(p, i) to F .
f) Go to step 8a).

The following theorem can be proven using the ideas introduced at the beginning of Section V. A proof is included in the
appendix.

Theorem 5. At the end of the decoding, F = SA 4SB .

VI. CONCLUSION

In this work, we studied the problem of synchronizing two sets of data where the size of the symmetric difference is small
and the elements in the symmetric difference are related through the Hamming metric. We provided upper and lower bounds
on the minimal amount of information exchange required, in a single round of communication, to synchronize these sets. In
addition, we provided transmission schemes for certain cases of this problem that require less bits of information exchange
than existing algorithms. Future work involves devising improved transmission schemes and, in particular, designing schemes
that work for the setup where t > 1 without any restrictions on the elements on the symmetric difference.
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APPENDIX A
PROOF OF THEOREM 3

For an integer q, let Hq(x) = −x logq x−(1−x) logq(1− x)+x logq(q − 1). Furthermore, let Vq(n, k) denote the size of the
Hamming sphere of radius k in Fnq . We will find the following inequalities and lemma useful. From [9], for 0 ≤ k/n ≤ 1−1/q,
we have

1

n+ 1
qnHq(k/n) ≤ Vq(n, k) ≤ qnHq(k/n) (16)



Lemma 3. If κn = k
n is between 0 and 1− 1/q and bounded away from both, and εn = o(1), then

logq Vq(n, n(κn + εn)) = n(Hq(κn) + o(1)).

Proof. For 0 < xn < 1, where xn is bounded away from 0 and 1, we have Hq(xn + εn) = Hq(xn) + o(1). Hence,

logq Vq(n, n(κn + εn)) = nHq(κn + εn) + o(n)

= nHq(κn) + o(n),

where the first equality follows from (16).

The following simple inequalities will also be of use(n
k

)k
≤
(
n

k

)
≤ nk

k!
≤
(ne
k

)k
, (17)

where the last inequality follows from Stirling’s approximation.
We now turn to the proof of Theorem 3. Recalling the definitions of r1, r2, and |C| from Theorem 2, we first find bounds

for the terms appearing in that theorem. From Lemma 3, we find

logq r1 = logq Vq(n, b`/2c) = nHq

(
λ

2

)
+ o(n), (18)

logq r2 = logq Vq(n, `) = nHq(λ) + o(n), (19)

where λ = `
n . Using (17) and (18),

logq

(
r1

h− 1

)
≥ (h− 1) logq

r1

h− 1

= (h− 1)nHq

(
λ

2

)
−

(h− 1) logq(h− 1) + o(hn)

= hnHq

(
λ

2

)
− h logq h+ o(hn).

Using (17) and (19),

logq

(
r2

h

)
≤ h logq

r2e

h

= h(nHq(λ) + o(n))− h logq h+O(h)

= hnHq(λ)− h logq h+ o(hn).

Finally, logq |C| = O(n) and so

logq

(
|C|
t

)
= O(nt). (20)

From Theorem 2, (18), and (20), it follows that

logq χ
(
G2
)
≥ logq

((
|C|
t

)(
r1

h− 1

)t)

≥ tnhHq

(
λ

2

)
− th logq h+ o(thn),

and so
logq χ(G2)

tnh ≥ Hq

(
λ
2

)
− η+ o(1). In our derivation of the upper bound, we need h < r2/2. To ensure this condition, we

assume η is less than, and bounded away from, Hq(λ). From Theorem 2, χ
(
G2
)
≤ 2tq2tnh2t

(
r2
h

)2t
and using (18), and (20),

logq χ(G2)
tnh ≤ 2(Hq(λ)− η) + o(1).
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For a vector v, let dis(v) denote the set of non-zero elements in v (the “distinct” elements in v). Suppose xi1 , xi2 , . . . , xi|dis(x)|

are elements in x that have distinct values. Then, we can write:

HF · x =

|dis(x)|∑
j=1

xij ·

 ∑
k∈xij (x)


γik
γ2
ik
...

γ2t−1

ik
.




=

|dis(x)|∑
j=1

xij



∑
k∈xij (x) γik

(
∑
k∈xij (x) γik)2

...
(
∑
k∈xij (x) γik)2t−1

.
Because rk(x) ≤ t, clearly dis(x) ≤ 2t − 1. Since |xij (x)| ≤ h and any collection of (2t − 1)h elements from {γ1, . . . , γN}
are linearly independent over F2, it follows

∑
k∈xij (x) γik 6= 0. Using similar reasoning we have that the elements{ ∑

k∈xi1 (x)

γik ,
∑

k∈xi2 (x)

γik , . . . ,
∑

k∈xi|dis(x)| (x)

γik

}
are also linearly independent over F2. Let H be the t× |dis(x)| matrix

H =



∑
k∈xi1 (x) γik · · ·

∑
k∈xi|dis(x)| (x) γik

(
∑
k∈xi1 (x) γik)2 · · · (

∑
k∈xi|dis(x)| (x) γik)2

...
. . .

...
(
∑
k∈xi1 (x) γik)2t−1 · · · (

∑
k∈xi|dis(x)| (x) γik)2t−1

.
Let x′ = (xi1 , xi2 , . . . , xi|dis(x)|). Note that if HF · x = 0, then H · x′ = 0. where clearly rk(x′) = rk(x). However, if
H · x′ = 0, rk(x) = rk(x′) ≥ t+ 1 from [3], which is a contradiction.
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Suppose SA 4SB = B1 ∪ B2 ∪ . . . ∪ BT , where T ≤ t. Since (SA,SB) are (t, h, `)-sets, we can write

Bw = {xw,xw + ew,2, . . . ,xw + ew,Tw},

where Tw ≤ h, and wt(ew,m) ≤ ` for m ∈ {2, 3, . . . , Tw}. As a result of Properties 1 and 3 for the maps M and f respectively,
Di (for i ∈ [N ]) at step 3) of the decoding is such that

Di = {f(x) : M(x) = i},

and for any x,y ∈ Bj , dH(x,y) ≥ 2`+ 1.
Suppose that at step 5-c), σ ∈ Di ∩Dj and that f(xI) = f(yI) = σ where M(x) = i and M(y) = j. Notice that under

this setup x and y belong to the same difference block so that dH(x,y) ≤ `. Suppose further that ẅ(k) = HF · z̈(k) at step
5-c-i), so that xĪ appears in z̈(k) in position i and yĪ appears in z̈(k) in position j. In particular, suppose A ⊆ F2n̄ and that

z̈
(k)
j =

∑
u∈A

(f(uI))
2k · uĪ ,

where y ∈ A for k ∈ {0, 1, . . . , t−1}. At the completion of step 5-c-iv), z̈(k) is such that z̈(k)
j =

∑
u∈A′(f(uI))

2k ·uĪ where
A′ is the result starting with A and then replacing the element y with x. To see this, notice that since f(xI) = f(yI), from
condition 4) of (t, h, `)-sets, x and y belong to the same difference block. Using Property 2, we know that x+ y = E(i, j).
Thus, at step 5-c-ii),

ẅ(k) = HF ·
(
z̈(k) + u(k)

)
,

and so the j-th component of z̈(k) + u(k), which we denote below as z′j , is such that



z′j =
∑
u∈A

(f(uI))
2k · uĪ + E(i, j)Ī · σ2k

=
∑
u∈A

(f(uI))
2k · uĪ + (x+ y)Ī · f(xI)

2k

=
∑
u∈A′

(f(uI))
2k · uĪ ,

as desired. Since this process is repeated at step 5-c) for every i, j where ∃σ ∈ Di ∩ Dj , the vector z̈(k) will contain only
contain linear combinations of at most t elements (one element per difference block) from SA 4 SB at step 6). In addition,
since there are at most th elements in the symmetric difference, the number of non-zero coefficients in z̈(k) is at most th for
k ∈ {0, 1, . . . , t− 1} at step 6). Thus, invoking Property 4, we can recover {z̈(0), z̈(1), . . . , z̈(t−1)}.

Suppose C ⊆ F2n̄ where, from the discussion in the previous paragraph, |C| ≤ t. For any j ∈ [N ], at step 8), we can write:

z̈
(k)
j =

∑
u∈C

(f(uI))
2k · uĪ .

Recall that from step 3) the set {f(uI) : u ∈ C} is known. Furthermore, from Property 3 of the map f , the elements
{f(uI) : u ∈ C} are linearly independent over F2 and so the matrix Hi at step 8c) has full rank. Notice then that at step 8e),
we can recover one element from each of the difference blocks from F (f−1(σj), Vj) and using the function E it is possible
to recover the remaining elements in each difference block using ideas similar to those used in Theorem 4.
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