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Abstract—Motivated by the need to secure cyber-physical
systems against attacks, we consider the problem of estimating
the state of a noisy linear dynamical system when a subset of
sensors is arbitrarily corrupted by an adversary. We propose a
secure state estimation algorithm and derive (optimal) bounds
on the achievable state estimation error. In addition, as a result
of independent interest, we give a coding theoretic interpretation
for prior work on secure state estimation against sensor attacks
in a noiseless dynamical system.

I. INTRODUCTION

Cyber-physical systems (CPS) manage the vast majority of
today’s critical infrastructure and securing such CPS against
malicious attacks is a problem of growing importance [1]. As
a stepping stone towards securing complex CPS deployed in
practice, several recent works have studied security problems
in the context of linear dynamical systems [1], [2], [3], [4], [5],
[6] leading to a fundamental understanding of how the system
dynamics can be leveraged for security guarantees. With this
motivation, in this paper we focus on securely estimating the
state of a linear dynamical system from a set of noisy and
maliciously corrupted sensor measurements. We restrict the
sensor attacks to be sparse in nature, i.e., an adversary can
arbitrarily corrupt a subset of sensors in the system.

Prior work related to secure state estimation against sensor
attacks in linear dynamical systems can be broadly categorized
into three classes depending on the noise model for sensor
measurements: 1) noiseless 2) bounded non-stochastic noise,
and 3) Gaussian noise. For the noiseless setting, the work
reported in [1], [2], [3] shows that, under a strong notion
of observability, sensor attacks (modeled as a sparse attack
vector) can always be detected and isolated, and hence the
state of the system can be exactly estimated. In contrast, when
the sensor measurements are affected by noise as well as
maliciously corrupted, the problem of distinguishing between
noise and attack vector arises. Results reported in [5], [6], [7]
are representative of the second class: bounded non-stochastic
noise. They provide sufficient conditions for distinguishing the
sparse attack vector from bounded noise but do not guarantee
the optimality of their estimation algorithm. The work reported
in this paper falls in the third class: Gaussian noise. Prior
work in this class includes [8], [9], [10], [11]. In [8], the
analysis is restricted to detecting a class of sensor attacks
called replay attacks (i.e., attacks in which legitimate sensor
outputs are replaced with outputs from previous time instants).
In [9], the authors focus on the performance degradation of
a scalar Kalman filter (i.e., scalar state and a single sensor)
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when the sensor is under attack. Since they consider a single
sensor setup, attack sparsity across multiple sensors is not
studied, and in addition, they focus on an adversary whose
objective is to degrade the estimation performance and stay
undetected at the same time (thereby restricting the class of
sensor attacks). In [10] and [11], robustification approaches for
state estimation against sparse sensor attacks are proposed, but
they lack optimality guarantees against arbitrary sensor attacks.

In contrast to prior work in the Gaussian noise setup,
we consider a general linear dynamical system and give
(optimal) guarantees on the achievable state estimation error
against arbitrary sensor attacks. The following toy example is
illustrative of the nature of the problem addressed in this paper
and some of the ideas behind our solution.

Example 1: Consider a linear dynamical system with a
scalar state x(t) such that x(t + 1) = x(t)+w(t), where w(t)
is the process noise following a Gaussian distribution with
zero mean and is instantiated i.i.d. over time. The system has
three sensors (indexed by d) with outputs yd(t) = x(t)+vd(t),
where vd(t) is the sensor noise at sensor d. Similarly to the
process noise, vd(t) is Gaussian distributed with zero mean
and is instantiated i.i.d. over time. The sensor noise is also
independent across sensors. Now, consider an adversary which
can attack any one of the sensors and arbitrarily change its
output. In the absence of sensor noise, it is trivial to detect
such an attack since the two good sensors (not attacked by the
adversary) will have the same output. Hence, a majority based
rule on the outputs leads to the exact state. However, in the
presence of sensor noise, even the good sensors may not have
the same output and a simple majority based rule cannot be
used for estimation. In this paper, we build on the intuition that
we may still be able to identify sensors whose outputs can lead
to a good state estimate by leveraging the noise statistics over
a large enough time window. In particular, our approach for
this example would be to hypothesize a subset of two sensors
as good, and then check whether the outputs from the two
sensors are consistent with the Kalman state estimate based
on outputs from the same subset of sensors. Furthermore, we
show in this paper that such an approach leads to the optimal
state estimation error for the given adversarial setup.

In this paper, we generalize the Kalman filter based ap-
proach in the above example to a general linear dynamical
system with sensor and process noise. Our main contributions
can be listed as follows:

• We give optimal guarantees on the achievable state
estimation error against arbitrary sensor attacks and
propose an algorithm to achieve the same guarantees;
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• As a result of independent interest, we give a cod-
ing theoretic interpretation (alternate proof) for the
necessary and sufficient conditions for secure state
estimation in the absence of noise [2], [3], [6] (known
as the sparse observability condition).

The remainder of this paper is organized as follows.
Section II deals with the setup. The main results are stated
in Section III. Section IV considers the simpler setting of a
scalar state and illustrates the main ideas behind our estimation
algorithm and Section V considers its generalization to a vector
state. Finally, we discuss the coding theoretic view of the
sparse observability condition [3] in Section VI.

II. SETUP

A. System model

We consider a linear dynamical system with sensor attacks
as shown below:

x(t +1) = Ax(t)+w(t), y(t) = Cx(t)+v(t)+φφφ(t), (1)

where x(t) ∈ Rn denotes the state of the plant at time t ∈ N,
w(t) ∈ Rn denotes the process noise at time t, y(t) ∈ Rp de-
notes the output of the plant at time t and v(t)∈Rp denotes the
sensor noise at time t. The process noise w(t)∼N

(
0,σ2

wIn
)
,

i.e., w(t) is Gaussian distributed with zero mean and covari-
ance matrix σ2

wIn, where In is the identity matrix of dimension
n and σw ∈ R. Similarly, sensor noise v(t) ∼ N

(
0,σ2

v Ip
)
.

Both v(t) and w(t) are instantiated i.i.d. over time, and v(t) is
independent of w(t).

The sensor attack vector φφφ(t) ∈ Rp in (1) is introduced
by a k-adversary defined as follows. A k-adversary has access
to any k out of the p sensors in the system. Specifically, let
κκκ ⊆ {1,2, . . . p} denote the set of attacked sensors (with |κκκ|=
k). The k-adversary can observe the actual outputs in the k
attacked sensors and change them arbitrarily. Specifically, the
output of an attacked sensor j ∈ κκκ can be expressed as

y j(t) = cT
j x(t)+ v j(t)+φ j(t), (2)

where T denotes the matrix transpose operation, cT
j is the

jth row of C, v j(t) is the noise at sensor j and φ j(t) is
the adversarial corruption introduced at sensor j. For j /∈ κκκ ,
φ j(t) = 0. The adversary’s choice of κκκ is unknown but is
assumed to be constant over time (static adversary). The
adversary is assumed to have unbounded computational power,
and knows the system parameters (e.g., A and C) and noise
statistics (e.g., σ2

w and σ2
v ). However, the adversary is limited

to have only causal knowledge of the process noise and the
sensor noise in good sensors (not attacked by the adversary).
We discuss this assumption in more detail in Section II-C.

B. State estimation: prediction and filtering

In this paper, we address two state estimation problems:
(1) state prediction and (2) state filtering.

In the state prediction problem, the goal is to estimate
the state at time t based on outputs till time t − 1. In the
absence of sensor attacks, using a Kalman filter for predicting
the state in (1) leads to the optimal (MMSE) error covariance

asymptotically [12]. In particular, the Kalman filter update rule
can be written as:

x̂(t +1) = Ax̂(t)+L(t)(y(t)−Cx̂(t)) , (3)

where x̂(t + 1) is the state estimate at time t + 1 and L(t) is
the Kalman filter gain. For a Kalman filter in steady state [12],
the steady state gain satisfies L(t) = L. Also, we use Popt,s to
denote the trace of steady state (prediction) error covariance
matrix [12] obtained by using a Kalman filter on a sensor
subset s⊆ {1,2, . . . p}.

In contrast to the prediction problem, the goal in the state
filtering problem is to estimate the state at time t based on
outputs till time t. In the absence of sensor attacks, a Kalman
filter update rule similar to (3) can be used for the filtering
problem [12] (see Appendix C for details) and we use Fopt,s
to denote the trace of steady state (filtering) error covariance
matrix obtained by using a Kalman filter on a sensor subset s.

C. Causal knowledge assumptions

At time t, the attack vector φφφ(t) in (1) depends on the
knowledge of the adversary at time t, and in this context, we
limit the adversary’s knowledge of the process and sensor noise
along the lines of causality. In particular, for the prediction
problem we assume the following for a k-adversary:

(A1) The adversary’s knowledge at time t is statistically
independent of w(t ′) for t ′ > t, i.e., φφφ(t) is statistically
independent of {w(t ′)}t ′>t ;

(A2) For a good sensor d ∈ {1,2, . . . p}−κκκ , the adversary’s
knowledge at time t (and hence φφφ(t)) is statistically
independent of {vd(t ′)}t ′>t .

Intuitively, assumptions (A1) and (A2) limit the adversary
to have only causal knowledge of the process noise and the
sensor noise in good sensors (not attacked by the adversary).
Note that, apart from (A1) and (A2), we do not impose
any restrictions on the statistical properties, boundedness and
the time evolution of the corruptions introduced by the k-
adversary. In the filtering problem, we replace assumptions
(A1) and (A2) with (A3) and (A4) as described below:

(A3) The adversary’s knowledge at time t is statistically
independent of w(t ′) for t ′ ≥ t, i.e., φφφ(t) is statistically
independent of {w(t ′)}t ′≥t ;

(A4) For a good sensor d ∈ {1,2, . . . p}−κκκ , the adversary’s
knowledge at time t (and hence φφφ(t)) is statistically
independent of {vd(t ′)}t ′≥t .

Clearly, (A3) is a stronger version of (A1), requiring φφφ(t) to
be independent of w(t). Similarly, (A4) is a stronger version
of (A2).

D. Sparse observability condition

For the matrix pair (A,C), the observability matrix O with
observability index µ is defined as shown below:

O =


C

CA
...

CAµ−1

 . (4)



In this context, a linear dynamical system, characterized by the
pair (A,C), is said to be observable if there exists a positive
integer µ such that O has full column rank. In the absence
of sensor and process noise, the conditions under which state
estimation can be done despite sensor attacks have been
studied in [2], [3], [6]. In particular, a linear dynamical system
as shown in (1) is called θ -sparse observable if for every subset
s⊆{1, . . . p} of size θ , the pair (A,Cs) is observable (where Cs
is formed by the rows of C corresponding to sensors indexed
by the elements of s). Also, θ is the smallest positive integer
to satisfy the above observability property. The condition:

θ ≤ p−2k, (5)

is necessary and sufficient for exact state estimation against a
k-adversary in the absence of process and sensor noise [3]; we
will refer to this condition as the sparse observability condition.
We provide a coding theoretic interpretation for the same in
Section VI.

III. MAIN RESULTS

We first state our achievability result followed by an
impossibility result.

Theorem 1 (Achievability): Consider the linear dynamical
system defined in (1) satisfying the sparse observability con-
dition (5) against a k-adversary. Assuming (A1) and (A2),
and a time window G = {t1, t1 +1, . . . t1 +N−1} for the state
prediction problem, the following bound on the prediction error
is achievable against a k-adversary. For any ε > 0 and δ > 0,
there exists a large enough N such that:

P

(
1
N ∑

t∈G
eT (t)e(t)≤ max

s⊂{1,2,...p}, |s|=p−k
(Popt,s)+ ε

)
≥ 1−δ ,

(6)

where e(t) = x(t)− x̂(t) is the estimation error for the state
estimate x̂(t). In other words, with high probability (w.h.p.),

the bound limsup
N→∞

1
N ∑

t∈G
eT (t)e(t)≤ max

s⊂{1,2,...p}, |s|=p−k
(Popt,s) is

achievable. Similarly, for the state filtering problem, assuming
(A3) and (A4) against a k-adversary, the following bound on
the corresponding filtering error e(t) is achievable w.h.p.:

limsup
N→∞

1
N ∑

t∈G
eT (t)e(t)≤ max

s⊂{1,2,...p}, |s|=p−k
(Fopt,s) . (7)

The achievability in Theorem 1 is through our proposed
algorithms, which we discuss in the following sections. The
impossibility result can be stated as follows.

Theorem 2 (Impossibility): Consider the linear dynamical
system defined in (1) and an oracle MMSE estimator that
has knowledge of κκκ , i.e., the set of sensors attacked by a
k-adversary. Then, there exists an attack sequence φφφ(t) such
that the trace of the prediction error covariance of the oracle
estimator is bounded from below as follows:

tr
(
E
(
e(t)eT (t)

))
≥ Popt,s, (8)

where e(t) above is the oracle estimator’s prediction error and
s = {1,2, . . . p}−κκκ . Similarly, for the filtering problem,

tr
(
E
(
e(t)eT (t)

))
≥ Fopt,s. (9)

Proof: Consider the attack scenario where the outputs
from all attacked sensors are equal to zero, i.e., the corruption
φ j(t) = −cT

j x(t)− v j(t), ∀ j ∈ κκκ . Hence, the information col-
lected from the attacked sensors cannot enhance the estimation
performance. Accordingly, the estimation performance from
the remaining sensors is the best one can expect to achieve.

Clearly, for the adversary’s best choice of κκκ , the guarantees
given in our achievability match the impossibility bound (in
an empirical average sense), and hence, we consider our guar-
antees optimal. We measure the performance of our proposed
algorithms in terms of empirical average (and not expectation)
since the resultant error in the presence of attacks may not be
ergodic.

IV. SECURE STATE ESTIMATION: SCALAR STATE

In this section, we illustrate the main ideas behind our
general scheme in the simpler setting of estimating a scalar
state variable against a k-adversary. In particular, we focus on
the state prediction problem for the system in (1) when the
state is a scalar and there are p≥ 2k+1 sensors (i.e., 1-sparse
observability condition against k-adversary). For clarifying the
presence of scalar terms in our analysis, we use the scalar
version (regular instead of bold face) of the notation developed
in Section II, i.e., x(t) for the plant’s state, x̂(t) for the estimate,
and yd(t) = cdx(t) + vd(t) for the output of a good sensor
d ∈ {1,2, . . . p}−κκκ . We first describe our proposed algorithm
for a time window G = {t1, t1+1, . . . t1+N−1} of size N, and
then analyze its performance.

Secure scalar state prediction algorithm: Considering a
time window G, Algorithm 1 shows the secure state prediction
algorithm for the case when the state is a scalar. The algorithm
runs a bank of

( p
p−k

)
Kalman filters in parallel; one Kalman

filter associated with each distinct set of p− k sensors. For
each distinct set s of p−k sensors, the corresponding Kalman
filter fuses all the measurements from these sensors in order
to calculate (prediction) estimate x̂s(t). Using the calculated
estimate x̂s(t), we calculate the individual residues for each
sensor as shown in (10). The algorithm, then, exhaustively
searches for the set s of p− k sensors which satisfy the
residue test shown in (11). If a set s? satisfies the residue test,
it is declared good and the corresponding Kalman estimate
x̂s?(t) is used as the state estimate for the given time window.
Intuitively, the residue test checks if the outputs from a given
sensor set s are consistent with the corresponding Kalman
estimate over the time window G.

Performance analysis: Consider the set s of p− k
sensors which are not attacked by the k-adversary. Assuming
that the Kalman filter corresponding to set s is in steady state, it
can be shown that E

(
r2

d(t)
)
= c2

dPopt,s+σ2
v , ∀d ∈ s [12] (where

residue rd(t) is as defined in (10)). For large enough N, due to
the (strong) law of large numbers (LLN), the residue test will
be satisfied w.h.p. for at least this set of good sensors. This
ensures that w.h.p., the algorithm will not return an empty set.
Also, the estimate x̂s(t) from this set of good sensors trivially
achieves the error bound (6). But, since the algorithm can
return any set of size p− k which satisfies the residue test,
it may be possible that some of the sensors in the returned set
are corrupt. In the remainder of our analysis, we show that for
any set returned by the algorithm, the corresponding Kalman
estimate achieves (6).



Algorithm 1 SECURE STATE PREDICTION - SCALAR CASE

1: Enumerate all sets s ∈ S such that:
S = {s|s⊂ {1,2, . . . p}, |s|= p− k}.

2: For each s ∈ S, run a Kalman filter that uses all sensors
indexed by s and returns estimate x̂s(t) ∈ R.

3: For each s ∈ S, calculate the residues for all sensors d ∈ s
over a time window G = {t1, t1 +1, . . . t1 +N−1} as:

rd(t) = yd(t)− cd x̂s(t) ∀d ∈ s, ∀t ∈ G. (10)

4: Pick the set s? ∈ S which satisfies the following residue
test:

1
N ∑

t∈G
r2

d(t)≤ c2
dPopt,s? +σ

2
v + ε ∀d ∈ s?, (11)

where ε ≥ 0 is a design parameter and can be made
arbitrarily small for large enough N.

5: Return s? and x̂(t) := x̂s?(t) ∀t ∈ G.

Suppose the algorithm returns a set s of p− k sensors.
There is definitely one good sensor (say sensor d) in this set
because there can be at most k attacked sensors and p−k > k.
Since the residue test is satisfied for this sensor, we have the
following constraint:

1
N ∑

t∈G
r2

d(t)
(a)
=

1
N ∑

t∈G
(cdx(t)+ vd(t)− cd x̂s(t))

2

=
1
N ∑

t∈G
(cde(t)+ vd(t))

2

=
c2

d
N ∑

t∈G
e2(t)+

1
N ∑

t∈G
v2

d(t)+
2cd

N ∑
t∈G

e(t)vd(t)

(b)
≤ c2

dPopt,s +σ
2
v + ε, (12)

where (a) follows from yd(t) = cdx(t)+vd(t) for a good sensor
d and (b) follows from the residue test. The error e(t) above is
the state estimation (prediction) error at time t (in the presence
of a k-adversary) when x̂s(t) is used as the state estimate. Using
LLN, we can make an additional simplification as follows. For
any ε > 0, there exists a large enough N such that:

c2
d

N ∑
t∈G

e2(t)+
2cd

N ∑
t∈G

e(t)vd(t) (13)

(a)
≤ c2

dPopt,s +

∣∣∣∣∣σ2
v −

1
N ∑

t∈G
v2

d(t)

∣∣∣∣∣+ ε

(b)
≤ c2

dPopt,s +2ε, (14)

where (a) follows from (12), and (b) follows w.h.p. due to
LLN. Our next step will be to show that the cross term
2cd
N ∑t∈G e(t)vd(t) in (13) is vanishingly small w.h.p. as N→∞;

this leads to the required bound on 1
N ∑t∈G e2(t) using (14). We

do so in two steps: first we show that the mean of the cross
term 2cd

N ∑t∈G e(t)vd(t) is zero and then show that its variance
is vanishingly small as N→ ∞.

The mean of the cross term 2cd
N ∑t∈G e(t)vd(t) can be

computed as shown below:

E

(
2cd

N ∑
t∈G

e(t)vd(t)

)
(a)
=

2cd

N ∑
t∈G

E(e(t))E(vd(t)) = 0, (15)

where (a) follows from the independence of e(t) from vd(t)
(due to assumption (A2), x̂s(t) is independent of good sensor
noise vd(t) despite sensor attacks). Also, using (15) and taking
the expectation in (13):

E

(
1
N ∑

t∈G
e2(t)

)
≤ Popt,s +

2ε

c2
d
. (16)

As the final step in our analysis, we will now show that the
variance of cross term 2cd

N ∑t∈G e(t)vd(t) is vanishingly small
as N→∞. For any ε1 > 0, there exists a large enough N such
that:

E

( 1
N ∑

t∈G
e(t)vd(t)

)2


=
∑t∈GE

(
e2(t)v2

d(t)
)

N2 +
2

N2 ∑
t, t ′∈G, t<t ′

E
(
e(t)vd(t)e(t ′)vd(t ′)

)
(a)
=

1
N2 ∑

t∈G
E
(
e2(t)

)
E
(
v2

d(t)
)

+
2

N2 ∑
t, t ′∈G, t<t ′

E
(
e(t)vd(t)e(t ′)

)
E
(
vd(t ′)

)
=

σ2
v

N
E
(

∑t∈G e2(t)
N

)
(b)
≤ ε1, (17)

where (a) follows from the independence of e(t) from vd(t)
and the independence of vd(t ′) from e(t)vd(t)e(t ′) (for t ′ > t),
(b) follows from (16). The above result implies that the cross
term 2cd

N ∑t∈G e(t)vd(t) (with zero mean) has vanishingly small
variance as N→ ∞. As a result, using Chebyshev’s inequality
and (14), we have the error bound (6).

V. SECURE STATE ESTIMATION: VECTOR STATE

In this section, we consider the state estimation problem
(against a k-adversary) for the general linear dynamical system
described in (1), when the state is a vector. We focus on
the prediction problem in this section; the filtering problem
is studied in Appendix C. We assume that the system is
θ -sparse observable such that it satisfies the sparse observ-
ability condition (5) against a k-adversary. We first introduce
some additional notation required for our proposed algorithm.

Additional notation: Consider a set s of p−k sensors.
Such a set has

(p−k
θ

)
sensor subsets of size θ , and we index

these subsets of s by i. Due to the θ -sparse observability
condition, each subset i forms an observable pair (A,Ci)
with observability matrix Oi and observability index µi; Ci
is formed by rows of C corresponding to subset i of s. We
define matrices Ji and Mµi as shown below:

Ji =


0 0 . . . 0
Ci 0 . . . 0

CiA Ci . . . 0
...

...
. . .

...
CiAµi−2 CiAµi−3 . . . Ci

 , Mµi = σ
2
wJiJT

i +σ
2
v Iµi .

(18)

The pseudo-inverse of Oi is denoted by O†
i . The output from

sensor subset i (of size θ ) at time t is denoted by yi(t) ∈ Rθ .
We consider the state estimation problem for a time window G



Algorithm 2 SECURE STATE PREDICTION - VECTOR CASE

1: Enumerate all sets s ∈ S such that:
S = {s|s⊂ {1,2, . . . p}, |s|= p− k}.

2: For each s ∈ S, run a Kalman filter that uses all sensors
indexed by s and returns estimate x̂s(t) ∈ Rn.

3: For each set s ∈ S, enumerate all subsets of size θ

and index them by i. Let µi be the observability index
associated with sensor subset i. For each subset i of s
(subset of size θ ), calculate the block residue:

ri(t) =


yi(t)

yi(t +1)
...

yi(t +µi−1)

−Oix̂s(t) ∀t ∈ G.

4: Pick the set s? ∈ S which satisfies the following block
residue test for each subset i of s? (subset of size θ ).
Partition G into µi groups G0,G1, . . .Gµi−1 of size NB such
that Gl = {t|((t− t1) mod µi) = l} and check that for each
Gl :

1
NB

∑
t∈Gl

tr
(

O†
i ri(t)rT

i (t)O
†T
i

)
≤ Popt,s? + tr

(
O†

i MµiO
†T
i

)
+ ε, (19)

where ε ≥ 0 is a design parameter which can be made
arbitrarily small for large enough NB.

5: Return s? and x̂(t) := x̂s?(t) ∀t ∈ G.

of size N and assume without loss of generality that µi divides
N such that µiNB = N.

Secure state prediction algorithm: Similar to the scalar
setting, Algorithm 2 runs a bank of

( p
p−k

)
Kalman filters

in parallel. For each distinct set s of p − k sensors, the
corresponding Kalman filter fuses all the measurements from
these sensors in order to calculate an estimate x̂s(t). For a
sensor set s of size p− k to satisfy the block residue test,
each of its

(p−k
θ

)
subsets should satisfy (19) for each group

Gl . If a set s? satisfies the residue test, it is declared good and
the corresponding Kalman estimate x̂s?(t) is used as the state
estimate for the given time window. Intuitively, the residue
test checks if the outputs from every observable sensor subset
of size θ within set s are consistent with the corresponding
Kalman estimate over the time window G. We analyze the
performance of Algorithm 2 in Appendix A.

VI. SPARSE OBSERVABILITY: CODING THEORETIC VIEW

In this section, we revisit the sparse observability condition
(5) against a k-adversary and give a coding theoretic interpre-
tation for the same. We first describe our interpretation for a
linear system, and then discuss how it can be generalized for
non-linear systems.

Consider the linear dynamical system in (1) without the
process and sensor noise (i.e., x(t +1)=Ax(t), y(t)=Cx(t)+
φφφ(t)). If the system’s initial state is x(0) ∈Rn and the system
is θ -sparse observable, then clearly in the absence of sensor
attacks, by observing the outputs from any θ out of p sensors
for n time instants (t = 0,1, . . .n− 1) we can exactly recover

x(0) and hence, exactly estimate the state of the plant. A coding
theoretic view of this can be given as follows. Consider the
outputs from sensor d ∈ {1,2, . . . p} for n time instants as a
symbol Yd ∈ Rn. Thus, in the (symbol) observation vector
Y = [Y1 Y2 . . .Yp], due to θ -sparse observability, any θ

symbols are sufficient (in the absence of attacks) to recover
the initial state x(0). Now, let us consider the case of a k-
adversary which can arbitrarily corrupt any k sensors. In the
coding theoretic view, this corresponds to arbitrarily corrupting
any k (out of p) symbols in the observation vector. Intuitively,
based on the relationship between error correcting codes and
the Hamming distance between codewords in classical coding
theory [13], one can expect the recovery of the initial state
despite such corruptions to depend on the (symbol) Ham-
ming distance between the observation vectors corresponding
to two distinct initial states (say x(1)(0) and x(2)(0) with
x(1)(0) 6= x(2)(0)). In this context, the following lemma relates
θ -sparse observability to the minimum Hamming distance
between observation vectors in the absence of attacks; this
leads to a (tight) bound on the number of attacked sensors
that can be tolerated for state estimation.

Lemma 1: For a θ -sparse observable system with p sen-
sors, the minimum (symbol) Hamming distance between ob-
servation vectors corresponding to distinct initial states is
p−θ +1.

Proof: Consider observation vectors Y (1) and Y (2) cor-
responding to distinct initial states x(1)(0) and x(2)(0). Due
to θ -sparse observability, at most θ − 1 symbols in Y (1)

and Y (2) can be identical; if any θ of the symbols are
identical, this would imply x(1)(0) = x(2)(0). Hence, the
(symbol) Hamming distance between the observation vectors
Y (1) and Y (2) (corresponding to x(1)(0) and x(2)(0)) is at
least p− (θ − 1) = p− θ + 1 symbols. Furthermore, there
exists a pair of initial states

(
x(1)(0),x(2)(0)

)
, such that the

corresponding observation vectors Y (1) and Y (2) are identical
in exactly θ − 1 symbols1 and differ in the rest p− θ + 1
symbols. Hence, the minimum (symbol) Hamming distance
between the observation vectors is p−θ +1.

The above lemma connects the problem of state estimation
with sensor attacks in a dynamical system to error correction in
classical coding theory. Since the minimum Hamming distance
between the observation vectors corresponding to distinct
initial states is p− θ + 1, we can correct up to k < p−θ+1

2
sensor corruptions; this is equivalent to the condition θ ≤
p− 2k, which is precisely the sparse observability condition
required against a k-adversary2. It should be noted that a k-
adversary can attack any set of k (out of p) sensors, and
the condition k < p−θ+1

2 is both necessary and sufficient for
exact state estimation despite such attacks. When k ≥ p−θ+1

2 ,
it is straightforward to show a scenario where the observation
vector (after attacks) can be explained by multiple initial states,
and hence exact state estimation is not possible. The following

1If there is no such pair of initial states, the initial state can be recovered by
observing any θ −1 sensors. By definition, in a θ -sparse observable system,
θ is the smallest positive integer, such that the initial state can be recovered
by observing any θ sensors.

2In addition, since the minimum Hamming distance is p− θ + 1, we can
detect attacks up to (p−θ +1)−1 = p−θ sensor corruptions.



example illustrates such an attack scenario in view of the
coding theoretic interpretation discussed above.

Example 2: Consider a θ -sparse observable system with
θ = 2, number of sensors p = 5, and a k-adversary with k =
2. Clearly, the condition k < p−θ+1

2 is not satisfied in this
example. Let x(1)(0) and x(2)(0) be distinct initial states, such
that the corresponding observation vectors Y (1) and Y (2) have
(minimum) Hamming distance p−θ +1= 4 symbols. Figure 1
depicts the observation vectors Y (1) and Y (2), and for the sake
of this example, we assume that the observation vectors have
the same first symbol (i.e., Y (1)

1 = Y (2)
1 = Y1) and differ in

the rest 4 symbols (hence, a Hamming distance of 4). Now, as

Y1 Y (1)
2 Y (1)

3 Y (1)
4 Y (1)

5 Y1 Y (2)
2 Y (2)

3 Y (2)
4 Y (2)

5

Y (1) Y (2)

Y1 Y (1)
2 Y (1)

3 Y (2)
4 Y (2)

5

Y

x(1)(0) x(2)(0)

Fig. 1. Example with θ = 2, p= 5 and k = 2. For distinct initial states x(1)(0)
and x(2)(0), the corresponding observation vectors are Y (1) and Y (2). Both
Y (1) and Y (2) have the same first symbol, but differ in the rest four symbols.
Given (attacked) observation vector Y =

[
Y1 Y (1)

2 Y (1)
3 Y (2)

4 Y (2)
5

]
, there are

two possibilities for the initial state: (a) x(1)(0) with attacks on sensors 4 and
5, or (b) x(2)(0) with attacks on sensors 2 and 3.

shown in Figure 1, suppose the observation vector after attacks
was Y =

[
Y1 Y (1)

2 Y (1)
3 Y (2)

4 Y (2)
5

]
. Clearly, there are two

possible explanations for this (attacked) observation vector: (a)
the initial state was x(1)(0) and sensors 4 and 5 were attacked,
or (b) the initial state was x(2)(0) and sensors 2 and 3 were
attacked. Since there are two possibilities, we cannot estimate
the initial state exactly given the attacked observation vector.
This example can be easily generalized to show the necessity
of the condition k < p−θ+1

2 .

For (noiseless) non-linear systems, by analogously defining
θ -sparse observability, the same coding theoretic interpretation
holds. Hence, this leads to an alternative proof for the neces-
sary and sufficient conditions for secure state estimation in any
noiseless dynamical system.
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APPENDIX

A. Algorithm 2: performance analysis

In this section, we analyze the performance of Algorithm 2.
Similar to the analysis done for the scalar setting in Section IV,
we first derive a bound using LLN, and then analyze the
cross term in the bound to obtain final guarantees on the state
estimation error in the presence of attacks. The details of the
analysis are described below.

Consider the set s of p− k sensors which are not attacked
by the k-adversary. For such a set s, the block residue ri(t) for
a subset i of s (subset of size θ ) can be expressed as shown
below:

ri(t) =

 yi(t)
...

yi(t +µi−1)

−Oix̂s(t)

= Oix(t)+Ji


w(t)

w(t +1)
...

w(t +µi−2)

+


vi(t)
vi(t +1)

...
vi(t +µi−1)


−Oix̂s(t)

= Oi (x(t)− x̂s(t))+
(
Jiwt:t+µi−2 +vi,t:t+µi−1

)
(20)

= Oi (x(t)− x̂s(t))+ zi,t:t+µi−1, (21)

http://motion.me.ucsb.edu/pdf/2013u-pdb.pdf
http://motion.me.ucsb.edu/pdf/2013u-pdb.pdf
http://arxiv.org/abs/1309.3511


and assuming that the Kalman filter corresponding to sensor
set s is in steady state:

E
(

tr
(

O†
i ri(t)rT

i (t)O
†T
i

))
(a)
= Popt,s + tr

(
O†

i MµiO
†T
i

)
,

where (a) follows from Mµi = E
(

zi,t:t+µi−1zT
i,t:t+µi−1

)
=

σ2
wJiJT

i +σ2
v Iµi . Hence, due to LLN, the block residue test (19)

will be satisfied w.h.p. for at least this set of good sensors and
w.h.p. the algorithm will not return an empty set. Also, the
estimate x̂s(t) from this set of good sensors trivially satisfies
the error bound (6). But, since the algorithm can return any
set of size p− k which satisfies the block residue test, it may
be possible that some of the sensors in the returned set are
corrupt. In the remainder of our analysis, we show that for
any set returned by the algorithm, the corresponding Kalman
estimate achieves the error bound (6).

Suppose the algorithm returns a set s of p− k sensors.
Since θ ≤ p−2k (sparse observability condition), there exists
a subset of θ good sensors in s. The following can be inferred
when the block residue test (19) is satisfied for such a subset
i (of size θ ):

tr

(
1

NB
∑

t∈Gl

O†
i ri(t)rT

i (t)O
†T
i

)
(a)
=

1
NB

∑
t∈Gl

eT (t)e(t)+
1

NB
∑

t∈Gl

tr
(

O†
i zi,t:t+µi−1zT

i,t:t+µi−1O†T
i

)
+

2
NB

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1

(b)
≤ Popt,s + tr

(
O†

i MµiO
†T
i

)
+ ε, (22)

where e(t) in (a) is the state estimation error at time t (in
the presence of a k-adversary) when x̂s(t) is used as the state
estimate, and (b) follows from the block residue test (19).
Using (a) and (b) above, for any ε > 0 there exists a large
enough NB such that:

1
NB

∑
t∈Gl

eT (t)e(t)+
2

NB
∑

t∈Gl

eT (t)O†
i zi,t:t+µi−1 (23)

≤
∣∣∣∣∣tr(O†

i MµiO
†T
i

)
− 1

NB
∑

t∈Gl

tr
(

O†
i zi,t:t+µi−1zT

i,t:t+µi−1O†T
i

)∣∣∣∣∣
+Popt,s + ε

(c)
≤ Popt,s +2ε, (24)

where (c) follows w.h.p. from LLN; for different time indices
in Gl , tr

(
O†

i zi,t:t+µi−1zT
i,t:t+µi−1O†T

i

)
corresponds to i.i.d. re-

alizations of the same random variable. Along the lines of the
analysis done in the scalar setting in Section IV, we can show
that the cross term 2

NB
∑t∈Gl

eT (t)O†
i zi,t:t+µi−1 in (23) has zero

mean and vanishingly small variance as NB → ∞; this leads
to the required bound on 1

N ∑t∈G eT (t)e(t). To complete our
analysis we calculate the mean and the variance of the cross
term 2

NB
∑t∈Gl

eT (t)O†
i zi,t:t+µi−1 as shown below.

The mean of 2
NB

∑t∈Gl
eT (t)O†

i zi,t:t+µi−1 can be computed

as shown below:

E

(
2

NB
∑

t∈Gl

eT (t)O†
i zi,t:t+µi−1

)
(a)
=

2
NB

∑
t∈Gl

E
(
eT (t)

)
E
(

O†
i zi,t:t+µi−1

)
= 0, (25)

where (a) follows from the independence of e(t) from
zi,t:t+µi−1. This is true since both x(t) and x̂s(t) are inde-
pendent3 of w(t) and vi(t). Also, using (25) and taking the
expectation in (23):

E

(
1

NB
∑

t∈Gl

eT (t)e(t)

)
≤ Popt,s +2ε. (26)

Now, we will show that the variance of the cross term
2

NB
∑t∈Gl

eT (t)O†
i zi,t:t+µi−1 is vanishingly small as NB→∞. For

any ε1 > 0, there exists a large enough NB such that:

Var

(
1

NB
∑

t∈Gl

eT (t)O†
i zi,t:t+µi−1

)

= E

( 1
NB

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1

)2


−
(
E

(
1

NB
∑

t∈Gl

eT (t)O†
i zi,t:t+µi−1

))2

(a)
= E

( 1
NB

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1

)2


= E

(
1

N2
B

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1eT (t)O†

i zi,t:t+µi−1

)

+E

(
2

N2
B

∑
t,t ′∈Gl , t<t ′

eT (t)O†
i zi,t:t+µi−1eT (t ′)O†

i zi,t ′:t ′+µi−1

)
(b)
= E

(
1

N2
B

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1eT (t)O†

i zi,t:t+µi−1

)
+

2
N2

B
∑

t,t ′∈Gl , t<t ′
E
(

eT (t)O†
i zi,t:t+µi−1eT (t ′)O†

i

)
E
(
zi,t ′:t ′+µi−1

)
(c)
= E

(
1

N2
B

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1eT (t)O†

i zi,t:t+µi−1

)

= E

(
1

N2
B

∑
t∈Gl

eT (t)O†
i zi,t:t+µi−1

(
O†

i zi,t:t+µi−1

)T
e(t)

)
(d)
= E

(
1

N2
B

∑
t∈Gl

tr
(

eT (t)O†
i zi,t:t+µi−1

(
O†

i zi,t:t+µi−1

)T
e(t)
))

= E

(
1

N2
B

∑
t∈Gl

tr
(

O†
i zi,t:t+µi−1

(
O†

i zi,t:t+µi−1

)T
e(t)eT (t)

))
3The adversary’s corruptions till time t − 1 can influence x̂s(t) which is

based on outputs till time t − 1. Due to assumption (A1), the adversary’s
corruptions till time t − 1 are independent of w(t) and hence x̂s(t) is
independent of w(t). Also, x(t) is independent of w(t). Due to assumption
(A2), x̂s(t) is independent of vi(t).



(e)
=

1
N2

B
∑

t∈Gl

tr
(
E
(

O†
i zi,t:t+µi−1zT

i,t:t+µi−1O†T
i

)
E
(
e(t)eT (t)

))
( f )
≤ 1

N2
B

∑
t∈Gl

λ
∗tr
(
E
(
e(t)eT (t)

))
=

λ ∗

NB
E

(
1

NB
∑

t∈Gl

tr
(
e(t)eT (t)

))

=
λ ∗

NB
E

(
1

NB
∑

t∈Gl

eT (t)e(t)

)
(g)
≤ ε1, (27)

where (a) follows from (25), (b) follows from the
independence of zi,t ′:t ′+µi−1 from eT (t)O†

i zi,t:t+µi−1eT (t ′)O†
i

for t ′ > t, (c) follows from E
(
zi,t ′:t ′+µi−1

)
= 0, (d) follows

from eT (t)O†
i zi,t:t+µi−1 being a scalar, (e) follows from

the independence of zi,t:t+µi−1 from e(t), (f) follows
from Lemma 2 (discussed in Appendix B) with eigen

value λ ∗ = λmax

(
E
(

O†
i zi,t:t+µi−1

(
O†

i zi,t:t+µi−1

)T
))

=

λmax

(
O†

i MµiO
†T
i

)
(i.e., λ ∗ is the maximum eigen value

of O†
i MµiO

†T
i ). Finally, (g) follows from (26). This

completes the variance analysis and clearly the cross term
2

NB
∑t∈Gl

eT (t)O†
i zi,t:t+µi−1 has vanishingly small variance as

NB→ ∞. As a result, using Chebyshev’s inequality and (24),
we have the following bound: for any ε2 > 0 and δ > 0, there
exists a large enough NB such that:

P

(
1

NB
∑

t∈Gl

eT (t)e(t)≤ Popt,s + ε2

)
≥ 1−δ . (28)

Since 1
NB

∑t∈Gl
eT (t)e(t) ≤ Popt,s + ε2 ∀l ∈ {0,1, . . .µi − 1}

implies 1
N ∑t∈G eT (t)e(t) ≤ Popt,s + ε2, we have the required

bound on 1
N ∑t∈G eT (t)e(t) from (28) as follows. For any ε2 > 0

and δ > 0, there exists a large enough N such that:

P

(
1
N ∑

t∈G
eT (t)e(t)≤ Popt,s + ε2

)
≥ 1−δ . (29)

This completes our performance analysis.

B. Bounds on the trace of product of symmetric matrices

A useful lemma from [14] providing bounds on the trace
of product of symmetric matrices is as follows.

Lemma 2: If A and B are two symmetric matrices in Rn×n,
and B is positive semi-definite (i.e., B� 0), then the following
inequality holds:

λmin (A) tr (B)≤ tr (AB)≤ λmax (A) tr (B) . (30)

where λmin (A) and λmax (A) denote the minimum and maxi-
mum eigen values of matrix A.

C. Secure state filtering

In this section, for the general linear dynamical system
defined in (1), we study the filtering problem where the goal
is to estimate the state at time t based on outputs till time t
(in contrast to using outputs till time t − 1 in the prediction

Algorithm 3 SECURE STATE FILTERING - VECTOR CASE

1: Enumerate all sets s ∈ S such that:
S = {s|s⊂ {1,2, . . . p}, |s|= p− k}.

2: For each s∈ S, run a Kalman filter that uses all sensors in-
dexed by s. The corresponding Kalman (filtering) estimate
is denoted by x̂s(t) ∈ Rn.

3: For each set s ∈ S, enumerate all subsets of size θ

and index them by i. Let µi be the observability index
associated with sensor subset i. For each subset i of s
(subset of size θ ), calculate the block residue:

ri(t) =


yi(t)

yi(t +1)
...

yi(t +µi−1)

−Oix̂s(t) ∀t ∈ G.

4: Pick the set s? ∈ S which satisfies the following block
residue test for each subset i of s? (subset of size θ ).
Partition G into µi groups G0,G1, . . .Gµi−1 of size NB such
that Gl = {t|((t− t1) mod µi) = l} and check that for each
Gl :

1
NB

∑
t∈Gl

tr
(

O†
i ri(t)rT

i (t)O
†T
i

)
≤ Fopt,s + tr

(
O†

i MµiO
†T
i

)
−2E

(
vT

i (t)L
T
i O†

i vi,t:t+µi−1

)
+ ε, (32)

where ε ≥ 0 is a design parameter which can be made
arbitrarily small for large enough NB.

5: Return s? and x̂(t) := x̂s?(t) ∀t ∈ G.

problem). In the absence of sensor attacks, using a Kalman
filter for state filtering in (1) leads to the optimal (MMSE)
error covariance asymptotically [12]. The Kalman filter update
rule (in steady state) for the filtering problem (without sensor
attacks) is as shown below:

x̂(t) = x̂(P)(t)+L
(

y(t)−Cx̂(P)(t)
)
, x̂(P)(t +1) = Ax̂(t),

(31)

where x̂(t) is the state (filtering) estimate (see [12] for further
details). The filtering error is defined as e(t) = x(t)− x̂(t), and
as shown in (31), the state estimate x̂(t) at time t depends on
the outputs at time t. Also, in the absence of sensor attacks,
Fopt,s is the trace of steady state (filtering) error covariance
matrix obtained by using the Kalman filter on a sensor subset
s⊆ {1,2, . . . p}.

For the secure state filtering problem, we assume that
sparse observability condition (5), and assumptions (A3) and
(A4) hold against a k-adversary. In addition to the notation
developed in Section V for the prediction problem, we will
require the following definition: Li ∈Rn×θ denotes the matrix
formed by columns of L corresponding to sensor subset i of set
s (subset i is of size θ ). The algorithm for secure state filtering
(and its analysis) is similar to that for the prediction setting.
In the remainder of this section, we first describe the secure
state filtering algorithm and then analyze its performance.

Secure state filtering algorithm: Algorithm 3 shows
the secure state filtering algorithm against a k-adversary. It is



same as Algorithm 2 except for the usage of Kalman (filtering)
estimate and the bound used for the block residue test (32);
Fopt,s is used instead of Popt,s and there is an extra term
−2E

(
vT

i (t)LT
i O†

i vi,t:t+µi−1

)
(where vi,t:t+µi−1 is as defined in

(20)).

Performance analysis: The performance analysis is
similar to the analysis done for the prediction problem in
Appendix A and we describe the details below.

Consider the set s of p− k sensors which are not attacked
by the k-adversary. For such a set s, the block residue ri(t) for
a subset i of s (subset of size θ ) can be expressed as shown
below:

ri(t) = Oi (x(t)− x̂s(t))+ zi,t:t+µi−1, (33)

and assuming that the Kalman filter corresponding to sensor
set s is in steady state, it can be shown that:

E
(

tr
(

O†
i ri(t)rT

i (t)O
†T
i

))
(a)
= Fopt,s + tr

(
O†

i MµiO
†T
i

)
−2E

(
vT

i (t)L
T
i O†

i vi,t:t+µi−1

)
.

(34)

Hence, due to LLN, the block residue test (32) will be satisfied
w.h.p. for at least this set of good sensors and w.h.p. the
algorithm will not return an empty set. Also, the estimate x̂s(t)
from this set of good sensors trivially satisfies the error bound
(7). But, since the algorithm can return any set of size p− k
which satisfies the block residue test, it may be possible that
some of the sensors in the returned set are corrupt. In the
remainder of our analysis, we show that for any set returned
by the algorithm, the corresponding Kalman estimate achieves
the error bound (7).

Suppose the algorithm returns a set s of p− k sensors.
Since θ ≤ p−2k (sparse observability condition), there exists
a subset of θ good sensors in s. The following can be inferred
when the block residue test is satisfied for such a subset i (of
size θ ):
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where e(t) in (a) is the state estimation error at time t (in
the presence of a k-adversary) when x̂s(t) is used as the state
estimate, and (b) follows from the block residue test (32).
Using (a) and (b) above, for any ε > 0 there exists a large
enough NB such that:
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where (c) follows w.h.p. from LLN as for different time
indices in Gl , tr
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to i.i.d. realizations of the same random variable. Simi-
lar to the prediction problem, it can be shown that the
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and has vanishingly small vari-

ance as NB→∞. This leads to the claimed bound (7) on state
estimation error and we describe the details below.

For simplifying our calculations, we introduce the term
ẽ(t) = e(t) + Livi(t). Due to assumptions (A3) and (A4),
ẽ(t) is independent from w(t) and vi(t), and hence inde-
pendent from zi,t:t+µi−1. Now, the mean of the cross term
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ẽT (t)O†
i zi,t:t+µi−1

)
−E

(
vT

i (t)L
T
i O†

i zi,t:t+µi−1

))
(a)
= −2E

(
vT

i (t)L
T
i O†

i zi,t:t+µi−1

)
, (38)

where (a) follows from the independence of ẽ(t) from
zi,t:t+µi−1. Also, using (38) and taking the expectation in (36):
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We now state the following claim which is
useful in our variance calculation for the cross term

2
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Claim 1: Consider a subset i of s (subset of size θ )
which satisfies the residue test (32) in Algorithm 3. With

ẽ(t) =

ẽ1(t)
...

ẽn(t)

= e(t)+Livi(t), the following holds:
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where η1 is a constant. Furthermore, ∀d ∈ {1,2, . . .n},
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Proof: See Appendix D.

Now, we will show that the variance of
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The above result implies that the variance of the cross term
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following bound: for any ε2 > 0 and δ > 0, there exists a large
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This completes our performance analysis.

D. Proof of Claim 1

Using (39):
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|E(ẽd(t))|+
1

NB
∑

t∈Gl , |E(ẽd(t))|≥1
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where (a) follows from Jensen’s inequality. This completes the
proof of Claim 1.
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