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Abstract—This paper studies the fixed-error asymptotics of
constant-composition codes for discrete memoryless channels. An
achievable asymptotic expansion is derived with a third-order
term that can be as high as 1

2
logn, while being lower when (i) a

certain feasibility-decoding condition fails, or (ii) the channel is
a sum channel. Converse bounds are used to provide conditions
under which each of these losses is unavoidable.

I. INTRODUCTION

Fixed-error asymptotic studies of channel coding have re-
cently regained significant interest following the works of
Polyanskiy et al. [1] and Hayashi [2]. For discrete memoryless
channels (DMCs), the highest number of messages M∗(n, ε)
for a given block length n and error probability ε satisfies [3]

logM∗(n, ε) = nC −
√
nV Q−1(ε) + o(

√
n), (1)

where Q−1(·) is the inverse of the Q-function, C is the
channel capacity, and V is known as the channel dispersion.
While the third-order term is not yet completely characterized,
it equals 1

2 log n for a wide class of channels satisfying a
non-singularity or feasibility decoding is suboptimal (FDIS)
condition [1], [4], [5], and O(1) for a class of symmetric
channels failing that condition [6].

In this paper, we present refined results on the third-order
term for constant-composition codes, where each codeword
has the same empirical distribution (i.e. type [7, Ch. 2]).
Beyond their theoretical value, such codes are of particular in-
terest for channels with cost constraints [8, Ch. 7], mismatched
decoding settings [9], and multiuser settings [10], [11].

A. System Setup

Henceforth, the i-th entry of a vector (e.g. x) is written
using a subscript (e.g. xi). The empirical distribution (i.e. type
[7, Ch. 2]) of a vector x is denoted by P̂x, and the set of all
sequences of type Q is denoted by Tn(Q).

The input and output alphabets are denoted by X and Y
respectively, and are assumed to be finite. The channel tran-
sition law is denoted by W (y|x), and we write Wn(y|x) ,∏n
i=1W (yi|xi). We fix an input distribution Q and let Qn be

a type such that ‖Q − Qn‖ ≤ 1
n , and Qn(x) = 0 wherever

Q(x) = 0. We assume that Q(x) > 0 for all x; this is
without loss of generality for the results we provide, since
in the general case the remaining inputs can be removed. We
similarly assume that all outputs are reachable.

We say that C = {x(1), . . . ,x(M)} is a constant-
composition codebook with input distribution Q if x(m) ∈
Tn(Qn) for all m. We let M∗Q(n, ε) denote the highest number
of messages of any constant-composition code for a given
input distribution Q, block length n, and target error probabil-
ity ε. We prove asymptotic lower bounds on M∗Q(n, ε) using
constant-composition random coding, where the codewords
are randomly drawn from the distribution

PX(x) =
1

|Tn(Qn)|
1
{
x ∈ Tn(Qn)

}
. (2)

We define the information density

i(x, y) , log
W (y|x)∑

xQ(x)W (y|x)
(3)

and its n-letter extension

in(x,y) ,
n∑
i=1

i(xi, yi). (4)

The mean and conditional variance of i(X,Y ) are denoted by

I(Q) , E[i(X,Y )] (5)

V (Q) , E
[
Var[i(X,Y ) |X]

]
, (6)

where (X,Y ) ∼ Q × W . Observe that I(Q) is simply the
mutual information under Q×W .

B. Previous Results and Contributions

Polyanskiy et al. [1] provided a converse bound on
M∗Q(n, ε) of the form (1) with I(Q) and V (Q) in place of
C and V , and with a 1

2 log n third-order term. A matching
second-order achievability result was given by Hayashi [2]
with a third-order term of o(

√
n), and by Kostina-Verdú [12]

with a third-order term of − 1
2 (|X |−1) log n. Moulin [13] de-

rived a third-order term of 1
2 log n under various assumptions,

and gave bounds on the fourth-order term. Converse results for
general codes were presented in [4], [6], and refined results
for the Gaussian channel were given in [1], [14].

The contributions of this paper are as follows: (i) We derive
a third-order term of 1

2 log n for constant-composition codes
using technical assumptions and analysis techniques differing
from those of [13]; (ii) We study the reduction in the third-
order term when these technical assumptions fail. In particular,
we show that a loss in the third-order term for sum channels
[15] is unavoidable in general.



II. MAIN RESULTS

We define the following set of channels from X to Y:

Wcc
0 ,

{
W : There exist functions g(x), h(y)

s.t. W (y|x) = g(x)h(y) wherever W (y|x) > 0
}
. (7)

It was shown in [9] that if W ∈ Wcc
0 , then feasibility decoding

(i.e. searching for a unique codeword whose likelihood is
positive) is optimal for constant-composition codes. Thus,
the condition W /∈ Wcc

0 is a natural generalization of the
feasibility decoding is suboptimal (FDIS) condition from [5],
which requires a similar condition with g(x) equal to a
constant (i.e. only a factor depending on y is allowed). Due to
the additional structure of constant-composition codes, there
is a wider class of channels for which feasibility decoding is
optimal. For later reference, we define W0 in the same way
as (7) with g(x) replaced by 1; clearly W0 ⊆ Wcc

0 .
Our results also vary depending on whether W is a sum

channel according to the following definition.

Definition 1. A discrete memoryless channel W (y|x) is said
to be a sum of N subchannels W1, . . . ,WN if the alphabets
X and Y can be partitioned into disjoint non-empty subsets
X1, . . . ,XN and Y1, . . . ,YN such that

W (y|x) =

{
Wi(y|x) x ∈ Xi and y ∈ Yi (i ∈ {1, . . . , N})
0 otherwise,

(8)
and the same is not true for any higher value of N . We say that
W (y|x) is a sum channel if it is a sum of N ≥ 2 subchannels.

The main result of this paper is the following.

Theorem 1. Fix an input distribution Q such that Q(x) > 0
for all x. If W is the sum of N subchannels, then we have for
any ε ∈ (0, 1) that

logM∗Q(n, ε) ≥ nI(Q)−
√
nV (Q)Q−1(ε)

+
1

2

(
1{W /∈ Wcc

0 } − (N − 1)
)

log n+O(1). (9)

Proof: See Section III-A.
In the special case that W is not a sum channel (i.e. N = 1),

the coefficient to log n in (9) is 1
2 when W /∈ Wcc

0 , and 0 when
W ∈ Wcc

0 . As mentioned above, a matching converse for the
case W /∈ Wcc

0 was given in [1]. A matching converse for
the case W ∈ W0 with an optimized input distribution was
provided in [6, Prop. 2], but it is unclear whether our result is
tight for W ∈ Wcc

0 \W0. It is also unclear in general whether
our result is tight for sum channels, but the following theorem
provides cases in which the answer is affirmative. Recall that
M∗(n, ε) is defined in the same way as M∗Q(n, ε), but without
the restriction to constant-composition codes.

Theorem 2. Fix an input distribution Q such that Q(x) > 0
for all x. If W is the sum of N subchannels, each having an
identical transition law, then we have for all ε ∈ (0, 1) that

logM∗Q(n, ε) ≤ logM∗(n, ε)− 1

2
(N −1) log n+O(1). (10)

Proof: See Section III-B
Theorem 2 can be combined with existing converse results

to prove the tightness of (9) for a variety of sum channels
with identical subchannels. For example, if W /∈ Wcc

0 and the
capacity-achieving input distribution is unique, the tightness
follows from [4], whereas if W is symmetric and W ∈ W0,
the tightness follows from [6].

To our knowledge, the preceding observations provide the
first known cases in which i.i.d. random coding provably
outperforms constant-composition random coding, since the
former yields the optimal third-order expansion of M∗(n, ε)
[1], [6]. As mentioned in the introduction, the opposite is often
true for mismatched and multi-user settings.

III. PROOFS

We assume without loss of generality that X ={
1, . . . , |X |

}
and Y =

{
1, . . . , |Y|

}
. Furthermore, we present

the proof assuming that Q is itself a type, and thus Qn = Q;
the results for the general case follow using the fact that ‖Q−
Qn‖ = O

(
1
n

)
. In particular, we have ‖I(Q)−I(Qn)‖ = O

(
1
n

)
since the mutual information is continuously differentiable in
Q whenever Q(x) > 0 for all x.

Some details of the proof are omitted due to space limita-
tions, and can be found in [16].

A. Proof of Theorem 1

Our analysis starts with the random-coding union (RCU)
bound [1], which upper bounds the error probability by

rcu(n,M) , E
[

min
{

1,

(M − 1)P
[
in(X,Y ) ≥ in(X,Y )

∣∣X,Y
]}]

, (11)

where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). The main dif-
ference in the analysis compared to the i.i.d. case [17] is the
way in which the inner probability in (11) is handled. This is
done in the proof of the following lemma.

Lemma 1. There exist constants K1 and ψ > 0 such that

rcu(n,M) ≤ E
[

min
{

1,MK1n
− η2 e−i

n(X,Y )
}]

+ e−ψn

(12)
for sufficiently large n, where

η , 1{W /∈ Wcc
0 } − (N − 1). (13)

Once Lemma 1 is established, we can prove Theorem 1 in
an identical fashion to [18, Thm. 5], [17, Sec. 3.4.5] using the
Berry-Esseen theorem (respectively, Chebyshev’s inequality)
when V (Q) > 0 (respectively, V (Q) = 0). In particular, the
first and second moments of in are given by

E[in(x,Y ) |X = x] = nI(Q) (14)
Var[in(x,Y ) |X = x] = nV (Q) (15)

for any x ∈ Tn(Q). To avoid repetition with [17], [18], we
focus our attention on proving Lemma 1.



1) Alternative Forms of the Codeword Distribution: By a
symmetry argument, we can write (2) as

PX(x) =
1

µn

n∏
i=1

Q(xi)1{x ∈ Tn(Q)}, (16)

where µn is a normalizing constant. Using the refined bounds
on the size of Tn(Q) in [7, Ex 2.2], it is readily verified that

µn = Θ
(
n−
|X|−1

2

)
. (17)

As noted in [18], Tn(Q) can be written as

Tn(Q) ,

{
x :

∣∣P̂x(x)−Q(x)
∣∣ ≤ δ

n
, x = 1, . . . , |X |

}
,

(18)
where δ ∈ [0, 1). We choose δ to be strictly positive.

It will prove useful to give yet another equivalent definition
in terms of the product alphabet X k, where k is a fixed integer.
We divide the sequence x into n/k blocks of length k:

x
(k)
1 , (x1, . . . , xk)

x
(k)
2 , (xk+1, . . . , x2k)

...

x
(k)
n/k , (xn−k+1, . . . , xn). (19)

For clarity of exposition, it is assumed here that n/k is an
integer; the general case is handled similarly. For a given
product symbol x(k)j , we define the following function that
counts the number of occurrences of a given symbol x:

ξkx(x
(k)
j ) ,

jk∑
i=(j−1)k+1

1{xi = x}. (20)

We can now write (18) as

Tn(Q) =

{
x :

∣∣∣ n/k∑
i=1

ξkx(x
(k)
i )−nQ(x)

∣∣∣ ≤ δ, x = 1, . . . , |X |
}
.

(21)
We provide some reasoning behind this block decomposition
in the proof of Lemma 3 below.

We will also make use of a vector ξk(x(k)) containing |X |−
N of the functions {ξ(k)x }x∈X . Specifically, we write

ξk(x(k)) ,

 ξkx̃1
(x(k))
...

ξkx̃|X|−N (x(k))

 , (22)

where the indices x̃1, . . . , x̃|X |−N are chosen to include all of
the symbols except one (e.g. the one with the highest index)
from each of the N subchannels.

2) Further Auxiliary Lemmas: The reverse conditional dis-
tribution induced by Q and W is given by

P̃ (x|y) ,
Q(x)W (y|x)∑
xQ(x)W (y|x)

, (23)

and we write P̃n(x|y) ,
∏n
i=1 P̃ (xi|yi). Furthermore, we

define the random variables

(X,Y ,X, X̃) ∼ PX(x)Wn(y|x)PX(x)P̃n(x̃|y). (24)

Lemma 2. Let k = |Y|, and fix the product symbol y(k) =
(1, . . . , |Y|). The covariance matrix of ξk(X̃(k)) has full rank
under X̃(k) ∼ P̃ k(·|y(k)). Moreover, if W /∈ Wcc

0 , then the
covariance matrix of[

ik(X̃(k), y(k))

ξk(X̃(k))

]
(25)

has full rank, where ik is defined analogously to (4).

Proof: See Appendix A.
Next, we provide a large deviations result that plays the role

of [17, Lemma 20] in the i.i.d. analysis of [17, Sec. 3.4.5].

Lemma 3. Fix the integers K > 0 and d ≥ 2, and for each
n, let (n1, . . . , nK) be integers such that

∑
j nj = n and

minj nj = Θ(n). Fix the probability mass functions (PMFs)
Q1, . . . , QK on a finite subset of Rd, let {Σj}Kj=1 be the
corresponding d × d covariance matrices, and let {Zi}ni=1

be independent d-dimensional random vectors, nj of which
are distributed according to Qj for each j. Furthermore, let
{Σ′j}Kj=1 be the submatrices of {Σj}Kj=1 obtained by removing
the first row and column of each, and let {Z ′i}ni=1 be obtained
from {Zi}ni=1 by removing the first entry:

Z ′i , [Zi,2, . . . , Zi,d]
T . (26)

If det(Σ′j) > 0 for some j, then for any constants t and δ > 0,
and any sequence of vectors γn ∈ Rd−1, we have

E

[
e−

∑n
i=1 Z1,i1

{
n∑
i=1

Z1,i ≥ t∩

∥∥∥∥∥
n∑
i=1

Z ′i − γn

∥∥∥∥∥
∞

≤ δ

}]
≤ βne−t, (27)

where βn = O
(
n−

d−1
2

)
uniformly in t and γn. Furthermore,

if det(Σj) > 0 for some j, this can be strengthened to βn =

O
(
n−

d
2

)
uniformly in t and γn.

Proof: See Appendix B.
3) Proof of Lemma 1: Recall that Q(x) > 0 for all x and all

outputs are reachable. We define PY (y) ,
∑
xQ(x)W (y|x)

and pmin , miny PY (y) > 0. A standard argument (e.g. via
the Chernoff bound) reveals that Y falls within the set

Fn(δ) ,
{
y : min

y
P̂y(y) ≥ pmin

2

}
(28)

with probability approaching one exponentially fast. Using
this observation, the lemma will follow once we show the
following for all y ∈ Fn(δ):

P
[
in(X,y) ≥ t

]
≤ K1n

− η2 e−t (29)

for sufficiently large n and some constant K1. To show this,
we follow [1, Sec. 3.4.5] and note that the following holds



whenever P̃n(x|y) 6= 0:

PX(x) =
1

µn
Qn(x)

P̃n(x|y)

P̃n(x|y)
1
{
x ∈ Tn(Q)

}
(30)

=
1

µn
P̃n(x|y)e−i

n(x,y)1
{
x ∈ Tn(Q)

}
. (31)

Summing both sides over all x such that in(x,y) ≥ t yields

P
[
in(X,y) ≥ t

]
=

1

µn
E
[
e−i

n(X̃,y)

× 1
{
in(X̃,y) ≥ t ∩ X̃ ∈ Tn(Q)

} ∣∣∣Y = y
]

(32)

under the joint distribution in (24).
We set k = |Y| and let y(k)1 , . . . , y

(k)
n/k denote the decompo-

sition of y into blocks in the same way as (19), and similarly
for X̃(k)

1 , . . . , X̃
(k)
n/k. For sequences within the set Fn(δ), each

output symbol occurs at least npmin

2 times. By the symmetry of
PX , P[in(X,y) ≥ t] is invariant under permutations of y, and
we may therefore assume that y starts with npmin

2 repetitions
of (1, . . . , |Y|). Thus, using the decomposition in (19), the
symbol y(k) = (1, . . . , |Y|) occurs at least npmin

2 times.
Using the form of Tn(Q) in (21), we can write (32) as

P
[
in(X,y) ≥ t

]
=

1

µn
E

[
e−

∑n/k
i=1 i

k(X̃
(k)
i ,y

(k)
i )1

{
n/k∑
i=1

ik(X̃
(k)
i , y

(k)
i ) ≥ t

∩

∣∣∣∣∣
n/k∑
i=1

ξkx(x
(k)
i )− nQ(x)

∣∣∣∣∣ ≤ δ, ∀x ∈ X
}∣∣∣∣Y = y

]
.

(33)

We now prove (29) using Lemma 3, letting each Qj therein
correspond to the vector in (25) for some y(k), and replacing
n therein by n/k.

When W /∈ Wcc
0 , we upper bound (33) by requiring the

second event in the indicator function to hold only for x ∈
{x̃1, . . . , x̃|X |−N} (see (22)). Recalling the above observation
that the symbol y(k) = (1, . . . , |Y|) occurs Θ(n) times, the
second part of Lemma 2 reveals that Σj (defined in Lemma
3) has full rank for the corresponding value of j. Combining
(27), the second part of Lemma 2 (with d = |X | − N + 1)
and (17), we can upper bound (33) by O

(
n−

1
2 (2−N)

)
e−t. This

coincides with (29), since the condition W /∈ Wcc
0 implies that

the indicator function in (13) equals one.
In the remaining case, i.e. W ∈ Wcc

0 , we follow similar
steps, except that we also remove the first constraint (contain-
ing ik) from the indicator function in (33), and we use the
first part of Lemma 2 instead of the second part, leading to
a bound of the form O

(
n−

1
2 (1−N)

)
e−t. This completes the

proof of (29), which in turn completes the proof of Lemma 1.

B. Proof of Theorem 2

Let U = {1, . . . , N} be the alphabet indexing the N
subchannels, and let W1 be one such subchannel. Recall
that the subchannels are identical by assumption. Let C =

{x(1), . . . ,x(M)} be an arbitrary codebook (not necessarily
constant-composition), and for a given codeword x, let u(x)
be a sequence of symbols in U indicating which subchannel is
used for each channel use. The maximum-likelihood decoding
rule can be interpreted as deterministically constructing the
corresponding auxiliary sequence u, and then choosing

m̂ = arg max
j :u(x(j))=u

Wn(y|x(j)). (34)

We claim that if the total fraction of u sequences used (i.e.
such that u(x(j)) = u for some j) is less than 1

Z for some
integer Z ≥ 2, then the number of messages can be increased
by a factor of Z without changing the error probability. To
see this, first note that since the u sequence is known with
certainty at the decoder, the determination of the message j
among {j : u(x(j)) = u} simply corresponds to coding
over W1; the precise values in u play no further role. Thus,
since less than a proportion 1

Z of the u sequences are utilized,
we may take the original codebook structure and repeat it Z
times across the remaining u sequences in an arbitrary fashion,
without affecting the error probability.

We now specialize these observations to constant-
composition codes. If the codewords {x(j)} have the same
composition, the same is true for the {u(x(j))}. Thus, the
total number of u sequences utilized is not Nn, but instead the
size of some type class Tn(QU ) on Un. From [7, Ex. 2.2], the
largest type class corresponds to QU being uniform on U , and
yields |Tn(QU )| = Θ

(
Nnn−

N−1
2

)
. Thus, at most a fraction

Θ
(
n−

N−1
2

)
of the u sequences are utilized, and we may

increase the number of messages by a factor of Θ
(
n−

N−1
2

)
without affecting the error probability. Thus, for any sequence
of constant-composition codes, there exists a sequence of
general codes with an addition of 1

2 (N − 1) log n + O(1) to
the third-order term, as stated in (10).

APPENDIX
A. Proof of Lemma 2

From (22), the covariance matrix of ξk(X̃(k)) has determi-
nant zero if and only if

Var
[
γx̃1ξ

k
x̃1

(X̃(k)) + · · ·+ γx̃|X|−N ξ
k
x̃|X|−N

(X̃(k))
]

= 0 (35)

for some (γx̃1 , . . . , γx̃|X|−N ) 6= (0, . . . , 0). Since X̃(k) ∼
P̃ k(·|y(k)) is a product distribution and y(k) = (1, . . . , |Y|)
(see the lemma statement), we can write (35) as∑
y

VarP̃ (·|y)

[
γx̃1

ξx̃1
(X̃) + · · ·+ γx̃|X|−N ξx̃|X|−N (X̃)

]
= 0,

(36)
where ξx(x̃) , 1{x̃ = x} by (20). We rewrite (36) as∑

y

VarP̃ (·|y)

[∑
x

γxξx(X̃)

]
= 0, (37)

where γx = 0 for all x /∈ {x̃1, . . . , x̃|X |−N}. We proceed by
assuming that (37) is true, and then arriving at a contradiction.
Since Q(x) > 0 for all x, we have P̃ (x|y) > 0 if and only if
W (y|x) > 0. It follows from (37) that γx = γx for any pair



(x, x) sharing a common output (i.e. W (y|x)W (y|x) > 0
for some y), since otherwise the argument to VarP̃ (·|y) would
differ depending on whether X̃ = x or X̃ = x.

Since γx = γx for all (x, x) sharing a common output, it
also holds that γx = γx for all x that can be reached from x by
following a path in the channel graph (i.e. by moving between
inputs and outputs such that W (·|·) 6= 0). Since γx = 0 for at
least one symbol of each of the N subchannels (see (22)), it
follows that γx = 0 for all x, thus contradicting the assumption
that (γ1, . . . , γ|X |−1) 6= (0, . . . , 0).

The claim regarding (25) follows similarly using a proof
by contradiction. By the preceding argument, the submatrix
of the covariance matrix obtained by removing the first row
and column has full rank. The only remaining possibility
for the matrix (25) to have determinant zero is that there
exists a function g(x) (equal to some linear combination of
{ξx}) such that VarP̃ (·|y)[i(X̃, y) + g(X̃)] = 0 for all y.
Recalling that P̃ (x|y) > 0 if and only if W (y|x) > 0,
this condition is equivalent to i(x, y) + g(x) + h(y) taking a
constant value wherever W (y|x) > 0, for some function h(y).
We conclude from the definition of i in (3) that W (y|x) =
g′(x)h′(y)1{W (y|x) > 0} for some functions g′(x) and
h′(y). This contradicts the assumption that W /∈ Wcc

0 (see
(7)), and we conclude that the covariance matrix of (25) has
full rank.

We can now provide some intuition as to why it is beneficial
to work with blocks of size k = |Y| (cf. (19)). It is this
decomposition that allowed us to write (36) with a summation
over y, but with {γx} not depending on y. In contrast, a similar
argument considering one symbol at a time would lead to an
analogous expression to (36) with γx replaced by γx,y .

B. Proof of Lemma 3

To prove the first part of the lemma, we write

E

[
e−

∑n
i=1 Z1,i1

{
n∑
i=1

Z1,i ≥ t ∩

∥∥∥∥∥
n∑
i=1

Z ′i − γn

∥∥∥∥∥
∞

≤ δ

}]

≤ e−tP

[∥∥∥∥∥
n∑
i=1

Z ′i − γn

∥∥∥∥∥
∞

≤ δ

]
, (38)

which follows immediately from the constraint
∑n
i=1 Z1,i ≥ t.

The probability on the right-hand side of (38) is that of a sum
of independent vectors falling within a (d − 1)-dimensional
cube of side length 2δ, and may thus be upper bounded by
the probability of the same sum falling within a sphere of
radius δ

√
d− 1. Using the concentration function result of

[19, Thm. 6.2] and the assumption that det(Σ′j) > 0 for
some j ∈ {1, . . . ,K} corresponding to Θ(n) of the terms
in the sum, this probability behaves as Θ

(
n−

d−1
2

)
uniformly

in the location of the sphere (i.e. the vector γn in (38)).
More precisely, this behavior is proved in the same way as
[5, Appendix F] upon noting that the {Z ′i} are bounded since
we are considering the case of finite alphabets.

The second part of the lemma is proved similarly by upper
bounding the left-hand side of (38) by

∞∑
l=0

e−t−2lδP

[
t+ 2lδ ≤

n∑
i=1

Z1,i < t+ 2(l + 1)δ

∩

∥∥∥∥∥
n∑
i=1

Z ′i − γn

∥∥∥∥∥
∞

≤ δ

]
. (39)

Equation (39) gives the probability of a sum of independent
vectors falling within a d-dimensional cube of side length
2δ. Using the same argument as the first part of the lemma
and the assumption that det(Σj) > 0 for some j, the
probability behaves as Θ

(
n−

d
2

)
uniformly in t and γn. The

proof is concluded by using the geometric series to write∑∞
l=1 e

−2lδ = 1
1−e−2δ , which is a constant.
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