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Abstract—A method of constructing rate-compatible polar
codes that are capacity-achieving with low-complexity sequential
decoders is presented. The proposed code construction allows for
incremental retransmissions at different rates in order to adapt
to channel conditions. The main idea of the construction exploits
certain common characteristics of polar codes that are optimized
for a sequence of successively degraded channels. The proposed
approach allows for an optimized polar code to be used at
every transmission thereby achieving capacity. Due to the length
limitation of conventional polar codes, the proposed construction
can only support a restricted set of rates that is characterized by
the size of the kernel when conventional polar codes are used. To
overcome this limitation, punctured polar codes which provide
more flexibility on block length by controlling a puncturing
fraction are considered. The existence of capacity-achieving
punctured polar codes for any given puncturing fraction is shown.
Using punctured polar codes as constituent codes, it is shown that
the proposed rate-compatible polar code is capacity-achieving for
an arbitrary sequence of rates and for any class of degraded
channels.

Index Terms—Polar codes, channel capacity, capacity-
achieving codes, rate-compatibility, retransmissions, HARQ-IR.

I. INTRODUCTION

Polar codes, proposed by Arikan [1], achieve the symmetric
capacity of the binary-input discrete memoryless channels
using a low-complexity successive cancellation (SC) decoder.
The finite-length performance of polar codes can be improved
by deploying list decoder enabling polar codes to approach the
performance of optimal maximum-likelihood (ML) decoder
[2]. Furthermore, a polar code concatenated with a simple
CRC outperforms well-optimized LDPC and Turbo codes even
for short block lengths [2]. Due to their good performance
and low complexity, polar codes are currently considered for
possible use in future wireless communication systems (e.g.
5G cellular systems).

Wireless broadband systems operate in the presence of time-
varying channels and therefore require flexible and adaptive
transmission techniques. For such systems, hybrid automatic
repeat request based on incremental redundancy (HARQ-IR)
schemes are often used, where parity bits are sent in an
incremental fashion depending on the quality of the time-
varying channel. In HARQ-IR scheme, a number of parity
bits chosen according to a rate requirement, are sent by the
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transmitter. IR systems require the use of rate-compatible
codes typically obtained by puncturing. For a code to be rate-
compatible, the set of parity bits of a higher rate code should
be a subset of the set of parity bits of a lower rate code. This
allows the receiver that fails to decode at a particular rate, to
request only additional parity bits from the transmitter. For this
reason, there has been extensive research on the construction
of rate-compatible Turbo codes and LDPC codes [3], [4], [5],
[6], [7].

Although polar codes can achieve the capacity of symmetric
binary-input channel, their rate-compatible constructions are
not in general capacity-achieving. Puncturing of polar codes
incurs a rate loss and determining puncturing patterns that
result in good performance was considered in [8], [9], [10],
[11], [12]. More recently, an efficient algorithm for joint
optimization of puncturing patterns and the set of information
bits of the code was proposed and shown to outperform
LDPC codes [13]. Because in [8], [10], [11], [12], [13] an
information set is optimized according to a puncturing pattern,
these methods cannot be used to design a family of rate-
compatible punctured codes as required for HARQ-IR, where
the same information set (generally optimized for the mother
code) should be used for all punctured codes in the family.
In [9], a heuristic search algorithm was presented to design a
good puncturing pattern for a fixed information set. However,
finding an optimal rate-compatible puncturing pattern with low
complexity is still an open problem.

In this paper, we present a family of rate-compatible polar
codes that are capacity-achieving. The main idea of our
construction exploits certain common characteristics of polar
codes that are optimized for a sequence of successively de-
graded channels. In our approach, we construct a concatenated
polar code that is decoded by a sequence of parallel polar
decoders. We refer to this construction as parallel concate-
nated polar codes. The proposed code construction allows
for incremental retransmissions at different transmission rates
and can therefore be used for HARQ-IR. Furthermore, an
optimized polar code is used at every retransmission thereby
achieving capacity, for any class of degraded channels. In
a work developed independently and in parallel to ours, a
similar idea was introduced by Li et. al. in [14]. Due to the
length limitation of polar codes, our proposed construction
of rate-compatible polar codes can achieve the capacity only
for a sequence of rates that satisfy a certain relationship (as
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specified in Theorem 3). In order to support any arbitrary
sequence of rates, we present capacity-achieving punctured
polar codes which can provide more flexibility on block length
by controlling a puncturing fraction. Using such punctured
polar codes, we show that the proposed rate-compatible polar
code is capacity-achieving for an arbitrary sequence of rates.

The paper is organized as follows. Section II gives the
definition of rate-compatible codes and preliminaries on polar
codes. In Section III, we describe the capacity-achieving
punctured code. Section IV presents the main capacity result
and the idea of our code design. The precise code construction
and decoding are presented in Section V. Comparison of the
proposed approach to random puncturing is given in Section
VI. Proofs are given in Section VII. Section VIII concludes
the paper.

II. PRELIMINARIES

In this section, we provide some basic definitions and
background that will be used in the sequel.

A. Rate-Compatible Codes

We start with a definition of rate-compatible codes. To
simplify notation, let [K] , {1, 2, · · · ,K} for any positive
integer K and let an = (a1, . . . , an) denote a vector of length
n. Given a fixed number of information bits k, a family of
codes, or code family, C = {Cn̄1

1 , Cn̄2
2 , · · · , Cn̄KK } with respec-

tive block lengths n̄1 < n̄2 < · · · < n̄K and corresponding
rates R1 > R2 > · · · > RK , where Ri = k/n̄i, is said
to be rate-compatible if there exist a sequence of encoding
functions {ēi(·)}i∈[K], where ēi : {0, 1}k → {0, 1}n̄i is the
corresponding encoding function of Ci for i ∈ [K], and a
sequence of projection operators {πi(·)}i∈[K−1], where πi :
{0, 1}n̄i+1 → {0, 1}n̄i simply takes n̄i of the n̄i+1 coordinates
of its input as output, such that for each i ∈ [K − 1],

ēi(u
k) = πi(ēi+1(uk)), (1)

for every possible information block uk ∈ {0, 1}k. We refer to
such a sequence of encoding functions as a sequence of nested
encoding functions. Obviously, any subfamily of C denoted by
C′ = {Cn̄i1i1

, Cn̄i2i2
, · · · , C

n̄ij
ij
}, for any 1 ≤ i1 < i2, . . . < ij ≤

K, is rate compatible if C is rate compatible.
Condition (1) assures that the set of parity bits of a higher

rate code is a subset of the set of parity bits of a lower
rate code and therefore the code can be used for HARQ-IR.
Specifically, during the i-th transmission, the transmitter can
send ei(u

k) , π⊥i−1(ēi(u
k)) over the channel, for any given

information block uk ∈ {0, 1}k, where π⊥i : {0, 1}n̄i+1 →
{0, 1}n̄i+1−n̄i denotes the projection operator orthogonal to
πi(·) that takes the other n̄i+1 − n̄i coordinates of uk not
taken by πi(u

k) as output, with n̄0 , 0 and π⊥0 (uk) , uk

being the identity mapping. We let ei , π⊥i−1 ◦ ēi and refer
to {ei}i∈[K] as a sequence of incremental encoding functions.
By definition, each family of rate-compatible codes has at least
one associated sequence of incremental encoding functions.

It follows immediately that a family of linear codes C =
{Cn̄1

1 , Cn̄2
2 , · · · , Cn̄KK } is rate-compatible if and only if there

exists a sequence of generator matrices {Gi}i∈[K], each
corresponding to a member in C, such that the columns of
Gi is a subset of those of Gi+1 for every i ∈ [K − 1].
Accordingly, we refer to {Gi}i∈[K] as a sequence of nested
generating matrices.

Lemma 1: The sets of rates {Ri}i∈[K] and incremental
block lengths {ni}i∈[K] of any rate-compatible code family
of size K must satisfy the following equivalent conditions:

(a): Ri =
R1

1 +
∑i
j=2

nj
n1

, ∀i ∈ {2, 3, · · · ,K}, and (2)

(b): ni = R1

(
1

Ri
− 1

Ri−1

)
n1, ∀i ∈ {2, 3, · · · ,K}. (3)

Proof: The proof is is given in Section VII-A.
Let W1 � W2 � . . . � WK denote a sequence of

successively degraded discrete memoryless channels (DMC)
with a common input alphabet X , respective output alpha-
bets {Yi}i∈[K], respective transition probability distributions
{Wi(y|x)}i∈[K] where x ∈ X and y ∈ Yi, and respective ca-
pacities I(W1) > I(W2) > . . . > I(WK). A sequence of rate-
compatible code families, Cm = {Cn̄1,m

1 , Cn̄2,m

2 , · · · , Cn̄K,mK }
for m ∈ N, designed for a monotonically increasing sequence
of information block sizes {km}m∈N, is said to be capacity-
achieving with respect to {Wi}i∈[K] if, for every m, there
exist a sequence of decoding functions {di,m(·)}i∈[K], where
di,m : Y n̄i,m → {0, 1}km , and a corresponding sequence of
nested encoding functions {ei,m(·)}i∈[K] such that for any
ε > 0, we have, for every i ∈ [K],

Ri,m , km/n̄i,m > I(Wi)− ε, and (4)

Pr(ukm 6= di,m(yn̄i,m)) < ε, (5)

for the joint probability distribution given by
p(ukm , yn̄i,m) = 2−kmW

n̄i,m
i (yn̄i,m |ei(ukm)), where

Wn
i (yn|xn) ,

∏n
l=1Wi(yl|xl), for all sufficiently large m.

In this paper, we focus on binary-input discrete memoryless
channels (B-DMC) with input alphabet X = {0, 1} and any
output alphabet Y . We denote the transition probabilities of
any B-DMC W by W (y|0) and W (y|1) for all y ∈ Y .

B. Polar Codes

Let 2N denote the set of powers of two. For any n ∈ 2N,
let Pn , P

⊗ log(n)
2 denote the rate-one generator matrix of

all polar codes with block length n, where P2 is the 2-by-
2 Arikan kernel [1]. As shown in [1], as n increases, under
successive cancellation (SC) decoding, a fraction of the rows
of Pn leads to good bit-channels suitable for carrying infor-
mation bits while the rest forms bad bit-channels whose input
should be frozen to known values, assumed to be zero in this
paper. Thus a polar code of length n is completely determined
by the rate-one generator matrix Pn and the information set
A that specifies the set of good bit-channel locations, with the
rate of the code given by the ratio R = |A|/n. Let C(n,R,A)
denote a polar code of rate R with information set A. Also let
PAn denote its |A|×n generator matrix formed by only taking



the rows of Pn that correspond to A. The specific orderings
of rows within PAn is unimportant in the following discussion.

Given a finite sequence of channels, {Wi}i∈[K], a sequence
of polar codes {C(n,Ri,Ai)}i∈[K] of a common block length
n with different rates R1 > R2 > · · · > RK , each
corresponding to one channel, can be obtained by selecting
a different information set Ai for each channel Wi. We refer
to a sequence of polar codes {C(n,Ri,Ai)}i∈[K] having the
same block length n as a sequence of nested polar codes if
their respective information sets are nested, i.e.

A1 ⊇ A2 ⊇ . . . ⊇ AK . (6)

For given nested information sets A1 ⊇ A2 ⊇ · · · ⊇ AK , we
define an |A1| × n generator matrix P

(A1,A2,··· ,AK)
n with a

partial ordering of rows according to {Ai} as

P(A1,A2,··· ,AK)
n =


PAKn

P
AK−1\AK
n

...
P
A1\A2
n

 . (7)

Note that the only difference between PA1
n and

P
(A1,A2,··· ,AK)
n is that the ordering of rows is more

specifically defined in the latter. For any index set D ⊆ [n],
let P(A1,A2,··· ,AK)

n (D) denote a submatrix of P(A1,A2,··· ,AK)
n

consisting of rows whose indices belong to D.
Given a channel Wi, i ∈ [K], we define the information set

for a fixed ε as

Ai,n(ε) = {j ∈ [n] : Z(W
(j)
i,n ) ≤ ε}, (8)

where W
(j)
i,n denotes the j-th bit-channel resulted from a

polar code with block length n applied to Wi, and Z(W )
denotes the Bhattacharyya parameter of bit-channel W given
by Z(W ) ,

∑
y∈Y

√
W (y|0)W (y|1). The following result

follows directly from [15, Lemma 4.7].
Lemma 2: [15, Lemma 4.7] Given a sequence of suc-

cessively degraded channels W1 � W2 � . . . � WK ,
{C(n,Ri,nAi,n(ε))}i∈[K] is a sequence of nested polar codes
for any ε.

The set of good bit-channels can alternatively be defined in
terms of the symmetric capacity I(W ). When clear from the
context, the dependency of Ri, Ai on ε will be omitted.

Definition 1: We refer to a family of rate compatible codes
C = {Cn̄1

1 , Cn̄2
2 , · · · , Cn̄KK } as a family of rate-compatible

polar codes when a (punctured) polar code is used in every
transmission, where a puncturing can be applied to a polar
code for the purpose of length adaption. More precisely, C is a
family of rate-compatible polar codes if there exists a sequence
of incremental encoding functions {ei(·)}i∈[K] where each
ei(·) can be implemented by the encoder of a polar code and
possibly with a puncturing.

Relation (6) is a key property that we will use for construct-
ing rate-compatible polar codes. However, since nested polar
codes have the same block length and varying information
block sizes, they cannot directly be used for HARQ-IR, which

in contrast assumes a fixed information block size and allows
varying block lengths to achieve different rates with a given
error probability tolerance. To obtain a family of (capacity-
achieving) rate-compatible codes, we need to construct multi-
ple sequences of nested polar codes as described later.

III. PUNCTURED POLAR CODES

Polar codes with arbitrary lengths can be obtained by
puncturing. A polar code of length n is punctured by removing
a set of s columns from its generator matrix, which has the
effect of reducing the codeword length from n to n − s. We
let α = s/n denote a puncturing fraction. It is assumed that
the receiver knows the locations of the punctured bits, and the
decoder estimates both the punctured and transmitted symbols
during decoding. The punctured polar code can be encoded
and decoded in a similar way as the conventional polar codes.
Formally, a punctured polar code of post-puncturing block
length n is characterized by its ”mother” (unpunctured) polar
code of block length nu ∈ 2N and a puncturing pattern
pnu = (p1, p2, · · · , pnu) ∈ {0, 1}nu with pi = 0 indicating
that the ith coded bit is punctured and thus not transmitted.
For a given pnu , let πpnu : Ynu → Yn be a projection
operator that copies n = wH(pnu) coordinates of its input
as its output based on the puncturing pattern specified by
pnu , where wH(pnu) denotes the number of ones in pnu ,
i.e. yn = πpnu (ynu) containing the coordinates of ynu

corresponding to the locations of ones in pnu . The notion of
bit-channels in conventional polar codes can be extended to
punctured polar codes in a straightforward manner as follows.
For a given (unpunctured) polar code of block length nu ∈ 2N

and puncturing pattern pnu , we define the transition probability
of the i-th bit channel of the corresponding punctured polar
code as

W (i)(yn, ui−1, pnu |ui)

=
1

2nu−1

∑
unui+1

∑
ynu∈π−1

pnu
({yn})

Wnu(ynu |unuPnu), (9)

where
Wnu(ynu |xnu) =

∏
j∈[nu]

W (yj |xj), (10)

and where π−1
pnu (S) , {ynu ∈ Ynu : πpnu (ynu) ∈ S} denotes

the inverse image of πpnu (·). Based on (9), the information set
of a punctured polar code can be defined in a similar manner
as in (8).

Let C(n,R,A, pnu) denote a punctured polar code of (post-
puncturing) block length n, rate R, information set A, and a
puncturing pattern pnu . Similarly, one can let Pn,pnu denote
the matrix obtained by removing the columns of Pnu accord-
ing to the locations of zeros in the puncturing pattern pnu ,
and for any nested information sets A1 ⊇ A2 ⊇ · · · ⊇ AK ,
one can define P

(A1,A2,··· ,AK)
n,pnu in the same manner as in

(7). However, in most cases of our discussion below, there
is only one puncturing pattern for each block length n, and
therefore we will omit pnu and use same notations and similar



terminologies for both punctured and unpunctured polar codes
whenever it is clear from context.

In the proposed scheme that will be explained in Section IV,
any good punctured (or shortened) polar code can be used for
length flexibility and it is left for a future work to design a
good punctured polar code for short block lengths. In order
to show that the proposed rate-compatible polar codes achieve
the capacity, we will use a capacity-achieving punctured polar
code for any desired puncturing fraction, whose existence is
shown in the following theorem.

Theorem 1: Consider any B-DMC W with I(W ) > 0.
For any fixed R < I(W ), β < 1

2 , and puncturing fraction
α ∈ (0, 1), there exists a sequence of punctured polar codes,
each with respective block length n = b(1 − α)2mc and
associated information sets Am ⊂ [2m], m ∈ N, such that
|Am| ≥ b2m(1− α)cR = nR and

Pe,j,m ≤ O(2−2mβ ) = O(2−n
β

), (11)

for all j ∈ Am and for all m ∈ N, where Pe,j,m denote
the error probability of j-th polarized bit channel of the m-th
punctured polar code.

Proof: The proof is given in Section VII-B.

IV. MAIN RESULTS

We state two theorems that are the main results of this paper.

Theorem 2: For any sequence of successively degraded
channels W1 � W2 � . . . � WK , there exists a sequence of
rate-compatible polar code families that is capacity-achieving.

Proof: The proof is given in Section VII-C.
In case puncturing is not used, the constraint on a polar code

block length n = 2l, l ∈ N reduces the set of rates that can be
supported by the proposed coding scheme. In particular, we
have the following:

Theorem 3: For any sequence of successively degraded
channels W1 � W2 � . . . � WK with corresponding
symmetric capacities I(W1) > I(W2) > . . . > I(WK) > 0,
there exists a sequence of rate-compatible (non-punctured)
polar code families that is capacity-achieving if and only if,
for each i ∈ {2, . . . ,K},

I(Wi) =
I(W1)

1 +
∑i
j=2 2`j

, (12)

for some `j ∈ Z.
Proof: The proof is given in Section VII-D.

In the next section, we explain our main idea for the
construction of a family of rate-compatible polar codes and
also provide a simple example for K = 3. A general code
construction will be explained in Section V.

A. Main Idea

Before stating the precise construction, we first describe our
idea on how to design the family of rate-compatible polar
codes that are capacity-achieving.

To transmit k information bits over K channels W1 �
W2 � . . . � WK at rates R1 > . . . > RK , we generate

Polar Encoder

Polar Encoder

Polar Encoder

Divider

Fig. 1. Encoder structure of rate-compatible polar codes for K = 3.

K (punctured) polar codes C(ni, Ri,A(i)
i ), where ni is the

block length of the i-th transmission and is chosen such that

Ri =
k∑i
j=1 nj

=
k

n̄i
, (13)

where n̄i ,
∑i
j=1 nj is the effective block length after i trans-

missions. In addition, for each block length ni, i = 1, . . . ,K,
we construct a sequence of nested (punctured) polar codes
{C(ni, Rj ,A(i)

j )}Kj=i with rates {Ri, . . . , RK} such that1

|A(i)
j | = niRj , (14)

for j ∈ [K]. Exact choice of information sets A(i)
j is described

later in Section V. We let

I(i) ,
i−1⋃
j=1

I(j)
i−1 (15)

where I(1) = [k] and I(j)
i−1 is the index set of information

bits that are used to convert the polar code in each of
the previous transmissions from rate Ri−1 (that cannot be
supported by the channel) to corresponding codes of rate
Ri, namely, I(j)

i−1 contains the indices of information bits
corresponding to A(j)

i−1 \ A
(j)
i . At transmission i, we then use

the code C(ni, Ri,A(i)
i ) to transmit some part of information

bits indexed by I(i) as shown in Fig. 1. This is possible
because I(i) and A(i)

i are of the same size, that is:

|I(i)| =
i−1∑
j=1

|A(j)
i−1| − |A

(j)
i |

(a)
=

i−1∑
j=1

q
(j)
i−1 = k −Ri

i−1∑
j=1

nj

= k −
k
∑i−1
j=1 nj∑i
j=1 nj

= niRi
(b)
= |A(i)

i |, (16)

where q(j)
i , nj(Ri − Ri+1) for each i ∈ [K − 1], and (a)

and (b) follow by (14).
Code C(ni, Ri,A(i)

i ) is the code of the highest rate in the
sequence of common block length ni. Each such sequence
satisfies the property (6) which will be exploited in decoding.
In particular, suppose that m retransmissions, where m ∈ [K],
are needed and hence rate I(Wm) is the highest rate that can
be supported by the channel. The decoder starts by decoding

1For the ease of exposition, it is assume that every ni is sufficiently large
such that niRj is an integer. Note that using floor function to make every
niRj an integer does not change the main results of this paper.



Polar Decoder

Polar Decoder
Receiver

frozen bits

decoded outputs

Fig. 2. Sequential decoder of rate-compatible polar codes for rate R2.

Polar Decoder

Polar Decoder

Polar Decoder
Receiver

frozen bits

frozen bits

decoded outputs

Fig. 3. Sequential decoder of rate-compatible polar codes for rate R3.

the information bits of the polar code C(nm, Rm,A(m)
m ). It

then uses some of these decoded bits as frozen bits in the
polar code C(nm−1, Rm−1,A(m−1)

m−1 ) thereby, due to property
(6), turning this code into a polar code C(nm−1, Rm,A(m−1)

m )
in the same sequence (i.e., of the same block length nm−1) but
of lower rate Rm which is supported by the channel. Hence,
the information bits of this obtained code can be decoded. It
then repeats this sequential decoding over m stages as shown
in Figs. 2 and 3, where in each stage, it decodes additional
information bits using a polar code of rate Rm. As we show
later in Theorem 2, the chosen transmit rates Ri as defined in
(13) will approach the corresponding channel capacity I(Wi),
as ni increases for all i = 1, 2, . . . ,K.

B. Example

To explain the main idea in more detail we show an example
for K = 3. In this case, we wish to construct a family of rate-
compatible polar codes that supports rates R1 > R2 > R3.

We start by constructing a sequence of nested (punctured)
polar codes of block length n1. By Theorem 1, we can
determine a sufficiently large n1 and associated information
sets denoted by A(1)

j , j = 1, 2, 3 of size |A(1)
j | ≥ n1Rj to

ensure a tolerable probability of error for each bit-channel
in A(1)

j for all j = 1, 2, 3 when the information sets are
applied to channels W1, W2 and W3, respectively. By Lemma
2, such information sets satisfy the nested property as A(1)

1 ⊇
A(1)

2 ⊇ A(1)
3 . For convenience, we only use subsets of these

information sets if necessary such that |A(1)
j | = n1Rj for all

j = 1, 2, 3. The nested subset property can be preserved by
first determining A(1)

3 such that |A(1)
3 | = n1R3, then selecting

additional bit-channels from A(1)
2 \ A(1)

3 to form a new A(1)
2

such that |A(1)
2 | = n1R2, and so forth to form a new A(1)

1 such
that |A(1)

1 | = n1R1. As a result, each code with information set
A(1)
j enables us to decode n1Rj information bits, and we will

use these three information sets (i.e., polar codes) to support
rates R1 > R2 > R3 for the chosen block length n1.

a)

b)

c)

Fig. 4. Code construction for R2. Fi, i = 1, 2 denotes frozen bits. a)
Polar codes of rate R1 sent in the first transmission with information bits in
I(1) = I(1)

1 ∪ I(1)
2 ∪ I(1)

3 ; b) Polar code of rate R2 sent in the second
transmission with information bits in I(2) = I(2)

2 ∪ I(2)
3 ; 1c) Resulting

concatenated codeword sent over two transmissions.

In the first transmission, we use the first (punctured) polar
code C(n1, R1,A(1)

1 ) to transmit k = |A(1)
1 | information

bits at rate R1 = k/n1. Recall that I(1) = {1, 2, . . . , k}.
To identify the information bits to be transmitted in the
subsequent transmissions, we partition the index set I(1) of
size k into I(1) = I(1)

1 ∪ I(1)
2 ∪ I(1)

3 such that I(1)
1 , I(1)

2 ,
and I(1)

3 contain the indices of information bits that will be
transmitted through the bit channels in A(1)

1 \A
(1)
2 , A(1)

2 \A
(1)
3 ,

and A(1)
3 , respectively (see Fig. 4). It follows that

|I(1)
1 | = |A

(1)
1 | − |A

(1)
2 | = n1R1 − n1R2

|I(1)
2 | = |A

(1)
2 | − |A

(1)
3 | = n1R2 − n1R3

|I(1)
3 | = |A

(1)
3 | = n1R3.

Sets I(1)
1 and I(1)

2 consist of information bits that need
to be frozen in respective codes C(n1, R1,A(1)

1 ) and
C(n1, R2,A(1)

2 ) in order to reduce their rates to R2 and R3, re-
spectively, if subsequent transmissions are needed. Intuitively,
we expect that the information bits in I(1)

j are assigned to
better polarized bit channels as j increase.

In the second transmission, we transmit the information bits
indexed by I(1)

1 using a new (punctured) polar code of length
n2. We choose n2 such that n̄2 , n1 + n2 = k/R2 to ensure
that, after the second transmission, the effective rate equals
R2. As before, by Theorem 1, we can determine a sequence
of nested polar codes with information sets denoted by A(2)

j

of size |A(2)
j | = n2Rj for j = 2, 3, and A(2)

2 ⊇ A(2)
3 . Then,

I(2) = I(1)
1 that contains the information bits to be sent in

the second transmission. We then use (punctured) polar code
C(n2, R2,A(2)

2 ) to transmit such information bits, which is
possible since

|I(2)| = |I(1)
1 |= n1R1 − n1R2

= k − n1k

n1 + n2
= n2R2 = |A(2)

2 |.

As before, for subsequent transmission, we partition I(2) into



a)

b)

Fig. 5. Code construction for R3. a) Polar code of rate R3 sent in the
third transmission with information bits in I(3) = I(1)

2 ∪ I(2)
2 ; b) Resulting

concatenated codeword sent over three transmissions.

I(2) = I(2)
2 ∪ I(2)

3 such that I(2)
2 and I(2)

3 contain respective
indices of information bits that are transmitted through the bit
channels in A(2)

2 \ A
(2)
3 and A(2)

3 . Then,

|I(2)
2 | = |A

(2)
2 | − |A

(1)
2 | = n2R2 − n2R3

|I(2)
3 | = |A

(2)
3 | = n2R3.

Finally, for the third transmission, we choose block length n3

such that n̄3 = n1 + n2 + n3 = k/R3 to attain an effective
overall rate of R3 after the third transmission. We encode
the information bits indexed by I(3) = I

(1)
2 ∪ I(2)

2 using a
(punctured) polar code with an information set A(3)

3 of size
n3R3, which is possible since which is possible since

|I(3)| = |I(1)
2 |+ |I

(2)
2 |= (n1 + n2)R2 − (n1 + n2)R3

= k − (n1 + n2)k

n1 + n2 + n3
= n3R3 = |A(3)

3 |.

For R2 and R3, the encoding procedure and the resulting
codeword are respectively shown in Fig. 4 and Fig. 5. Note
that the obtained codeword of length k/R3 is not a codeword
of a polar code. Nonetheless, the decoding procedure will
assure that we decode a codeword from a polar code at
each rate Ri, i = 1, . . . , 3 thereby achieving capacity of the
corresponding channel Wi.

In particular, decoder for C(n3, R3,A(3)
3 ) is first used to

decode R3n3 information bits indexed by I(3). Decoded
information bits indexed by I(2)

2 are then used as frozen
bits in the code C(n2, R2,A(2)

2 ) in order to produce polar
code C(n2, R3,A(2)

3 ) thereby enabling decoding of R3n2

information bits indexed by I(2)
3 . We have so far decoded the

information bits indexed by I(3) ∪I(1)
2 . To decode the rest of

information bits, we need to convert code of length n1 and rate
R1 that was used for the first transmission, into a code of rate
R3. We do so by considering decoded information bits indexed
by I(3) ∪ I(1)

2 as frozen bits in polar code C(n1, R2,A(1)
1 ) to

produce the polar code C(n1, R3,A(1)
3 ) with R3n1 information

bits indexed by I(1)
3 that can be decoded. Therefore, we have

now decoded all information bits.

V. GENERAL CODE CONSTRUCTION

In this section, we describe a general method of constructing
rate compatible (punctured) polar codes through concatenation
of generating matrices of multiple polar codes with (possibly)
different block lengths. We refer to the construction process

as parallel concatenation and to the resulting class of codes as
parallel concatenated polar (PCP) codes.

A. Parallel Concatenated Polar (PCP) Codes

We first provide a formal definition of the proposed PCP
code:

Definition 2: Given an information block size k and a
set of subblock lengths {ni}i∈[K], a K-level PCP code
of overall block length n̄K and rate RK is characterized
by a collection of K sequences of nested polar codes
{C(ni, Rj ,A(i)

j )}j≥i,i∈[K] and a collection of K bit mappings,
h(i) : [|A(i)

i |] → [k] (defined below) for i ∈ [K], with the
following conditions:

(c.1) Ri = k/
∑i
j=1 nj for all i ∈ [K],

(c.2) A(i)
i ⊇ A

(i)
i+1 ⊇ · · · ⊇ A

(i)
K for each i ∈ [K],

(c.3) |A(i)
j | = niRj for all j ≥ i and i ∈ [K].

Here, (c.1) is required for any rate-compatible code as given
in Lemma 1, and (c.2) and (c.3) are additional conditions
required for the construction of the rate-compatible polar code.

Note that a total of K(K + 1)/2 (punctured) polar codes,
covering different information-set sizes |A(i)

j | for all j ≥ i
and i ∈ [K], is involved in a K-level PCP code. The k×RK
generator matrix of a K-level PCP code is fully determined by
({C(ni, Rj ,A(i)

j }j≥i,i∈[K], {h(i)}i∈[K]) and is a concatenation
of submatrices of {Pni}i∈[K] in the form

GK =
[
S1 S2 . . . SK

]
, (17)

where Si is a k × ni matrix whose non-zero rows come
from the rows of Pni and are indexed by the set I(i) =

h(i)([|A(i)
i |]). More precisely, the m-th row of the matrix

P
(A(i)

i ,A(i)
i+1,··· ,A

(i)
K )

ni , which is a row-permuted submatrix of
Pni , is placed at the h(i)(m)-th row of Si, for every m ∈
[|A(i)

i |], while all other (k−niRi) rows of Si are zero, where
|A(i)

i | = niRi. The matrix Si defines the ”i-th level” of the
PCP code.

A key feature of a PCP code is that it is sequen-
tially decodable level-by-level if the bit-mapping functions
{h(i)(·)}i∈[K] are properly related in accordance with {A(i)

j }.
We define their proper relationships in a recursive manner
in the following. Suppose that we are given the matrices

{P(A(j)
j ,A(j)

j+1,··· ,A
(j)
K )

nj }j∈[K] as defined in (7) and that we have
already determined the submatrices {Sj}ij=1 of GK up to
the i-th level for some i ≥ 1. Also suppose that we know
the corresponding bit mapping h(j) : [njRj ] → [k] that
specifies the non-zero rows of Sj that contains the rows of

P
(A(j)

j ,A(j)
j+1,··· ,A

(j)
K )

nj for all j ∈ [i], with h(1)(·) simply defined
as h(1)(m) = m for m ∈ [k]. We now define h(i+1)(·) in terms
of {h(m)(·)}m∈[i]. To simplify notation, we define Q(i+1)

0 , 0
and for each j ∈ [i],

Q
(i+1)
j =

j∑
l=1

q
(l)
i . (18)



Now we partition the domain of h(i+1)(·), namely [ni+1Ri+1]
into disjoint sets as

[ni+1Ri+1] =

i⋃
j=1

J (i+1)
j , (19)

where

J (i+1)
j ,

{
Q

(i+1)
j−1 + 1, Q

(i+1)
j−1 + 2, · · · , Q(i+1)

j−1 + q
(j)
i

}
,

is a set of consecutive integers for all j ∈ [i]. We can now
define an bit mapping h(i+1) : [ni+1Ri+1]→ I(i+1) ⊆ [k] for
Si+1 in a piece-wise fashion as

h(i+1)(m) = h(jm)

m−Q(i+1)
jm−1 + njmRjm −

i+1∑
l=jm

q
(jm)
l

 ,

for m ∈ [ni+1Ri+1], where jm denotes the index of the
interval I(i+1)

jm
that contains integer m. Note that the image

I(j)
i , h(i+1)(J (i+1)

j ) on the set J (i+1)
j is the index set of

information bits that needs to be decoded, and subsequently
frozen, in order to convert the polar code C(nj , Ri,A(j)

i ) of
rate Ri to the polar code C(nj , Ri+1,A(j)

i+1) for all j ∈ [i] and
i ∈ [K−1] within the respective nested polar code sequences.
With this definition of {h(i)(·)}i∈[K], it can be easily shown
that a K-level PCP code can be decoded sequentially from the
polar code at level K back to level 1.

A K-level PCP code ({C(ni, Rj ,A(i)
j }j≥i,i∈[K], {h(i)}i∈[K])

clearly induces a family of rate-compatible linear codes
C = {Cn̄1

1 , Cn̄2
2 , · · · , Cn̄KK } with each member Cn̄ii having

block length n̄i ,
∑
j∈[i] nj , rate Ri, and a generator matrix

Gi =
[
S1 S2 · · · Si

]
, since {Gi}i∈[K] forms a sequence of

nested generating matrices, i.e. Gi ⊆ Gi+1 for all i ∈ [K−1].
The K-level PCP code with generator matrix GK may be
viewed as the ”mother” code of the lowest rate in the rate
compatible family.

B. Sequential Decoding

To decode the constructed parallel concatenated polar code
we use sequential decoder shown in Algorithm 1. In the

Algorithm 1 Decoding algorithm
1: procedure DECODER(yn̄K ). Input: received vector yn̄K

2: Decode nKRK bits I(K) using C(nK , RK ,A(K)
K )

3: for i = K − 1, . . . , 1 do
4: Use

⋃K−1
j=i I

(i)
j as frozen bits in C(ni, Ri,A(i)

i ) to
get C(ni, RK ,A(i)

K )

5: Decode niRK bits I(i)
K using C(ni, RK ,A(i)

K )
6: end for
7: return I(1) =

⋃K
i=1 I

(i)
K . Output: decoded bits I(1)

8: end procedure

decoding given by Algorithm 1, information bits are decoded
by K polar decoders sequentially and we use the fact that
I(i) for i = 1, . . . ,K are related by (15). The number of bit

decisions made by the sequential decoder is independent of
the number of decoding stages K and it equals the number of
information bits k. The sequential decoder approach is optimal
in the sense that it achieves the capacity as all block lengths
approach infinity.

VI. SIMULATION RESULTS: FINITE LENGTH

Performance comparison of the proposed scheme with ran-
dom puncturing is shown in Fig. 6. In Fig. 6, the mother code
in our scheme has rate R = 3/4 and the codes for lower
rates R = 1/2 and R = 1/3 are obtained using parallel
concatenated polar codes as described in previous sections (see
Table I for specific polar code descriptions). Since n3 is not of
the form of powers of two, a punctured polar code was used
for that block length where the locations of punctured bits
are uniformly distributed and the information set is optimized
by taking puncturing into account. In contrast, for random
puncturing approach, the information set is optimized for the
mother code with rate R = 1/3 and higher rates R = 1/2
and R = 3/4 are obtained by random puncturing. As a
mother code, we used a polar code with block length 512 and
information bits 171. We observe that our scheme significantly
outperforms random puncturing at rate R = 3/4 where a large
number of bits need to be punctured in the latter scheme.
At rate R = 1/3, random puncturing outperforms parallel
concatenated polar codes. This may be due to the use of
suboptimal sequential decoder where an error probability is
computed as 1−P ({all component decoders have no error}).
Namely, in the sequential decoder, it is assumed that retrans-
mitted information bits are decoded based only on current re-
ception. However, reception from the previous retransmissions
still contain useful information, and thus finite-block length
performance can be improved by employing a soft decoder;
each component code receives a soft information from other
component codes and exploits it as a priori information as
performed in Turbo code [16]. The study of an enhanced
decoder is left for a future work.

TABLE I
CODE CONSTRUCTIONS

R1 = 3/4 R2 = 1/2 R3 = 1/3
n1 = 256 k = 192 k = 128 k = 85
n2 = 128 k = 64 k = 42
n3 = 195 k = 65

VII. PROOFS

In this section, we provide the proofs of our main theorems.

A. Proof of Lemma 1

Proof: Since a rate-compatible code family is designed
for a fixed number of information bits, we have, from the
definition of the effective rate after each transmission,

k = n1R1 = n̄iRi = Ri

i∑
j=1

nj (20)



Fig. 6. Performance of the proposed scheme vs. puncturing.

for all i ∈ {2, 3, · · · ,K}. Condition (a) in the statement of
the lemma follows immediately from (20). Condition (b) can
be readily verified by substituting Condition (a) into the right
side of Condition (b). Finally, by summing Condition (b) for
consecutive values of index i, (20) can be obtained, which
in turn implies Condition (a). Conditions (a) and (b) are thus
equivalent.

B. Proof of Theorem 1

We first prove the following Proposition 1 and then apply it
with a slightly larger target puncturing fraction α′ = α/(1−ε),
ε = 1−α

1+2αR/(I(W )−R) = 1−α′
α′

I(W )/R−1
2 > 0, and a slightly

higher target rate R′ = R(1 + ε α′

1−α′ ) = (I(W ) +R) /2 <
I(W ). We obtain m∗ ∈ N such that for each m ≥ m∗, we
have a punctured polar code with block length n = b(1 −
(1 − ε)α′)2mc = b(1 − α)2mc, an information set |Am| ≥
2m(1 − α′)R′ = 2m(1 − (1 − ε)α′)R = 2m(1 − α)R ≥ nR,
and

Pe,j,m ≤ C(ε, α′)
(

2−2mβ
)
, (21)

for all j ∈ An and for some constant C(ε, α′). By sim-
ply picking a large enough constant C(ε, α′) such that
C(ε, α′)2−2m

∗β ≥ 1, the desired result (11) follows for all
m ∈ N.

Proposition 1: Consider any B-DMC W with I(W ) > 0.
For any fixed R < I(W ), β < 1

2 , 0 < ε < 1, and 0 <
α < 1, there exists a sequence of punctured polar codes, each
with block length n = b(1 − (1 − ε)α)2mc and associated
information set Am ⊂ [2m], for all integer m ≥ m?(ε, α),
such that |Am| ≥ 2m(1− α)R and

Pe,j,m ≤ O
(

2−2mβ
)

= O
(

2−n
β
)
, (22)

for all j ∈ Am.
Proof: We fix α, β, ε, and R. For the proof, we show

the existence of a sequence of capacity-achieving punctured
polar codes using a random puncturing argument. For a given

target puncturing fraction α and block length nu, an effective
puncturing fraction αnu is computed as

αnu =
nu − b(1− (1− ε)α)nuc

nu
, (23)

where notice that the effective puncturing fraction depends on
the block length nu. Since αnu ≤ (1− ε)α + 1

nu
, there exist

ε′ < ε and nu(ε′) such that

αnu ≤ (1− ε′)α, (24)

for all nu ≥ nu(ε′).
Let P(nu, αnu) denote a set of possible puncturing patterns

in {0, 1}nu with (exact) puncturing fraction αnu . Random
puncturing implies that a puncturing pattern pnu is chosen
from pnu ∈ P(nu, αnu) with probability f(pnu). Then, a
random puncturing is defined by specifying a puncturing set
P(nu, αnu) and a puncturing distribution f(pnu). In the proof,
we will design a specific puncturing set P(nu, αnu) and define
distribution f(pnu). We let P̄e,j,m denote the average bit error
probability of j-th polarized bit channel followed by random
puncturing, where the average is performed with respect to
puncturing distribution f(pnu). We will show that there exist
an information set Am, a puncturing set P(nu, αnu), and a
puncturing distribution f(pnu), such that

P̄e,j,m ≤ O
(

2−2mβ
)
, (25)

for all j ∈ Am. Therefore, there exists at least one puncturing
pattern p̂nu ∈ P(nu, αnu) that satisfies (22).

First, we find an information set for a punctured polar code
as follows. Given the target puncturing fraction α, we form
the cascade channel of binary erasure channel with erasure
probability α (denoted by BEC(α)) and W , which is denoted
by W (α). Obviously, the resulting channel W (α) is B-DMC.
From [1, Theorem 2], for W (α) and fixed R < I(W ) (i.e.,
R′ = (1 − α)R < I(W (α))), there exists a sequences of
Am ⊂ [2m] such that

|Am| ≥ 2mR′ = 2m(1− α)R (26)

Z(W (i)
nu (α)) ≤ O(2−5m/4) (27)

for all i ∈ Am. We use the stronger result on the rate
polarization from [17] that Z(W

(i)
nu (α)) ≤ O(2−2mβ ). Notice

that this information set will be used for the punctured polar
code.

Next, we show that there exist a puncturing set P(nu, αnu)
and a puncturing distribution f(pnu) such that P̄e,j,m ≤
O(2−2mβ ) for all j ∈ Am. Let ynue and ynu denote the channel
outputs of W (α) and W , respectively. Recall that Z(W i

nu(α))
denotes the upper bound on the error probability of polarized
channel j (of the cascade channel), defined by

P (Ej) ,
∑

pnu∈Ωnu,α

P (Ej,pnu )P (pnu), (28)

where Ej,pnu denotes a conditional error event of SC decoder
for the given erasure pattern pnu (induced by BEC(α)) and



Ωnu,α denotes the set of all possible erasure patterns induced
by BEC(α).

Define the empirical probability mass function (pmf) of pnu
as

π(x|pnu) =
|{i : pi = x}|

nu
for x ∈ {0, 1},

where “0” represents an erasure. Let X1, X2, ... be a sequence
of independent and identically distributed random variables
Xi ∼ P (xi = 0) = α. For X ∼ f(x) and fixed ε′ ∈ (0, 1),
define the set of ε′-typical n-sequences pnu as

T (nu)
ε′ (α) = {pnu : |π(x|pnu)− f(x)| < ε′f(x),

for all x ∈ {0, 1}. Clearly, we have that T (nu)
ε′ (α) ⊆ Ωnu,α.

Further, by the Law of Large Numbers, there exists n′u(ε′)

such that P (T (nu)
ε′ (α)) > 1 − ε′ for all nu ≥ n′u(ε′). We let

2m
?(ε,α) = max{nu(ε′), n′u(ε′)}. From now on, it is assumed

that nu ≥ max{nu(ε′), n′u(ε′)}. In (28), by replacing Ωnu,α
by T (nu)

ε′ (α), we obtain that

P (E ′j) ,
∑

pnu∈T (nu)

ε′ (α)

P (Ej,pnu )
P (pnu)

1− ε′ + δ

≤ 1

1− ε′
P (Ej), (29)

where we chose δ > 0 such that
∑
pnu∈T (nu)

ε′ (α)

P (pnu )
1−ε′+δ = 1.

Notice that such δ always exists since P (T (nu)
ε′ (α)) > 1− ε′.

Notice that, for any pnu ∈ T (nu)
ε′ (α), we have that |π(0|pnu)−

α| < ε′α and αnu ≤ (1 − ε′)α since nu ≥ nu(ε′). For
any pnu ∈ T (nu)

ε′ (α) define a mapping ξ : T (nu)
ε′ (α) →

P(nu, αnu) such that p̂nu = ξ(pnu) is obtained by removing
erasures in pnu until π(0|p̂nu) = αnu , and the positions of
erasures removed are chosen with natural ordering. Using this,
define

P (p̂nu) ,
∑

pnu :ξ(pnu )=p̂nu

P (pnu)

1− ε′ + δ
. (30)

Clearly,
∑
p̂nu∈ξ

(
T (nu)

ε′ (α)
) P (p̂nu) = 1. Then, we show that

P (E ′′j ) ,
∑

p̂nu∈ξ
(
T (nu)

ε′ (α)
)P (Ej,p̂nu )P (p̂nu)

=
∑

p̂nu∈ξ
(
T (nu)

ε′ (α)
)P (Ej,p̂nu )

∑
pnu :ξ(pnu )=p̂nu

P (pnu)

1− ε′ + δ

(a)

≤
∑

p̂nu∈ξ
(
T (nu)

ε′ (α)
)

∑
pnu :ξ(pnu )=p̂nu

P (Ej,pnu )
P (pnu)

1− ε′ + δ

= P (E ′j), (31)

where (a) is due to the fact that P (Ej,p̂nu ) ≤ P (Ej,pnu ) for any
pnu ∈ ξ−1({p̂nu}), i.e., deleting erasures does not increase an
error. From (29) and (31), we obtain that

P (E ′′j ) ≤ 1

1− ε′
P (Ej). (32)

We are now ready to define our random puncturing with
puncturing fraction αnu by choosing

P(nu, αnu) = ξ
(
T (n)
ε (α)

)
(33)

f(pnu) = P (p̂nu), (34)

where P (p̂nu) is defined in (30). From (32), we can show
that, for all nu ≥ max{nu(ε′), n′u(ε′)} (equivalently, m ≥
m?(ε, α)),

P̄e,j,m = P (E ′′j ) ≤ 1

1− ε′
P (Ej) ≤ Z(W (α)(j)

nu ) ≤ O
(

2−2mβ
)
,

for all j ∈ Am where Am is defined over the cascade channel
W (α). Therefore, there exists at least one puncturing pattern
p̂nu ∈ P(nu, αnu) that satisfies (22). This completes the proof.

C. Proof of Theorem 2

For given degraded channels W1 � W2 � . . . � WK , we
consider a family of rate-compatible polar code (Cn̄1

1 , . . . Cn̄KK )
with respective block lengths n̄1 < . . . < n̄K and correspond-
ing rates R1 > . . . > RK given by (13).

As described in Section V-A, this code is fully character-
ized by a collection of K sequences of nested (punctured)
polar codes {C(ni, Rj , A(i)

j )}j≥i,i∈[K] which satisfy the three
conditions in Definition 2 as

(c.1) Ri = k/n̄i for all i ∈ [K],
(c.2) A(i)

i ⊇ A
(i)
i+1 ⊇ · · · ⊇ A

(i)
K for each i ∈ [K],

(c.3) |A(i)
j | = niRj for all j ≥ i and i ∈ [K].

Note that the number of information bits equals |A(1)
1 |.

Fix Ri, i = 1, . . . ,K, such that I(Wi) > Ri > I(Wi) − ε
for any ε > 0. We first explain how to choose block lengths
{ni}i∈[K] and information sets {A(i)

j }j≥i,i∈[k], in order to
construct the above polar codes. We choose n1 = (1−α1)2m1

for some α1 ∈ [0, 1) and m1 ∈ N. Furthermore, we choose,
for i = 2, . . . ,K lengths of the form ni = (1−αi)2mi where
αi ∈ [0, 1) and mi ∈ N as

ni = R1

(
1

Ri
− 1

Ri−1

)
n1. (35)

Notice that there exist m∗1 and α1 such that all ni is an integer
for all i = 2, . . . ,K, since each Ri is a rational number.
Assuming that m1 ≥ m∗1, the ni can be expressed in the
form of ni = (1 − αi)2m1+li for some non-negative integer
li, i.e., mi = m1 + li for all i = 2, . . . ,K.

From Theorem 1, for fixed ni and channels {Wj}j=i,...,K ,
there exist information sets {A(i)

j }j=i,...,K such that

|A(i)
j | = Rjni, (36)

and an error probability Pe,l,mi is bounded by O(2−2miβ )

for any fixed β < 1
2 and l ∈ A(i)

j . Since m1 ≤ mi for all
i ≥ 2, the error probability is bounded by O(2−2m1β

) for
all punctured polar codes that used in sequential decoders.
Therefore, there exists a sufficiently large m†1 ≥ m∗1 such that
for all m1 ≥ m†1, the error probability condition in (5) holds.



Finally, we show that our choices of {ni}i∈[K] and
{A(i)

j }j≥i,i∈[K] satisfy the three conditions that are required
to hold by our code construction. From [15, Lemma 4.7], it
follows that A(i)

i ⊇ A
(i)
i+1 ⊇ . . . ⊇ A

(i)
K for each i ∈ [K]. The

condition (c.3) immediately holds from (36). We then show
that the condition (c.1) is satisfied since for all i ∈ [K], we
have that

n̄i =

i∑
j=1

nj
(a)
=

R1

Ri
n1 =

k

Ri
, (37)

where (a) follows by (35) and by telescoping sum. This
completes the proof.

D. Proof of Theorem 3

We first prove the sufficiency of (12). Fix `i ∈ Z for i =
1, . . . ,K. Then, it is assumed that

I(Wi) =
I(W1)

1 +
∑i
j=2 2`j

, (38)

for i = 1, . . . ,K. The proof follows from the proof of
Theorem 2 with the additional constraints that, due to the
length limitation of polar codes, ni should have the form of
powers of two for all i ∈ [K].

Fix R1 such that I(W1) > R1 > I(W1)− ε for any ε > 0.
Then, we choose Ri, i = 2, . . . ,K, such that

Ri =
R1

1 +
∑i
j=2 2lj

. (39)

Using (38) and (39), we have that

0 > Ri − I(Wi) =
R1 − I(W1)

1 +
∑i
j=2 2lj

> −ε, (40)

for i = 2, . . . ,K. We first choose n1 = 2m1 for some m1 ∈ N.
Then, the choices of {Ri}i∈[K] in (39) guarantees that, for
i = 2, . . . ,K, ni has the form of powers of two since by
plugging (39) into (35), we have:

ni = R1

(
1

Ri
− 1

Ri−1

)
n1

= 2lin1 = 2m1+li .

The rest of proof exactly follows the proof of Theorem 2.
Next we prove the necessity of (12). From the definition of

the effective rates in (13) that any rate-compatible code family
must satisfy, we have

Ri =
R1

1 +
∑i
j=2

nj
n1

(41)

for all i ∈ [K] by substituting k = n1R1. If the code family
is a family rate-compatible polar codes, a polar code can be
used in each transmission, and thus we must have that for each
j ∈ [K],

nj
n1

= 2lj (42)

for some lj ∈ Z due to the length limitation of polar codes.
Since the set 2Z , {2l : l ∈ Z} is not dense in R, it

is not hard to see that those capacities {I(Wi)}i∈[K] who
can be approached by the rates {Ri}i∈[K] that satisfy (41)
and (42) must satisfy (12). To show this rigorously, suppose
{I(Wi)}i∈[K] cannot be expressed in the form of (12). Define

ε∗ , inf
{lj∈Z}j∈[K]

max
i∈[K]

∣∣∣∣∣I(Wi)−
I(W1)

1 +
∑i
j=2 2lj

∣∣∣∣∣ . (43)

Since {I(Wi)}i∈[K] are all distinct and are strictly positive,
there must exist a shell S(γ) , {x ∈ R : γ−1 < |x| < γ} for
some sufficiently large γ > 0 such that

ε∗ = inf
{lj∈Z∩S(γ)}j∈[K]

max
i∈[K]

∣∣∣∣∣I(Wi)−
I(W1)

1 +
∑i
j=2 2lj

∣∣∣∣∣
(a)
= min
{lj∈Z∩S(γ)}j∈[K]

max
i∈[K]

∣∣∣∣∣I(Wi)−
I(W1)

1 +
∑i
j=2 2lj

∣∣∣∣∣
(b)
> 0

where (a) follows since Z∩S(γ) is a finite (nonempty) set, and
(b) follows from the assumption that (12) cannot be satisfied.
Now if there exists a sequence of capacity-achieving rate-
compatible polar codes, then there must exist a set of rates
{Ri}i∈[K] that satisfies (41), (42), and

max
i∈[K]

|I(Wi)−Ri| <
ε∗

2
. (44)

It follows that there exists li ∈ Z for each i ∈ [K] such that

max
i∈[K]

∣∣∣∣∣I(Wi)−
I(W1)

1 +
∑i
j=2 2lj

∣∣∣∣∣
(c)
= max

i∈[K]

∣∣∣∣∣I(Wi)−Ri +
R1 − I(W1)

1 +
∑i
j=2 2lj

∣∣∣∣∣
≤ max

i∈[K]
|I(Wi)−Ri|+ max

i∈[K]
|R1 − I(W1)|

(d)
<
ε∗

2
+
ε∗

2
= ε∗ (45)

which contradicts (43), where (c) follows from (41) and (42),
and (d) follows from (44).

VIII. CONCLUSION

A method of constructing rate-compatible polar codes that
are capacity-achieving with low-complexity sequential de-
coders is presented. The proposed code construction allows
for incremental retransmissions at different transmission rates
in order to adapt to channel conditions. The main idea of the
construction exploits common characteristics of polar codes
optimized for a sequence of degraded channels. Due to the
length limitation of polar codes, the proposed construction
cannot support an arbitrary sequence of rates, and we char-
acterize the rates that can be supported. We then present
capacity-achieving punctured polar codes that provide more
flexibility on block length by controlling a puncturing fraction.
We finally show that by using such punctured polar codes, the
proposed rate-compatible polar code is capacity-achieving for



an arbitrary sequence of rates and for any class of degraded
channels. The proposed approach uses an optimized polar code
to produce the proper amount of incremental redundancy at
every HARQ transmission thereby achieving capacity.
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