
On Caching with More Users than Files
Kai Wan

Laboratoire des Signaux et Système (L2S)
CentraleSupélec-CNRS-Université Paris-Sud

Gif-sur-Yvette, France
Email: kai.wan@u-psud.fr

Daniela Tuninetti
University of Illinois at Chicago

Chicago, IL 60607, USA
Email: danielat@uic.edu

Pablo Piantanida
Laboratoire des Signaux et Système (L2S)

CentraleSupélec-CNRS-Université Paris-Sud
Gif-sur-Yvette, France

Email: pablo.piantanida@centralesupelec.fr

Abstract—Caching appears to be an efficient way to reduce
peak hour network traffic congestion by storing some content at
the user’s cache without knowledge of later demands. Recently,
Maddah-Ali and Niesen proposed a two-phase, placement and
delivery phase, coded caching strategy for centralized systems
(where coordination among users is possible in the placement
phase), and for decentralized systems. This paper investigates
the same setup under the further assumption that the number
of users is larger than the number of files. By using the
same uncoded placement strategy of Maddah-Ali and Niesen,
a novel coded delivery strategy is proposed to profit from the
multicasting opportunities that arise because a file may be
demanded by multiple users. The proposed delivery method is
proved to be optimal under the constraint of uncoded placement
for centralized systems with two files; moreover it is shown to
outperform known caching strategies for both centralized and
decentralized systems.

I. INTRODUCTION

Caching is a popular method to smooth out network traffic
in broadcasting systems, where some content is cached into the
user’s memory during off peak hours in the hope that the pre-
stored content will be required by the user during peak hours
and thus, reducing the number of broadcast transmissions from
the server to the users.

System model: In this paper, we study a system with N files
available at a server that is connected to K users; each user
has a cache of size M to store files; users are connected to
the server via a shared error-free link. The caching procedure
assumes two phases. (1) Placement phase: where users store
(coded or uncoded) pieces of the files within their cache
without knowledge of later demands. When the file pieces are
not network coded we say that the placement phase is uncoded,
otherwise that it is coded. (2) Delivery phase: where each user
demands a specific file and, based on the users’ demands and
cache content, the server broadcasts packets so that each user
can recover the demanded file. The objective of the system
designer is to provide a two-phase scheme so that the number
of transmitted packets, or load, in the delivery phase for the
worst-case demands is minimized.

Coordinated cache placement: Maddah-Ali and Niesen
proposed [1] a coded caching scheme that utilizes an uncoded
combinatorial cache construction in the placement phase and
a linear network code in the delivery phase, where users store
contents in a coordinated manner. The worst-case load of the
Maddah-Ali and Niesen scheme (refer to as MNS) was shown

to be no larger than K
(
1− M

N

)
min

{
1

1+K M
N

, N
K

}
, which has

the additional global caching gain 1
1+KM/N compared to the

conventional uncoded caching scheme. MNS was shown to be
optimal [2] under the constraint of uncoded cache placement
and N ≥ K, and order optimal [1] to within a factor of 12
of the cut-set outer bound. The authors in [3] showed that a
scheme based on coded cache placement, originally proposed
in [1] for N = 2, is optimal when N ≤ K and MK ≤ 1
while providing a load of N(1−M) which coincides with the
cut-set outer bound. Recently, reference [4] studied the case
N = 2 and M ≤ K−1

K , and proposed a scheme with coded
cache placement yielding a lower load than MNS.

Un-coordinated cache placement: The previously men-
tioned works assumed that the K connected users are the same
during both phases. However, this may not always be the case
in practice (e.g. due to user mobility) where a user may be
connected to one server during his placement phase but to a
different one during his delivery phase. In this decentralized
scenario, each server must carry out independently the two
phases of caching and thus, the coordination (among users)
during the placement phase is not possible. In [5], Maddah-
Ali and Niesen proposed that each user fills its cache randomly
and independently of the others. During the delivery phase, the
bits of N files are organized into sub-files depending on which
users know, each of which is delivered by using the delivery
strategy in [1] for centralized systems. The corresponding load
was shown to be K

(
1− M

N

)
min

{
N

KM (1− (1− M
N)K), N

K

}
,

where the factor N
KM

[
1− (1− M

N)K
]

represents an addi-
tional global caching gain compared to the conventional un-
coded caching.

A delivery phase with load equal to the fractional local
chromatic number (described in [6]) of the directed graph
formed by the users’ demands and caches was shown in [7],
[8] for centralized and decentralized scenarios, respectively.
Since the computation of the fractional local chromatic number
is NP-hard, the authors in [9], [10] proposed approximate
algorithms to simplify computations.

Our contribution: In [2], we showed that for N ≥ K and
under the constraint of uncoded cache placement, MNS is op-
timal. In this work, motivated by practical considerations (e.g.,
a server has several popular music or video files that are widely
demanded by different users), we study the case N < K
where same sub-files may be demanded by multiple users.

ar
X

iv
:1

60
1.

06
38

3v
2

 [
cs

.I
T

]
 2

6
Ja

n
20

16

It is worthing noting that MNS cannot be used to multicast
files since it considers each sub-file demanded by each user
as a district sub-file. With the goal of multicasting messages,
we design a delivery phase for the case of N < K that is
applicative to both centralized and decentralized scenarios.
The proposed delivery method is shown to achieve the optimal
load under the constraint of uncoded placement for centralized
systems with two files and to outperform known caching
strategies for both centralized and decentralized scenarios.

Paper Outline: The rest of the paper is organized as follows.
Section II presents the system model. Section III introduces
the main results. Section IV compares by numerical results
the proposed scheme to existing ones. Finally, Section V
presents summary and discussion while some technical proofs
are relegated to the Appendix.

Notations: Calligraphic symbols denotes sets; | · | is used
to represent the cardinality of a set or the length of a file; we
denote [1 : K] := {1, 2, ...,K} and A \ B := {x ∈ A|x /∈ B};
⊕ represents the bit-wise XOR operation, and

(
K
t

)
is the

binomial coefficient.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a broadcasting caching system that consists of a
center server with N files, denoted by (F1, F2, . . . , FN), and
K users connected to it through an error-free link. Each file
has F � 1 bits. Here we assume N < K and that each file
is requested by each user with identical probability.

During the placement phase, user i ∈ [1 : K] stores content
from N files in his cache of size MF bits without knowledge
of later demands, where M ∈ [0, N]. We denote the content
in the cache of user i by Zi; we also let Z := (Z1, . . . , ZK).
Centralized systems allow for coordination among users in the
placement phase, while decentralized systems do not. In the
delivery phase, each user demands one file and the demand
vector d := (d1, d2, . . . , dK) is revealed to the server, where
di ∈ [1 : N] is the file demanded by user i ∈ [1 : K].

Given (Z,d), the server broadcasts a message Xd,Z with
normalized length (by the file size F) R(d,M). It is required
that user i ∈ [1 : K] recovers his desired file Fdi

from Xd,Z

and Zi with high probability. The objective is to minimize the
worst-case network load: R(M) = min max

d
R(d,M).

III. MAIN RESULTS

We propose a caching scheme that attains the following
memory-load tradeoffs for centralized systems.

Theorem 1 (Centralized). For centralized systems, the lower
convex envelope of Rp(M) is achievable with t ∈ [0 : K] and

Rc(M) =


N(1−M), M = 1

K ,

Rco(M), M = tNK , 0 ≤M < Mth,
K(1−M

N)

1+K M
N

, M = tNK ,Mth ≤M ≤ N,

(1)

Rco(M) = N −M − M(N − 1)K(N −M)

N2(K − 1)
, (2)

Mth := N
NK − 2N + 1−

√
f(N,K)

2K(N − 1)
, (3)

f(N,K) := (NK − 2N + 1)2 − 4(N − 1)(K −N)(K − 1).
(4)

The same idea applied to decentralized systems attains the
following memory-load tradeoff.

Theorem 2 (Decentralized). For decentralized systems, the
lower convex envelope of Rd(M) is achievable with M ∈
[0, N], q := M/N and

Rd(M) = N(1− q)C(tth,K − 1, q)− (N − 1)q(q − 1)

C(tth − 1,K − 2, q) +
1− q

q
(1− C(tth + 1,K, q)), (5)

C(x, y, q) :=

x∑
i=0

(
y

i

)
qi (1− q)

y−i
. (6)

We next derive an outer bound under the constraint of un-
coded cache placement and K > N and prove the optimality
of the proposed achievable scheme for N = 2.

Theorem 3 (Optimality for N = 2). The minimal load under
the constraint of uncoded cache placement and K > N = 2
for the aforementioned centralized systems, is Rco(M) in (2)
and is achieved by the proposed scheme.

The rest of the Section is firstly devoted to the proof of
Theorem 1 and Theorem 2. The main idea is to consider the
multicasting opportunities that arise for the case of N < K.
Due to space limitation, the proof of Theorem 3 is only
outlined.

A. Proof of Theorem 1

We start by describing our scheme and computing the load
for M = tNK , where t ∈ [0 : K]. The complete memory-
load tradeoff is obtained as the lower convex envelope of the
derived points, which can be achieved by memory sharing.

Placement Phase: The cache placement phase is as in the
MNS. Each file is split into

(
K
t

)
non-overlapping sub-files of

identical size given by F

(Kt)
, where t = KM

N ∈ [0 : K]. Each

sub-file of Fi is denoted by Fi,W where W ⊆ [1 : K] such
that |W| = t. User j ∈ [1 : K] stores Fi,W for all i ∈ [1 : N]
in his cache if and only if j ∈ W .

Delivery Phase: The delivery phase is divided into two
steps. We consider the worst case demand where each file
is demanded by at least one user. Let Gi be the set of users
who demand file Fi, for i ∈ [1 : N].

Step 1: We divide the sub-files of Fi into several groups
indicated as Oi,J := {Fi,W : W \ Gi = J }, where J ⊆ [1 :

K] \ Gi and max{0, t − Gi} ≤ |J | ≤ t. There are
(|Gi|
t−|J |

)
sub-files in Oi,J . Each user in Gi wants to recover all the sub-
files in Oi,J and knows

(|Gi|−1
t−|J |−1

)
of them. Note that when

|J | = t, we assume
(|Gi|−1
t−|J |−1

)
= 0. The authors in [5] showed

that this kind of problem can be solved by using m−d random
linear combinations of all the m bits, where m and d are
number of bits to encode and minimum number of bits known
at each decoder. Since m and d tend to infinite, the m − d
random linear combinations are linearly independent with high
probability, thus each decoder can recover all the m bits with

high probability. Hence, in order to delivery all the sub-files in
Oi,J to the users in Gi, we can use

[(|Gi|
t−|J |

)
−
(|Gi|−1
t−|J |−1

)]
F

(Kt)
random linear combinations of all the

(|Gi|
t−|J |

)
F

(Kt)
bits in Oi,J .

We define Ci,J as the code for Oi,J . With the Pascal’s triangle(
|Gi|

t− |J |

)
−
(
|Gi| − 1

t− |J | − 1

)
=

(
|Gi| − 1

t− |J |

)
, (7)

it can be seen easily that Ci,J has
(|Gi|−1
t−|J |

)
F

(Kt)
bits. Note that

when |J | = t − Gi, the right side of (7) is 0. Let vi,t :=
max{0, t − Gi + 1}. As a consequence, for each J where
J ⊆ [1 : K] \ Gi and vi,t ≤ |J | ≤ t, we use random linear
combinations as described above to encode Oi,J . We define Ci
as the set of Ci,J for all J ⊆ [1 : K] \ Gi and vi,t ≤ |J | ≤ t.
The number of bits in Ci is equal to (see Appendix)∑
J⊆[1:K]\Gi:vi,t≤|J |≤t

(
|Gi| − 1

t− |J |

)
F(
K
t

) =

(
K − 1

t

)
F(
K
t

) . (8)

Let Cstep1 denote set of bits in Ci for all i ∈ [1 : N], where
Cstep1 has N

(
K−1

t

)
F

(Kt)
bits. If the server transmits Cstep1, each

user would be able to recover his desired file with very high
probability. However, by doing so we have some redundancy
left, which motivates the next step.

Step 2: For file Fi and user j /∈ Gi, user j knows some bits
in Ci. More precisely, user j knows Ci,J if j ∈ J and hence,
the number of bits in Ci known by j is (see Appendix)∑
J⊆[1:K]\Gi:vi,t≤|J |≤t,j∈J

(
|Gi| − 1

t− |J |

)
F(
K
t

) =

(
K − 2

t− 1

)
F(
K
t

) .
(9)

Considering Ci for all i such that user j /∈ Gi, the total
number of bits known by j is (N − 1)

(
K−2
t−1
)

F

(Kt)
. We can use[

N
(
K−1

t

)
− (N − 1)

(
K−2
t−1
)]

F

(Kt)
random linear combinations

to encode Cstep1. As a result by letting t = KM
N ∈ [0 : K], the

load of our scheme is Rco(M) in (2).
Compared to the delivery method in the MNS, whose load

is K(1− M
N)min

{
1

1+K M
N

, N
K

}
, it can be shown that for 0 ≤

M ≤ N ,

Rco(M) ≤ K(1− M

N
)
N

K
= N −M.

We can also find that if 0 ≤M < Mth,

Rco(M) < K(1− M

N
)

1

1 +KM
N

,

and that if Mth ≤M ≤ N ,

Rco(M) ≥ K(1− M

N
)

1

1 +KM
N

,

where the threshold Mth was given in (3).
Finally, by memory sharing the caching scheme in [3]

(which is optimal for M = 1/K) together with the above
proposed scheme, we have the load is no larger than the lower
convex envelope of Rp(M) described in (1).

A45A45 B45B45

B12B12 B13B13 B23B23

B24B24 B34B34

O1,; O1,4 O1,5 O1,45 O2,; O2,1 O2,2 O2,3

O2,12 O2,13 O2,23

A12

A13

A23

A14

A24

A34

A15

A25

A35

B14

B15 B25 B35

Fig. 1: Groups of sub-files for the example N = 2, K = 5,
M = 4/5 and d = (1, 1, 1, 2, 2).

Example: In order to clarify the steps of the proposed
scheme, we analyse here in detail the case N = 2, K = 5,
M = 4/5, and F1 = A, F2 = B. With these parameters we
have t = KM

N = 2 and we therefore split each of the two
files A and B into

(
K
t

)
= 10 non-overlapping sub-files of size

equal to F
10 . For simplicity in the following we omit the braces

when we indicate sets, i.e., A12 represents A{12}.
In the placement phase we set Zj = {Fi,W :

j ∈ W, |W| = t} for i = {1, 2}, e.g., Z1 =
{A12, A13, A14, A15, B12, B13, B14, B15}. In the delivery
phase, since Mth = 1.2 > M = 4/5 = 0.8, the novel proposed
two-step method is used. We consider the worse-case demand
vector G1 = {1, 2, 3} and G2 = {4, 5}.

In step 1, we divide the sub-files of A into several groups,
O1,J = {F1,W : W \ G1 = J }, where J ⊆ {4, 5} and
|J | ≤ 2. Similarly, O2,J = {F2,W : W \ G2 = J }, where
J ⊆ {1, 2, 3} and |J | ≤ 2. The groups can be seen in
Fig. 1, identified by different colors. For each group Oi,J ,
each user in Gi wants to recover all the

(|Gi|
t−|J |

)
sub-files in

this group and knows
(|Gi|−1
t−|J |−1

)
of them. For instance, for

O1,4 = {A14, A24, A34}, each of the users in G1 = {1, 2, 3}
wants to recover O1,4 whose length is 3F

10 , while user 1 knows
A14, user 2 knows A24, and user 3 knows A34. We can use
3F
10 −

F
10 random linear combinations of the bits in O1,4. So

C1,4 has F
5 bits. By using the same method to encode all the

groups, the numbers of bits in C1,0, C1,4, C1,5, C1,45, C2,0, C2,1,
C2,2, C2,3, C2,12, C2,13, C2,23 are F

10 , F
5 , F

5 , F
10 , 0, F

10 , F
10 , F

10 ,
F
10 , F

10 , F
10 , respectively. The total number of bits in Cstep1 is

6F
5 .

In step 2, it is easy to check that among all the codes Cstep1,
user 1 knows C2,1, C2,12 and C2,13, i.e., 3F

10 bits. Similarly, in
Cstep1 each user knows 3F

10 bits. Hence we can use 6F
5 −

3F
10 =

9F
10 random linear combinations of the bits in Cstep1. As a result
each user can recover each sub-files of his desired file and the
load is 0.9 while the MNS in [1] requires 1. This represents
10% saving over the MNS scheme.

B. Proof of Theorem 2

Following similar steps to [5], we can extend our proposed
delivery method to decentralized systems as well. Note that
since in decentralized systems no coordination among users is
possible, we can not utilize the caching scheme in [1].

Placement Phase: The cache placement phase is the same
as in [5]. For each M ∈ [0, N], user k independently caches a
subset of MF

N bits of each file, chosen uniformly at random.
Given the cache content of all the users, we can group the bits
of the files into sets Fi,W , where Fi,W is the set of bits of
file i which are only known by the users in W ⊆ [1 : K]. By
Law of Large Numbers we have

|Fi,W |
F

≈
(
M

N

)|W|(
1− M

N

)K−|W|
, for F � 1.

Delivery Phase: We divide the sub-files into groups, DGi =
{Fi,W : |W| = i} where i ∈ [0 : K − 1]. The delivery phase
described for centralized systems can be used for the sub-files
of DGi for each i.

If we transmit all the coded bits of the groups, each user
can recover his desired file. The load of the proposed method
for decentralized systems is thus

Rd(M) =

btthc∑
i=0

(
N

(
K − 1

i

)
− (N − 1)

(
K − 2

i− 1

))
·

qi (1− q)
K−i

+

K−1∑
i=btthc+1

(
K

i+ 1

)
qi (1− q)

K−i
,

where tth := KMth/N and q := M
N . After some simple

algebraic manipulations, it is easy to check Rd(M) can be
expressed as in (5). Finally, the memory-load trade-off of the
proposed scheme is the lower convex envelope of Rd(M).

C. Sketch of the Proof of Theorem 3

Assume each file is demanded by at least one user. We
denote the worst-case load under the constraint of uncoded
placement by Ru(M). We choose N users with different
demands in the user set [1 : K]. The chosen user set is
denoted by C = {c1, c2, ..., cN} where c1 < c2 < ... < cN
and ci ∈ [1 : K]. We assume user ci demands dci , where
dci , i ∈ [1 : N] and dci 6= dcj if i 6= j. By considering
uncoded placement and that other users do not require any
file, the delivery phase is an index coding problem where
each message is demanded by only one user. We denote the
worst-case load of the above case by n(M). It is obvious that
Ru(M) ≥ n(M). Hence we can use the same method as [2]
based on the index coding graph where each node represents
a sub-file demanded by one user as argued in [2]. The only
difference is that u = (u1, u2, ..., uN) is a permutation of C.
So by following [2], it is not difficult to generate the following
outer bound for n(M),

n(M) ≥
K∑
i=0

(
K−1

i

)
+
(
K−2

i

)
+ ...+

(
K−N

i

)
N
(
K
i

) xi, (10)

x0 + x1 + ...+ xK = N, (11)
x1 + 2x2 + ...+ ixi + ...+KxK = KM, (12)

where xt is the total length of the sub-files that are known
by t users, t ∈ [0 : K]. For N = 2, we eliminate xt for
t ∈ [0 : K] in the system of inequalities (10)-(12) and get

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M

L
o
a
d

Rc(M)

MNS of [1]

[7]+GCC

[4]

Fig. 2: The memory-load trade-off for a centralized system
with N = 2 and K = 10.

an outer bound for the load n(M). In [2] we proposed an
elimination method to this kind of problem. Please find the
details of the elimination in Appendix. Finally, we can see
that the above outer bound for n(M) coincides with the lower
convex envelope Rco(M) in (2) for N = 2. Next we give an
example to understand the elimination method.

Example: In the Section III-A where N = 2, K = 5 and
M = 0.8, it was shown that the proposed delivery scheme
leads to a load equal to 0.9. Now we prove its optimality.

From expressions (10)-(12), we have that

n(M) ≥
4∑

i=0

(5− i)(8− i)

40
xi, (13)

x0 + x1 + x2 + x3 + x4 + x5 = 2, (14)
x1 + 2x2 + 3x3 + 4x4 + 5x5 = 5M. (15)

Then we sum (14)× 19
20 and (15)×−14 , to find

− 7

10
x1−

9

20
x2−

1

5
x3+

1

20
x4+

3

10
x5+

19

10
− 5

4
M = 0. (16)

At last we take (16) into (13), and we can have

n(M) ≥ 19

10
− 5

4
M +

1

20
x0 +

1

20
x3 +

3

20
x4 +

3

10
x5

≥ 19

10
− 5

4
M.

When M = 4/5, Ru(M) ≥ n(M) ≥ 0.9 which is equal to
the load of the proposed scheme. By using the same method
we can know that for any K > N = 2 and M ∈ [0, N], the
proposed scheme is optimal under the constraint of uncoded
placement.

IV. NUMERICAL RESULTS

A. Centralized Systems

We compare the achievable load with our proposed scheme
in (1) with that of the schemes in [1], [4], [7]. Since the
scheme in [3] is optimal when 0 ≤ M ≤ 1

K , we memory-
share each considered scheme with the one in [3]. Note that [7]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

M

L
o

a
d

Rd(M)

MNS of [5]

[8]+GCC

Fig. 3: The memory-load trade-off for a decentralized system
with N = 4 and K = 8.

uses the local chromatic number, whose computation is NP-
hard; here in order to simplify the computations we use the
approximate algorithms GCC, HgLC and GRASP proposed
in [9], [10]. Numerically we find that for centralized system
GCC performs better than the other simplification methods.
Therefore, in order to have a less cluttered figure, we only plot
GCC. We also do the numerical evaluations for the MNS and
the scheme in [4]. Fig. 2 shows the memory-load trade-offs for
a centralized system with N = 2 and K = 10. We can see the
scheme in [7] with GCC has the same performance as the MNS
and the improvement from the scheme in [4] to the MNS is
negligible. Furthermore, the proposed scheme improves on the
MNS. For instance, when M = 1, the proposed scheme (with
load 0.722) reduces 9.1% of the load of the MNS (0.794).

B. Decentralized Systems

In decentralized scenarios, the caching schemes in [3]
and [4] with coordinated cache placement can not be used.
The scheme in [8] is similar to the one in [7], where the
main difference relies on the use of random placement for the
first one. In order to compute the local chromatic number,
the approximate GCC, HgLC and GRASP algorithms are
used. The authors in [9], [10] claimed that for decentralized
system with uniform demands and infinite file size, GCC
performs better than other simplification methods. Hence, we
compare the scheme in [7] with GCC, Rd(M) in (5) and the
decentralized MNS in [5] in the numerical evaluations.

Fig. 3 shows the memory-load trade-offs for a decentralized
system with N = 4 and K = 8. The decentralized MNS and
the scheme in [7] with GCC have the same performance, while
the proposed scheme performs better than the other ones. For
instance, when M = 1.2, the proposed scheme (with load
1.894) reduces 9.9% of the load of the decentralized MNS
(2.102).

V. CONCLUSION AND FURTHER WORK

We investigated the caching problem for centralized and
decentralized systems with more users than files, which im-

plies a file may be demanded by several users. We proposed
a novel delivery method leveraging multicasting opportunities
with the cache placements of the MNS. We showed that under
the constraint of uncoded placement and K > N = 2, the pro-
posed scheme is optimal for centralized systems. Furthermore,
numerical results showed that our proposed scheme outper-
forms previous schemes for both centralized and decentralized
systems.

Further work includes studying coded cache placement and
coded delivery schemes while establishing outer bounds and
optimality results beyond those derived in this paper.

ACKNOWLEDGMENTS

The work of K. Wan and D. Tuninetti is supported by Labex
DigiCosme and in part by NSF 1527059, respectively.

APPENDIX

Firstly we recall the Vandermonde’s identity:(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

From (8), ∑
J⊆[1:K]\Gi:max{0,t−Gi+1}≤|J |≤t

(
|Gi| − 1

t− |J |

)

=

min(|[1:K]\Gi|,t)∑
k=max{0,t−Gi+1}

∑
J⊆[1:K]\Gi:|J |=k

(
|Gi| − 1

t− k

)

=

min(|[1:K]\Gi|,t)∑
k=max{0,t−Gi+1}

(
|Gi| − 1

t− k

)(
K − |Gi|

k

)
=

(
K − 1

t

)
.

Similarly from (9),∑
J⊆[1:K]\Gi:max{0,t−Gi+1}≤|J |≤t,j∈J

(
|Gi| − 1

t− |J |

)

=

min(|[1:K]\Gi|,t)∑
k=max{0,t−Gi+1}

∑
J⊆[1:K]\Gi:|J |≤k,j∈J

(
|Gi| − 1

t− k

)

=

min(|[1:K]\Gi|,t)∑
k=max{1,t−Gi+1}

(
|Gi| − 1

t− k

)(
K − |Gi| − 1

k − 1

)
=

(
K − 2

t− 1

)
.

Finally we will show the elimination of xt for t ∈ [0 : K]
in the system of inequalities (10)-(12).

If N = 2, (10)-(12) becomes

n(M) ≥
K∑
i=0

(K − i)(2K − i− 2)

2K(K − 1)
xi, (17)

x0 + x1 + ...+ xK = 2, (18)
x1 + 2x2 + ...+ ixi + ...+KxK = KM. (19)

For a q ∈ [1 : K] we want to eliminate xq and xq−1 in (17)
by the help of (18) and (19).

From (18), we have

2K2 − 2K − q2 + q

2K(K − 1)
(xq−1 + xq)

=
2K2 − 2K − q2 + q

2K(K − 1)
(2−

∑
i∈[0:K]:i6=q−1,q

xi). (20)

From (19), we have

2q − 3K + 1

2K(K − 1)
(q − 1)xq−1 +

2q − 3K + 1

2K(K − 1)
qxq

=
2q − 3K + 1

2K(K − 1)
KM − 2q − 3K + 1

2K(K − 1)

∑
i∈[0:K]:i6=q−1,q

ixi.

(21)

Then we sum (20) and (21),

(K − q)(2K − q − 2)

2K(K − 1)
xq−1 +

(K − q + 1)(2K − q − 1)

2K(K − 1)
xq

=
2K2 − 2K − q2 + q

2K(K − 1)
(2−

∑
i∈[0:K]:i 6=q−1,q

xi)+

2q − 3K + 1

2(K − 1)
M +

2q − 3K + 1

2K(K − 1)

∑
i∈[0:K]:i 6=q−1,q

ixi

=
2q − 3K + 1

2(K − 1)
M +

2K2 − 2K − q2 + q

K(K − 1)
+∑

i∈[0:K]:i 6=q−1,q

2K2 + 2K + 3Ki+ q2 − q − 2qi− i

2K(K − 1)
xi.

(22)

Take (22) into (17),

n(M) ≥
K∑
i=0

(K − i)(2K − i− 2)

2K(K − 1)
xi

≥ 2K2 − 2K − q2 + q

K(K − 1)
+

2q − 3K + 1

2(K − 1)
M

+

K∑
i=0

(q − i)(q − i− 1)

2K(K − 1)
xi

≥ 2K2 − 2K − q2 + q

K(K − 1)
+

2q − 3K + 1

2(K − 1)
M. (23)

When M = Nq/K, (23) becomes

n(M) ≥ 2K2 − 2K − q2 + q

K(K − 1)
+

2q − 3K + 1

2(K − 1)

2q

K

=
2(K − q)

K
− q(K − q)

K(K − 1)
.

When M = N(q − 1)/K, (23) becomes

n(M) ≥ 2K2 − 2K − q2 + q

K(K − 1)
+

2q − 3K + 1

2(K − 1)

2(q − 1)

K

=
2(K − q + 1)

K
− (q − 1)(K − q + 1)

K(K − 1)
.

Hence for N(q−1)
K ≤M ≤ Nq

K , we can see the linear outer
bound of n(M) in (23), as well as Ru(M), coincides with the
lower convex envelop of the load of our proposed load in (2).

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856–2867, May. 2014.

[2] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” arXiv:1511.02256, Nov. 2015.

[3] Z. Chen, “Fundamental limits of caching: Improved bounds for small
buffer users,” arXiv:1407.1935v1, Jul. 2014.

[4] S. Sahraei and M. Gastpar, “K users caching two files: An improved
achievable rate,” arXiv:1512.06682, Dec. 2015.

[5] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” arXiv:1301.5848v3, Mar. 2014.

[6] F. Arbabjolfaei, B. Bandemer, and Y.-H. Kim, “Index coding via random
coding,” 2014 Iran Workshop on Commun. and Infor. Theory, pp. 1–7,
May. 2014.

[7] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order optimal coded deliv-
ery and caching: Multiple groupcast index coding,” arXiv:1402.4572v2,
Oct. 2014.

[8] ——, “Order-optimal rate of caching and coded multicasting with
random demands,” arXiv:1502.03124, Feb. 2015.

[9] M. Ji, K. Shanmugam, G. Vettigli, J. Llorca, A. M. Tulino, and G. Caire,
“An efficient multiple-groupcast coded multicasting scheme for finite
fraction caching,” IEEE Int. Conf. Commun (ICC), pp. 3801–3806, June.
2015.

[10] G. Vettigli, M. Ji, A. M. Tulino, and J. Llorca, “An efficient coded
multicasting scheme preserving the multiplicative caching gain,” IEEE
Conf. INFOCOM WKSHPS, pp. 251–256, Apr. 2015.

	I Introduction
	II System Model and Problem Statement
	III Main Results
	III-A Proof of Theorem ??
	III-B Proof of Theorem ??
	III-C Sketch of the Proof of Theorem ??

	IV Numerical Results
	IV-A Centralized Systems
	IV-B Decentralized Systems

	V Conclusion and Further Work
	Appendix
	References

