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Abstract—We consider the two-receiver memoryless broadcast
channel with states where each receiver requests both common
and private messages, and may know part of the private
message requested by the other receiver as receiver message side
information (RMSI). We address two categories of the channel
(i) channel with states known causally to the transmitter, and
(ii) channel with states known non-causally to the transmitter.
Starting with the channel without RMSI, we first propose a
transmission scheme and derive an inner bound for the causal
category. We then unify our inner bound for the causal category
and the best-known inner bound for the non-causal category,
although their transmission schemes are different. Moving on
to the channel with RMSI, we first apply a pre-coding to the
transmission schemes of the causal and non-causal categories
without RMSI. We then derive a unified inner bound as a result
of having a unified inner bound when there is no RMSI, and
applying the same pre-coding to both categories. We show that
our inner bound is tight for some new cases as well as the cases
whose capacity region was known previously.

Index Terms—Broadcast Channel, Capacity Region, Channel
State Side Information, Receiver Message Side Information

I. INTRODUCTION

Communication over wireless channels motivates the study
of the broadcast channel [1], a common situation where a
transmitter sends a number of messages to multiple receivers
via a shared medium.

In some scenarios, the messages to be sent by the transmitter
may already be present in parts at the receivers, referred to
as receiver message side information (RMSI). This form of
side information appears in, for example, the downlink phase
of applications modeled by the multi-way relay channel [2].
A broadcast channel may be time-varying due to, for exam-
ple, fading or interference. The channel state capturing this
variation over time may be available causally or non-causally
at each node (each of the transmitter and receivers) as side
information [3].

It is well-known that proper use of side information available
at each node may increase the transmission rates over the
channel. With this as motivation, we investigate the capacity
region of the two-receiver memoryless broadcast channel
with states and RMSI under two categories: (i) channel with
causal channel state side information at the transmitter (CSIT)
including the cases where the channel state may also be

available at each receiver∗, and (ii) channel with non-causal
CSIT including the cases where the channel state may also be
available at each receiver.

A. Existing Results

Most of the results considering RMSI are for the two-
receiver memoryless broadcast channel without state [4], [5];
our inner bound [4], achieved using Marton coding [6, p. 208],
superposition coding, and our proposed pre-coding, is tight for
all the cases whose capacity region is known. For the broadcast
channel with states, existing capacity results are as follows.

1) With Causal CSIT and RMSI: To the best of our
knowledge, there does not exist any work in this category.

2) With Non-causal CSIT and RMSI: Under this category,
Oechtering and Skoglund [7] established the capacity region
of the memoryless channel where the channel state is available
non-causally at the transmitter and one of the receivers; they
considered complementary RMSI where each receiver knows
all the messages requested by the other receiver as side
information. Xin et al. [8] derived inner and outer bounds
for the Gaussian scalar, and Gaussian vector broadcast channel
where the channel state is available non-causally at only the
transmitter, and the RMSI is complementary (the capacity
region of the considered cases remained unknown). Song et
al. [9] investigated the capacity region of the degraded broadcast
channel where the channel state is available non-causally at
only the transmitter; they considered (i) complementary RMSI,
and (ii) where the weaker receiver knows fully the requested
message of the stronger receiver and the stronger receiver
has no message side information (the capacity region of the
considered cases remained unknown).

B. Contributions

We investigate the capacity region of the two-receiver
memoryless broadcast channel with states and RMSI. We
consider the general message setup that includes all possible
message requests and RMSI configurations, i.e., each receiver
(i) has both common and private-message requests, and (ii)
knows part of the private message requested by the other
receiver as side information. We derive a unified inner bound

∗It does not make a difference whether the channel state is available causally
or non-causally at a receiver; this is due to block decoding, where the receiver
decodes its requested message(s) at the end of the channel-output sequence.
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that covers both the causal and non-causal categories with
RMSI. The steps to derive our unified inner bound are shown
in Fig. 1, in which rectangles with solid sides represent new
bounds established in this work. Here, we briefly explain the
steps.

Step 1: We first propose a transmission scheme and derive
a general inner bound for the causal category without RMSI.
We use Marton coding, superposition coding, and Shannon
strategy [6, p. 176] to construct the scheme. This inner bound
is tight for all the cases with causal CSIT whose capacity
region is known [3], [6, p. 184].

Step 2: We then unify our inner bound for the causal category
without RMSI, and the best-known inner bound for the non-
causal category without RMSI [10, Theorem 2] achieved using
Marton coding, superposition coding, and Gelfand-Pinsker
coding [6, p. 180]. This result is analogous to the work of
Jafar [11] in which a unified capacity-region expression is
provided for the point-to-point channel with causal CSIT and
the point-to-point channel with non-causal CSIT. Clearly, the
capacity region of a non-causal case is larger than or equal to
the capacity region of the corresponding causal case (where
only the transmitter knows the channel state causally instead
of non-causally, and the knowledge of the receivers about the
channel state is the same in both cases). This relationship is
not necessarily true for their inner bounds especially when one
transmission scheme is not a special case of the other. One of
the advantages of having a unified inner bound is that it allows
us to show that the best-known inner bound [10, Theorem 2]
for a non-causal case is larger than or equal to the best inner
bound (our inner bound) for the corresponding causal case.

Step 3: Moving on to the channel with RMSI, we use a pre-
coding in order to take the RMSI into account; this pre-coding
was proposd in our previous work for the channel without state,
with RMSI [4]. We use this pre-coding in conjunction with the
schemes achieving the best inner bounds for the two categories
without RMSI. We finally derive a unified inner bound that
covers both the causal and non-causal categories with RMSI.
This inner bound reduces to the unified inner bound without
RMSI by setting some parameters to zero.

Capacity Results : Using our inner bound, we establish the
following new capacity results for the memoryless broadcast
channel with RMSI.

1) With Causal CSIT and RMSI: For causal cases, we show
that our inner bound establishes the capacity region of the
degraded broadcast channel where the channel state is available
causally at (i) only the transmitter, (ii) the transmitter and the
non-degraded receiver, or (iii) the transmitter and both receivers.

2) With Non-causal CSIT and RMSI: For non-causal cases,
we show that our inner bound establishes the capacity region
of the degraded broadcast channel where the channel state
is available non-causally at (i) the transmitter and the non-
degraded receiver, or (ii) the transmitter and both receivers.

II. SYSTEM MODEL

We consider the two-receiver memoryless broadcast channel
with independent and identically distributed (i.i.d.) states
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Fig. 1. The steps to derive our unified inner bound for the causal and
non-causal categories with RMSI (the rightmost rectangle); each rectangle
represents one step, and is labeled by its output. The arrows provide the key
techniques to complete each step. The rectangles with solid sides are the steps
completed in this work.
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Fig. 2. The two-receiver memoryless broadcast channel p(y1, y2 | x, s)p(s)
with i.i.d. states and RMSI. The channel state may be available either causally
or non-causally at each of the transmitter and receivers. {Mi}4i=0 is the
set of independent messages sent by the transmitter. M4 and M3 are the
messages known a priori to receivers 1 and 2 respectively. {M0,M1,M3}
and {M0,M2,M4} are the set of messages requested by receivers 1 and 2
respectively. M̂i, i = 0, 1, 3, is the decoded Mi at receiver 1, and M̌i, i =
0, 2, 4, is the decoded Mi at receiver 2.

p
Y1,Y2|X,S

(y1, y2 |x, s)pS
(s), depicted in Fig. 2, where X ∈ X

is the channel input, Y1 ∈ Y1 and Y2 ∈ Y2 are the channel
outputs, and S ∈ S is the channel state. Considering n uses
of the channel, Xn = (X1, X2, . . . , Xn) is the transmitted
codeword, and Y ni = (Yi,1, Yi,2, . . . , Yi,n) , i = 1, 2, is the
channel-output sequence at receiver i.

The source messages {Mi}4i=0 are independent, and Mi is
uniformly distributed over the set Mi = {1, 2, . . . , 2nRi}, i.e.,
transmitted at rate Ri bits per channel use. {M0,M1,M3} and
{M0,M2,M4} are the set of messages requested by receivers 1
and 2 respectively. M4 and M3 are the messages known a priori
to receivers 1 and 2 respectively. For receiver 1, M1 is the part
of the private-message request which is not known a priori to
the other receiver, and M3 is the part which is known. For
receiver 2, these are M2 and M4 respectively.

The channel without state is a special case of our channel
model by considering S = {0}, i.e., p

S
(0) = 1; this implies

that all the transmitter and receivers know that the channel state
is equal to zero at all channel uses. The channel without RMSI
is also a special case of our channel model by considering
(M3,M4) = (0, 0).

A
(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
causal code for the

channel consists of a sequence of maps for the encoding,
fj :M0×M1×M2×M3×M4×Sj→X , j = 1, 2, · · · , n,
where × denotes the Cartesian product, and Sj de-



notes the j-fold Cartesian product of S, i.e., Xj =
fj(M0,M1,M2,M3,M4, S

j) where Sj = (S1, S2, . . . , Sj).
This code also consists of two decoding functions,

g1 : Ỹn1 ×M4 →M0 ×M1 ×M3,

g2 : Ỹn2 ×M3 →M0 ×M2 ×M4,

where Ỹi = Yi × S, i = 1, 2, if the channel state is available
at receiver i, and Ỹi = Yi otherwise. (M̂0, M̂1, M̂3) =
g1(Ỹ n1 ,M4) is the decoded (M0,M1,M3) at receiver 1, and
(M̌0, M̌2, M̌4) = g2(Ỹ n2 ,M3) is the decoded (M0,M2,M4)
at receiver 2; Ỹ ni = (Y ni , S

n), if the channel state is available
at receiver i, and Ỹ ni = Y ni otherwise.

A
(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
non-causal code for

the channel consists of an encoding function,
f :M0×M1×M2×M3×M4×Sn→Xn,

i.e., Xn = f(M0,M1,M2,M3,M4, S
n). This code also

consists of two decoding functions which are defined the same
as for the causal code.

The average probability of error for a causal or a non-causal
code is defined as

P (n)
e = P ((M̂0, M̂1, M̂3) 6= (M0,M1,M3) or

(M̌0, M̌2, M̌4) 6= (M0,M2,M4)).

Definition 1: For causal (non-causal) cases, a rate tuple
(R0, R1, R2, R3, R4) is said to be achievable for the channel if
there exists a sequence of

(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
causal (non-causal) codes with P (n)

e → 0 as n→∞.
Definition 2: The capacity region of the channel is

the closure of the set of all achievable rate tuples
(R0, R1, R2, R3, R4).

Definition 3: The two-receiver memoryless broadcast chan-
nel with states is said to be physically degraded if (X,S)→
Y1 → Y2 form a Markov chain, and it is said to be
stochastically degraded or degraded if there exists a Y ′2
such that (X,S) → Y1 → Y ′2 form a Markov chain, and
p

Y2|X,S
(y2 | x, s) = p

Y ′
2 |X,S

(y2 | x, s)

III. BROADCAST CHANNEL WITHOUT RMSI

In this section, we address the two-receiver memoryless
broadcast channel with states, without RMSI, i.e., (M3,M4) =
(0, 0). We first propose a transmission scheme and derive an
inner bound for the causal category. We then present the best-
known inner bound for the non-causal category [10, Theorem
2]. We finally show that we can have a unified inner bound to
cover both the causal and non-causal categories, despite the
achievability schemes being different.

A. With Causal CSIT

We utilize Marton coding [6, p. 208], superposition coding
and Shannon strategy [6, p. 176] to construct a transmission
scheme and derive an inner bound for the causal category,
stated as Theorem 1.

Theorem 1: A rate triple (R0, R1, R2) is achievable for the
causal category if it satisfies

R0 +R1 < I(U0, U1; Ỹ1), (1)

R0 +R2 < I(U0, U2; Ỹ2), (2)

R0 +R1 +R2 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)

− I(U1;U2 | U0), (3)

R0 +R1 +R2 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)

− I(U1;U2 | U0), (4)

2R0 +R1 +R2 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)

− I(U1;U2 | U0), (5)
for some distribution p(u0, u1, u2) and some function x =
γ(u0, u1, u2, s̃). S̃ = S if the channel state is available causally
at the transmitter, and S̃ = 0 if it is not available at the
transmitter. Ỹi = (Yi, S), i = 1, 2, if the channel state is
available at receiver i, and Ỹi = Yi otherwise.

Remark 1: By using the random variable S̃, we address also
the cases where the channel state (i) is not available at any
node, or (ii) is not available at the transmitter and is available
at either one receiver or both receivers.

Remark 2: The inner bound in Theorem 1 is the best inner
bound for the causal category without RMSI, and so it is tight
for all the special cases whose capacity region is known [3], [6,
p. 184].

Proof of Theorem 1: (Codebook Construction) The code-
book of the transmission scheme is formed from three sub-
codebooks which are constructed according to the distribution
p(u0, u1, u2). Before the subcodebook construction, using rate
splitting, Mi, i = 1, 2, is divided into the two independent
messages Mi1 of rate Ri1 ≥ 0, and Mi2 of rate Ri2 ≥ 0
such that Ri = Ri1 + Ri2. Subcodebook 0 consists of i.i.d.
codewords

un0 (m0,m11,m21),

generated according to
∏n
j=1 pU0

(u0,j). Subcodebook i, i =
1, 2, consists of codewords

uni (m0,m11,m21,mi2, li),

generated according to
n∏
j=1

p
Ui|U0

(ui,j |u0,j(m0,m11,m21)),

where li ∈ {1, . . . , 2nR
′
i}, i.e., for each un0 (m0,m11,m21),

2n(Ri2+R
′
i) codewords are generated.

(Encoding) For the encoding, given {mi}2i=0, we first find
a pair (l1, l2) such that

(Un0 (·) , Un1 (·, l1) , Un2 (·, l2)) ∈ T nε′ ,
where T nε′ is the set of jointly ε′-typical n-sequences with
respect to the considered distribution [6, p. 29]. If there
is more than one pair, we arbitrary choose one of them,
and if there does not exist one pair, we choose (l1, l2) =
(1, 1). We then construct the transmitted codeword as xj =
γ(u0,j (·) , u1,j (·) , u2,j (·) , s̃j), j = 1, 2, . . . , n; S̃j =
Sj ∀j, if the channel state is available causally at the
transmitter, and S̃j = 0 ∀j, if it is not available at the
transmitter.



R0 +R1 < I(U0, U1; Ỹ1)− I(U0, U1;S), (6)

R0 +R2 < I(U0, U2; Ỹ2)− I(U0, U2;S), (7)

R0 +R1 +R2 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)− I(U1;U2 | U0)− I(U0, U1, U2;S), (8)

R0 +R1 +R2 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)− I(U1;U2 | U0)− I(U0, U1, U2;S), (9)

2R0 +R1 +R2 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)− I(U1;U2 | U0)− I(U0, U1, U2;S)− I(U0;S), (10)

(Decoding) Receiver 1 decodes (m̂0, m̂11, m̂12), if it is the
unique tuple that satisfies(

Un0 (·) , Un1 (·, l1) , Ỹ n1

)
∈ T nε1 for some m21 and l1;

otherwise an error is declared. Receiver 2 similarly decodes
(m̌0, m̌21, m̌22), if it is the unique tuple that satisfies(

Un0 (·) , Un2 (·, l2) , Ỹ n2

)
∈ T nε2 for some m11 and l2;

otherwise an error is declared.
To derive sufficient conditions for achievability, we assume

without loss of generality the transmitted messages are each
equal to one by the symmetry of code construction, and
(l1, l2) = (l∗1, l

∗
2) where 1 ≤ l∗i ≤ 2nR

′
i . Receiver 1 makes

an error only if one or more of the following events happen.
E0:(Un0 (1, 1, 1) , Un1 (1, 1, 1, 1, l1) , Un2 (1, 1, 1, 1, l2)) /∈ T nε′

for all l1 and l2,

E11:
(
Un0 (1, 1, 1) , Un1 (1, 1, 1, 1, l∗1), Ỹ n1

)
/∈ T nε1 ,

E12:
(
Un0 (1, 1, 1) , Un1 (1, 1, 1,m12, l1) , Ỹ n1

)
∈ T nε1

for some m12 6= 1 and l1,

E13:
(
Un0 (1, 1,m21) , Un1 (1, 1,m21,m12, l1) , Ỹ n1

)
∈T nε1

for some m21 6= 1,m12 6= 1 and l1,

E14:
(
Un0 (m0,m11,m21),Un1 (m0,m11,m21,m12, l1),Ỹ n1

)
∈T nε1

for some (m0,m11) 6= (1, 1),m21,m12 and l1.
Events leading to an error at receiver 2 are written similarly.
Based on the error events, and using the packing lemma [6,
p. 45] and the mutual covering lemma [6, p. 208], sufficient
conditions for achievability are

R′1 +R′2 > I(U1;U2 | U0),

R12 +R′1 < I(U1; Ỹ1 | U0),

R0 +R1 +R21 +R′1 < I(U0, U1; Ỹ1),

R22 +R′2 < I(U2; Ỹ2 | U0),

R0 +R2 +R11 +R′2 < I(U0, U2; Ỹ2).

We finally perform Fourier-Motzkin elimination to obtain the
conditions in (1)–(5).

B. With Non-causal CSIT

Marton coding, superposition coding, and Gelfand-Pinsker
coding were used to derive an inner bound for the memoryless
broadcast channel with non-causal CSIT [10, Theorem 2]. This
inner bound, stated as Proposition 1, is the best-known inner
bound for the non-causal category without RMSI, and so it is
tight for all the special cases whose capacity region is known.

Proposition 1: A rate triple (R0, R1, R2) is achievable for
the non-causal category if it satisfies (6)–(10) for some distri-
bution p(u0, u1, u2 | s̃) and some function x = γ(u0, u1, u2, s̃).
S̃ = S if the channel state is available non-causally at the
transmitter, and S̃ = 0 if it is not available at the transmitter.

Here, we review the scheme achieving this inner bound in
order to highlight its differences with the scheme for the causal
category.

(Codebook Construction) This inner bound is achieved using
a transmission scheme formed from three subcodebooks. These
subcodebooks are constructed according to the distribution
p(u0, u1, u2 | s̃). Here (U0, U1, U2) is not independent of S
when the channel state is available at the transmitter as opposed
to the scheme for the channel with causal CSIT. Subcodebook 0
consists of i.i.d. codewords

un0 (m0,m11,m21, l0)

generated according to
∏n
j=1 pU0

(u0,j) where l0 ∈
{1, . . . , 2nR′

0}, i.e., for each (m0,m11,m21), 2nR
′
0 codewords

are generated. Subcodebook i, i = 1, 2, consists of codewords
uni (m0,m11,m21, l0,mi2, li)

generated according to
n∏
j=1

p
Ui|U0

(ui,j |u0,j(m0,m11,m21, l0)),

where li∈{1, . . . , 2nR
′
i}.

(Encoding) For the encoding, given {mi}2i=0, we first find
a triple (l0, l1, l2) such that(

Un0 (·, l0) , Un1 (·, l0, ·, l1) , Un2 (·, l0, ·, l2) , S̃n
)
∈ T nε′ ,

where S̃n = (S̃1, S̃2, . . . , S̃n); S̃j = Sj ∀j, if the chan-
nel state is available non-causally at the transmitter, and
S̃j = 0 ∀j, if it is not available at the transmitter. If there
is more than one (l0, l1, l2), we arbitrary choose one of them,
and if there does not exist one, we choose (l0, l1, l2) =
(1, 1, 1). We then construct the transmitted codeword as
xj = γ(u0,j (·) , u1,j (·) , u2,j (·) , s̃j), j = 1, 2, . . . , n.

(Decoding) Receiver 1 decodes (m̂0, m̂11, m̂12), if it is the
unique tuple that satisfies(
Un0 (·, l0) , Un1 (·, l0, ·, l1) , Ỹ n1

)
∈ T nε1 for some (m21, l0, l1);

otherwise an error is declared. Receiver 2 decodes
(m̌0, m̌21, m̌22), if it is the unique tuple that satisfies(
Un0 (·, l0) , Un2 (·, l0, ·, l2) , Ỹ n2

)
∈ T nε2 for some (m11, l0, l2);

otherwise an error is declared.



R0 +R1 +R3 < I(U0, U1; Ỹ1)− I(U0, U1;S), (11)

R0 +R2 +R4 < I(U0, U2; Ỹ2)− I(U0, U2;S), (12)

R0 +R1 +R2 +R3 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)− I(U1;U2 | U0)− I(U0, U1, U2;S), (13)

R0 +R1 +R2 +R4 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)− I(U1;U2 | U0)− I(U0, U1, U2;S), (14)

2R0 +R1 +R2 +R3 +R4 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)− I(U1;U2 | U0)− I(U0, U1, U2;S)− I(U0;S), (15)

C. A Unified Inner Bound

Here we discuss that we can have a unified inner-bound
expression for both the causal and non-causal categories. The
inequalities in (6)-(10) can be used for both the causal and
non-causal categories. This is because, for the causal category,
(U0, U1, U2) is independent of S, and the terms I(U0;S),
I(U0, U1;S), I(U0, U2;S) and I(U0, U1, U2;S) are zero. Then
the inequalities in (6)-(10) reduce to the ones in (1)-(5), and
we can have a unified inner bound, stated as Corollary 1.

Corollary 1: A rate triple (R0, R1, R2) is achievable for the
causal category if it satisfies (6)–(10) for some distribution
p(u0, u1, u2) and some function x = γ(u0, u1, u2, s̃); it is
achievable for the non-causal category if it satisfies (6)–(10)
for some distribution p(u0, u1, u2 | s̃) and some function x =
γ(u0, u1, u2, s̃).

The capacity region of a non-causal case is larger than or
equal to the capacity region of the corresponding causal case.
However, an inner bound for a non-causal case is not necessarily
larger than an inner bound for the corresponding causal case
when the scheme for the latter is not a special case of the
scheme for the former. By having a unified inner bound, we can
show that the inner bound for a non-causal case (Proposition 1)
is larger than or equal to the inner bound for the corresponding
causal case (Theorem 1). This is because the domain of the
unified inner bound for a causal case (including all distributions
p(u0, u1, u2) and all functions x = γ(u0, u1, u2, s̃)) is a subset
of the domain of the unified inner bound for the corresponding
non-causal case (including all distributions p(u0, u1, u2 | s̃)
and all functions x = γ(u0, u1, u2, s̃)).

In Appendix A, we show that the scheme for the causal
category (achieving the inner bound in Theorem 1) is not
a special case of the scheme for the non-causal category
(achieving the inner bound in Proposition 1). However, by
considering only some special cases of its parameters, we show
that the scheme for the non-causal category asymptomatically
almost surely has the same codebook construction, encoding
and decoding as the scheme for the causal category.

IV. BROADCAST CHANNEL WITH RMSI

In this section, we address the two-receiver memoryless
broadcast channel with states and RMSI. We derive a unified
inner bound that covers both categories with RMSI. This inner
bound contains the unified inner bound in Corollary 1 as a
special case.

A. Moving from Without RMSI to With RMSI

To take the RMSI into account, we apply a pre-coding to
the transmission schemes achieving the best inner bounds for
the causal and non-causal categories without RMSI. This pre-
coding was proposed in our previous work for the memoryless
channel without state, with RMSI [4]. In this pre-coding, Mm =
(M0,M3,M4) is considered as a new common message, and
only M1 and M2 are treated as the private messages. Mm,
M1 and M2 are then fed to the transmission scheme of the
channel without RMSI. Although receiver 1 need not decode
M4, having M4 as a part of the common message does not
impose any extra constraint; this is because receiver 1 knows
M4 a priori. The same argument applies to M3 for receiver 2.
Since receiver 1 knows M4 a priori, and receiver 2 knows
M3 a priori, receiver 1 decodes Mm over a set of 2n(R0+R3)

candidates, and receiver 2 decodes it over a set of 2n(R0+R4)

candidates.
Conjecture 1: We conjecture that our pre-coding is an

optimal pre-coding in the sense that if a scheme achieves the
capacity region of a channel without RMSI, then the scheme,
constructed by applying our pre-coding to that scheme, also
achieves the capacity region of the same channel with RMSI.

B. A Unified Inner Bound

We here present our unified inner bound for the causal and
non-causal categories with RMSI, stated as Theorem 2.

Theorem 2: A rate tuple (R0, R1, R2, R3, R4) is achievable
for the causal category with RMSI if it satisfies (11)–(15)
for some distribution p(u0, u1, u2) and some function x =
γ(u0, u1, u2, s̃). It is achievable for the non-causal category
with RMSI if it satisfies (11)–(15) for some distribution
p(u0, u1, u2 | s̃) and some function x = γ(u0, u1, u2, s̃).

Remark 3: Having a unified inner bound for the causal and
non-causal categories without RMSI, and applying the same
pre-coding to both are the two basic reasons for having a
unified inner bound for the causal and non-causal categories
with RMSI.

Proof of Theorem 2: We prove Theorem 2 by applying
our pre-coding to the causal and non-causal categories without
RMSI.

1) With Causal CSIT: For this category, we apply our pre-
coding to the transmission scheme for the causal category
without RMSI, introduced in Section III-A. Based on our
method, Subcodebook 0 consists of i.i.d. codewords

un0 (m0,m3,m4,m11,m21),



generated according to
∏n
j=1 pU0

(u0,j). Subcodebook i, i =
1, 2, consists of codewords

uni (m0,m3,m4,m11,m21,mi2, li),

generated according to
n∏
j=1

p
Ui|U0

(ui,j |u0,j(m0,m3,m4,m11,m21)),

where li∈{1, . . . , 2nR
′
i}.

Encoding and decoding are performed similarly to the case
without RMSI. For the encoding, given {mi}4i=0, we first find
a pair (l1, l2) such that

(Un0 (·) , Un1 (·, l1) , Un2 (·, l2)) ∈ T nε′ .
If there does not exist one pair, we choose (l1, l2) =
(1, 1). We then construct the transmitted codeword as xj =
γ(u0,j (·) , u1,j (·) , u2,j (·) , s̃j), j = 1, 2, . . . , n.

For the decoding, receiver 1 decodes (m̂0, m̂11, m̂12, m̂3),
if it is the unique tuple that satisfies(

Un0 (·) , Un1 (·, l1) , Ỹ n1

)
∈ T nε1 for some m21 and l1;

otherwise an error is declared. Since this receiver knows
M4 as side information, it decodes (un0 , u

n
1 ) over a set

of 2n(R0+R1+R3+R21+R
′
1) candidates. Receiver 2 decodes

(m̌0, m̌21, m̌22, m̌4), if it is the unique tuple that satisfies(
Un0 (·) , Un2 (·, l2) , Ỹ n2

)
∈ T nε2 for some m11 and l2;

otherwise an error is declared. Since this receiver knows
M3 as side information, it decodes (un0 , u

n
2 ) over a set of

2n(R0+R2+R4+R11+R
′
2) candidates.

Based on error events, written similarly to the case without
RMSI, and using the packing lemma [6, p. 45] and the
mutual covering lemma [6, p. 208], sufficient conditions for
achievability are

R′1 +R′2 > I(U1;U2 | U0),

R12 +R′1 < I(U1; Ỹ1 | U0),

R0 +R1 +R3 +R21 +R′1 < I(U0, U1; Ỹ1),

R22 +R′2 < I(U2; Ỹ2 | U0),

R0 +R2 +R4 +R11 +R′2 < I(U0, U2; Ỹ2).

After performing Fourier-Motzkin elimination, we obtain
conditions (11)–(15). Note that (U0, U1, U2) is independent
of S for this category. Then the terms I(U0;S), I(U0, U1;S),
I(U0, U2;S), and I(U0, U1, U2;S) are zero. The inner bound is
computed over all distributions p(u0, u1, u2) and all functions
x = γ(u0, u1, u2, s̃).

2) With Non-causal CSIT: For this category, we apply our
pre-coding to the transmission scheme for the non-causal
category without RMSI, introduced in Section III-B. The
resulting changes to the codebook construction, encoding and
decoding are similar to the ones for the causal category. Based
on error events written similarly to the case without RMSI,
and using the packing lemma and the multivariate covering

lemma [6, p. 218], sufficient conditions for achievability are
R′0 > I(U0;S),

R′0 +R′1 > I(U0, U1;S),

R′0 +R′2 > I(U0, U2;S),

R′0 +R′1 +R′2 > I(U0, U1, U2;S)

+ I(U1;U2 | U0),

R12 +R′1 < I(U1; Ỹ1 | U0),

R0 +R1 +R3 +R21 +R′0 +R′1 < I(U0, U1; Ỹ1),

R22 +R′2 < I(U2; Ỹ2 | U0),

R0 +R2 +R4 +R11 +R′0 +R′2 < I(U0, U2; Ỹ2).

After performing Fourier-Motzkin elimination, we obtain
conditions (11)–(15). Note that (U0, U1, U2) is not independent
of S for this category when the channel state is available at the
transmitter. The inner bound is computed over all distributions
p(u0, u1, u2 | s̃) and all functions x = γ(u0, u1, u2, s̃).

V. NEW CAPACITY RESULTS

In this section, we present new capacity results for the
two-receiver memoryless broadcast channel with RMSI. These
results are established using our inner bound in Theorem 2.

A. With Causal CSIT and RMSI

In this subsection, we present new capacity results for
the causal category with RMSI, stated as Theorem 3, and
Theorem 4.

Theorem 3: The capacity region of the two-receiver de-
graded broadcast channel with RMSI where the channel state
is available causally at only the transmitter, is the closure of
the set of all rate tuples (R0, R1, R2, R3, R4), each satisfying

R0 +R2 +R4 < I (U0;Y2) ,

R0 +R1 +R2 +R3 < I (U0, U1;Y1) ,

R0 +R1 +R2 +R4 < I (U0;Y2) + I (U1;Y1 | U0) ,

for some p (u0, u1) and some function x = γ (u0, u1, s).
We present the achievability proof in the following, and the
converse proof in Appendix B.

Proof: (Achievability) Achievability is proved by setting
U2 = 0 in (11)–(15).

Theorem 4: The capacity region of the two-receiver de-
graded broadcast channel with RMSI where the channel state
is available causally either at the transmitter and receiver 1 or
at the transmitter and both receivers, is the closure of the set
of all rate tuples (R0, R1, R2, R3, R4), each satisfying

R0 +R2 +R4 < I(U0; Ỹ2),

R0 +R1 +R2 +R3 < I(X;Y1 | S),

R0 +R1 +R2 +R4 < I(U0; Ỹ2) + I (X;Y1 | U0, S) ,

for some p (u0, u1) and some function x = γ (u0, u1, s). Ỹ2 =
(Y2, S) if the channel state is available at receiver 2, and
Ỹ2 = Y2 otherwise.
We present the achievability proof in the following, and the
converse proof in Appendix C.



Proof: (Achievability) Achievability is proved by setting
U2 = 0 in (11)–(15). Note that, for a causal case, U2 = 0
implies that

I(U0, U1;Y1, S) = I(U0, U1;Y1 | S) = I(X;Y1 | S),

I(U1;Y1, S | U0) =I(U1;Y1 | U0, S)=I(X;Y1 | U0, S).

B. With Non-causal CSIT and RMSI

In this subsection, we first discuss that our inner bound
in Theorem 2 also achieves the capacity region of the
case considered by Oechtering and Skoglund [7] (i.e., the
memoryless broadcast channel when (M0,M1,M2) = (0, 0, 0)
and the channel state is available non-causally at the transmitter
and one of the receivers). This is because our transmission
scheme for the non-causal category with RMSI reduces to the
one used to establish the capacity region by setting U1 = 0
and U2 = 0. We also present new capacity results for the
non-causal category with RMSI, stated as Theorem 5.

Theorem 5: The capacity region of the two-receiver de-
graded broadcast channel with RMSI where the channel state
is available non-causally either at the transmitter and receiver 1
or at the transmitter and both receivers, is the closure of the
set of all rate tuples (R0, R1, R2, R3, R4), each satisfying

R0 +R2 +R4<I(U0; Ỹ2)− I(U0;S),

R0 +R1 +R2 +R3<I(X;Y1 | S),

R0 +R1 +R2 +R4<I(U0; Ỹ2)−I(U0;S)+I(X;Y1 | U0, S),

for some p (u0, u1 | s) and some function x = γ (u0, u1, s).
Ỹ2 = (Y2, S) if the channel state is available at receiver 2, and
Ỹ2 = Y2 otherwise.
We present the achievability proof in the following, and the
converse proof in Appendix C.

Proof: (Achievability) Achievability is proved by setting
U2 = 0 in (11)–(15). Note that, for a non-causal case, U2 = 0
implies that I(U0, U1;Y1, S)−I(U0, U1;S) = I(X;Y1 | S).

VI. CONCLUSION

We first considered the two-receiver memoryless broadcast
channel with states, without receiver message side information
(RMSI). We addressed two categories of the channel: (i)
channel with causal channel state side information at the
transmitter (CSIT), and (ii) channel with non-causal CSIT.
We proposed a transmission scheme and derived a general
inner bound for the causal category. This inner bound is the
best inner bound for this category. We also presented the best-
known inner bound for the non-causal category. We showed
that we can unify these two inner bounds to cover both the
causal and non-causal categories.

We then considered the two-receiver memoryless broadcast
channel with states and RMSI where each receiver requests both
common and private messages, and knows part of the private
message requested by the other receiver as side information. We
addressed the same two categories as for the channel without
RMSI. We used a pre-coding to take the RMSI into account. We
applied our pre-coding to the schemes achieving the best inner
bounds for the two categories without RMSI. By this approach,

we obtained a unified inner bound to cover both categories
with RMSI. Using our inner bound, we also established new
capacity results for a few special cases in both categories.

APPENDIX A

Here we first show that the scheme for the causal category,
described in Section III-A, cannot be considered as a special
case of the scheme for the non-causal category, described in
Section III-B. However, the rate regions achievable by both
schemes have similar expression. This results in a unified inner
bound for both causal and non-causal cases from which we
can show that the inner bound for a non-causal case is at least
as large as the the inner bound for the corresponding causal
case. We will explain the reason behind this observation despite
them having different schemes.

We consider a scheme as a special case of another scheme
when the latter reduces to the former by considering some
special cases of its parameters, e.g., superposition coding is
a special case of the scheme achieving Marton’s inner bound
with common message [6, p. 212].

Consider the encoding rule of the scheme for the non-causal
category where the encoder finds a (Un0 , U

n
1 , U

n
2 ) such that

(Un0 , U
n
1 , U

n
2 , S

n) ∈ T nε′ (U0, U1, U2, S).

The encoder for the causal category cannot check this rule since
this encoder only knows Sn at the end of the transmission.
Hence, the scheme for the causal category is not a special case
of the scheme for the non-causal category.

By choosing p(u0, u1, u2 | s) = p(u0, u1, u2) for all s and
setting R′0 = 0, the scheme for the non-causal category has
the same codebook construction and decoding approach as the
scheme for the causal category. The only difference is that, for
the channel state realization sn, the encoder for the non-causal
category finds a (un0 , u

n
1 , u

n
2 ) such that

(un0 , u
n
1 , u

n
2 ) ∈ T nε′ (U0, U1, U2 | sn),

where

T nε′ (U0, U1, U2 | sn) =

{(un0 , un1 , un2 ) | (un0 , un1 , un2 , sn) ∈ T nε′ (U0, U1, U2, S)}.
and the encoder for the causal category finds a (un0 , u

n
1 , u

n
2 )

such that
(un0 , u

n
1 , u

n
2 ) ∈ T nε′ (U0, U1, U2).

So the transmitted codewords may be different. However,
according to the properties of joint typicality [6, p. 27], we
have

T nε′ (U0, U1, U2 | sn) ⊆ T nε′ (U0, U1, U2),

where the equality holds if sn ∈ T nε′ (S). Since
P (Sn ∈ T nε′ (S))→ 1,

as n tends to infinity then
P (T nε′ (U0, U1, U2 | Sn) = T nε′ (U0, U1, U2))→ 1,

as n tends to infinity. Hence, by choosing p(u0, u1, u2 |
s) = p(u0, u1, u2), the scheme for the non-causal category
asymptomatically almost surely has the same encoding as the
scheme for the causal category. This leads the scheme for the



non-causal category to achieve the same rate region as the
scheme for the causal category.

APPENDIX B
In this section, we present the converse proof of Theorem 3.

In the converse, we assume that the broadcast channel is
physically degraded as the capacity region of the stochastically
degraded broadcast channel is equal to its equivalent physically
degraded broadcast channel.

Proof: (Converse) By Fano’s inequality [6, p. 19], we
have

H (M0,M1,M3 | Y n1 ,M4) ≤ nε1,n, (16)
H (M0,M2,M4 | Y n2 ,M3) ≤ nε2,n, (17)

where εi,n → 0 as n → ∞ for i = 1, 2. For the sake of
simplicity, we use εn instead of εi,n for the remainder. From
(17) and the physically degradedness of the channel, we have
H (M0,M2,M4 | Y n1 ,M3) ≤ H (M0,M2,M4 | Y n2 ,M3)

≤ nεn, (18)
and from (16) and (18), we have

H (M0,M2,M3 | Y n1 ,M4) ≤ 2nεn. (19)
Using (16), (17), and (19), we obtain the following necessary
conditions for achievability

nR1 ≤ I(M1;Y n1 |M0,M2,M3,M4) + nεn,
(20)

n(R0 +R2 +R3) ≤ I(M0,M2,M3;Y n1 |M4) + 2nεn,
(21)

n(R0 +R2 +R4) ≤ I(M0,M2,M4;Y n2 |M3) + nεn. (22)
We now define the auxiliary random variables U0,i and

U1,i as
U0,i = (M0,M2,M3,M4, Y

i−1
1 ),

U1,i = (M1, S
i−1),

and expand the mutual information terms in (20)–(22) respec-
tively as follows.

I (M1;Y n1 |M0,M2,M3,M4)

=

n∑
i=1

I
(
M1;Y1,i |M0,M2,M3,M4, Y

i−1
1

)
≤

n∑
i=1

I
(
M1, S

i−1;Y1,i |M0,M2,M3,M4, Y
i−1
1

)
=

n∑
i=1

I (U1,i;Y1,i | U0,i) , (23)

I (M0,M2,M3;Y n1 |M4)

=

n∑
i=1

I
(
M0,M2,M3;Y1,i |M4, Y

i−1
1

)
≤

n∑
i=1

I
(
M0,M2,M3,M4, Y

i−1
1 ;Y1,i

)
=

n∑
i=1

I (U0,i;Y1,i) , (24)

and
I (M0,M2,M4;Y n2 |M3)

=

n∑
i=1

I
(
M0,M2,M4;Y2,i |M3, Y

i−1
2

)
≤

n∑
i=1

I
(
M0,M2,M3,M4, Y

i−1
2 ;Y2,i

)
≤

n∑
i=1

I
(
M0,M2,M3,M4, Y

i−1
2 , Y i−11 ;Y2,i

)
(a)
=

n∑
i=1

I
(
M0,M2,M3,M4, Y

i−1
1 ;Y2,i

)
=

n∑
i=1

I (U0,i;Y2,i) , (25)

where (a) follows from the physically degradedness of the
channel.

Finally, since εn → 0 as n→∞, substituting (23)–(25) into
(20)–(22), and using the standard time-sharing argument [6,
p. 114] complete the converse proof. Note that (U0,i, U1,i) is
independent of Si, and Xi is a function of (U0,i, U1,i, Si).

APPENDIX C

In this section, we present the converse proof of Theorem 4
and Theorem 5. We here also assume that the broadcast channel
is physically degraded.

Proof: (Converse) By Fano’s inequality, we have
H(M0,M1,M3 | Y n1 , Sn,M4) ≤ nεn, (26)

H(M0,M2,M4 | Ỹ n2 ,M3) ≤ nεn. (27)
From (27) and the physically degradedness of the channel, we
have

H (M0,M2,M4 | Y n1 , Sn,M3) ≤
H (M0,M2,M4 | Y n2 , Sn,M3) ≤ nεn, (28)

and from (26) and (28), we have
H (M0,M1,M2,M3 | Y n1 , Sn,M4) ≤ 2nεn. (29)

Using (26), (27), and (29), if a rate tuple (R0, R1, R2, R3, R4)
is achievable, then it must satisfy

nR1 ≤ I(M1;Y n1 |M0,M2,M3,M4, S
n)

+ nεn, (30)
n(R0 +R1 +R2 +R3) ≤ I(M0,M1,M2,M3;Y n1 |M4, S

n)

+ 2nεn, (31)

n(R0 +R2 +R4) ≤ I(M0,M2,M4; Ỹ n2 |M3) + nεn.
(32)

We now define the auxiliary random variables U0,i and
U1,i as

U0,i = (M0,M2,M3,M4, S
i−1, Sni+1, Y

i−1
2 ),

U1,i = (M1, Y
i−1
1 ),

and expand the mutual information terms in (30)–(32) respec-



tively as follows.
I (M1;Y n1 |M0,M2,M3,M4, S

n)

=

n∑
i=1

I
(
M1;Y1,i |M0,M2,M3,M4, S

n, Y i−11

)
(a)
=

n∑
i=1

I
(
M1;Y1,i |M0,M2,M3,M4, S

n, Y i−11 , Y i−12

)
≤

n∑
i=1

I
(
M1, Y

i−1
1 ;Y1,i |M0,M2,M3,M4, S

n, Y i−12

)
=

n∑
i=1

I (U1,i;Y1,i | U0,i, Si)

=

n∑
i=1

I (Xi;Y1,i | U0,i, Si) , (33)

I (M0,M1,M2,M3;Y n1 |M4, S
n)

=

n∑
i=1

I
(
M0,M1,M2,M3;Y1,i |M4, S

n, Y i−11

)
(b)
=

n∑
i=1

I
(
M0,M1,M2,M3;Y1,i |M4, S

n, Y i−11 , Y i−12

)
≤

n∑
i=1

I (U0,i, U1,i;Y1,i | Si)

=

n∑
i=1

I (Xi;Y1,i | Si) , (34)

and

I(M0,M2,M4; Ỹ n2 |M3)

=

n∑
i=1

I(M0,M2,M4; Ỹ2,i |M3, Ỹ
i−1
2 )

≤
n∑
i=1

I(M0,M2,M3,M4, S
i−1, Ỹ i−12 ; Ỹ2,i)

=

n∑
i=1

I(M0,M2,M3,M4, S
i−1, Sni+1, Ỹ

i−1
2 ; Ỹ2,i)

− I(Sni+1; Ỹ2,i |M0,M2,M3,M4, S
i−1, Ỹ i−12 )

(c)
=

n∑
i=1

I(M0,M2,M3,M4, S
i−1, Sni+1, Ỹ

i−1
2 ; Ỹ2,i)

− I(Ỹ i−12 ;Si |M0,M2,M3,M4, S
i−1, Sni+1)

(d)
=

n∑
i=1

I(M0,M2,M3,M4, S
i−1, Sni+1, Ỹ

i−1
2 ; Ỹ2,i)

− I(M0,M2,M3,M4, S
i−1, Sni+1, Ỹ

i−1
2 ;Si)

=

n∑
i=1

I(U0,i; Ỹ2,i)− I(U0,i;Si), (35)

where (a) and (b) follow from the physically degradedness of
the channel, (c) from the Csiszár sum identity [6, p. 25], and (d)
from the independence of (M0,M2,M3,M4, S

i−1, Sni+1) and
Si . Note that, for causal cases, (U0,i, U1,i) is independent of

Si, but for non-causal cases (U0,i, U1,i) and Si are dependent.
For both causal and non-causal cases, Xi is a function of
(U0,i, U1,i, Si).

Finally, since εn → 0 as n → ∞, substituting (33)–(35)
into (30)–(32), and using the standard time sharing argument
complete the converse proof.
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