
ar
X

iv
:1

60
5.

03
54

7v
1

 [c
s.

D
C

]
11

 M
ay

 2
01

6

On Storage Allocation for Maximum Service Rate in
Distributed Storage Systems

Moslem Noori∗, Emina Soljanin†, Masoud Ardakani∗
∗Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

† Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, USA

Abstract—Storage allocation affects important performance
measures of distributed storage systems. Most previous studies on
the storage allocation consider its effect separately either on the
success of the data recovery or on the service rate (time) where
it is assumed that no access failure happens in the system. Inthis
paper, we go one step further and incorporate the access model
and the success of data recovery into the service rate analysis.
In particular, we focus on quasi-uniform storage allocation and
provide a service rate analysis for both fixed-size and probabilistic
access models at the nodes. Using this analysis, we then showthat
for the case of exponential waiting time distribution at individuals
storage nodes, minimal spreading allocation results in thehighest
system service rate for both access models. This means that for
a given storage budget, replication provides a better service rate
than a coded storage solution.

I. I NTRODUCTION

Cloud networks provide anywhere, anytime access to one’s
data, offer a high level of data safety (e.g., against hardware fail-
ure, theft, fire), and make sharing data easy. This functionality
is achieved by storing chunks of a data entity (file) redundantly
over multiple storage nodes. Distributed storage systems (DSSs),
thus play a central role in cloud networks, and have been the
focus of many ongoing diverse research activities [1]–[5].

A main concern for the consumers is to be able to download
the data and, often more importantly, to do that quickly. Thus,
the download service rate is the focus of this paper. Several
studies have looked into how to allocate redundant chunks
of data over the storage nodes to optimize some performance
metrics (e.g., [6]–[10] and references therein). The constraints
here are that the number of nodes and the level of redundancy
are limited, and to download his file, the user can access all or
some subset of (possibly unavailable) nodes in the system.

Existing studies on the storage allocation mostly focus on two
performance aspects of DSSs. One of them is the probability
of successful data recoveryPs when only a subset of possibly
failed nodes are accessed. The other is the average service
time Ts when a set of nodes from which the file can be
recovered is accessed. Simply put, when a subset of storage
nodes are assigned to serve a customer,Ps is the probability
that these nodes jointly (under possible failures) have been
allocated sufficient data to reconstruct and deliver the requested
file to the customer. On the other hand,Ts represents the time
needed to serve a customer’s request to download the file. In
other words,Ps reflects the reliability of the DSS in serving
the customers’ requests whileTs mostly represents the system’s
quality of service once the reliability has been provided. Finding
these quantities has shown to be quite challenging, and optimal
allocations are known only in some special cases.

In general, both these measures are of interest and should
be simultaneously taken into account for devising the allocation

strategy. For instance, assume a situation where several cus-
tomers send a delay-sensitive request to access the stored data.
While increasing the chance of successfully downloading the file
by each of the customers is desirable, this should not come at
the cost of unbearable delivery delay. Moreover, in practice, we
may often want to partially sacrifice a successful (but possibly
tardy) data delivery to some users in order to ensure that other
users, that can receive the data, are indeed served fast.

The existing work does not address such scenarios. Papers
concerned withPs are not concerned with the delay or assume
instantaneous (infinite rate) service . On the other hand, papers
concerned withTs assume that data is available on the accessed
nodes and can be served to the customer at some finite rate.

In this work, we assume a finite service rate for storage
nodes and the data (un)availability that depends on the used
allocation scheme. We are interested in the entire system service
rate, under certain access and/or node failure models. Notethat,
depending on the allocation, some subsets of nodes will not
contain enough file chunks between them to recover the data,
and accessing them will result in a zero system’s service rate.
On the other hand, again depending on the allocation, some
subsets of nodes will contain redundant file chunks, and that
redundancy can be exploited to increase the service rate.

Our analysis reveals that the allocation that maximizes the
probability of successful data recovery is often not the onethat
maximizes the average service rate. The key to understanding
this, perhaps unintuitive, phenomenon is to look into the role of
redundancy. When the accessed nodes contain more data than
necessary to reconstruct the file, this redundancy is superfluous
for file recovery but could be exploited to speed up the download
service rate since only a fraction of nodes have to deliver their
chunks in a timely manner. Therefore, depending on the number
of storage nodes and the allocated redundancy budget, it may
be beneficial for recovery to maximally spread the redundant
file chunks over the storage nodes, whereas concentrating the
redundant chunks may increase the expected service rate. We
show here that this is always the case for the DSS models
considered in the literature.

The rest of the paper is organized as follows. In Section II,
we introduce the considered DSS setup in more detail and
formally define the considered problem in this paper. Service
rate analysis considering the effect of access model and the
success of serving a request is presented in Section III. Using
this analysis, we then prove that minimal spreading maximizes
the service rate of the system in Section IV-A and Section IV-B
respectively for the fixed-size and probabilistic access models.
Numerical examples are also provided in these two chapters.
Finally, Section V concludes the paper.

http://arxiv.org/abs/1605.03547v1

... ...

PSfrag replacements1 2 mα mα+ 1 mα+ 2 N

A = {1, 2, N}

Fig. 1. An N -node DSS with quasi-symmetric allocation. While three nodes
are successfully accessed, only two of them have (coded) data blocks.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we describe the considered DSS in detail.
Then, we formally define the storage allocation problem to
maximize the service rate of the system.

A. Storage Model

We consider a DSS withN storage nodes, namelyni’s for
i ∈ N = {1, . . . , N}. A file with F blocks is stored over
these nodes that are to be accessed by the system’s customers.
To protect the data against nodes’ failure, the file is encoded
by a maximum distance separable (MDS) code to generateT
encoded blocks (anyF of them are sufficient to recover the
original file). Here, we assume that the code rate is1/m, where
m is a positive integer. Hence,T = mF . The encodedT blocks
are then partitioned intoN subsets, sayXi’s for i ∈ N where
|Xi| = xi, and thus

∑N

i=1 xi = T . We call such partitioning an
allocation. Now, thexi blocks withinXi are stored at the node
ni. Note that0 ≤ xi ≤ F since storing more thanF blocks on
a node does not serve any purpose in our model.

Dealing with a general storage allocation optimization prob-
lem to maximizePs or minimizeTs is computationally difficult
for a general setup [6]. Here, we focus on the quasi-symmetric
allocations [7] where for a positive integerα, the number of
blocks stored inni, denoted byxα(i), is either0 orF/α. Details
of the range ofα will be discussed later. Here, we identify a
quasi-symmetric allocation with a pair(α, β) whereβ represents
the number of nodes that are not empty. Sinceβ F

α
= T , we

haveβ = mα. Figure 1 depicts an example quasi-symmetric
allocation for a DSS withN storage nodes.

A quasi-symmetric allocation whereα = 1 and β = m
is called aminimal spreadingallocation [6]. Note that for a
minimal spreading allocation, we can skip coding and replicate
the wholeF blocks of the file overm storage nodes without
compromising the file protection. Similarly, an allocationwith
α = NF

T
andβ = N is called amaximal spreadingallocation.

B. Data Access Model

For the data access by the users, we consider the following
two main models suggested for DSSs [6].

1) Fixed-size access:In this access model, when a download
request is received, the request is forwarded to a randomr-
subset of theN nodes, i.e., a subset with cardinalityr [6], [7].
Since an MDS code is used to store the data, the original file
can be recovered if the accessed nodes contain at leastF blocks.
In other words, the access to a givenr-subsetA results in the
successful recovery of the data iff

∑

i∈A

xi ≥ F. (1)

Note that forα > r, it is impossible to recover the data. Thus,
for the fixed-size access model we only consider1 ≤ α ≤ r.

2) Probabilistic access:In this case, the download request is
forwarded to all nodes that store the data. However, the request
to access each of them fails with probabilityp and succeeds
with probability 1 − p. Assuming thatA represents the set of
nodes that are successfully accessed, then the condition for data
recovery is similar to (1). In this case,1 ≤ α ≤ NF

T
.

Regardless of the access model, for an arbitrary accessed
subset of nodesA, let us denote the number of nodes containing
data byk. For instance, in Figure 1, three nodes (|A| = 3) are
accessed while onlyk = 2 of them have data. For an(α, β)
quasi-symmetric allocation, data recovery from this subset is
successful if and only ifk ≥ α.

C. Service Model

Here, we assume that the arriving download requests follow
a Poisson distribution. Each request is forwarded to a set
of accessed nodes, calledA, to be served. At these nodes,
we assume a multiple-fountain system [2] where the arriving
request is forked into|A| tasks1. Each of these tasks then wait
to be served by one of the accessed|A| nodes. For an(α, β)
allocation over the nodes, the download request is successfully
served whenk ≥ α and anyα out of the k nodes with
data successfully serve their assigned tasks. At this point, the
remaining|A| − α tasks are discarded and dropped from the
rest of the accessed nodes. If the nodes inA do not contain
enough data to reconstruct the file (i.e. less thanF blocks), the
download request cannot be served.

When a task is assigned to a storage node, it may not get
served right away since the node is for example busy with
serving another request. Thus, there is a waiting time associated
with the time needed for the content inside the node to become
available for download by the user. Here, for simplicity, we
assume that the waiting time at all nodes are independent and
identically distributed (i.i.d) random variables all following an
exponential distribution with mean1

µ
. In other words, each

storage node has a service rate ofµ. Further, it is assumed that
the download bandwidth is large enough so that the time needed
to download the data is negligible compared to the waiting time
at the servers. As a result, the overall service rate of the system
is characterized only by the waiting time at the servers.

D. Problem Definition

For a given(α, β) quasi-symmetric allocation, the average
service rate, denoted byµs(α) is the highest rate that the arriving
download requests can be served by the system. (Sinceβ = mα,
we do not considerβ as a separate variable here.) As we discuss
later in the paper, beside the service rate at each individual node,
µs(α) also depends on the nodes’ storage allocation. Our goal
in this paper is to find the allocation that maximizesµs(α).

For a formal problem definition, we introduce the function

I

{

∑

i∈A

xα(i) ≥ F
}

1For the fixed-size access model|A| = r while for the probabilistic access
|A| could be any number between 1 andN .

indicating whether the file can be recovered from the nodes in
A or not. The probability of being able to successfully recover
the file under an(α, β) allocation is, therefore, given by

Ps(α) =
∑

A⊆N

P (A)I
{

∑

i∈A

xα(i) ≥ F
}

(2)

whereP (A) is the probability of choosingA. Similarly, the
average service rate under an(α, β) allocation is given by

µs(α) =
∑

A⊆N

P (A)µα(A)I
{

∑

i∈A

xα(i) ≥ F
}

(3)

whereµα(A) is the service rate when the set of accessed nodes
is A.

Previous studies on finding the optimal storage allocations
are focused on finding the allocation that maximizesPs for a
given storage budgetT . For instance, it was shown in [7] that
for a DSS with fixed-size access model,α that maximizes (2)
depends on the ratiom = T/F . Similar claims are made in
[6]. It is easy to see thatµα(A) is a decreasing function ofα.
Therefore, whenα = 1 maximizes (2), i.e. minimal spreading
maximizesPs, it also maximizes (3), term by term and thus
maximizesµs(α). We devote the following sections to showing
that (3) is maximized byα = 1 even if, for someα > 1, there
are more setsA ⊂ N that allow file reconstruction (more non-
zero terms in (3)) than forα = 1. That is, the service rate is
always maximized by using minimal spreading allocation.

III. A NALYSIS OFµs(α)

In this section, we studyµs(α) considering the effect of stor-
age allocation and access model. This study will then be usedin
the following sections to find the optimal allocation maximizing
µs(α) for fixed-size and probabilistic access models.

The rate of serving incoming requests depends on how many
nodes with data are successfully accessed. Thus,

µs(α) =

mα
∑

k=1

P (k, α)µs(α|k). (4)

whereP (k, α) denotes the probability of having exactlyk nodes
with data in the set of accessed nodesA. Also, µs(α|k) refers
to the conditional service rate given thatk nodes with data are
accessed. Note that for anyk < α, recovering the data from the
nodes inA is not possible, andµs(α|k) = 0. Thus,

µs(α) =

mα
∑

k=α

P (k, α)µs(α|k). (5)

It is easy to show that for the fixed-size access model

P (k, α) =

(

mα
k

)(

N−mα
r−k

)

(

N

r

) (6)

and for the probabilistic access model

P (k, α) =

(

mα

k

)

(1− p)kpmα−k. (7)

Now that we haveP (k, α), to evaluateµs(α), we present the
following result onµs(α|k).

Lemma 1:For a given(α, β) quasi-symmetric allocation,

µs(α|k) = µ

k
∏

j=k−α+1

j

k
∑

i=k−α+1

k
∏

j=k−α+1

j 6=i

j

. (8)

Proof: To find µs(α|k), we start by considering the condi-
tional service time of the requests, denoted byTs(α|k), which is
the inverse ofµs(α|k). As discussed before, a request is served
when the firstα storage nodes with data, out of the accessedk
nodes with data, start serving the request. That said,Ts(α|k)
is the αth order statistics ofk waiting times at the storage
nodes. Considering that all waiting times have an exponential
distribution with mean1

µ
, we have

Ts(α|k) =
1

µ

α
∑

i=1

1

k − α+ i
=

1

µ

k
∑

i=k−α+1

k
∏

j=k−α+1

j 6=i

j

k
∏

j=k−α+1

j

. (9)

Sinceµs(α|k) =
1

Ts(α|k)
, (8) is simply inferred from (9).

While theµs(α|k) expression in (8) looks rather complicated,
it is used in the following sections to simplify the service rate
analysis in the form of the following corollary.

Corollary 1: For α > 1
k

∑

i=k−α+1

k
∏

j=k−α+1

j 6=i

j >
k

∑

i=k−α+1

k−1
∏

j=k−α+1

j

= α

k−1
∏

j=k−α+1

j. (10)

Now, using (10) and (8) we have

µs(α|k) < µ

k
∏

j=k−α+1

j

α
k−1
∏

j=k−α+1

j

= µ
k

α
. (11)

IV. OPTIMAL STORAGE ALLOCATION

A. Fixed-Size Access Model

In this section, we find the optimal allocation to maximize
µs(α) for fixed-size access model. For this, we start by the
following lemma.

Lemma 2:For minimal spreading, i.e.α = 1, service rate is

µs(1) = µ
mr

N
. (12)

Proof: First of all, note that forα = 1, we have
µs(1|k) = µk. (13)

Thus2,

µs(1) = µ

min(m,r)
∑

k=1

kP (k, 1) = µ
r

∑

k=1

kP (k, 1). (14)

On the other hand,α = 1 and

k

(

mα

k

)

= k

(

m

k

)

= m

(

m− 1

k − 1

)

. (15)

As a result,

µs(1) =
mµ
(

N
r

)

r
∑

k=1

(

m− 1

k − 1

)(

N −m

r − k

)

. (16)

Using Vandermonde’s convolution, one can show that
r

∑

k=1

(

m− 1

k − 1

)(

N −m

r − k

)

=

(

N − 1

r − 1

)

. (17)

Now, plugging (17) into (16) completes the proof.

2Recall that fork > mα,
(

mα

k

)

= 0, and hence,P (k, α) = 0.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

A
ev

ra
g
e
se
rv

ic
e
ra
te

µ
s
(α

)

T = 3F
T = 4F
T = 5F
T = 6F

Fig. 2. Average service rate for fixed-sized access model with N = 30 and
r = 5.

Now that we haveµs(1), the next step is to find an upper
bound onµs(α) for any 2 ≤ α ≤ r and compare this bound
with µs(1). First, we present the following lemma.

Lemma 3:For any2 ≤ α ≤ r,

µs(α) < µ
mr

N
. (18)

Proof: Using Corollary 1,

µs(α) < µ

r
∑

k=α

k

α
P (k, α) (19)

=
µ

α
(

N
r

)

r
∑

k=α

k

(

mα

k

)(

N −mα

r − k

)

(20)

=
mµ
(

N
r

)

r
∑

k=α

(

mα− 1

k − 1

)(

N −mα

r − k

)

. (21)

In addition,
r

∑

k=α

(

mα− 1

k − 1

)(

N −mα

r − k

)

<

r−1
∑

k=0

(

mα− 1

k

)(

N −mα

r − 1− k

)

=

(

N − 1

r − 1

)

. (22)

Hence,

µs(α) <
mµ
(

N

r

)

(

N − 1

r − 1

)

= µ
mr

N
. (23)

Now, using Lemma 2 and 3, we have the following theorem
on the optimal storage allocation maximizingµs(α).

Theorem 1:Minimal spreading maximizes the service rate for
a DSS with fixed-size access model.

To verify the results of Theorem 1, we present some numeri-
cal examples in Figure 2 and 3. These figures depict the average
service rateµs(α) and the probability of successful recovery
Ps(α) for a DSS withN = 30 nodes, a fixed-size access model
with r = 5, andµ = 1. Here,α = 1 andα = 5 are associated
with minimal and maximal spreading allocation respectively. As
seen in these figures, for smaller allocation budgetT , minimal
spreading maximizes bothPs(α) and µs(α). However, as we

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
ro
b
a
b
il
it
y
o
f
su

cc
es
sf
u
l
re
co
v
er
y
P
s
(α

)

T = 3F
T = 4F
T = 5F
T = 6F

Fig. 3. Probability of successful recovery for fixed-sized access model with
N = 30 andr = 5.

increaseT , while Ps(α) is maximum whenα = 5 (in fact, any
download request is successfully served andPs(5) = 1), µs(α)
is always maximized byα = 1.

B. Probabilistic Access Model

In this section, we study the service rate for a DSS with
probabilistic access model. The goal is to find the optimal
storage allocation maximizing the average service rate.

Lemma 4:The service of a DSS with probabilistic access and
minimal spreading allocation is

µs(1) = mµ(1− p). (24)
Proof: Using (5), (7) and (13), we have

µs(1) = µ

m
∑

k=1

k

(

m

k

)

(1 − p)kpm−k (25)

= mµ

m
∑

k=1

(

m− 1

k − 1

)

(1 − p)kpm−k (26)

= mµ(1− p)

m−1
∑

k=0

(

m− 1

k

)

(1− p)kpm−k−1 (27)

= mµ(1− p). (28)

Similar to the case of the fixed-size access model, we find an
upper bound on the service rate of the system when2 ≤ α.

Lemma 5:For a quasi-symmetric allocation where2 ≤ α, the
service rate of the system is bounded as

µs(α) < mµ(1− p). (29)
Proof: Using Corollary 1, we have

µs(α) <
µ

α

mα
∑

k=α

k

(

mα

k

)

(1− p)kpmα−k (30)

=
µ

α

mα
∑

k=α

mα

(

mα− 1

k − 1

)

(1− p)kpmα−k

= mµ(1− p)

mα−1
∑

k=α−1

(

mα− 1

k

)

(1− p)kpmα−k−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α

A
ev

ra
g
e
se
rv

ic
e
ra
te

µ
s
(α

)

p = 0.1
p = 0.2
p = 0.3
p = 0.4

Fig. 4. Average service rate for probabilistic access modelwhenN = 30 and
T = 2F .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
ro
b
a
b
il
it
y
o
f
su

cc
es
sf
u
l
re
co
v
er
y
P
s
(α

)

p = 0.1
p = 0.2
p = 0.3
p = 0.4

Fig. 5. Probability of successful recovery for probabilistic access model when
N = 30 andT = 2F .

On the other hand
mα−1
∑

k=α−1

(

mα− 1

k

)

(1 − p)kpmα−k−1 ≤ 1. (31)

Thus,
µs(α) < mµ(1− p). (32)

Now, using the results of Lemma 4 and 5, we have the
following theorem on the optimal storage allocation for the
probabilistic access model.

Theorem 2:In a DSS with probabilistic access model, mini-
mal spreading results in the maximum service rate.

Numerical examples to verify the results of Theorem 2 are
presented in Figure 4 and 5. The results are for a DSS with

N = 30 storage nodes, a storage budget ofT = 2F , andµ = 1.
As seen in Figure 5, maximal spreading allocation results in
the highest probability of successful recovery for all considered
probabilities of access failure. However, the average service rate
always reaches its maximum forα = 1, i.e. minimal spreading,
as depicted in Figure 4.

V. CONCLUSION

Content allocation throughout a distributed storage system
affects the probability that the content can be recovered when
there is uncertainty in the number, identity, and/or availability
of the storage nodes queried for service. So far the concern has
been only that the stored data can eventually be downloaded,
and not how long that process might take. To the best of
our knowledge, this paper is the first attempt to understand
how content allocation affects the download service rate. We
showed that under certain assumptions, the minimal spreading
allocation maximizes the service rate for the commonly assumed
content access models specified by the number, identity, and/or
availability of the storage nodes queried for service. Therefore,
storing data through replication results in faster servicefor the
incoming download requests than a coded storage with the same
storage budget. Our assumption was that the service time at
the storage nodes follows an exponential distribution, andis
identically distributed and independent for all users. A more
advanced model should involve other distributions (in particular,
the shifted exponential as in [3] and [2]) as well as fork-join
queuing considerations.

ACKNOWLEDGMENT

The authors were in part supported by Alberta Innovates
Technology Futures (AITF) and Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), and would also like
to thank A. Badr, G. Joshi, and K. Mahdaviani for valuable
discussions at the Banff International Research Station (BIRS).

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inform. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Communication, Control, and Computing (Allerton), 2012 50th Annual
Allerton Conference on, 2012, pp. 326–333.

[3] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,
and N. B. Shroff, “When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,” inIEEE Conf. on Computer Com-
munications (INFOCOM), 2014, pp. 1042–1050.

[4] R. Tandon and S. Mohajer, “New bounds for distributed storage systems
with secure repair,” inAllerton Conf. on Communication, Control, and
Computing, 2014, pp. 431–436.

[5] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing download time for
availability codes,” inInformation Theory Proceedings (ISIT), 2015 IEEE
International Symposium on, July 2015.

[6] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations,”
IEEE Trans. Inform. Theory, vol. 58, no. 7, pp. 4733–4752, 2012.

[7] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation in
distributed storage networks,” inIEEE Intl. Symp. on Information Theory
(ISIT), June 2010, pp. 1958–1962.

[8] M. Noori and M. Ardakani, “Allocation for heterogeneousstorage nodes,”
IEEE Commun. Lett., vol. 19, no. 12, pp. 2102–2105, 2015.

[9] B. Hong and W. Choi, “Asymptotic analysis of failed recovery probability
in a distributed wireless storage system with limited sum storage capacity,”
in IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
2014, pp. 6459–6463.

[10] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storageallocations for
optimal delay,” inIEEE Intl. Symp. on Information Theory (ISIT), 2011,
pp. 1447–1451.

	I Introduction
	II System Model and Problem Definition
	II-A Storage Model
	II-B Data Access Model
	II-B1 Fixed-size access
	II-B2 Probabilistic access

	II-C Service Model
	II-D Problem Definition

	III Analysis of s()
	IV Optimal Storage Allocation
	IV-A Fixed-Size Access Model
	IV-B Probabilistic Access Model

	V Conclusion
	References

