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Abstract—Storage allocation affects important performance strategy. For instance, assume a situation where sevesal cu
measures of distributed storage systems. Most previous sfies on  tomers send a delay-sensitive request to access the statad d
the storage allocation consider its effect separately eidr on the While increasing the chance of successfully downloadiedith

success of the data recovery or on the service rate (time) wiee b h of th t is desirable. this should not t
it is assumed that no access failure happens in the system. this y €ach ot the cuslomers Is desirable, this should not come a

paper, we go one step further and incorporate the access mode the cost of unbearable delivery delay. Moreover, in practice
and the success of data recovery into the service rate analgs may often want to partially sacrifice a successful (but pgugsi
In particular, we focus on quasi-uniform storage allocation and  tardy) data delivery to some users in order to ensure thair oth
provide a service rate analysis for both fixed-size and proldailistic ,sers that can receive the data, are indeed served fast.
access models at the nodes. Using this analysis, we then shibvat . .

for the case of exponential waiting time distribution at individuals The eX'St'n_g work does not addres§ such scenarios. Papers
storage nodes, minimal spreading allocation results in thdiighest concerned withP; are not concerned with the delay or assume
system service rate for both access models. This means thatrf instantaneous (infinite rate) service . On the other hangensa

a given storage budget, replication provides a better serge rate  concerned withl, assume that data is available on the accessed
than a coded storage solution. nodes and can be served to the customer at some finite rate.

. INTRODUCTION In this work, we assume a finite service rate for storage

Cloud networks provide anywhere, anytime access to on&8des and the data (un)availability that depends on the used
data, offer a high level of data safety (e.g., against hareifal- ~ allocation scheme. We are interested in the entire systevitee
ure, theft, fire), and make sharing data easy. This fundityna rate, under certain access and/or node failure models. tNate
is achieved by storing chunks of a data entity (file) redutigandepending on the allocation, some subsets of nodes will not
over multiple storage nodes. Distributed storage syst&@8§¢), contain enough file chunks between them to recover the data,
thus play a central role in cloud networks, and have been t@d accessing them will result in a zero system’s serviee rat
focus of many ongoing diverse research activities [1]-[5]. ©On the other hand, again depending on the allocation, some
A main concern for the consumers is to be able to downlo&tbsets of nodes will contain redundant file chunks, and that
the data and, often more importantly, to do that quickly. §huredundancy can be exploited to increase the service rate.
the download service rate is the focus of this paper. SeveraOur analysis reveals that the allocation that maximizes the
studies have looked into how to allocate redundant chuni&obability of successful data recovery is often not the thrae
of data over the storage nodes to optimize some performai@ximizes the average service rate. The key to understgndin
metrics (e.g.,[[6]4[10] and references therein). The cairss this, perhaps unintuitive, phenomenon is to look into tHe of
here are that the number of nodes and the level of redundanegtundancy. When the accessed nodes contain more data than
are limited, and to download his file, the user can accessralligcessary to reconstruct the file, this redundancy is supesi
some subset of (possibly unavailable) nodes in the system. for file recovery but could be exploited to speed up the doaailo
Existing studies on the storage allocation mostly focusam t service rate since only a fraction of nodes have to deliveir th
performance aspects of DSSs. One of them is the probabilifyunks in a timely manner. Therefore, depending on the numbe
of successful data recovery, when only a subset of possiblyof storage nodes and the allocated redundancy budget, it may
failed nodes are accessed. The other is the average serbiedoeneficial for recovery to maximally spread the redundant
time 7, when a set of nodes from which the file can béle chunks over the storage nodes, whereas concentrating th
recovered is accessed. Simply put, when a subset of storsg@undant chunks may increase the expected service rate. We
nodes are assigned to serve a customkris the probability show here that this is always the case for the DSS models
that these nodes jointly (under possible failures) havenbeeonsidered in the literature.
allocated sufficient data to reconstruct and deliver theested  The rest of the paper is organized as follows. In Sedtibn II,
file to the customer. On the other harid, represents the time we introduce the considered DSS setup in more detail and
needed to serve a customer’s request to download the file.fdnmally define the considered problem in this paper. Servic
other words,P; reflects the reliability of the DSS in servingrate analysis considering the effect of access model and the
the customers’ requests whilg mostly represents the system’ssuccess of serving a request is presented in Selctibn IlhgUsi
quality of service once the reliability has been provideddihg this analysis, we then prove that minimal spreading maxésiiz
these quantities has shown to be quite challenging, andhapti the service rate of the system in Secfion 1V-A and Sedfiol]IV-
allocations are known only in some special cases. respectively for the fixed-size and probabilistic accessieim
In general, both these measures are of interest and shaMldnerical examples are also provided in these two chapters.
be simultaneously taken into account for devising the alion  Finally, Sectio 'V concludes the paper.
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1 2 ma ma +1mo+ 2 N Note that fora > r, it is impossible to recover the data. Thus,
for the fixed-size access model we only consitlet o < r.

2) Probabilistic accessin this case, the download request is
forwarded to all nodes that store the data. However, theestqu
to access each of them fails with probabiljtyand succeeds
with probability 1 — p. Assuming that4 represents the set of

g nodes that are successfully accessed, then the conditiatata
={1,2,N} o aipi i NF
recovery is similar to[(1). In this case,< o < &.
Fig. 1. An N-node DSS with quasi-symmetric allocation. While threeeod ~ Regardless of the access model, for an arbitrary accessed
are successfully accessed, only two of them have (coded)tdatks. subset of nodegl, let us denote the number of nodes containing
data byk. For instance, in Figuriel 1, three nodéd|(= 3) are
accessed while only: = 2 of them have data. For afw, 5)

Il. SYSTEM MODEL AND PROBLEM DEFINITION - - . . .
. . . . . quasi-symmetric allocation, data recovery from this stilise
In this section, we describe the considered DSS in detaé'.]ccessful if and only if: > a

Then, we formally define the storage allocation problem to
maximize the service rate of the system.

C. Service Model
A. Storage Model

We consider a DSS withiV storage nodes, namely;’'s for
i € N ={1,...,N}. A file with F blocks is stored over

Here, we assume that the arriving download requests follow
a Poisson distribution. Each request is forwarded to a set
of accessed nodes, called, to be served. At these nodes,

M Sassume a multiple-fountain system [2] where the arriving

To protect the dqta against nodes’ failure, the file is erIdOdPequest is forked intdA| taskB. Each of these tasks then wait
by a maximum distance separable (MDS) code to gendf’ateto be served by one of the accessetl nodes. For ar{a, 3)

er!cc_)delc]ll_lbIm':_'ks (any” of themthartetr? ufflc:jent tt(; _recov;z ' theallocation over the nodes, the download request is suadBssf
original file). Here, we assume that the code ratb/im, where served whenk > « and any«a out of the k¥ nodes with

m 'St? pOS|t|vt¢t_|ntege_r.th-)lfnc%“, :th ) Th’e ?“C‘?dej‘\T[ bl?]Cks data successfully serve their assigned tasks. At this pthiet
are then partitioned intov subsets, sayt;’s for i € N where remaining|.A| — « tasks are discarded and dropped from the

PITZ" _t.x“ aI\rlld thtlﬁlsz_i:bll xlk_ T_.ﬂ\{_\le;all sucth pzrtl'ilczr:llng a:jn rest of the accessed nodes. If the nodesdio not contain
aflocation Now, thex; Dlocks withinA; are stored at the no eenough data to reconstruct the file (i.e. less thablocks), the

n;. Note that0 < z; < F' since storing more thah' blocks on download request cannot be served.

a node does not serve any purpose in our model. : . .
: : . L When a task is assigned to a storage node, it may not get
Dealing with a general storage allocation optimizationbpro . : . .
o . . . e served right away since the node is for example busy with
lem to maximizeP; or minimizeTy is computationally difficult . ) " X .
serving another request. Thus, there is a waiting time &ssokc

for a general setup [6]. Here, we focus on the quasi-symmetri: . S
allocations [7] where for a positive integer, the number of with the time needed for the content inside the node to become

blocks stored imy;, denoted byr., (i), is eithero or F/a. Details available for download by the user. Here, for simplicity, we
of the range Ofoj,Wi” be discuasse’d later. Here we. identify Jassume that the waiting time at all nodes are independent and
quasi-symmetric allocation with a pdin ﬂ). wheréﬂ represents identically distributed (i.i.d) random variables all folling an

the number of nodes that are not empty. Sinﬁ{g — T we exponential distribution with meas. In other words, each

have 8 = ma. Figure[l depicts an example quasi—symmetr%orage node has a service rateuof-urther, it is assumed that
. . the download bandwidth is large enough so that the time reede
allocation for a DSS withV storage nodes.

A quasi-symmetric allocation whera — 1 and 8 = m to download the data is negligible compared to the waitingeti
is called aminimal spreadingallocation [6]. Note that for a at the servers. As a result, the overall service rate of teeery

minimal spreading allocation, we can skip coding and regic is characterized only by the waiting time at the servers.
the whole F' blocks of the file ovenn storage nodes without o
compromising the file protection. Similarly, an allocatinith D. Problem Definition

a = andf =N is called amaximal spreadingllocation.  £o 5 given(a, 3) quasi-symmetric allocation, the average

B. Data Access Model service rate, denoted hy () is the highest rate that the arriving

For the data access by the users, we consider the foIIowﬂ pwnload reque_sts can be served by t_he system. ($'ﬁ€en9"
two main models suggested for DSS5 [6]. we do not considef as a separate variable here.) As we discuss

1) Fixed-size accesdn this access model, when a downloadfter in the paper, beside the servic,e rate at each in.dik/idldaa,
request is received, the request is forwarded to a random,“s(o‘_) also de.pends on the node§ storage aIIpcgtlon. Our goal
subset of theV nodes, i.e., a subset with cardinality], [7]. " this paper is to find the allocation that maximizega).
Since an MDS code is used to store the data, the original fileFor a formal problem definition, we introduce the function

can be recovered if the accessed nodes contain atAellsicks. H{Z (i) > F}
In other words, the access to a giveisubsetA results in the i€A
successful recovery of the data iff
Z z; > F. (1) IFor the fixed-size access model| = r while for the probabilistic access

icA | A| could be any number between 1 and



indicating whether the file can be recovered from the nodes in Proof: To find us(alk), we start by considering the condi-
A or not. The probability of being able to successfully recovéional service time of the requests, denotedIbi|k), which is
the file under an(a, 8) allocation is, therefore, given by the inverse ofus(«|k). As discussed before, a request is served
Py(a) = Z P(A)]I{Z:ca(i) > F} @) when the firsto storage nodes with data, out of the accessed
vt oA nodes with data, start serving the request. That sBjty|k)

where P(A) is the probability of choosingd. Similarly, the S the ath or_der_statistics oft \_/v_aiting times at the storage
average service rate under ém, 3) allocation is given by nodes. Considering that all waiting times have an expoaknti

. distribution with mean}, we have
ps(@) = 3 P (A Y 2a() = F} @) z o
ACN i€A .
wherep, (A) is the service rate when the set of accessed nodes Z H J
: 1 < 1 1 i=k—a+l J':kftiwrl
is A. _ _ o . _ Ts(a|k):_z 2 i# )
Previous studies on finding the optimal storage allocations W= E—a+i p k .
are focused on finding the allocation that maximizgsfor a H J
given storage budgéf. For instance, it was shown iql[7] that j=k—a+1

for a DSS with fixed-size access modelthat maximizes[(2) Sinceus(alk) = 7. @) is simply inferred from[(9). m

depends on the ratio» = 7'/F. Similar claims are made in While theus(a|k) expression in[{8) looks rather complicated,

[6]. It is easy to see that,(A) is a decreasing function ef. it is used in the following sections to simplify the serviate

Therefore, wherv = 1 maximizes [[R), i.e. minimal spreadinganalysis in the form of the following corollary.

maximizes P, it also maximizes[{3), term by term and thus Corollary 1: Fora > 1

maximizesus(a). We devote the following sections to showing k k k k-1

that [3) is maximized byx = 1 even if, for somex > 1, there Z H J> Z H

are more setsl C A\ that allow file reconstruction (more non- i=k—atl J=k_att i=k—atlj=k-atl

zero terms in[(B)) than forr = 1. That is, the service rate is k—1
= H

always maximized by using minimal spreading allocation. (10)
j=k—a+1
I1. ANALYSIS OF ji5(cx) Now, using [(ID) and(8) we have
k
In this section, we studys(a) considering the effect of stor- H j
age allocation and access model. This study will then be used j=k— a1 k
the following sections to find the optimal allocation maxzmi (alk) k—1 B (11)
us(a) for fixed-size and probabilistic access models. Q@ H
The rate of serving incoming requests depends on how many j=k—a+1

nodes with data are successfully accessed. Thus,
mao

(@) = 3 Pk, a)ps(alk).

k=1

(4)

whereP(k, o) denotes the probability of having exacklynodes

with data in the set of accessed nodésAlso, ps(alk) refers

to the conditional service rate given thainodes with data are
accessed. Note that for aky< «, recovering the data from the

nodes inA is not possible, angs(a|k) = 0. Thus,

mo

s ( Z P(k, a)ps(ofk). (5)

It is easy to show that for the fixed-size access model
() %)
()

and for the probabilistic access model

(T

Now that we haveP(k, «), to evaluateus( ),
following result onub(a|k
Lemma 1:For a given(«

Pk,a) = (6)

()

,B) quasi-symmetric allocation,
k

II

j=k—a+1
ps(alk) = p———— (8)
— j=k—a+l
i

IV. OPTIMAL STORAGE ALLOCATION
A. Fixed-Size Access Model

In this section, we find the optimal allocation to maximize
us(a) for fixed-size access model. For this, we start by the
following lemma.

Lemma 2:For minimal spreading, i.ex = 1, service rate is

we present the As a result,

mr
ps(1) = N (12)
Proof: First of all, note that forx = 1, we have
ps(11E) = pik. (13)
Thué,
min(m,r)
ps()=pn > kP(k1) qupm (14)
k=1
On the other handy = 1 and
mao m m—1
k<k)_k(k>_m<k_1>. (15)
_ N=m) (16)
) -k
Using Vandermondes convolution one can show that
" /m—1\/N—-m N-1
;_;(k_l)(r_k)—(r_l)- @
Now, plugging [Z¥) into[(16) completes the proof. [ ]

%Recall that fork > ma, (",*) =0, and henceP(k,a) = 0.
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Fig. 2. Average service rate for fixed-sized access modél Wit= 30 and  Fig. 3. Probability of successful recovery for fixed-sizettess model with
r=5. N =30 andr = 5.

Now that we haveu(1), the next step is to find an upperincreasel’, while P () is maximum wheny = 5 (in fact, any
bound onpg(a) for any 2 < a < r and compare this bounddownload request is successfully served &h) = 1), us(a)

with s5(1). First, we present the following lemma. is always maximized byr = 1.
Lemma 3:Forany2 < a <, oy B. Probabilistic Access Model
ps(a) < PN (18) | this section, we study the service rate for a DSS with
Proof: Using Corollan[1, probabilistic access model. The goal is to find the optimal
"k storage allocation maximizing the average service rate.
<H Z (19) Lemma 4:The service of a DSS with probabilistic access and

minimal spreading allocation is

= () (N T me 20 ps(1) = mp(1 = p). (24)
0‘( ) ;;y ( ) ( r—k ) 20 Proof: Using [8), [T) and[{113), we have

HEECT) w eep e e
e G

k-1 r—k k r—1-k 1
h=a . < (m-1 k, m—k—1
= . —mut-n 3 (" a0t @7)
S \r—1) (22) k=0
Hence, = mu(l — p). (28)
mp (N -1\  mr m
o) < m < r—1 > AN (23) Similar to the case of the fixed-size access model, we find an

upper bound on the service rate of the system whenha.
Lemma 5For a quasi-symmetric allocation whe?e< «, the
rvice rate of the system is bounded as
pis(a) < mpu(1 = p). (29)
Proof: Using Corollany[1, we have

Now, using Lemmal2 and 3, we have the following theorel&
on the optimal storage allocation maximizipg(«).

Theorem 1Minimal spreading maximizes the service rate for
a DSS with fixed-size access model.

To verify the results of Theoref 1, we present some numerl- (@) < £ Z ( ) p)kpma—k (30)
cal examples in Figuilg 2 andl 3. These figures depict the ae/erag
service rateus(«) and the probability of successful recovery ma 1
P,(«) for a DSS withV = 30 nodes, a fixed-size access model . (ma >(1 — p)kpmak
with » =5, andu = 1. Here,a = 1 anda = 5 are associated Y =a k=1
with minimal and maximal spreading allocation respecyivak mal o1
seen in these figures, for smaller allocation budfeminimal =mu(l—p) Y ( i )(1 p)fpmet !

spreading maximizes botR;(«) and us(«). However, as we k=a-1
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On the other hand

ma—1
-1
Z (mak )(1 _p)kpma—k—l <1.

k=a—1

(31)

Thus,

ps(a) < mp(l —p). (32)

[ |
Now, using the results of Lemnid 4 afdl 5, we have thé!
following theorem on the optimal storage allocation for theg;

probabilistic access model.

Theorem 2:1n a DSS with probabilistic access model, mini-

mal spreading results in the maximum service rate.

Numerical examples to verify the results of Theorem 2 are
presented in Figurel4 ard 5. The results are for a DSS with

N = 30 storage nodes, a storage budgef'of 2F, andy = 1.

As seen in Figur&l5, maximal spreading allocation results in
the highest probability of successful recovery for all adased
probabilities of access failure. However, the averageisemate
always reaches its maximum far= 1, i.e. minimal spreading,
as depicted in Figurgl 4.

V. CONCLUSION

Content allocation throughout a distributed storage syste
affects the probability that the content can be recoverednwh
there is uncertainty in the number, identity, and/or avnlity
of the storage nodes queried for service. So far the con@sn h
been only that the stored data can eventually be downloaded,
and not how long that process might take. To the best of
our knowledge, this paper is the first attempt to understand
how content allocation affects the download service rate. W
showed that under certain assumptions, the minimal sprgadi
allocation maximizes the service rate for the commonly @&l
content access models specified by the number, identityoand
availability of the storage nodes queried for service. Efme,
storing data through replication results in faster seryarethe
incoming download requests than a coded storage with the sam
storage budget. Our assumption was that the service time at
the storage nodes follows an exponential distribution, &nd
identically distributed and independent for all users. Areno
advanced model should involve other distributions (inipalfar,
the shifted exponential as inl[3] andl [2]) as well as forkajoi
gueuing considerations.
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