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Abstract—This paper presents a statistical characterization of
the SNR gap between MIMO Zero-Forcing (ZF) and Minimum
Mean Squared Error (MMSE) equalizers, beyond the Rayleigh
assumption for the interfering streams amplitude fading. Results
are valid for arbitrary transmit SNR values and number of
transmit/receive antennas. Specifically, we provide the exact
closed-form distribution of the random variable representing the
difference between the output SNR on a generic receive filter
branch, under MMSE and ZF equalization. Analytical results
turn particularly useful for the study of heterogeneous cellular
networks.

I. INTRODUCTION

Zero Forcing (ZF) and Minimum Mean Squared Error
(MMSE) are the most popular linear receivers, due to their
satisfactory trade-off between implementation complexity and
achievable performance. Their supposed performance equiva-
lence in the high Signal to Noise Ratio (SNR) regime was
contradicted in [1]. Therein, it was shown that, given the
transmission of nt signal streams, with common value of the
normalized transmit SNR, the output SNR for independent
stream decoding, γmmse

k , measured in correspondence of an ar-
bitrary branch of the MMSE receiving filter, can be expressed
as [1], [2]

γmmse
k = γzfk + ηk (1)

In (1), γzfk represents the output SNR, of the ZF equalizer
on branch k and ηk denotes a non-decreasing function of the
SNR, accounting for the energy nulled out by the ZF but not
by the MMSE receiver. A gap between the output SNR values
strongly impacts on both the outage (see [1, Eq. (53)]) as
well as the error probability (EP), as outlined, e.g., in [1,
Eq. (50)]. Moreover, knowledge of the statistics of ηk can
serve as a high-SNR upper bound to the Interference to Noise
Ratio at the output of an MMSE filter [1, Lemma III.2]. Due
to its relevance as a performance index for linear receivers,
hereinafter we investigate the statistics of ηk.

Related work. To date, the probability density function (pdf)
of ηk has been derived in closed form only for asymptotically
large transmit power. In [1, Thm. III.1], it was shown that the
pdf of a properly scaled ηk, as the SNR grows large, converges
to the F2(nt−2),2(nr−nt+2) distribution1, under the assumption
that both the intended, as well as the interfering streams, are

1I.e., the pdf of Fm,n is: fx(x) =
Γ( n+m

2
)nn/2mm/2xm/2−1

Γ(m/2)Γ(n/2)(n+mx)
n+m

2

.

subject to uncorrelated Rayleigh fading. The case of a system
with a large number of transmit and receive antennas, impaired
by transmit-correlated Rayleigh fading, has been investigated
in [2]. Irrespectively of the presence of spatial correlation,
under Rayleigh fading, γzfk is Gamma distributed [3].

Very recent works [4, and references therein] deal with the
distribution of γzfk in the Line-of-Sight (LOS) environment,
i.e., where either the desired or the interfering streams [5]
experience Rician fading, while remaining streams experience
Rayleigh fading. No results on either γzfk or ηk are available
for other channel models. The exact characterization of γmmse

k ,
in turn, is a more challenging task2, calling for the separate
investigation of γzfk and ηk, which are easier to handle.

Aim of the work. We capitalize on the fact that ηk, in [1,
Formula (26)], is cast in terms of an Hermitian quadratic
form, where the desired signal stream only appears in the
vector, while the interfering streams are confined to the kernel
matrix. This algebraic structure strongly favors its explicit
statistical characterization, which can be carried out by means
of standard analytical tools of multivariate analysis in several
fading cases.

We focus on the case of Rayleigh-faded intended stream.
Under this assumption, we first provide a non-asymptotic
result complementing the fundamental one of [1, Thm. III.1],
by giving the gap distribution for Rayleigh-faded interfering
streams but arbitrary rather than arbitrarily large SNR values.
The case of transmit-correlated Rayleigh fading, possibly cor-
responding to spatially-clustered interferers, is addressed in the
same vein. Then, we derive the corresponding statistics in the
case of Rician-faded interfering streams, for arbitrary rank and
eigenvalues multiplicity of the LOS matrix. Such a scenario is
representative of a worst-case cellular transmission, where the
useful stream comes, e.g., from the cell edge and dominant
interferers have LOS path toward the base station. Finally, we
evaluate the pdf of ηk for the case where interfering streams
undergo multiple Rayleigh scattering3. This last scenario is of
particular interest in foreseen small-cells networks. Indeed, it

2To the best of the authors’ knowledge, the pdf of γmmse
k is available

when both desired and interfering signals are Rayleigh faded [6], while a
closed-form expression for its moments has been derived also in the case of
Rice-faded intended stream/Rayleigh faded interference [7].

3See [10] for the statistical analysis of a multiple scattering system,
and [11], [12], [13, and references therein] for practical justification and
information-theoretic performance of such channels, as the number of scat-
tering stages vary.



adequately represents, with no approximation in the channel
statistics, the case where interfering signals come from non
colocated single-antenna equipped users, whose signals may
undergo multiple scattering phenomena.

As an instance of application of our results, we evaluate
the key statistics of ηk, relating the values of the Bit Error
Probability (BER) as well as those of the Outage Probability
(OP) of an MMSE receiver with the corresponding perfor-
mance indices in the case of ZF.

II. NOTATION

Boldface uppercase and lowercase letters denote matrices ad
vectors, respectively. I is the identity matrix. The determinant
and the conjugate transpose of the generic matrix A are
denoted by |A| and AH, respectively, while Ai,j is the (i, j)-th
element of A. Moreover, Ea[·] represents the average operator
with respect to the random variable a. For any m×m Hermi-
tian matrix A with eigenvalues a1, . . . , am, the Vandermonde
determinant is defined as: V(A) =

∏
1≤k<`≤m(ak − a`).

Gc,da,b(·|·), with integer parameters a, b, c, d, denotes the Meijer-
G function [14, Ch. 8]. The Gauss hypergeometric function is
denoted by 2F1(a, b; c;x). The complex multivariate Gamma
function is defined as [15]: Γp(q) = πp

∏p
`=1(q − `)! ,, with

p and q non-negative integers such that p≤q, and πp =
πp(p−1)/2. We also denote by (a)k = Γ(a + k)/Γ(a) the
Pochhammer symbol of order k. fa(a) denotes the pdf of the
scalar random variable a (for random matrices pdf we skip the
subscript). If two variables a and b share the same distribution,
we write a ∼ b.

III. SYSTEM MODEL

Consider a linear system:

y =
√
ρHx + n (2)

where y is a vector of size nr, H is the nr × nt random
channel matrix, x is a random vector of size nt with covariance
E[xxH] = Es/ntI, and n represents Gaussian noise with co-
variance E[nnH] = N0I. For simplicity, we assume nt ≤ nr.
The channel matrix is assumed to be normalized such that
ρ = nrnt/Tr{E[HHH]}.

The expression of the instantaneous received SNR on the
k-th receive filter branch (k = 1, . . . , nt) depends on the
adopted equalizer. In terms of the channel matrix and system
parameters, we have [16, Ch. 6]:

γmmse
k =

1[
(I+δHHH)

−1
]
k,k

−1, γzfk =
δ[

(HHH)
−1
]
k,k

,

(3)
where δ = Es

N0

ρ
nt

and [1, Eq. (26)]. We denote by hk the k-th
column of H and by Hk the matrix obtained by removing hk
from H. The SNR gap γmmse

k − γzfk is then given by [1]

ηk = hk
HUk

(
δ−1Int−1 + Λk

)−1
Uk

Hhk , (4)

where Hk = UkΛ
1/2
k Vk

H is the singular value decomposition
of Hk, Uk has size nr × (nt − 1) and both Λk and Vk are
square matrices of size (nt − 1).

IV. PROBLEM FORMULATION

Our work focuses on the statistical characterization of (4),
under different assumptions on the statistics of the diagonal
matrix Λk of size nt−1, while hk ∼ CN (0, Inr

), i.e. hk is a
length-nr vector of zero-mean uncorrelated Gaussian random
variable with unit variance. This assumption on the intended
stream allows us to state the following lemma on the gap
distribution, conditionally on the interfering streams fading
law.

Lemma 4.1: For independent stream decoding, the SNR gap
ηk, as defined in (4), is a random variable whose conditional
law w.r.t. the interfering streams fading distribution can be
expressed as

fηk|Λk
(y) =

|∆|
V(Λk)

nt−1∏
`=1

(
1

δ
+ λ`

)nt−2

. (5)

∆ is the determinant of a size-(nt − 1) matrix, with generic
element

∆i,j =

{
`j−1i , 1 ≤ i ≤ nt − 1, 1 ≤ j ≤ nt − 2

`nt−3
i e−y/`i , 1 ≤ i ≤ nt − 1, j = nt − 1

`i =
(
1
δ + λi

)−1
.

Proof: Since hk ∼ CN (0, Inr
), Uk

Hhk ∼ CN (0, Int−1),
by the invariance of the complex Gaussian distribution to
linear transformations. Henceforth, the conditional distribution
of ηk|Λk can be written directly as per [17, Eq. (8)].

Equipped with (5), we derive its unconditional expression
for each listed fading scenario. For sake of formula’s com-
pactness, we define ζ = 1+δ

δ and τ = nr − nt + 1. Due to
the lack of space, the proofs of the following Propositions are
omitted, and relegated to [20].

A. Rayleigh fading
Under the uncorrelated Rayleigh assumption for the inter-

ferers, Hk is modeled as a matrix whose entries are zero-
mean independent complex Gaussian random variables with
unit variance. As δ takes on arbitrary but finite values, ηk’s
law can be expressed as per the following proposition.

Proposition 4.1: The distribution of (4), under the assump-
tion of Rayleigh-faded interfering streams, can be written as

fηk(y) = Knt−1,nr
|Z| , (6)

where

Knt−1,nr
=

π2
nt−1

Γnt−1(nt − 1)Γnt−1(nr)
,

Zi,j =


β!

β∑
`=0

(nt−j−`)nr−i

δ``!

1≤i≤nt−1
1≤j≤nt−2

e−y/δ(nr−i)!
δ(y+1)nr−i+1

[
1+

δ(nr−i+1)

y + 1

]
1≤i≤nt−1
j=nt−1

and, hereinafter, β = nt − j − 1.
Remark I: Notice that (6) can be also cast as

fηk(y) = Knt−1,nr

nt−1∑
i=1

Die−y/δ(nr−i)!
δ(y+1)nr−i+1

[
1+

δ(nr−i+1)

y + 1

]
,

(7)



by virtue of Laplace expansion of |Z| w.r.t. its last column, the
only one depending on ηk. In (7), Di is the (i, nt − 1)-th co-
factor of the matrix Z. Such an expression holds for each of
the following newly derived pdfs. Though less compact than
that appearing in the Proposition’s statements, (7) turns out to
be effective in averaging w.r.t. ηk, under any fading scenario.

Corollary 4.1: Under the assumptions of Proposition 4.1, if
the rows of Hk are correlated with common covariance matrix
Σk, with distinct4 eigenvalues σi’s, i = 1, . . . , nt − 1

fηk(y) =
πnt−1|Z|

Γnt−1(nr)V(Σk)|Σk|τ+1
, (8)

Zi,j =



β∑
`=0

β!σnr−j+1
i (nr−j−`)!
(δσi)``!(β−`)!

1≤i≤nt−1,
1≤j≤nt−2

e−y/δτ !

δ
(

1
σi

+y
)τ+1

1+
δ(τ+1)(
1
σi

+y
)
, 1≤i≤nt−1,

j=nt−1

B. Rice fading
Assuming that all interfering streams undergo Rice fading

is tantamount to say that

Hk = H̄k + H̃k . (9)

In the above expression H̄k is a deterministic matrix, repre-
senting the LOS signal component between each interfering
transmitter and each receiver antenna. The entries of H̃k are
independent, zero-mean complex Gaussian random variables.
We provide hereinafter the gap characterization for arbitrary
geometric behavior of the LOS component, i.e., we assume
the matrix Ω = H̄k

HH̄k to have rank L ≤ nt− 1. We denote
by {ω1 . . . , ωL} its L non-zero eigenvalues.

Proposition 4.2: The distribution of the Hermitian
quadratic form in (4), under the assumption of Rice-faded
interfering streams, with rank-L LOS matrix, can be written
as

fηk(y) = KΩ|Z| , (10)

where

KΩ =
e−Tr{Ω}

∏L
`=1 ω

L+1−nt

`

Γnt−L−1(nt − L− 1)V(Ω)
,

V(Ω) =
∏L
`<k(ω` − ωk) and

Zi,j=



β∑
`=0

(nr−j−`)!
e−ωj `!δ`

×
β−∑̀
q=0

(nt−j−`−q)t+q
ω−qj q!(τ+q)!

1≤i≤L
1≤j≤nt−2

β!

(nr − i)!

β∑
`=0

(nt−j−`)nr−i

`!δ`
L+1≤i≤nt−1
1≤j≤nt−2

e−y/δ+ωi

δ(1+y)τ+1

[
1+

δ(τ+1+ωi)

y+1

]
1≤i≤L
j=nt−1

e−y/δ

δ(y+1)nr−i+1

[
1+

δ(nr−i+1)

1 + y

]
L+1≤i≤nt−1
j=nt−1

4The case of multiple eigenvalues can be addressed resorting to classical
limiting procedures, which we do not report here for lack of space.

Corollary 4.2: Under the assumption of Proposition 4.2, if
L = nt − 1 and ωi = αnr, i = 1, . . . , nt − 1, α > 0,

fηk(y) =
e−αnr(nt−1)|Z|
Γnt−1(nt − 1)

, (11)

where

Zi,j =



eαnr

β∑
`=0

(nr+nt−i−j−`−1)!

`!δ`

×
β−∑̀
q=0

(nt−j)`+q(αnr)q

q!(nr−i+q)!
1≤i≤nt−1
1≤j≤nt−2

e−y/δ+αnr/(1+y)

δ(1+y)nr−i+1

×

[
1+

δ(nr−i+1+αnr

1+y )

y+1

]
1≤i≤nt−1
j=nt−1

C. Small-cells and multiple scattering

Consider a multiple-scattering channel with N − 1 clusters
of ni independent scatterers each. In this case the matrix Hk

can be represented by the product of N matrices, Si, of size
ni×ni−1, i = 1, . . . , N , with n0 = nt−1 and nN = nr. The
entries of Si are zero-mean unit variance complex Gaussian
independent random variables. For sake of compactness, we
define the set of auxiliary variables νi = ni−n0, i = 1, . . . , N .
In the following we assume nt − 1 ≤ n1 ≤ . . . ≤ nr, thus
such variables are non-negative integers5.

Proposition 4.3: The distribution of (4), under the assump-
tion of multiple Rayleigh scattering affecting the interfering
streams, can be written as

fηk(y) =
|Z|∏n0

i=1

∏N
`=0 Γ(i+ ν`)

(12)

where

Zi,j =



β∑
`=0

(
β

`

)
Γ(n1+i−j−`)

δ`

×
N∏
q=2

(nq−j−`)!,
1≤i≤nt−1
1≤j≤nt−2

e−y/δ

δ

[
G1,N
N,1

(
−νi
1

∣∣∣y)
+δG1,N

N,1

(
−νi−1
1

∣∣∣y)] 1≤i≤nt−1
j=nt−1

and νi = [νN , . . . , ν2, ν1 + i− 1].

V. APPLICATIONS

Here we present two main applications of the SNR gap
statistics evaluation, focusing on the BER and the OP.

5This assumption can be relaxed based on the observations in [10].



A. BER of ZF and MMSE via SNR gap statistics

In presence of a BPSK-modulated input signal, ZF and
MMSE uncoded BER are linked as per [1, Eq. (50)]. In a
non-asymptotic setting, with reference to M -PSK6,

Pmmse
b ≈ Eηk [e−ηk sin2(π/M)]P zf

b . (13)

With reference to the above equation and setting M = 2
for simplicity, we can write the required expectation in the
uncorrelated Rayleigh case as

Eηk [e−ηk ] = Knt−1,nr

nt−1∑
i=1

Di
δ

[Inr−i,ζ + δInr−i+1,ζ ] , (14)

and, in the rank-L Rician case, as

Eηk [e−ηk ] =KΩ

 L∑
j=1

eµjDj
τ !δ

(
Iτ,ζ+

δ(τ+µj+1)Iτ+1,ζ

τ + 1

)
nt−1∑
j=1+L

Dj
δ

(Inr−j+1,ζ + δInr−j+2,ζ)

 , (15)

where

Im,ζ = (−ζ)m

[
m∑
`=1

(`− 1)!

(−ζ)`
− eζEi(−ζ)

]
.

Finally, in presence of multiple scattering,

Eηk [e−ηk ] =

nt−1∑
i=1

Di
Znt−1δ

[
GN+1,1

1,N+1

(
−1
0, ν̄i

∣∣∣ζ)
+δGN+1,1

1,N+1

(
−1
0, ν̄i + 1

∣∣∣ζ)] (16)

where ν̄i = [νN , . . . , ν1 + i].
Remark III: Notice that (14), together with [1, Eq.

(39)], provides an analytical approximation of Pmmse
b under

Rayleigh fading, under the assumptions of Gaussian approx-
imation for the interference and non rank-deficient channel7.
Numerical results, not reported herein due to lack of space,
confirm also, for moderate values of δ, the presence of an
offset between ZF and MMSE per-stream BER, as observed
in [1, Fig. 3]. Extension to different fading laws and/or signal
constellation is subject of ongoing work.

B. Outage Probability evaluation

Employing independent codes of rate R over each of the
transmit antennas, the MMSE k-th stream OP can be evaluated
from8 [1, Eq. (52)], namely

Pmmse
out,k (R) =

∫ 2R−1

0

Fγzf
k

(
2R − 1− x

δ

)
fηk(x) dx , (17)

which once again only requires the cumulative distribution
of γzfk and the density of ηk. In the case of Rayleigh-faded

6Our results can be applied to M -QAM constellations, too, but we do not
report this case here due to space limitations.

7See again [1] for a detailed discussion on those assumptions’ validity.
8We put in the OP expression the generic CDF of γzf

k , instead that the one
used in [1, Eq. (52)], whose expression only refers to Rayleigh fading.

interfering streams, (17) can be expressed in closed form by
substituting into (17) the expression for fηk(x) given in (7)
and the expression for Fγzf

k
(x) given in [1], i.e., Fγzf

k
(x) =

1− e−x
∑nr−nt

`=0
x`

`! . Indeed, (17) can be further cast as

Pmmse
out,k (R) = Fηk(2R − 1)− e−(2

R−1)/δ

nr−nt∑
`=0

∫ 2R−1

0

ex/δ(2R − 1− x)`

δ``!
fηk(x) dx , (18)

whose first term can be evaluated from (7) by virtue of [14,
3.353.1], while the second requires the exploitation of [14,
3.196.1] to be expressed in closed form. As a consequence,
we obtain

Pmmse
out,k (R) = 1− e−(2

R−1)/δKnt−1,nr

nt−1∑
i=0

Di(nr − i)!
2R(nr−i)

×{
1

2R
+

nr−nt∑
`=0

(2R − 1)`+1

2R`(`+ 1)!δ`+1
[δ(nr−i+1)×

2F1(`+1, ξ+1; `+2; 1−2R)−2F1(`+1, ξ; `+2; 1−2R)
]}

(19)

where ξ = `−nr + i+ 1, while Knt−1,nr
and Di are defined

in Proposition 4.1. Ongoing numerical investigation aims to
identify the values of δ beyond which the high-SNR MMSE
OP approximation [1, Formula (53)] and our exact result (19)
closely match.

The corresponding expression for rank 1 and full rank Rice-
faded interferers, can be obtained by plugging [4, Formula
(51)] and [4, Formula (53)], respectively, in (17), while the
derivation of an equivalent formula for the case of arbitrary
Ricean rank is subject of ongoing work. Unfortunately, no
closed-form expression for Pmmse

out,k (R) is available in the
multiple-scattering case [13], due to the absence of any
expression for Fγzf

k
.

VI. NUMERICAL RESULTS

We now validate our analytical expressions for the pdf of
ηk, against numerical (i.e., Monte Carlo) simulations.

Figure 1 shows analytical and numerical results, represented
by markers and solid line, respectively. Results have been
obtained for nt = 3, nr = 5 and different (finite) values of
normalized SNR δ. The dashed line corresponds instead to the
asymptotic expression of the pdf as SNR→∞, which is given
in [1]. The plot highlights the excellent match between analysis
and simulation, thus validating our derivations. Furthermore,
we observe that the asymptotic expression provides a very
good approximation of the pdf for values of normalized SNR
greater than 10 dB, but it is far from providing an accurate
representation for lower values of SNR.

In Figure 2 we show the pdf of the SNR gap ηk for
the multiscattering channel and for a different numbers of
scatterers and scattering stages. Again, the match between
analysis and simulation is very tight. We observe that, as the
number of scattering stages increases, the probability mass of
fηk moves toward smaller values. Thus, the ZF performance
approaches that of the MMSE receiver.



VII. CONCLUSION

The output SNR gap between linear MIMO MMSE and
ZF has been investigated for arbitrary finite values of transmit
power and finite number of antennas. Its pdf is provided in
closed form, under the assumption of Rayleigh-faded intended
stream and independent stream decoding. Interfering streams
are, in turn, assumed to undergo Rayleigh, or Rician (with
arbitrary rank and eigenvalues multiplicity) fading. The case
of multiple Rayleigh scattering on the interfering streams
is considered, too, thus providing a comprehensive analysis
of fading scenarios, arising in current and foreseen wireless
cellular settings. The extension beyond Rayleigh fading for
the desired signal stream is currently under study.
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