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Abstract—This paper considers a continuous-time Poisson
channel whose dark current varies with time. The actual values of
the dark current are revealed to the transmitter as channel-state
information (CSI), either causally or noncausally. It is shown
that, in the limit where the coherence time of the dark current
tends to zero, the improvement on capacity provided by both
causal and noncausal CSI vanishes linearly with the coherence
time.

I. INTRODUCTION

The Poisson channel is a model for optical communica-
tion links that use photodetectors at the receiving end. The
continuous-time Poisson channel with infinite bandwidth sub-
ject to a peak-power constraint and possibly also an average-
power constraint on its input signal has been extensively
studied in the literature. The capacity of this channel is
computed using different methods in [1]–[3]. Among them,
[2] also determines the cut-off rate and [3] the error ex-
ponent of this channel. The Poisson channel with random
or time-varying “dark current” was considered in [4]. The
reliability function of the ideal Poisson channel with noiseless
feedback is determined in [5]. Extension of the continuous-
time Poisson channel model to multiple-user settings has also
been studied [6]–[8]. In particular, [8] considers the peak-
limited continuous-time Poisson channel with spurious photon
counts at the receiver, where the exact positions of these
spurious counts are known to the transmitter as channel-state
information (CSI) before transmission starts. It shows that, in
terms of capacity, the transmitter is able to completely cancel
the influence of these spurious counts, i.e., that the capacity
is the same as when there are no spurious counts.

Like [8], the current work also concerns the Poisson channel
with CSI at the transmitter. However, while in [8] the CSI is
the exact positions of the spurious counts, here we consider
CSI that is the time-varying intensity of the background light
that generates these spurious counts. Hence, effectively, we
are looking at a Poisson channel whose dark current varies
with time, where the values of the dark current are known
to the transmitter as CSI. Compared to the one of [8], ours
is perhaps a more realistic model for free-space or fiber
optical communications. In such applications, the intensity of
background radiation may be detected or predicted, but the
exact positions of photon counts due to background radiation
cannot be known in advance, due to their intrinsic quantum
uncertainty.

As we shall see, the different types of CSI considered in [8]
and in the current work lead to drastically different capacity
results. Indeed, the main result of this paper is that, if the dark
current varies very fast, i.e., if it has a very short coherence
time, then the benefit of both causal and noncausal CSI at
the transmitter is small. Specifically, if the dark current can
change after every τ seconds, then the benefit of (causal or
noncausal) CSI at the transmitter is at most O(τ) nats per
second. In contrast, if the values of the dark current are known
to the receiver, then this knowledge always helps to increase
the capacity, no matter how short the coherence time is.

The current work is closely related to [4], which also studies
Poisson channels with varying dark currents. In [4], the dark
current is assumed to be either deterministic or random and
unknown to either the transmitter or the receiver, and in
the former case a closed-form capacity formula is derived.
When an average-power constraint is present, computing this
capacity becomes a problem of optimal power allocation,
which is further addressed in [9]. In our setting, where the
dark current is random and known only to the transmitter, the
capacity seems more difficult to compute. In fact, within this
work we are unable to provide an explicit capacity formula,
but we derive upper bounds on capacity that are sufficiently
tight in the regime of interest.

Single-letter capacity formulas for channels with causal and
with noncausal CSI at the transmitter (but not at the receiver)
are determined by Shannon [10] and by Gel’fand and Pinsker
[11], respectively; see also [12]. Several examples of channels
with noncausal CSI have been solved, before and after the
discovery of Gel’fand and Pinsker’s formula. In most of
these solved examples [13]–[15], including [8], capacity with
noncausal CSI at the transmitter equals the capacity with CSI
at both transmitter and receiver, and also equals the capacity of
the same channel without states. The current work provides an
example where this is not the case. Indeed, although we do not
provide a capacity formula, our upper bound on the capacity
with noncausal CSI at the transmitter shows that, when the
coherence time of the dark current is sufficiently short, this
capacity is strictly less than the capacity where receiver also
has CSI.

The rest of this paper is arranged as follows. Section II for-
mulates the problem and discusses some preliminary results.
Section III studies the case where the transmitter has causal
CSI, and shows that such CSI improves capacity by no more



than O(τ), where τ is the coherence time according to which
the dark current varies. Section IV shows that the capacity
difference between noncausal and causal CSI is also like O(τ).
Section V concludes the paper with some discussions. We
provide the main ideas and key steps of the proofs. A full-
length paper with complete proofs is under preparation.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a continuous-time Poisson channel whose
input signal is a waveform on R+

0 subject to peak-power
constraint A. Thus, for every t ∈ R+

0 ,

0 ≤ X(t) ≤ A with probability 1. (1)

(We do not impose an average-power constraint on the in-
put.) The channel is affected by background noise which is
a Poisson process of random, time-varying intensity Λ(t),
t ∈ R+

0 ; i.e., Λ(·) is the time-varying dark current. The output
Y (t), t ∈ R+

0 , is a doubly-stochastic Poisson process (Cox
process): conditional on the input signal being x(·) and the
dark current being λ(·), the output is a Poisson process whose
time-t intensity equals x(t) + λ(t).

In this work we are interested in the regime where Λ(·)
varies very fast. We assume that it varies in a block-fading
manner as follows. Divide R+

0 into slots of τ seconds long:
[0, τ), [τ, 2τ), . . . , then Λ(t) remains constant within each
one of these slots, while its values in different slots are
independently distributed. We are interested in the regime
where τ is small. For simplicity, but without losing too much
engineering insight, we assume that every Λ(t), t ∈ R+

0 ,
takes only two values: 0 with probability (1− q) and n with
probability q, where n > 0 and q ∈ (0, 1).

A. Some Notation

Let S be a binary random variable taking the values 0 and
1 with probabilities 1 − q and q, respectively. We use S to
characterize the dark current in the time slot [0, τ): if S = 0
then Λ(t) = 0 for all t ∈ [0, τ); otherwise Λ(t) = n for all
t ∈ [0, τ). Let x denote an input waveform on [0, τ), and let X
denote the set of all admissible input waveforms satisfying (1).
We describe the output signal on [0, τ), which is a point
pattern, by a (possibly empty) set y = {t1, . . . , tk} ⊂ [0, τ)
where each ti ∈ y corresponds to the position of a point,
i.e., a photon count.1 Let Y denote the set of all finite subsets
of [0, τ). Further, let u denote a mapping from {0, 1} to X ,
which maps s to us(t), t ∈ [0, τ), the latter also written as us;
note that us ∈ X . Let U denote the set of all such mappings.

We use a letter like P to denote a probability distribution,2

and sometimes add subscripts to it. In particular, PS denotes
a distribution on {0, 1}, PX one on X , and PU one on U . We

1In the language of Stochastic Processes, a point process is usually char-
acterized using its counting function, which is equivalent to our description
as long as the probability that two counts occur simultaneously is zero.

2For simplicity of notation, we shall not define σ-algebras for probability
measures. This should not cause any confusion within the scope of this work.
However, it should be kept in mind that, in general, our “distributions” are
indeed probability measures and not necessarily probability mass functions or
probability density functions.

use ⊗ to denote products of distributions. For example, when
S and X are generated independently according to PS and PX,
respectively, their joint distribution is PS ⊗ PX. Further, we
use VU|S to denote a “conditional distribution” of U given S.
(More precisely, it is a stochastic kernel with source {0, 1} and
target U , together with the σ-algebras defined on these sets.)
We use W to denote the transition law (again a stochastic
kernel) of the Poisson channel on [0, τ): W(·|x, s) is the
conditional distribution for Y given that X = x and S = s.
Note that, because every u is a (deterministic) mapping from
{0, 1} to X , the channel law W also defines the law of the
“induced” channel with input u, state s, and output y; denote
the law of the induced channel by W̃.

B. CSI Settings and Capacity Formulas

Consider three settings for this channel: without CSI, with
causal CSI, and with noncausal CSI.

Case 1: CSI is available to neither transmitter nor receiver.
In this case, an encoder working at blocklength T seconds

maps a message to an input signal x(t), t ∈ [0, T ], and
a corresponding decoder maps the output signal on [0, T ]
back to a message. The capacity in this case, denoted by
CNoCSI(A,n, q, τ), is defined as the maximum rate (in nats
per second) at which information can be transmitted such that
the probability of a decoding error, computed for a uniformly
chosen message, can be made arbitrarily small as T tends to
infinity.3

This channel can be thought of as a memoryless discrete-
time channel with uncountable input and output alphabets,
which are respectively X and Y defined in Section II-A. Thus
one can generalize the standard capacity formula [16] to obtain

CNoCSI(A,n, q, τ) =
1

τ
sup I(X;Y) (2)

with supremum over distributions of the form (PS ⊗ PX)W.
Case 2: Causal CSI is available to transmitter only.
In this case, to choose the input value x(t) at time t, the

encoder looks at both the message and the past and current
values of the dark current, λ(s), s ∈ [0, t].4 The decoder
is of the same structure as in Case 1. Denote the capacity
by CCau(A,n, q, τ), which is defined similarly as in Case 1.
Again, one can view this channel as a discrete-time channel
with input and output alphabets X and Y , respectively, and
with state S. One can generalize the result of [10] to show

CCau(A,n, q, τ) =
1

τ
sup I(U;Y) (3)

with supremum over distributions of the form (PS ⊗ PU) W̃.
Case 3: Noncausal CSI is available to transmitter only.
In this case, the encoder maps the message and the dark

current λ(t), t ∈ [0, T ], to the input waveform x(t), t ∈ [0, T ].

3We consider average error probabilities throughout this paper. However,
in some cases, including the no-CSI case, capacity does not change when one
considers maximum error probability instead.

4See [5] for a formal treatment of causality in continuous time.



Denote the capacity by CNonCau(A,n, q, τ). Generalizing the
result of [11] we have

CNonCau(A,n, q, τ) =
1

τ

(
sup I(U;Y)− I(U;S)

)
(4)

with supremum over distributions of the form PSVU|SW̃.

C. Some Preliminary Results

We introduce two more quantities. Let CBoth(A,n, q, τ)
denote the capacity when CSI is available to both transmitter
and receiver,5 and let CUni(A, ν) denote the capacity of the
Poisson channel with peak-power constraint A and constant
dark current ν. Both quantities are readily known. Indeed,
CUni(A, ν) is given by [3, Theorem 1]:

CUni(A, ν)

= max
p

(
p(A+ ν) log

A+ ν

pA+ ν
+ (1− p)ν log

ν

pA+ ν

)
(5)

where the maximum is achieved by

p∗ =

(
1 + ν

A

)1+ ν
A(

ν
A

) ν
A · e

− ν

A
. (6)

As for CBoth(A,n, q, τ), a simple time-sharing argument shows
that (see also [4])

CBoth(A,n, q, τ) = (1− q)CUni(A, 0) + q CUni(A,n). (7)

The various capacities introduced so far can be ordered as
follows.

Proposition 1: For all A, n, q, and τ ,

CBoth(A,n, q, τ) ≥ CNonCau(A,n, q, τ) ≥ CCau(A,n, q, τ)

≥ CNoCSI(A,n, q, τ) ≥ CUni(A, qn). (8)

Proof Sketch: The first three inequalities in (8) fol-
low immediately from the fact that more knowledge never
harms capacity. For the last inequality, consider the following
scheme. Transmitter and receiver first discretize the channel
as in [3]: they divide the interval [0, T ] into small slots of ∆
seconds, and approximate each slot by a binary-input binary-
output channel. They then use some common randomness
(which does not increase capacity in point-to-point settings)
to permute these slots. After permutation, they forget how the
slots have been permuted and use the new sequence of binary
channels to communicate. One can verify that, as ∆ tends to
zero, this new channel’s law approaches the law of the binary
channel resulting from applying the same discretization (but
without permutation) on the Poisson channel with constant
dark current qn. Finally, on the Poisson channel with constant
dark current, this discretization approach achieves capacity in
the limit where ∆ tends to zero [3].

One can check from (5) and (7) that CBoth(A,n, q, τ) is
strictly larger than CUni(A, qn), and that their difference does
not depend on τ . Thus, CSI that is available to both transmitter
and receiver always helps to improve capacity, and the amount

5When CSI is available to both transmitter and receiver, capacity is not
affected by whether it is known causally or noncausally.

of improvement is independent of τ . In fact, one can show that
even CSI that is available only to the receiver helps to increase
capacity by an amount that is independent of τ . In contrast, as
we show in the rest of this paper, all the other three capacities
in the chain of inequalities (8) tend to CUni(A, qn) as τ tends
to zero. In fact, we show that

CNonCau(A,n, q, τ)− CUni(A, qn) = O(τ), (9)

where the usual notation O(τ) denotes a function of A, n, q,
and τ satisfying

lim
τ↓0

O(τ)

τ
<∞, for all A, q, n. (10)

Note that (8) implies that (9) still holds when we replace
CNonCau by either CCau or CNoCSI.

We prove (9) in two steps. In Section III we show that
CCau(A,n, q, τ)−CUni(A, qn) = O(τ), and then in Section IV
we show that CNonCau(A,n, q, τ) − CCau(A,n, q, τ) = O(τ).
Explicit bounds are given in the corresponding sections.

III. THE CAUSAL CASE

In this section we show that

CCau(A,n, q, τ)− CUni(A, qn) = O(τ). (11)

The fact that the benefit of causal CSI vanishes for small
τ is not surprising: it can be shown as a consequence to a
result in [8] which says that, when the exact positions of the
photon counts produced by a constant interference are known
to the transmitter causally, such information does not help to
increase capacity. However, to show that the benefit of causal
CSI behaves like O(τ), we need an explicit upper bound.

Proposition 2: For all A, n, q, and τ ,

CCau(A,n, q, τ) ≤ CUni(A, qn) + 4(A+ n)2τ. (12)

We try to provide some intuition to our proof of Propo-
sition 2. To use the formula (3), consider a mapping u that
maps 0 to u0 and maps 1 to u1. Also consider a random input
waveform that does not depend on the state: it is u0 with
probability 1 − q and is u1 with probability q. Observe that
the output distributions induced by these two input strategies
are very close to each other. Indeed, simple calculation shows
that the probabilities of the event of no photon count at the
output when u is used and when the random input waveform
is used are approximately the same; their difference is on the
order of τ2. The same is true for the probabilities of having
exactly one photon count. The probabilities produced by the
two input strategies differ in the dominant term only for the
events of two or more photon counts at the output, while
these probabilities are themselves on the order of τ2 or higher.
Hence the transmitter cannot do much better with causal CSI
than what it can do without CSI. Our proof, albeit somewhat
technical, is largely guided by this observation.

Proof Sketch for Proposition 2: We first generalize the
duality bound [17], [18] to channels with causal CSI. For our
channel, this bound becomes

CCau(A,n, q, τ) ≤ 1

τ
sup
u
D
(
W(·|u)‖Q

)
(13)



where W is the conditional distribution of Y given U:

W(·|u) = (1− q)W(·|u0, 0) + qW(·|u1, 1), u ∈ U , (14)

and Q is any distribution on Y . We choose Q to be doubly-
stochastic Poisson under which, with probability (1 − q), Y
is a homogeneous Poisson process of intensity p∗A, and with
probability q, it is a homogeneous Poisson process of intensity
p∗A + n, on [0, τ), where p∗ is given in (6). Note that this
Q would be the output distribution if we chose the input
distribution to be the one that achieves CUni(A, qn). Using
[19, (19.125)] we can compute the Radon-Nikodym derivative

dW(·|u)

dQ
(y) =

(1− q)e−‖u0‖
∏
s∈y

u0(s) + q e−‖u1‖−nτ
∏
s∈y

(u1(s) + n)

(1− q)e−p
∗Aτ (p∗A)|y| + q e−(p

∗A+n)τ (p∗A+ n)|y|
(15)

where | · | denotes the cardinality of a set, and where ‖ · ‖
denotes the L1 norm which, for a nonnegative waveform x,
equals

‖x‖ =

∫ τ

0

x(t) dt. (16)

We write the relative entropy in (13) as

D
(
W(·|u)‖Q

)
= E

[
log

dW(·|u)

dQ
(Y)

]
(17)

=

∞∑
k=0

W({|Y| = k}|u)E

[
log

dW(·|u)

dQ
(Y)

∣∣∣∣ |Y| = k

]
. (18)

Using (15) we can express and upper-bound each summand in
(18) separately (details omitted). We then arrive at the upper
bound

D
(
W(·|u)‖Q

)
≤
∫ τ

0

(
ū(t)− p∗A+ (ū(t) + qn) log

ū(t) + qn

p∗A+ qn

)
dt

+ 4(A+ n)2τ2. (19)

One can check that the integrand in (19), for every t, is
maximized at u(t) = 0 and at u(t) = A, and equals
CUni(A, qn). Thus we have

D
(
W(·|u)‖Q

)
≤ τ · CUni(A, qn) + 4(A+ n)2τ2 (20)

which, combined with (13), yields (12).

IV. THE NONCAUSAL CASE

In this section we show that

CNonCau(A,n, q, τ)− CCau(A,n, q, τ) = O(τ). (21)

Our bound is the following.
Proposition 3: For all A, n, q, and τ ,

CNonCau(A,n, q, τ) ≤ CCau(A,n, q, τ) +
(2A+ n)2

8
τ. (22)

We again try to provide some intuition to our proof. Con-
sider the formula (4). Note that, when τ is small, the channel
is “weak” in the sense that I(U;Y) is small for all admissible
joint distributions. Thus, in order for the right-hand side of (4)
to be positive, I(U;S) must also be small. In other words, U
can only depend on S “very weakly.” This means that PSVU|S
is close to the product distribution PS ⊗ PU, where PU is
the marginal of PSVU|S on U, but the latter distribution is
admissible in the causal case (3). This is, roughly speaking,
why the transmitter cannot do much better with noncausal CSI
than with causal CSI.

Proof Sketch for Proposition 3: We use the formula (4).
Fix

I(U;S) = α, (23)

then by Pinsker’s inequality [17],

δ
(
PSVU|S ,PS ⊗ PU

)
≤
√
α

2
, (24)

where PU is the marginal distribution of PSVU|S on U, and
where δ(·, ·) denotes the total variation distance.

We next consider the I(U;Y) term in (4). Let R be the
distribution on Y that achieves the capacity in the causal-CSI
case. Again using (a generalized version of) the duality bound
we have

I(U;Y) ≤ E

[
log

d Ŵ(·|U)

dR
(Y)

]
, (25)

where Ŵ denotes the conditional distribution of Y given U
and is given by

Ŵ(·|u) = PS|U(0|u)W(·|u0, 0)+PS|U(1|u)W(·|u0, 1) (26)

for every u ∈ U , where PS|U is the conditional distribution of
S given U according to the joint distribution PSVU|S . Note
that Ŵ is different from W defined in (14). We can continue
(25) as

I(U;Y)

≤ E

[
log

d Ŵ(·|U)

dW(·|U)
(Y)

]
+ E

[
log

dW(·|U)

dR
(Y)

]
(27)

≤ E

[
log

d Ŵ(·|U)

dW(·|U)
(Y)

]
+ τ · CCau(A,n, q, τ), (28)

where the last inequality follows because R is the capacity-
achieving output distribution in the causal case.

We fix any u ∈ U and look at

E

[
log

d Ŵ(·|u)

dW(·|u)
(Y)

]
= D

(
Ŵ(·|u)

∥∥∥W(·|u)
)
. (29)

First consider the case where

PS|U(1|u) ≤ PS(1) = q. (30)

In this case we can write

Ŵ(·|u) =
PS|U(1|u)

q
·W(·|u)+

(
1−

PS|U(1|u)

q

)
W(·|u0, 0).

(31)



Then, by the convexity of D(·‖·),

D
(
Ŵ(·|u)

∥∥∥W(·|u)
)

≤
(

1−
PS|U(1|u)

q

)
D
(
W(·|u0, 0)

∥∥W(·|u)
)
. (32)

We can write down the Radon-Nikodym derivative between
W(·|u0, 0) and W(·|u), again using [19, (19.125)]. After some
calculations, we arrive at

D
(
W(·|u, 0)

∥∥W(·|u)
)
≤ q(2A+ n)τ. (33)

Thus, when (30) holds,

D
(
Ŵ(·|u)

∥∥∥W(·|u)
)
≤
(
q − PS|U(1|u)

)
(2A+ n)τ. (34)

Similarly, one can show that, when (30) does not hold,

D
(
Ŵ(·|u)

∥∥∥W(·|u)
)
≤
(
PS|U(1|u)− q

)
(2A+ n)τ. (35)

We can summarize (34) and (35) into

D
(
Ŵ(·|u)

∥∥∥W(·|u)
)
≤ δ

(
PS|U(·|u),PS

)
(2A+ n)τ. (36)

Now we have

E

[
log

d Ŵ(·|U)

dW(·|U)
(Y)

]
= E

[
D
(
Ŵ(·|U)

∥∥∥W(·|U)
)]

(37)

≤ E
[
δ
(
PS|U(·|U),PS

)]
(2A+ n)τ (38)

= δ
(
PSVU|S ,PS ⊗ PU

)
(2A+ n)τ (39)

≤
√
α

2
(2A+ n)τ, (40)

where the last inequality follows from (24). Combining (4),
(23), (28), and (40) we have

CNonCau(A,n, q, τ)

≤ CCau(A,n, q, τ) +
1

τ

(√
α

2
(2A+ n)τ − α

)
(41)

= CCau(A,n, q, τ)

− 1

τ

(
√
α−

√
1

8
(2A+ n)τ

)2

+
(2A+ n)2

8
τ (42)

≤ CCau(A,n, q, τ) +
(2A+ n)2

8
τ, (43)

completing the proof.
Finally, we state an upper bound on the overall benefit of

noncausal CSI in terms of channel capacity. It is obtained
immediately by combining Propositions 2 and 3 and the last
inequality in (8), and by slightly loosening the bounds.

Proposition 4: For any A, n, q, and τ ,

CNonCau(A,n, q, τ)− CNoCSI(A,n, q, τ) ≤ 5(A+ n)2τ. (44)

V. CONCLUDING REMARKS

In this paper we have derived upper bounds on the capacity
of the continuous-time Poisson channel with time-varying dark
current whose values are known to the transmitter, either
causally or noncausally, as CSI. The bounds show that the
improvement in capacity from such CSI vanishes like O(τ)
as τ tends to zero, where τ is the coherence time according
to which the dark current varies.

We have adopted a simple model for the dark current: it
varies in a block-fading manner, and takes only two possible
values. It is possible to extend our proof techniques to Poisson
channels where the dark current can take multiple values and
varies, e.g., in a stationary way. Furthermore, the intuition
to our proofs suggests that one might be able to show
similar results for other wide-band channels, such as wide-
band Gaussian channels and “very noisy” channels [7].
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